JP4221277B2 - Optical fiber preform drawing method - Google Patents

Optical fiber preform drawing method Download PDF

Info

Publication number
JP4221277B2
JP4221277B2 JP2003392251A JP2003392251A JP4221277B2 JP 4221277 B2 JP4221277 B2 JP 4221277B2 JP 2003392251 A JP2003392251 A JP 2003392251A JP 2003392251 A JP2003392251 A JP 2003392251A JP 4221277 B2 JP4221277 B2 JP 4221277B2
Authority
JP
Japan
Prior art keywords
optical fiber
fiber preform
stretching
heating
tension
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003392251A
Other languages
Japanese (ja)
Other versions
JP2005154170A (en
Inventor
俊一郎 平船
成敏 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2003392251A priority Critical patent/JP4221277B2/en
Publication of JP2005154170A publication Critical patent/JP2005154170A/en
Application granted granted Critical
Publication of JP4221277B2 publication Critical patent/JP4221277B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01205Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
    • C03B37/01225Means for changing or stabilising the shape, e.g. diameter, of tubes or rods in general, e.g. collapsing
    • C03B37/0124Means for reducing the diameter of rods or tubes by drawing, e.g. for preform draw-down
    • C03B37/01242Controlling or regulating the down-draw process
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01205Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
    • C03B37/01225Means for changing or stabilising the shape, e.g. diameter, of tubes or rods in general, e.g. collapsing
    • C03B37/0126Means for supporting, rotating, translating the rod, tube or preform

Description

この発明は、光ファイバ母材の延伸方法に関し、特に、光ファイバ母材を所望外径のストレートロッド状に延伸する延伸方法に関するものである。   The present invention relates to an optical fiber preform stretching method, and more particularly to a stretching method of stretching an optical fiber preform into a straight rod shape having a desired outer diameter.

光ファイバ母材の延伸方法として、加熱炉の内部に加熱手段であるヒータが設けられ、加熱炉の上側に送側チャックが、下側に引側チャックが各々上下方向(光ファイバ母材の延伸方向)に移動可能に設けられた縦型の延伸装置を用いて行う方法が知られている(たとえば、特許文献1)。   As a method of drawing the optical fiber preform, a heater as a heating means is provided inside the heating furnace, and the feeding chuck is located on the upper side of the heating furnace, and the pulling chuck is located on the lower side (stretching of the optical fiber preform). A method is known that uses a vertical stretching device that is movable in the direction (for example, Patent Document 1).

この延伸方法では、送側チャックと引側チャックとによって光ファイバ母材の両端を把持し、光ファイバ母材を加熱炉のヒータによって光ファイバ母材のガラス軟化点以上に加熱した状態で、引側チャックの移動速度が送側チャックの移動速度より速い速度差をもって当該両チャックを同方向に移動(降下移動)させる。   In this drawing method, both ends of the optical fiber preform are gripped by the feeding chuck and the pulling chuck, and the optical fiber preform is heated by the heater of the heating furnace to a temperature higher than the glass softening point of the optical fiber preform. Both chucks are moved in the same direction (downward movement) with a speed difference that is faster than the moving speed of the side chuck.

これにより、引側チャックと送側チャックの移動速度差によって光ファイバ母材に中心軸線方向の張力が与えられ、光ファイバ母材全体が降下しつつ、換言すれば、加熱炉を通過して加熱されつつ光ファイバ母材が所望外径のストレートロッド状に延伸される。   As a result, the tension in the central axis direction is applied to the optical fiber preform due to the difference in the moving speed between the pull side chuck and the feed side chuck, and in other words, the entire optical fiber preform is lowered, in other words, it is heated through the heating furnace The optical fiber preform is drawn into a straight rod shape having a desired outer diameter.

光ファイバのコストダウンの一つの手法として、光ファイバ母材の延伸時間を短くすることが検討されている。上述の延伸方法において、延伸時間を短縮するためには、延伸時に光ファイバ母材に負荷する張力を高くする必要が生じる。   As one method for reducing the cost of optical fibers, it has been studied to shorten the drawing time of the optical fiber preform. In the above-described drawing method, in order to shorten the drawing time, it is necessary to increase the tension applied to the optical fiber preform at the time of drawing.

これは、加熱炉内の温度を上げずに延伸時間を短くするためである。加熱炉内の温度を上げるには、加熱炉の大幅な改造が必要となり、コストアップとなる。例えば、カーボンヒータを利用している場合には、カーボンヒータに供給する電力を上げることで、加熱炉内の温度が上がるが、しかし、カーボンヒータの寿命が極端に短くなる。これ以外にも、炉周囲の断熱材の寿命が短くなり、最悪の場合には、炉体が溶けてしまう虞れがあり、対策として、炉部品の全面的な熱対策が必要となる。また、投入する電力が上がるために、加熱炉までの電力ケーブルを太くするなどの対応も必要となる。   This is to shorten the stretching time without increasing the temperature in the heating furnace. In order to raise the temperature in the heating furnace, a large modification of the heating furnace is required, resulting in an increase in cost. For example, when a carbon heater is used, increasing the electric power supplied to the carbon heater increases the temperature in the heating furnace, but the life of the carbon heater is extremely shortened. In addition to this, the life of the heat insulating material around the furnace is shortened, and in the worst case, the furnace body may be melted, and as a countermeasure, it is necessary to take countermeasures against the entire heat of the furnace parts. Moreover, since the electric power to input goes up, the countermeasures, such as thickening the electric power cable to a heating furnace, are also needed.

また、光ファイバ母材が大型化した場合には、加熱炉内温度が同じで、大型化する前の延伸の速度(引き側の速度)で延伸すると、光ファイバ母材に負荷される張力が高くなる。これは、目標の延伸径にするための光ファイバ母材の外径の変化量が大きくなるためである。   In addition, when the optical fiber preform is enlarged, the temperature inside the heating furnace is the same, and if it is stretched at the stretching speed (pull-side speed) before it is enlarged, the tension applied to the optical fiber preform is increased. Get higher. This is because the amount of change in the outer diameter of the optical fiber preform for achieving the target stretched diameter is increased.

張力を同じにするためには、加熱炉内温度を上げるか、延伸の速度を低くすればよいが、加熱炉内温度は、前述したようにコストアップの要因になり、延伸の速度を低くした場合には、延伸作業の高速化と逆行してしまう。   In order to make the tension the same, it is sufficient to raise the temperature in the heating furnace or lower the stretching speed. However, as described above, the temperature in the heating furnace causes an increase in cost and lowers the stretching speed. In this case, it goes against the speeding up of the stretching work.

このように、延伸の高速化や、延伸する光ファイバ母材の大型化が行われると、延伸張力が高くなってしまい、それを防ぐためには、コストが掛かる。このような状況で、現在は、延伸張力が以前より高くなる傾向がある。   As described above, when the stretching speed is increased or the size of the optical fiber preform to be stretched is increased, the stretching tension increases, and costs are required to prevent this. Under such circumstances, the stretch tension tends to be higher than before.

しかしながら、延伸張力が高くなると、前述のような延伸装置による光ファイバ母材の延伸では、延伸された光ファイバ母材に曲がりが生じ、延伸された光ファイバ母材の真直性が得られなくなる現象が生じる。   However, when the drawing tension becomes high, the drawing of the optical fiber preform by the drawing apparatus as described above causes bending of the drawn optical fiber preform, and the straightness of the drawn optical fiber preform cannot be obtained. Occurs.

なお、光ファイバ母材の曲がりは、母材有効部両端の断面中心を通る直線からの偏差を母材長手方向に測定し、その偏差の最大値、あるいは母材中央での偏差値で評価される。   The bending of the optical fiber preform is evaluated by measuring the deviation from the straight line passing through the center of the cross section at both ends of the preform effective part in the longitudinal direction of the preform and using the maximum deviation or the deviation at the center of the preform. The

光ファイバ母材に曲がりの原因のひとつとしては、一端を送りねじ機構やチェーン、ワイヤ等による駆動手段に連結された片持ちのアームの先端に、送側チャックや引側チャックが設けられており、延伸の張力が高くなったことや、光ファイバ母材の大型化により母材重量が増えたために、送側チャック、引側チャックを片持ちで支持しているアーム(チャック支持アーム)が延伸中に撓みが生じることが考えられる。   One of the causes of bending of the optical fiber preform is that a feeding chuck or pulling chuck is provided at the tip of a cantilever arm, one end of which is connected to a drive means such as a feed screw mechanism, chain, or wire. The arm that holds the feeding side chuck and the pulling side chuck in a cantilevered manner (chuck support arm) is stretched due to the increased tensile tension and the increased weight of the optical fiber base material. It is conceivable that bending occurs inside.

調査を重ねた結果、降下移動による延伸する場合、光ファイバ母材の曲がりが、延伸された光ファイバ母材の上部(延伸終了側)に集中していることがわかった。この原因は、延伸時には張力が掛かっていてチャック支持アームが撓んでいるが、延伸終了時には、チャックの移動が止まり、張力が掛からなくなり、チャック支持アームの弾性復元によりチャック支持アームの撓みがなくなる。その時には、延伸終了寸前にヒータ部にいた光ファイバ母材の上部側がまだ熱く、柔らかいため、チャック支持アームの撓みがなくなることで、光ファイバ母材の上部が曲げられると考えられる。   As a result of repeated investigations, it was found that the bending of the optical fiber preform is concentrated on the upper part (stretching end side) of the stretched optical fiber preform when stretching by descending movement. The cause is that tension is applied at the time of stretching and the chuck support arm is bent, but at the end of stretching, the movement of the chuck is stopped and the tension is not applied. At that time, it is considered that the upper part of the optical fiber preform is bent by eliminating the deflection of the chuck support arm because the upper side of the optical fiber preform in the heater portion is still hot and soft just before the end of stretching.

このことに対して、チャック支持アームが撓まないよう、チャック支持アーム自体の剛性を上げたり、チャックの支持を両持ちにすることで対応は可能であるが、しかし、大きな装置改造が伴い、コストアップにつながってしまう。チャックの支持を両持ちにすると、延伸開始時の光ファイバ母材の取付作業や、延伸終了時の光ファイバ母材の取外作業に支障が生じる虞れがある。
特開平11−11970号公報
This can be dealt with by increasing the rigidity of the chuck support arm itself so that the chuck support arm does not bend, or by supporting the chuck on both sides, but with major equipment modifications, It will lead to cost increase. If the chuck is supported at both ends, there is a risk that the optical fiber preform mounting operation at the start of stretching and the removal of the optical fiber preform at the end of stretching may be hindered.
Japanese Patent Laid-Open No. 11-11970

この発明が解決しようとする課題は、延伸中のチャック支持アームの撓みに起因した光ファイバ母材の曲がりが生じることがなく、装置改造を伴うことなく、光ファイバ母材を高精度に延伸することである。   The problem to be solved by the present invention is that the optical fiber preform is not bent due to bending of the chuck support arm during stretching, and the optical fiber preform is stretched with high accuracy without any device modification. That is.

この発明による光ファイバ母材の延伸方法は、各々光ファイバ母材の延伸方向に移動可能に設けられた送側把持部と引側把持部とによって光ファイバ母材の両端を把持し、加熱手段によって前記光ファイバ母材を加熱した状態で、前記引側把持部の移動速度が前記送側把持部の移動速度より速い速度差をもって当該両把持部を同方向に移動させ、前記引側把持部と前記送側把持部の移動速度差によって前記光ファイバ母材に張力を与え、光ファイバ母材を延伸する光ファイバ母材の延伸方法において、延伸終了時には、前記加熱手段による前記光ファイバ母材の加熱を停止し、加熱停止後も、前記引側把持部と前記送側把持部の移動速度差によって前記光ファイバ母材に張力を与えた状態を維持する。   An optical fiber preform stretching method according to the present invention includes: a heating means that grips both ends of an optical fiber preform by a feeding side gripping portion and a pulling side gripping portion that are provided so as to be movable in the stretching direction of the optical fiber preform; In the state in which the optical fiber preform is heated by the above-mentioned, the pulling side gripping part is moved in the same direction with a moving speed of the pulling side gripping part being faster than the moving speed of the sending side gripping part. In the drawing method of the optical fiber preform that stretches the optical fiber preform by applying tension to the optical fiber preform due to the difference in the moving speed of the transmission side gripping part, the optical fiber preform by the heating means at the end of stretching After the heating is stopped, a state in which tension is applied to the optical fiber preform due to a difference in moving speed between the pull-side gripping part and the sending-side gripping part is maintained.

この発明による光ファイバ母材の延伸方法は、好ましくは、前記光ファイバ母材の温度あるいは光ファイバ母材温度を代表する温度を監視し、加熱停止後、前記温度が所定値に低下するまで前記光ファイバ母材に張力を与えた状態を維持する。   In the method of drawing an optical fiber preform according to the present invention, preferably, the temperature of the optical fiber preform or a temperature representative of the optical fiber preform temperature is monitored, and after the heating is stopped, the temperature is decreased to a predetermined value. Maintain the tension applied to the optical fiber preform.

また、この発明による光ファイバ母材の延伸方法は、好ましくは、延伸終了時の前記加熱手段による前記光ファイバ母材の加熱温度を、それ以前の加熱温度より低くする。   In the method for stretching an optical fiber preform according to the present invention, preferably, the heating temperature of the optical fiber preform by the heating means at the end of stretching is lower than the previous heating temperature.

また、この発明による光ファイバ母材の延伸方法は、好ましくは、加熱停止後の前記引側把持部の移動速度と前記送側把持部の移動速度を各々徐々に低下し、前記引側把持部と前記送側把持部の移動を同時停止する。   In the method for stretching an optical fiber preform according to the present invention, preferably, the moving speed of the pulling side gripping part and the moving speed of the sending side gripping part after stopping heating are gradually decreased, And the movement of the sending side gripping part are stopped simultaneously.

また、この発明による光ファイバ母材の延伸方法は、好ましくは、前記光ファイバ母材に作用する張力を監視し、前記引側把持部の移動速度と前記送側把持部の移動速度の制御により、加熱停止以後の張力を加熱停止以前の張力とほぼ同値に維持する。ここで、ほぼ同値とは、延伸時の張力の±30%程度である。   In the method of drawing an optical fiber preform according to the present invention, preferably, the tension acting on the optical fiber preform is monitored, and the moving speed of the pulling gripping part and the moving speed of the sending gripping part are controlled. The tension after stopping the heating is maintained at substantially the same value as the tension before stopping the heating. Here, substantially the same value is about ± 30% of the tension during stretching.

この発明による光ファイバ母材の延伸方法は、延伸終了時に加熱手段による光ファイバ母材の加熱を停止した後も、引側把持部と送側把持部の移動速度差によって光ファイバ母材に張力を与えた状態を維持するから、加熱停止直後、光ファイバ母材がまだ熱く、光ファイバ母材が柔らかい状態下で、引側把持部や送側把持部を支持するアーム等の撓みがなくなることが回避され、アーム等の弾性復元に起因した光ファイバ母材の曲げが生じることがなくなる。   In the method of drawing an optical fiber preform according to the present invention, even after the heating of the optical fiber preform by the heating means is stopped at the end of the drawing, the tension is applied to the optical fiber preform due to the difference in moving speed between the pull side gripping part and the sending side gripping part. Since the optical fiber preform is still hot and the optical fiber preform is soft immediately after the heating is stopped, the pulling side gripping part and the arm that supports the sending side gripping part are eliminated. Is avoided, and bending of the optical fiber preform due to elastic restoration of the arm or the like does not occur.

この発明による光ファイバ母材の延伸方法の実施に使用される縦型延伸装置の一つの実施形態を図1を参照して説明する。   One embodiment of a vertical drawing apparatus used for carrying out a drawing method of an optical fiber preform according to the present invention will be described with reference to FIG.

縦型延伸装置は、炉内部に加熱手段であるヒータ11が設けられた加熱炉10を有する。加熱炉10は、固定配置で、光ファイバ母材Wが上下方向に通過可能な構造になっている。加熱炉10には、ヒータ11の温度を計測する放射温度計12が設けられている。   The vertical stretching apparatus has a heating furnace 10 provided with a heater 11 as a heating means inside the furnace. The heating furnace 10 has a fixed arrangement and a structure in which the optical fiber preform W can pass in the vertical direction. The heating furnace 10 is provided with a radiation thermometer 12 that measures the temperature of the heater 11.

加熱炉10の上側には光ファイバ母材Wの上端部(上ダミー部Wad)を把持する送側チャック(送側把持部)20が、下側には光ファイバ母材Wの下端部(下ダミー部Wld)を把持する引側チャック(引側把持部)30が互いに同心位置に配置されている。   A feeding side chuck (feeding side gripping part) 20 for gripping the upper end part (upper dummy part Wad) of the optical fiber preform W is disposed on the upper side of the heating furnace 10, and a lower end part (lower side) of the optical fiber preform W is disposed on the lower side. Pull-side chucks (pull-side grip portions) 30 that grip the dummy portion (Wld) are arranged concentrically with each other.

光ファイバ母材Wは、上ダミー部Wadを送側チャック20によって把持され、下ダミー部Wldを引側チャック30によって把持されることにより、図示されているように、加熱炉10を上下に貫通して垂直(延伸方向)に保持される。   The optical fiber preform W penetrates the heating furnace 10 up and down as shown by gripping the upper dummy portion Wad by the feeding side chuck 20 and the lower dummy portion Wld by the pulling side chuck 30. Thus, it is held vertically (stretching direction).

光ファイバ母材Wは、コア及びクラッドの一部もしくは全てを有する半製品母材であり、コアはGeやFなどのドーパントが入った合成石英により構成されている。上ダミー部Wad、下ダミー部Wldは、天然石英製である。   The optical fiber preform W is a semi-finished preform having part or all of a core and a clad, and the core is made of synthetic quartz containing a dopant such as Ge or F. The upper dummy portion Wad and the lower dummy portion Wld are made of natural quartz.

送側チャック20は張力測定を行うロードセル25を介して上側チャック支持アーム21の先端(一端)に取り付けられている。上側チャック支持アーム21は、水平アームで、基端(他端)を送りナット22に連結され、送りナット22によって支持されている。送りナット22は、垂直方向(光ファイバ母材Wの延伸方向)に移動可能に設けられた送側送りねじ棒24にねじ係合し、送側送りねじ棒24の回転によって上下方向に移動する。送側送りねじ棒24には送側駆動モータ23が連結されており、送側駆動モータ23は送側送りねじ棒24を回転駆動する。   The feed chuck 20 is attached to the tip (one end) of the upper chuck support arm 21 via a load cell 25 for measuring tension. The upper chuck support arm 21 is a horizontal arm, and has a base end (the other end) coupled to the feed nut 22 and supported by the feed nut 22. The feed nut 22 is screw-engaged with a feed-side feed screw rod 24 provided so as to be movable in the vertical direction (stretching direction of the optical fiber preform W), and moves up and down by the rotation of the feed-side feed screw rod 24. . A feed-side drive motor 23 is connected to the feed-side feed screw rod 24, and the feed-side drive motor 23 rotationally drives the feed-side feed screw rod 24.

引側チャック30は下側チャック支持アーム31の先端(一端)に取り付けられている。下側チャック支持アーム31は、水平アームで、基端(他端)を送りナット32に連結され、送りナット32によって支持されている。送りナット32は、垂直方向(光ファイバ母材Wの延伸方向)に移動可能に設けられた引側送りねじ棒34にねじ係合し、引側送りねじ棒34の回転によって上下方向に移動する。引側送りねじ棒34には引側駆動モータ33が連結されており、引側駆動モータ33は引側送りねじ棒34を回転駆動する。   The pull-side chuck 30 is attached to the tip (one end) of the lower chuck support arm 31. The lower chuck support arm 31 is a horizontal arm, the base end (the other end) is connected to the feed nut 32, and is supported by the feed nut 32. The feed nut 32 is screw-engaged with a pull-side feed screw rod 34 movably provided in the vertical direction (stretching direction of the optical fiber preform W), and moves up and down by the rotation of the pull-side feed screw rod 34. . A pull-side drive motor 33 is connected to the pull-side feed screw rod 34, and the pull-side drive motor 33 rotationally drives the pull-side feed screw rod 34.

縦型延伸装置は、マイクロコンピュータ等による電子制御式のコントローラ40を有する。コントローラ40は、送側駆動モータ23、引側駆動モータ33の速度制御、換言すれば、送側チャック20、引側チャック30の移動速度を制御するモータ制御部41と、ヒータ11に供給する電力を制御するヒータ電力制御部42とを有する。   The vertical stretching apparatus has an electronically controlled controller 40 such as a microcomputer. The controller 40 controls the speed of the sending drive motor 23 and the pulling drive motor 33, in other words, the motor controller 41 that controls the moving speed of the sending chuck 20 and the pulling chuck 30, and the power supplied to the heater 11. And a heater power control unit 42 for controlling.

コントローラ40は、放射温度計12より信号を入力し、ヒータ11の温度を監視(モニタ)する。また、コントローラ40は、ロードセル25より信号を入力し、光ファイバ母材Wに作用する張力を監視(モニタ)する。   The controller 40 receives a signal from the radiation thermometer 12 and monitors the temperature of the heater 11. Further, the controller 40 inputs a signal from the load cell 25 and monitors (monitors) the tension acting on the optical fiber preform W.

光ファイバ母材Wの延伸は、図2(d)に示されているように、ヒータ電力制御部42による炉電力制御のもとに、ヒータ11に電力供給を行い、ヒータ11によって加熱炉10内で光ファイバ母材Wを加熱する。   As shown in FIG. 2 (d), the optical fiber preform W is stretched by supplying power to the heater 11 under the furnace power control by the heater power control unit 42, and the heating furnace 10 using the heater 11. The optical fiber preform W is heated inside.

この加熱状態で、モータ制御部41による送側駆動モータ23と引側駆動モータ33の速度制御により、図2(a)に示されているように、引側チャック30の移動速度(引側速度)Vbが送側チャック20の移動速度(送側速度)Vaより速い速度差をもって両チャック20、30を降下移動させる。   In this heated state, the speed of the feed side drive motor 23 and the pull side drive motor 33 is controlled by the motor control unit 41, and as shown in FIG. ) The chucks 20 and 30 are moved down with a speed difference Vb higher than the moving speed (feeding speed) Va of the feeding chuck 20.

これにより、光ファイバ母材Wは、引側チャック30と送側チャック20の移動速度差(Vb−Va)によって中心軸線方向(軸長線方向)の張力(図2(b)参照)を与えられ、全体が降下移動しつつ、延伸される。   Thereby, the optical fiber preform W is given a tension (refer to FIG. 2B) in the central axis direction (axial long line direction) due to the moving speed difference (Vb−Va) between the pulling side chuck 30 and the feeding side chuck 20. The whole is stretched while moving down.

図2(c)に示されているように、延伸長が予め設定されている終了長Leになると、この時点を延伸終了時点Teとし、ヒータ11に対する電力供給を遮断(電断)する。なお、延伸長が予め設定されている終了長Leになったことは、送側チャック20あるいは引側チャック30の降下位置を、図示されていない位置検出スイッチや位置検出センサによって検出することにより、見いだすことができる。   As shown in FIG. 2C, when the extension length reaches the preset end length Le, this time is set as the extension end time Te, and the power supply to the heater 11 is cut off (power interruption). Note that the extension length has reached the preset end length Le by detecting the lowered position of the feeding side chuck 20 or the pulling side chuck 30 by a position detection switch or position detection sensor (not shown). Can be found.

この延伸終了時点Te後、送側駆動モータ23の速度、すなわち、送側チャック20の移動速度Vaを徐々に低下し、ロードセル25より計測される光ファイバ母材Wに作用する張力が、図2(b)に示されているように、延伸中と同じ程度(±30%以内)になるように、送側駆動モータ23の速度をフィードバック制御し、引側チャック30の移動速度Vbも徐々に低下させる。そして、引側と送側のチャック30、20が同じ速度になるのを待ち、同じ速度になった時点で、送側と引側のチャック20、30の移動を同時に停止した。   After this stretching end time Te, the speed of the feeding side drive motor 23, that is, the moving speed Va of the feeding side chuck 20, is gradually decreased, and the tension acting on the optical fiber preform W measured by the load cell 25 is shown in FIG. As shown in (b), the speed of the feed-side drive motor 23 is feedback-controlled so that it is the same level as that during stretching (within ± 30%), and the moving speed Vb of the pull-side chuck 30 is also gradually increased. Reduce. After waiting for the pulling side and the feeding side chucks 30 and 20 to have the same speed, the movement of the feeding side and the pulling side chucks 20 and 30 was stopped simultaneously.

これにより、延伸終了時点Teでヒータ11による光ファイバ母材Wの加熱を停止した後も、引側チャック30と送側チャック20の移動速度差によって光ファイバ母材Wに張力が与えた状態が維持され、加熱停止直後、光ファイバ母材Wがまだ熱く、光ファイバ母材Wが柔らかい状態下で、送側チャック20や引側チャック30を支持する上側チャック支持アーム21、下側チャック支持アーム31の撓みがなくなることが回避される。   Thereby, even after the heating of the optical fiber preform W by the heater 11 is stopped at the stretching end time Te, the tension is applied to the optical fiber preform W due to the moving speed difference between the pull side chuck 30 and the feed side chuck 20. The upper chuck support arm 21 and the lower chuck support arm that support the feeding side chuck 20 and the pulling side chuck 30 while the optical fiber preform W is still hot and the optical fiber preform W is soft immediately after the heating is stopped. It is avoided that 31 is lost.

このことにより、張力解除に伴う上側チャック支持アーム21、下側チャック支持アーム31、の弾性復元に起因した光ファイバ母材Wの曲げが生じることがなくなり、装置改造を伴うことなく、光ファイバ母材Wを高精度に延伸することができる。   As a result, the optical fiber preform W is not bent due to the elastic recovery of the upper chuck support arm 21 and the lower chuck support arm 31 due to the release of tension, and the optical fiber preform is not accompanied by device modification. The material W can be drawn with high accuracy.

また、延伸終了時点Te後、すなわち、加熱停止後、光ファイバ母材Wに張力を与えた状態を維持する期間Cは、光ファイバ母材Wの温度あるいは光ファイバ母材温度を代表する温度を監視し、加熱停止後、監視温度が所定値、たとえば、光ファイバ母材Wの軟化温度(ガラス転移温度)相当以下に低下するまでに限定することもできる。この監視温度は、放射温度計12によって計測されるヒータ11の温度であってよい。   Further, after the stretching end time Te, that is, after the heating is stopped, the period C in which the tension is applied to the optical fiber preform W is set to a temperature representative of the temperature of the optical fiber preform W or the optical fiber preform temperature. After monitoring and heating, the monitoring temperature can be limited to a predetermined value, for example, until the temperature drops below the softening temperature (glass transition temperature) of the optical fiber preform W. This monitored temperature may be the temperature of the heater 11 measured by the radiation thermometer 12.

他の実施形態として、図3(a)〜(d)に示されているように、延伸終了時点Teより少し前の時点Taで、炉電力を徐々に低下し、ヒータ11による光ファイバ母材Wの加熱温度を、それ以前の加熱温度より低くし、光ファイバ母材Wがガラス転移温度以下に冷めるまでの時間を短縮することもできる。   As another embodiment, as shown in FIGS. 3 (a) to 3 (d), the furnace power is gradually reduced at a time Ta slightly before the drawing end time Te, and the optical fiber preform by the heater 11 is used. The heating temperature of W can be made lower than the previous heating temperature, and the time required for the optical fiber preform W to cool below the glass transition temperature can be shortened.

この場合も、光ファイバ母材Wに作用する張力は、時点Ta以降も、時点Ta以前とほぼ同値に維持する制御を行うため、時点Ta以降、送側チャック20の移動速度Vaと引側チャック30の移動速度Vbtが、ともに徐々に低下する。   Also in this case, the tension acting on the optical fiber preform W is controlled so as to maintain substantially the same value as before the time Ta after the time Ta. Therefore, after the time Ta, the moving speed Va of the feeding side chuck 20 and the pulling side chuck are controlled. Both the moving speeds Vbt of 30 gradually decrease.

なお、ヒータ11による光ファイバ母材Wの加熱温度をあまり低くすると、それに伴い送側チャック20、引側チャック30の移動速度Va、Vbtが遅くなり、延伸時間が長くなるから、これが、光ファイバ母材Wが冷める時間を短くするよりも長くなると意味がない。この温度低下は、定常時の20%程度以内で、延伸終了時点Teから300mm以内が好ましい。   If the heating temperature of the optical fiber preform W by the heater 11 is too low, the movement speeds Va and Vbt of the feeding side chuck 20 and the pulling side chuck 30 are reduced accordingly, and the drawing time becomes longer. There is no point in making it longer than shortening the time for the base material W to cool. This temperature drop is preferably within about 20% of the steady state and within 300 mm from the stretching end time Te.

なお、上述の実施形態では、降下移動方式の縦型延伸装置を用いたが、この発明による光ファイバ母材の延伸方法は、上昇移動方式の縦型延伸装置でも同様に実施でき、また、水平方向に延伸する横型の延伸装置でも同様に実施できる。   In the above-described embodiment, the vertical movement apparatus of the descending movement method is used. However, the method of stretching the optical fiber preform according to the present invention can be similarly implemented by the vertical stretching apparatus of the ascending movement system, The same can be applied to a horizontal stretching apparatus that stretches in the direction.

図1に示されているような縦型延伸装置を使用し、延伸終了時に、光ファイバ母材が冷えて固まるまで張力を掛け続けることにした。このときの延伸速度は、引き側で62.5mm/min、送り側で40mm/minとし、加熱炉内温度は直接測れないので、ヒータの温度を放射温度計で測定したところ2500℃であった。このときの延伸張力は1000Nとし、延伸前外径100mmの光ファイバ母材を目標外径80mmに延伸した。   A vertical stretching apparatus as shown in FIG. 1 was used, and at the end of stretching, tension was continuously applied until the optical fiber preform was cooled and solidified. The stretching speed at this time was 62.5 mm / min on the pulling side and 40 mm / min on the feeding side, and the temperature inside the heating furnace could not be measured directly. Therefore, when the heater temperature was measured with a radiation thermometer, it was 2500 ° C. . The stretching tension at this time was 1000 N, and an optical fiber preform with an outer diameter of 100 mm before stretching was stretched to a target outer diameter of 80 mm.

延伸終了時(送側チャックもしくは引側チャックが設定位置まで移動した時点)に、加熱炉のヒータ電源を切る。そして、送側チャックの移動速度を徐々に遅くし、張力が延伸中と同じ程度になるように、引側チャックの速度を変化させて、引側と送側のチャックが同じ速度になるのを待つ。そして同じ速度になった時点で、送側と引側のチャックの移動を同時停止した。その結果、光ファイバ母材が曲がらずに延伸ができた。   At the end of stretching (when the feed side chuck or pull side chuck moves to the set position), the heater power of the heating furnace is turned off. Then, gradually lower the moving speed of the feeding side chuck and change the speed of the pulling side chuck so that the tension becomes the same as that during stretching, so that the pulling side and the feeding side chuck become the same speed. wait. At the same time, the movements of the feeding side and pulling side chucks were stopped simultaneously. As a result, the optical fiber preform could be stretched without bending.

なお、延伸終了後に掛ける張力により、母材上部(終了時にまだ柔らかい部分)の外径が変化する。張力が低いほうが光ファイバ母材が細くならずにすむが、曲がりが大きくなる。おおよそ、延伸時に光ファイバ母材に掛かる張力の±30%までならば、あまり大きな母材曲がりが生じず、光ファイバ母材が細くならない。   Note that the outer diameter of the upper part of the base material (still soft part at the end) changes due to the tension applied after the end of stretching. The lower the tension, the thinner the optical fiber preform, but the greater the bending. In general, if the tension is up to ± 30% of the tension applied to the optical fiber preform at the time of stretching, a very large preform bending does not occur and the optical fiber preform does not become thin.

なお、延伸終了時にすぐに送り出しを停止させた場合には、張力が瞬間的に高くなり(引き取り側の減速との時間差による)、その部分の外径が細くなった。また、送側と引側を同時に止め、その後、送り出し側を延伸の時と逆方向に移動させることでも張力を掛けることが可能であるが、この方法では光ファイバ母材に曲がりが生じてしまった。これは、送り出しを逆方向に動かすまでの間に光ファイバ母材に掛かる張力が低くなることで、チャックが本来の位置に戻ることにより光ファイバ母材が曲がってしまった。   When the feeding was stopped immediately after the end of stretching, the tension increased momentarily (due to the time difference from the deceleration on the take-off side), and the outer diameter of that portion became thinner. It is also possible to apply tension by stopping the sending side and pulling side at the same time, and then moving the sending side in the opposite direction to that during stretching. However, this method causes bending of the optical fiber preform. It was. This is because the tension applied to the optical fiber preform before the feed is moved in the opposite direction is lowered, and the optical fiber preform is bent as the chuck returns to its original position.

また、比較例として、光ファイバ母材の上部のダミー部を太くしてダミー部まで延伸することで、延伸終了時に光ファイバ母材の有効部が十分さめて曲がらない位置までくるようにしてみた。結果、光ファイバ母材の曲がりは低減されたが、ダミー部(天然石英)と光ファイバ母材(合成石英)の高温時の粘度が違うために、延伸終了側の光ファイバ母材の延伸後の外径が大きく変動してしまった。   Also, as a comparative example, the upper dummy part of the optical fiber preform was thickened and extended to the dummy part, so that the effective part of the optical fiber preform was sufficiently swept to the position where it would not bend at the end of stretching. . As a result, the bending of the optical fiber preform was reduced, but after the stretching of the optical fiber preform on the drawing end side, the dummy part (natural quartz) and the optical fiber preform (synthetic quartz) had different viscosities at high temperatures. The outer diameter of the has fluctuated greatly.

延伸前外径100mmの母材を目標80mmに延伸したところ、ダミー部との境界から100mm程度のところが変動し、境界近傍が一番細く外径78mm程度となってしまった。このときの延伸速度は、引き側で62.5mm/min、送り側で40mm/minとし、加熱炉内温度は直接測れないので、ヒータの温度を放射温度計で測定したところ2500℃であった。このときの延伸張力は、1000Nであった。   When a base material having an outer diameter of 100 mm before stretching was stretched to a target of 80 mm, the position of about 100 mm fluctuated from the boundary with the dummy part, and the vicinity of the boundary was the narrowest and the outer diameter was about 78 mm. The stretching speed at this time was 62.5 mm / min on the pulling side and 40 mm / min on the feeding side, and the temperature inside the heating furnace could not be measured directly. Therefore, when the heater temperature was measured with a radiation thermometer, it was 2500 ° C. . The stretching tension at this time was 1000N.

この方法では、ダミー部が多く必要になるため、コストアップにつながり、たとえ、粘度が光ファイバ母材と同じようなダミー部を利用して延伸してもコストアップとなってしまう。   This method requires a large number of dummy portions, leading to an increase in cost. Even if the viscosity is extended using a dummy portion similar to that of the optical fiber preform, the cost is increased.

この発明による光ファイバ母材の延伸方法の実施に使用される縦型延伸装置の一つの実施形態を示す構成図である。It is a block diagram which shows one Embodiment of the vertical extending | stretching apparatus used for implementation of the extending | stretching method of the optical fiber preform | base_material by this invention. (a)〜(d)はこの発明による光ファイバ母材の延伸方法の一つの実施形態を示すタイムチャートである。(A)-(d) is a time chart which shows one Embodiment of the extending | stretching method of the optical fiber preform | base_material by this invention. (a)〜(d)はこの発明による光ファイバ母材の延伸方法の他の実施形態を示すタイムチャートである。(A)-(d) is a time chart which shows other embodiment of the extending | stretching method of the optical fiber preform | base_material by this invention.

符号の説明Explanation of symbols

10 加熱炉
11 ヒータ
12 放射温度計
20 送側チャック
21 上側チャック支持アーム
22 送りナット
23 送側駆動モータ
24 送側送りねじ棒
25 ロードセル
30 引側チャック
31 下側チャック支持アーム
32 送りナット
33 引側駆動モータ
34 送側送りねじ棒
40 コントローラ
41 モータ制御部
42 ヒータ電力制御部
DESCRIPTION OF SYMBOLS 10 Heating furnace 11 Heater 12 Radiation thermometer 20 Feed side chuck 21 Upper chuck support arm 22 Feed nut 23 Feed side drive motor 24 Feed side feed screw rod 25 Load cell 30 Pull side chuck 31 Lower chuck support arm 32 Feed nut 33 Pull side Drive motor 34 Feed-side feed screw rod 40 Controller 41 Motor controller 42 Heater power controller

Claims (5)

各々光ファイバ母材の延伸方向に移動可能に設けられた送側把持部と引側把持部とによって光ファイバ母材の両端を把持し、加熱手段によって前記光ファイバ母材を加熱した状態で、前記引側把持部の移動速度が前記送側把持部の移動速度より速い速度差をもって当該両把持部を同方向に移動させ、前記引側把持部と前記送側把持部の移動速度差によって前記光ファイバ母材に張力を与え、光ファイバ母材を延伸する光ファイバ母材の延伸方法において、
延伸終了時には、前記加熱手段による前記光ファイバ母材の加熱を停止し、加熱停止後も、前記引側把持部と前記送側把持部の移動速度差によって前記光ファイバ母材に張力を与えた状態を維持する光ファイバ母材の延伸方法。
In the state where both ends of the optical fiber preform are gripped by the feeding side gripping portion and the pulling side gripping portion provided movably in the extending direction of each optical fiber preform, and the optical fiber preform is heated by the heating means, The two gripping parts are moved in the same direction with a speed difference that is faster than the moving speed of the sending side gripping part, and the pulling side gripping part and the sending side gripping part move according to the moving speed difference between the pulling side gripping part and the sending side gripping part. In an optical fiber preform stretching method that applies tension to the optical fiber preform and stretches the optical fiber preform.
At the end of stretching, heating of the optical fiber preform by the heating means was stopped, and even after the heating was stopped, tension was applied to the optical fiber preform due to a difference in moving speed between the pull-side gripping portion and the sending-side gripping portion. An optical fiber preform stretching method that maintains the state.
前記光ファイバ母材の温度あるいは光ファイバ母材温度を代表する温度を監視し、加熱停止後、前記温度が所定値に低下するまで前記光ファイバ母材に張力を与えた状態を維持する請求項1記載の光ファイバ母材の延伸方法。   The temperature of the optical fiber preform or a temperature representative of the optical fiber preform temperature is monitored, and after the heating is stopped, a state where tension is applied to the optical fiber preform is maintained until the temperature drops to a predetermined value. 2. A method for stretching an optical fiber preform according to 1. 延伸終了時の前記加熱手段による前記光ファイバ母材の加熱温度を、それ以前の加熱温度より低くする請求項1または2記載の光ファイバ母材の延伸方法。   The method of drawing an optical fiber preform according to claim 1 or 2, wherein a heating temperature of the optical fiber preform by the heating means at the end of the drawing is lower than a previous heating temperature. 加熱停止後の前記引側把持部の移動速度と前記送側把持部の移動速度を各々徐々に低下し、前記引側把持部と前記送側把持部の移動を同時停止する請求項1〜3の何れか1項記載の光ファイバ母材の延伸方法。   4. The movement speed of the pulling side gripping part and the movement speed of the sending side gripping part after heating stop are gradually decreased, respectively, and the movement of the pulling side gripping part and the sending side gripping part is stopped simultaneously. The method for stretching an optical fiber preform according to any one of the above. 前記光ファイバ母材に作用する張力を監視し、前記引側把持部の移動速度と前記送側把持部の移動速度の制御により、加熱停止以後の張力を加熱停止以前の張力とほぼ同値に維持する請求項1〜4の何れか1項記載の光ファイバ母材の延伸方法。   The tension acting on the optical fiber preform is monitored, and the tension after stopping heating is maintained at almost the same value as the tension before stopping heating by controlling the moving speed of the pulling gripping part and the moving speed of the sending gripping part. The method for stretching an optical fiber preform according to any one of claims 1 to 4.
JP2003392251A 2003-11-21 2003-11-21 Optical fiber preform drawing method Expired - Fee Related JP4221277B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003392251A JP4221277B2 (en) 2003-11-21 2003-11-21 Optical fiber preform drawing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003392251A JP4221277B2 (en) 2003-11-21 2003-11-21 Optical fiber preform drawing method

Publications (2)

Publication Number Publication Date
JP2005154170A JP2005154170A (en) 2005-06-16
JP4221277B2 true JP4221277B2 (en) 2009-02-12

Family

ID=34719012

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003392251A Expired - Fee Related JP4221277B2 (en) 2003-11-21 2003-11-21 Optical fiber preform drawing method

Country Status (1)

Country Link
JP (1) JP4221277B2 (en)

Also Published As

Publication number Publication date
JP2005154170A (en) 2005-06-16

Similar Documents

Publication Publication Date Title
CN107108313B (en) Forming elongated glass parts with low bow using a gripper apparatus
US10106451B2 (en) Glass rod machining method and machining apparatus
JP5398026B2 (en) Glass base material stretching method and apparatus
JPH01501820A (en) Forming optical fiber connections
US6595454B2 (en) Optical fiber tensioning device and method of controlling the tension applied to an optical fiber
CN111434633B (en) Automated large outer diameter preform pointing process and resulting glass preform
EP0881196B1 (en) Method for drawing a glass ingot to a rod
EP1112979A1 (en) Method and device for controlling the tension applied to an optical fibre
JP4221277B2 (en) Optical fiber preform drawing method
AU7256500A (en) Optical fibre tensioning device and method of controlling the tension applied to an optical fibre
AU732750B2 (en) Improved method of drawing a waveguide preform
CN111153589A (en) Traction equipment for extending special optical fiber preform and drawing capillary tube
JP4443433B2 (en) Optical fiber preform drawing method
US20050066690A1 (en) Method of and apparatus for producing optical fiber
CN102730944A (en) Stretching device for quartz prefabricated base material and stretching method thereof
JP2016079059A (en) Method and apparatus for manufacturing optical fiber
WO2023277076A1 (en) Optical fiber production device and optical fiber production method
CN212781337U (en) Precise optical fiber melting tapering machine for planar waveguide type optical splitter
JP6136554B2 (en) Glass base material stretching apparatus and glass base material manufacturing method
CN212781338U (en) Optical fiber melting tapering machine for planar waveguide type optical splitter
JPS63151640A (en) Apparatus for drawing glass rod
JP2003212576A (en) Method for elongating glass preform
JP2007197225A (en) Method for drawing glass preform
JPH06227838A (en) Production of optical fiber
JP2948978B2 (en) Processing method for stretched optical fiber parts

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060620

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081111

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4221277

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121121

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121121

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131121

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees