JP4220994B2 - Refractory material - Google Patents

Refractory material Download PDF

Info

Publication number
JP4220994B2
JP4220994B2 JP2005372884A JP2005372884A JP4220994B2 JP 4220994 B2 JP4220994 B2 JP 4220994B2 JP 2005372884 A JP2005372884 A JP 2005372884A JP 2005372884 A JP2005372884 A JP 2005372884A JP 4220994 B2 JP4220994 B2 JP 4220994B2
Authority
JP
Japan
Prior art keywords
heat
refractory material
adhesive layer
material layer
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005372884A
Other languages
Japanese (ja)
Other versions
JP2006097467A (en
Inventor
健二 大塚
正樹 戸野
文治 山口
仁美 村岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2005372884A priority Critical patent/JP4220994B2/en
Publication of JP2006097467A publication Critical patent/JP2006097467A/en
Application granted granted Critical
Publication of JP4220994B2 publication Critical patent/JP4220994B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

本発明は防・耐火用途に用いられる耐火性部材に関する。   The present invention relates to a fireproof member used for fireproofing and fireproofing applications.

近年、一般建築物の内外壁に用いられる部材に対して、防火性能や耐火性能が要求されるようになってきた。これに伴い、外壁の接続部(目地部)に対しても、従来から必要とされた水密性に加えて、防・耐火性能が要求されている。
外壁の接続部(目地部)に要求される防・耐火性能としては、裏面への炎の貫通がないこと、目地部が部材で覆われている場合は、その部材の温度が260℃以下となることが必要である。
In recent years, fire resistance and fire resistance have been required for members used for the inner and outer walls of general buildings. In connection with this, in addition to the water tightness conventionally required for the connection part (joint part) of the outer wall, anti-fire / fire resistance performance is required.
As the fireproof and fireproof performance required for the connection part (joint part) of the outer wall, there is no penetration of flame to the back surface, and when the joint part is covered with a member, the temperature of the member is 260 ° C. or less. It is necessary to become.

一般に外壁の接続部(目地部)に防・耐火性能を付与するために、例えば、特開平8−81674号公報には防火性を有するシーラントを塗布する方法や、特開平8−209891号公報には耐火性を有するガスケットを取り付ける方法が開示されている。しかしながら、シーラントを塗布する方法は、建築物全体に足場を設けた現場にて作業をするため、その作業に技術を要し、施工が不十分であると火災時にシーラントが脱落して炎が貫通する恐れがあった。
また、ガスケットを取り付ける方法は、比較的簡単に施工ができるが、耐火性を有するガスケット自体が高価であるという問題点があった。
In general, in order to give fireproofing performance to the connecting portion (joint portion) of the outer wall, for example, Japanese Patent Application Laid-Open No. 8-81674 discloses a method of applying a sealant having fire resistance, and Japanese Patent Application Laid-Open No. Hei 8-209891. Discloses a method of attaching a gasket having fire resistance. However, the method of applying the sealant is to work on the site where the entire building is provided with a scaffold. Therefore, the work requires technology, and if the construction is insufficient, the sealant will fall off in the event of a fire and the flame will penetrate. There was a fear.
Moreover, although the method of attaching a gasket can be constructed relatively easily, there is a problem that the gasket having fire resistance itself is expensive.

また、水密性をもたせるためには、一次防水としてガスケットやシーラントを取り付ける方法が採用されているが、さらに毛管現象による水の侵入を防止するには、二次防水として木口面にブチルテープを貼付けた上で、発泡ポリエチレン等のバックアップ材を充填する方法を必要とするため、施工が非常に煩雑になるという問題点があった。   In order to provide watertightness, a method of attaching a gasket or sealant as primary waterproofing is adopted, but in order to prevent water from entering due to capillary action, butyl tape is attached to the end of the mouth as secondary waterproofing. In addition, since a method of filling a backup material such as foamed polyethylene is required, there is a problem that the construction becomes very complicated.

本発明の目的は、上記に鑑み、目地部に防・耐火性及び耐水性が同時に付与可能であって、しかも施工が容易な耐火性部材を提供することにある。   In view of the above, an object of the present invention is to provide a fire-resistant member that can be simultaneously imparted with anti-fire resistance and water resistance to a joint part and is easy to construct.

請求項1記載の発明(以下、第1発明という)である耐火性部材は、加熱によって膨張して耐火断熱層を形成しうる熱膨張性耐火材層の一面に緩衝性材料層が積層され、他面に粘着剤層が積層されてなる耐火性部材であって、該熱膨張性耐火材層を50kW/m2 の加熱条件下で30分間加熱した後の体積膨張率が3〜100倍であることを特徴とする。 The refractory member according to the invention of claim 1 (hereinafter referred to as the first invention) has a buffer material layer laminated on one surface of a thermally expandable refractory material layer that can be expanded by heating to form a refractory heat insulating layer, It is a fire-resistant member in which an adhesive layer is laminated on the other surface, and the volume expansion coefficient after heating the thermally expandable fire-resistant material layer for 30 minutes under a heating condition of 50 kW / m 2 is 3 to 100 times It is characterized by being.

請求項2記載の発明(以下、第2発明という)である耐火性部材は、筒状緩衝性材料の表面に加熱によって膨張して耐火断熱層を形成しうる熱膨張性耐火材層及び粘着剤層が順次積層されてなる耐火性部材であって、該熱膨張性耐火材層を50kW/m2 の加熱条件下で30分間加熱した後の体積膨張率が3〜100倍であることを特徴とする。 The refractory member according to the second aspect of the present invention (hereinafter referred to as the second invention) is a thermally expandable refractory material layer and a pressure-sensitive adhesive capable of forming a refractory heat insulation layer by heating on the surface of the cylindrical buffer material. A fire-resistant member in which layers are sequentially laminated, wherein the volume expansion coefficient after heating the thermally expandable refractory material layer for 30 minutes under a heating condition of 50 kW / m 2 is 3 to 100 times And

以下に本発明を詳細に説明する。
第1発明の耐火性部材は、熱膨張性耐火材層の一面に緩衝性材料層が積層され、他面に粘着剤層が積層された積層体からなり、第2発明の耐火性部材は、筒状緩衝性材料の表面に熱膨張性耐火材層及び粘着剤層が順次積層された積層体からなる。
The present invention is described in detail below.
The refractory member of the first invention comprises a laminate in which a buffer material layer is laminated on one surface of a thermally expandable refractory material layer and an adhesive layer is laminated on the other surface, and the refractory member of the second invention is It consists of a laminate in which a thermally expandable refractory material layer and an adhesive layer are sequentially laminated on the surface of a cylindrical cushioning material.

上記熱膨張性耐火材は、加熱によって膨張して耐火断熱層を形成するものであって、50kW/m2 の加熱条件下で30分間加熱された後の体積膨張率が3〜100倍であれば、特に制限はない。
上記熱膨張性耐火材を50kW/m2 の加熱条件下で30分間加熱したときの体積膨張率が、3倍未満では十分な耐火性能を発現させるのに分厚い熱膨張性耐火材層を必要とするためコストアップを招き、100倍を超えると加熱により膨張して形成される耐火断熱層の強度が低下するため、崩れ易くなる。
The thermally expandable refractory material is expanded by heating to form a refractory heat insulating layer, and the volume expansion coefficient after being heated for 30 minutes under a heating condition of 50 kW / m 2 is 3 to 100 times. There is no particular limitation.
If the thermal expansion refractory material is heated for 30 minutes under a heating condition of 50 kW / m 2 and the volume expansion coefficient is less than 3 times, a thick thermal expansion refractory material layer is required to exhibit sufficient fire resistance performance. Therefore, the cost is increased, and if it exceeds 100 times, the strength of the refractory heat-insulating layer formed by expansion due to heating is lowered, so that it tends to collapse.

上記熱膨張性耐火材としては、例えば、3M社製「ファイアバリア」(クロロプレンゴムとバーミキュライトを含有する樹脂組成物からなるシート材料、体積膨張率:3倍、熱伝導率:0.20kcal/m・h・℃)、三井金属塗料社製「メジヒカット」(ポリウレタン樹脂と熱膨張性黒鉛を含有する樹脂組成物からなるシート材料、体積膨張率:4倍、熱伝導率:0.21kcal/m・h・℃)等の市販品が使用可能であるが、熱可塑性樹脂又はエポキシ樹脂及び無機充填剤からなるものが好ましい。   Examples of the thermally expandable refractory material include “Fire Barrier” manufactured by 3M (a sheet material made of a resin composition containing chloroprene rubber and vermiculite, volume expansion coefficient: 3 times, thermal conductivity: 0.20 kcal / m. "H.degree. C.", "Mejihi-Cut" manufactured by Mitsui Kinzoku Co., Ltd. (sheet material comprising a resin composition containing polyurethane resin and thermally expandable graphite, volume expansion coefficient: 4 times, thermal conductivity: 0.21 kcal / m. Commercially available products such as h · ° C. can be used, but those composed of thermoplastic resins or epoxy resins and inorganic fillers are preferred.

上記熱可塑性樹脂としては、例えば、ポリエチレン樹脂、ポリプロピレン樹脂、ポリ(1−)ブテン系樹脂、ポリペンテン樹脂等のポリオレフィン系樹脂;ポリスチレン系樹脂、ABS系樹脂、ポリカーボネート系樹脂、ポリフェニレンエーテル系樹脂、アクリル樹脂、ポリアミド樹脂、ポリ塩化ビニル系樹脂、フェノール系樹脂、ポリウレタン系樹脂などが挙げられる。   Examples of the thermoplastic resin include polyolefin resins such as polyethylene resin, polypropylene resin, poly (1-) butene resin, polypentene resin; polystyrene resin, ABS resin, polycarbonate resin, polyphenylene ether resin, acrylic resin, and the like. Examples thereof include resins, polyamide resins, polyvinyl chloride resins, phenol resins, polyurethane resins and the like.

上記エポキシ樹脂は、特に限定されないが、基本的にはエポキシ基をもつモノマーと硬化剤とを反応させることにより得られる。
上記エポキシ基をもつモノマーとしては、例えば、2官能のグリシジルエーテル型、グリシジルエステル型、多官能のグリシジルエーテル型等のモノマーが例示される。
The epoxy resin is not particularly limited, but is basically obtained by reacting an epoxy group-containing monomer with a curing agent.
Examples of the monomer having an epoxy group include monomers such as a bifunctional glycidyl ether type, a glycidyl ester type, and a polyfunctional glycidyl ether type.

上記2官能のグリシジルエーテル型のモノマーとしては、例えば、ポリエチレングリコール型、ポリプロピレングリコール型、ネオペンチルグリコール型、1、6−ヘキサンジオール型、トリメチロールプロパン型、プロピレンオキサイド−ビスフェノールA型、水添ビスフェノールA型等のモノマーが例示される。   Examples of the bifunctional glycidyl ether type monomer include polyethylene glycol type, polypropylene glycol type, neopentyl glycol type, 1,6-hexanediol type, trimethylolpropane type, propylene oxide-bisphenol A type, hydrogenated bisphenol. A monomer such as type A is exemplified.

上記グリシジルエステル型のモノマーとしては、例えば、ヘキサヒドロ無水フタル酸型、テトラヒドロ無水フタル酸型、ダイマー酸型、p−オキシ安息香酸型等のモノマーが例示される。   Examples of the glycidyl ester type monomer include monomers such as hexahydrophthalic anhydride type, tetrahydrophthalic anhydride type, dimer acid type, and p-oxybenzoic acid type.

上記多官能のグリシジルエーテル型のモノマーとしては、例えば、フェノールノボラック型、オルソクレゾールノボラック型、DPPノボラック型、ジシクロペンタジエン・フェノール型等のモノマーが例示される。   Examples of the polyfunctional glycidyl ether type monomers include phenol novolak type, orthocresol novolak type, DPP novolak type, dicyclopentadiene / phenol type monomer, and the like.

これらのエポキシ基をもつモノマーは、単独で用いられてもよく、2種以上が併用されてもよい。   These monomers having an epoxy group may be used alone or in combination of two or more.

上記硬化剤としては、重付加型又は触媒型のものが用いられる。重付加型の硬化剤としては、例えば、ポリアミン、酸無水物、ポリフェノール、ポリメルカプタン等が例示される。また、上記触媒型の硬化剤としては、例えば、3級アミン、イミダゾール類、ルイス酸錯体等が例示される。   As the curing agent, a polyaddition type or a catalyst type is used. Examples of the polyaddition type curing agent include polyamine, acid anhydride, polyphenol, and polymercaptan. Examples of the catalyst-type curing agent include tertiary amines, imidazoles, and Lewis acid complexes.

上記エポキシ樹脂の硬化方法は、特に限定されず、公知の方法によって行うことができる。   The method for curing the epoxy resin is not particularly limited, and can be performed by a known method.

上記エポキシ樹脂を使用すると、膨張後の熱膨張性耐火材が架橋構造をとるため形状保持性が優れ、熱膨張性耐火材層の厚みを薄くすることできるので好ましい。   Use of the epoxy resin is preferable because the thermally expandable refractory material after expansion has a cross-linked structure and is excellent in shape retention and can reduce the thickness of the thermally expandable refractory material layer.

上記熱膨張性耐火材における無機充填剤の配合量は、樹脂成分(熱可塑性樹脂又はエポキシ樹脂)100重量部に対して50〜400重量部が好ましい。
無機充填剤の配合量が、50重量部未満になると燃焼後の残渣量が減少するため、十分な耐火断熱層が形成されず、可燃物の配合比率が増加するため難燃性が低下する。また、無機充填剤の配合量が、400重量部未満を超えると、樹脂成分の配合比率が減少するため粘着力が不足する。
As for the compounding quantity of the inorganic filler in the said thermally expansible refractory material, 50-400 weight part is preferable with respect to 100 weight part of resin components (thermoplastic resin or epoxy resin).
When the blending amount of the inorganic filler is less than 50 parts by weight, the amount of residue after combustion is reduced, so that a sufficient fireproof heat insulating layer is not formed, and the blending ratio of the combustible material is increased, so that the flame retardancy is lowered. Moreover, when the compounding quantity of an inorganic filler exceeds less than 400 weight part, since the compounding ratio of a resin component will reduce, adhesive force will run short.

上記無機充填剤のうち、層状無機物が20〜350重量部用いられる。
層状無機物の使用量が、20重量部未満になると膨張倍率が不足するため、十分な防・耐火性能が得られず、350重量部を超えると凝集力が不足するため、熱膨張性耐火材に十分な強度が得られなくなる。
Of the inorganic filler, 20 to 350 parts by weight of layered inorganic material is used.
If the amount of layered inorganic material used is less than 20 parts by weight, the expansion ratio will be insufficient, so that sufficient fireproofing and fireproof performance will not be obtained, and if it exceeds 350 parts by weight, the cohesive force will be insufficient. Sufficient strength cannot be obtained.

上記層状無機物としては、加熱時に膨張するものであれば特に制限はなく、例えば、バーミキュライト、カオリン、マイカ、中和処理された熱膨張性黒鉛等が挙げられる。これらの中でも、発泡開始温度が低い中和処理された熱膨張性黒鉛が好ましい。   The layered inorganic material is not particularly limited as long as it expands when heated, and examples thereof include vermiculite, kaolin, mica, neutralized thermally expandable graphite, and the like. Among these, neutralizing heat-expandable graphite having a low foaming start temperature is preferable.

上記中和処理された熱膨張性黒鉛とは、従来公知の物質である熱膨張性黒鉛を中和処理したものである。上記熱膨張性黒鉛は、天然鱗状グラファイト、熱分解グラファイト、キッシュグラファイト等の粉末を、濃硫酸、硝酸、セレン酸等の無機酸と、濃硝酸、過塩素酸、過塩素酸塩、過マンガン酸塩、重クロム酸塩、過酸化水素等の強酸化剤とで処理することにより生成するグラファイト層間化合物であり、炭素の層状構造を維持したままの結晶化合物である。   The heat-expandable graphite subjected to the neutralization treatment is obtained by neutralizing heat-expandable graphite, which is a conventionally known substance. The above heat-expandable graphite is composed of natural scale-like graphite, pyrolytic graphite, quiche graphite and other inorganic acids such as concentrated sulfuric acid, nitric acid and selenic acid, concentrated nitric acid, perchloric acid, perchlorate and permanganic acid. It is a graphite intercalation compound produced by treatment with a strong oxidizing agent such as salt, dichromate, hydrogen peroxide, etc., and is a crystalline compound that maintains the layered structure of carbon.

上述のように酸処理して得られた熱膨張性黒鉛は、更にアンモニア、脂肪族低級アミン、アルカリ金属化合物、アルカリ土類金属化合物等で中和することにより、中和処理された熱膨張性黒鉛とする。   The thermally expandable graphite obtained by acid treatment as described above is further neutralized with ammonia, aliphatic lower amine, alkali metal compound, alkaline earth metal compound, etc. Graphite is used.

上記脂肪族低級アミンとしては、特に限定されず、例えば、モノメチルアミン、ジメチルアミン、トリメチルアミン、エチルアミン、プロピルアミン、ブチルアミン等が挙げられる。
上記アルカリ金属化合物及びアルカリ土類金属化合物としては、特に限定されず、例えば、カリウム、ナトリウム、カルシウム、バリウム、マグネシウム等の水酸化物、酸化物、炭酸塩、硫酸塩、有機酸塩等が挙げられる。
The aliphatic lower amine is not particularly limited, and examples thereof include monomethylamine, dimethylamine, trimethylamine, ethylamine, propylamine, and butylamine.
The alkali metal compound and alkaline earth metal compound are not particularly limited, and examples thereof include hydroxides such as potassium, sodium, calcium, barium, and magnesium, oxides, carbonates, sulfates, and organic acid salts. It is done.

上記中和処理された熱膨張性黒鉛の粒度は、20〜200メッシュが好ましい。粒度が200メッシュより小さくなると、黒鉛の膨張度が小さく、所定の耐火断熱層が得られず、粒度が20メッシュより大きくなると、黒鉛の膨張度が大きいという利点はあるが、樹脂バインダーと混練する際に分散性が悪くなり、物性の低下が避けられない。   The particle size of the neutralized heat-expandable graphite is preferably 20 to 200 mesh. If the particle size is smaller than 200 mesh, the degree of expansion of graphite is small and a predetermined fireproof heat insulating layer cannot be obtained. If the particle size is larger than 20 mesh, there is an advantage that the degree of expansion of graphite is large, but it is kneaded with a resin binder. In this case, dispersibility deteriorates, and physical properties are inevitably lowered.

上記中和処理された熱膨張性黒鉛の市販品としては、例えば、東ソー社製「GREP−EG」、UCAR CARBON社製「GRAFGUARD」等が挙げられる。   As a commercial item of the said heat-expandable graphite by which the neutralization process was carried out, "GREP-EG" by Tosoh Corporation, "GRAFGUARD" by UCAR CARBON, etc. are mentioned, for example.

上記層状無機物以外の無機充填剤としては、例えば、シリカ、珪藻土、アルミナ、酸化亜鉛、酸化チタン、酸化カルシウム、酸化マグネシウム、酸化鉄、酸化錫、酸化アンチモン、フェライト類、水酸化カルシウム、水酸化マグネシウム、水酸化アルミニウム、塩基性炭酸マグネシウム、炭酸カルシウム、炭酸マグネシウム、炭酸亜鉛、炭酸バリウム、ドーソナイト、ハイドロタルサイト、硫酸カルシウム、硫酸バリウム、石膏繊維、ケイ酸カルシウム、タルク、クレー、マイカ、モンモリロナイト、ベントナイト、活性白土、セピオライト、イモゴライト、セリサイト、ガラス繊維、ガラスビーズ、シリカ系バルン、窒化アルミニウム、窒化ホウ素、窒化ケイ素、カーボンブラック、グラファイト、炭素繊維、炭素バルン、木炭粉末、各種金属粉、チタン酸カリウム、硫酸マグネシウム、チタン酸ジルコン酸鉛、アルミニウムボレート、硫化モリブデン、炭化ケイ素、ステンレス繊維、ホウ酸亜鉛、各種磁性粉、スラグ繊維、フライアッシュ等が挙げられる。これらは単独で用いられてもよく、2種以上が併用されてもよい。   Examples of the inorganic filler other than the layered inorganic material include silica, diatomaceous earth, alumina, zinc oxide, titanium oxide, calcium oxide, magnesium oxide, iron oxide, tin oxide, antimony oxide, ferrites, calcium hydroxide, magnesium hydroxide. , Aluminum hydroxide, basic magnesium carbonate, calcium carbonate, magnesium carbonate, zinc carbonate, barium carbonate, dosonite, hydrotalcite, calcium sulfate, barium sulfate, gypsum fiber, calcium silicate, talc, clay, mica, montmorillonite, bentonite , Activated clay, sepiolite, imogolite, sericite, glass fiber, glass beads, silica-based balun, aluminum nitride, boron nitride, silicon nitride, carbon black, graphite, carbon fiber, carbon balun, charcoal powder, various Shokuko, potassium titanate, magnesium sulfate, lead zirconate titanate, aluminum borate, molybdenum sulfide, silicon carbide, stainless steel fiber, zinc borate, various magnetic powder, slag fibers, fly ash, and the like. These may be used independently and 2 or more types may be used together.

上記無機充填剤の中でも、特に骨材的役割を果たす炭酸カルシウム、炭酸亜鉛等の金属炭酸塩;骨材的役割の他に加熱時に吸熱効果を付与する水酸化アルミニウム、水酸化マグネシウム等の含水無機物が好ましい。
上記含水無機物及び金属炭酸塩の併用は、燃焼残渣の強度向上や熱容量増大に大きく寄与すると考えられる。
Among the above inorganic fillers, metal carbonates such as calcium carbonate and zinc carbonate that play an aggregate role in particular; water-containing inorganic substances such as aluminum hydroxide and magnesium hydroxide that give an endothermic effect during heating in addition to the role as an aggregate Is preferred.
The combined use of the hydrated inorganic substance and the metal carbonate is considered to greatly contribute to improving the strength of the combustion residue and increasing the heat capacity.

さらに、上記含水無機物は、加熱時の脱水反応によって生成した水のために吸熱が起こり、温度上昇が低減されて高い耐熱性が得られる点、及び、加熱残渣として酸化物が残存し、これが骨材となって働くことで残渣強度が向上する点で特に好ましい。中でも、水酸化マグネシウムと水酸化アルミニウムは、脱水効果を発揮する温度領域が異なるため、併用すると脱水効果を発揮する温度領域が広くなり、より効果的な温度上昇抑制効果が得られることから、併用することが好ましい。   Furthermore, the water-containing inorganic substance is endothermic because of the water produced by the dehydration reaction during heating, the temperature rise is reduced and high heat resistance is obtained, and an oxide remains as a heating residue, which is It is particularly preferable in that the residual strength is improved by working as a material. Among them, magnesium hydroxide and aluminum hydroxide have different temperature ranges that exhibit dehydration effects, so when used together, the temperature range that exhibits dehydration effects becomes wider, and more effective temperature rise suppression effects can be obtained. It is preferable to do.

上記無機充填剤の粒径としては、0.5〜100μmが好ましく、より好ましくは、約1〜50μmである。
また、粒径の大きい無機充填剤と粒径の小さいものを組み合わせて使用することがより好ましく、組み合わせて用いることによって、熱膨張性耐火材層の力学的性能を維持したまま、高充填化することが可能となる。
As a particle size of the said inorganic filler, 0.5-100 micrometers is preferable, More preferably, it is about 1-50 micrometers.
In addition, it is more preferable to use a combination of an inorganic filler having a large particle size and a material having a small particle size, and by using the combination, a high filling is achieved while maintaining the mechanical performance of the thermally expandable refractory material layer. It becomes possible.

上記含水無機物の市販品としては、例えば、水酸化アルミニウムとして、粒径1μmの「ハイジライトH−42M」(昭和電工社製)、粒径18μmの「ハイジライトH−31」(昭和電工社製)等が挙げられる。   As a commercial item of the above-mentioned water-containing inorganic substance, for example, as aluminum hydroxide, “Hijilite H-42M” (manufactured by Showa Denko) having a particle diameter of 1 μm, “Hijilite H-31” (manufactured by Showa Denko KK) having a particle diameter of 18 μm. ) And the like.

上記炭酸カルシウムの市販品としては、例えば、粒径1.8μmの「ホワイトンSB赤」(白石カルシウム社製)、粒径8μmの「ホワイトンBF300」(備北粉化社製)等が挙げられる。   Examples of the commercially available calcium carbonate include “Whiteon SB Red” (manufactured by Shiraishi Calcium Co., Ltd.) having a particle diameter of 1.8 μm, “Whiteon BF300” (manufactured by Bihoku Flour & Chemical Co., Ltd.) having a particle diameter of 8 μm, and the like. .

さらに、上記熱膨張性耐火材の難燃性を向上させるために、上記無機充填剤にリン化合物を併用してもよい。
炭酸カルシウム、炭酸亜鉛等の金属炭酸塩は、リン化合物との反応で膨張を促すと考えられ、特に、リン化合物として、ポリリン酸アンモニウムを使用した場合に、高い膨張効果が得られる。また、有効な骨材として働き、燃焼後に形状保持性の高い残渣を形成する。
Furthermore, in order to improve the flame retardancy of the thermally expandable refractory material, a phosphorus compound may be used in combination with the inorganic filler.
Metal carbonates such as calcium carbonate and zinc carbonate are considered to promote expansion by reaction with a phosphorus compound. In particular, when ammonium polyphosphate is used as the phosphorus compound, a high expansion effect is obtained. It also acts as an effective aggregate and forms a highly shape-retaining residue after combustion.

上記リン化合物としては、例えば、赤リン;リン酸ナトリウム、リン酸カリウム、リン酸マグネシウム等のリン酸金属塩;ポリリン酸アンモニウム、メラミン変性ポリリン酸アンモニウム等のポリリン酸アンモニウム類が挙げられる。   Examples of the phosphorus compound include red phosphorus; metal phosphates such as sodium phosphate, potassium phosphate, and magnesium phosphate; and ammonium polyphosphates such as ammonium polyphosphate and ammonium melamine-modified polyphosphate.

上記ポリリン酸アンモニウムの市販品としては、例えば、クラリアント社製「エキソリットAP422」、「エキソリットAP462」;住友化学工業社製「スミセーフP」;チッソ社製「テラージュC60」、「テラージュC70」、「テラージュC80」等が挙げられる。   Commercially available ammonium polyphosphates include, for example, “Exolit AP422” and “Exolit AP462” manufactured by Clariant Co., Ltd. “Sumisafe P” manufactured by Sumitomo Chemical Co., Ltd .; C80 "and the like.

上記熱膨張性耐火材層は、樹脂成分、無機充填剤等を含有する樹脂組成物を、カレンダー成形、押出成形、プレス成形等でシート状に成形することにより得ることができる。   The thermally expandable refractory material layer can be obtained by molding a resin composition containing a resin component, an inorganic filler, and the like into a sheet shape by calendar molding, extrusion molding, press molding, or the like.

上記緩衝性材料としては、緩衝性を有するものであれば特に制限はなく、樹脂発泡体、不織布又は織布からなるものが好ましい。
上記樹脂発泡体としては、例えば、ポリエチレン系発泡体、ポリプロピレン系発泡体等のポリオレフィン系発泡体、ポリスチレン系発泡体、ポリウレタン系発泡体、フェノール樹脂系発泡体、イソシアヌレート系発泡体等の独立気泡発泡体が好適に用いられる。発泡倍率は5〜100倍の範囲が好ましい。
The buffer material is not particularly limited as long as it has a buffer property, and a material made of a resin foam, a nonwoven fabric or a woven fabric is preferable.
Examples of the resin foam include polyolefin foams such as polyethylene foam and polypropylene foam, polystyrene foam, polyurethane foam, phenol resin foam, and isocyanurate foam. Foam is preferably used. The expansion ratio is preferably in the range of 5 to 100 times.

上記不織布としては、例えば、ポリエステル不織布、ポリプロピレン不織布、ポリエチレン不織布、アクリル樹脂系不織布等の有機繊維不織布;セラミックブランケット、ロックウール、グラスウール等の無機繊維不織布が好適に用いられる。無機繊維不織布は、粘着剤を有する熱膨張性耐火材との接着性を高めるために、ポリエチレン等の樹脂フィルムで包み込まれたものであってもよい。   As said nonwoven fabric, organic fiber nonwoven fabrics, such as a polyester nonwoven fabric, a polypropylene nonwoven fabric, a polyethylene nonwoven fabric, an acrylic resin nonwoven fabric, and inorganic fiber nonwoven fabrics, such as a ceramic blanket, rock wool, and glass wool, are used suitably, for example. The inorganic fiber nonwoven fabric may be wrapped with a resin film such as polyethylene in order to enhance the adhesion with the thermally expandable refractory material having an adhesive.

上記織布としては、例えば、ポリエステル織布、ポリプロピレン織布、アクリル織布等の有機繊維織布や、セラミック繊維、ロックウール繊維、ガラス繊維等からなる無機繊維織布が挙げられる。   Examples of the woven fabric include organic fiber woven fabrics such as polyester woven fabrics, polypropylene woven fabrics, and acrylic woven fabrics, and inorganic fiber woven fabrics made of ceramic fibers, rock wool fibers, glass fibers, and the like.

上記粘着剤としては、従来公知の粘着剤、例えば、アクリル系粘着剤;ブチルゴム等に適当な粘着付与剤(石油系樹脂等)を添加した粘着剤などが用いられる。   As the above-mentioned pressure-sensitive adhesive, a conventionally known pressure-sensitive adhesive, for example, an acrylic pressure-sensitive adhesive; a pressure-sensitive adhesive obtained by adding a suitable tackifier (such as petroleum resin) to butyl rubber or the like is used.

第1発明の耐火性部材において、熱膨張性耐火材層と緩衝性材料層との積層方法は、従来公知の方法が用いることができ、例えば、熱膨張性耐火材を緩衝性材料上に押出被覆して積層する方法、接着剤を用いて積層する方法等が挙げられる。第2発明の耐火性部材において、熱膨張性耐火材層と緩衝性材料層との積層方法は、例えば、熱膨張性耐火材と緩衝性材料とを共押出して、緩衝性材料の表面に熱膨張性耐火材を被覆する方法が挙げられる。第2発明の耐火性部材は、断面形状が筒状となされることにより、製造及び施工共に容易に行うことができる。   In the refractory member of the first invention, a conventionally known method can be used as a method of laminating the heat-expandable refractory material layer and the buffer material layer. For example, the heat-expandable refractory material is extruded onto the buffer material. Examples thereof include a method of coating and laminating, a method of laminating using an adhesive, and the like. In the refractory member of the second invention, the method of laminating the thermally expandable refractory material layer and the buffer material layer is, for example, by co-extrusion of the thermally expandable refractory material and the buffer material and applying heat to the surface of the buffer material. A method of coating an intumescent refractory material is mentioned. The fire-resistant member of the second invention can be easily manufactured and constructed by having a cylindrical cross-sectional shape.

上記接着剤としては、例えば、クロロプレン系接着剤、ウレタン系接着剤等が用いられる。   Examples of the adhesive include chloroprene adhesive and urethane adhesive.

また、第1及び第2発明において、上記熱膨張性耐火材層上に粘着剤層を積層する方法としては、熱膨張性耐火材層と緩衝性材料層との積層体の熱膨張性耐火材層側に直接粘着剤を塗工、乾燥する方法;一旦離型紙上に粘着剤を塗工、乾燥して粘着剤層を形成した後熱膨張性耐火材層へ転写積層する方法等が挙げられる。上記粘着剤層は、必ずしも熱膨張性耐火材層の全面に設けられる必要はなく、部分的に設けられてもよい。   In the first and second inventions, as a method of laminating the pressure-sensitive adhesive layer on the thermally expandable refractory material layer, a thermally expandable refractory material of a laminate of a thermally expandable refractory material layer and a buffer material layer is used. A method of directly applying and drying a pressure-sensitive adhesive on the layer side; a method of once coating a pressure-sensitive adhesive on a release paper, drying to form a pressure-sensitive adhesive layer, and then transferring and laminating to a thermally expandable refractory material layer . The pressure-sensitive adhesive layer is not necessarily provided on the entire surface of the thermally expandable refractory material layer, and may be provided partially.

上記熱膨張性耐火材層の厚みは、目地部の幅に応じて設定され、目地部の幅の1〜50%程度が好ましい。目地部の幅の1%未満になると、耐火性部材裏面への火炎の貫通を防止するための耐火性能が低下し、目地部の幅の50%を超えると、防水性能、耐火性能は良好であるが、コストアップを招く。   The thickness of the thermally expandable refractory material layer is set according to the width of the joint portion, and is preferably about 1 to 50% of the width of the joint portion. If it is less than 1% of the width of the joint, the fire resistance to prevent the penetration of the flame to the back of the refractory member is reduced, and if it exceeds 50% of the width of the joint, the waterproof performance and fire resistance are good. There is a cost increase.

上記緩衝性材料層の厚みは、目地部の幅に応じて設定され、目地部の幅の50〜300%程度が好ましい。目地部の幅の50%未満になると、目地部を充填する際の緩衝機能が低下し、目地部の幅の300%を超えると目地部に充填する際の施工性が低下する。   The thickness of the buffer material layer is set according to the width of the joint portion, and is preferably about 50 to 300% of the width of the joint portion. When it becomes less than 50% of the width of the joint portion, the buffer function when filling the joint portion is lowered, and when it exceeds 300% of the width of the joint portion, workability when filling the joint portion is lowered.

上記粘着剤層の厚みは、0.1〜2mmが好ましい。粘着剤層の厚みが、0.1mm未満では十分な防水性を得ることが困難であり、2mmを超えると耐火性部材自体の難燃性が低下する。   As for the thickness of the said adhesive layer, 0.1-2 mm is preferable. If the thickness of the pressure-sensitive adhesive layer is less than 0.1 mm, it is difficult to obtain sufficient waterproofness, and if it exceeds 2 mm, the flame resistance of the fireproof member itself is lowered.

第1発明の耐火性部材を2枚の隣接する外壁材によって形成された目地部へ施工する場合は、粘着剤層を外側としてU字状に折り曲げて、粘着剤層が外壁材の側面に接するように目地部へ充填することにより、優れた防水性を発現する。
また、予め目地部を形成する一方の外壁材に耐火性部材を貼付けておくと、施工が一層容易になる。第2発明の耐火性部材を上記目地部へ施工する場合は、粘着剤層目地部の側面に接するように充填することにより、優れた防水性を発現する。
When constructing the fire-resistant member of the first invention on a joint formed by two adjacent outer wall materials, the adhesive layer is bent into a U shape with the adhesive layer as the outside, and the adhesive layer contacts the side surface of the outer wall material. Thus, excellent waterproofness is expressed by filling the joint part.
Moreover, if a fireproof member is affixed to the one outer wall material which forms a joint part previously, construction will become still easier. When the fireproof member of the second invention is applied to the joint part, excellent waterproofness is exhibited by filling the joint so as to be in contact with the side surface of the adhesive layer joint part.

本発明の耐火性部材は、火災の際に緩衝性材料や目地材(シーリング材、ガスケット等)が熱により収縮して間隙を生じても、熱膨張性耐火材層が膨張して耐火断熱層を形成して間隙を充填することにより、優れた防・耐火性能を発現する。   In the fire-resistant member of the present invention, even when a shock-absorbing material or a joint material (sealing material, gasket, etc.) shrinks due to heat to form a gap, the heat-expandable fire-resistant material layer expands and the fire-resistant heat-insulating layer By forming the gap and filling the gap, excellent fireproof and fireproof performance is expressed.

本発明の耐火性部材は、上述の構成とすることによって、火災時に熱膨張性耐火材層が膨張して目地部が充填されるので、裏面への火炎の貫通がなく、熱の伝搬が抑制され、裏面の温度上昇を抑制することができる。
また、接着剤層が目地部に接するように施工することにより、目地部に水密性を付与することができ、しかも施工が容易である。
The fire-resistant member of the present invention has the above-described configuration, so that the heat-expandable fire-resistant material layer expands and fills the joint portion at the time of a fire, so there is no penetration of flame to the back surface and heat propagation is suppressed. Thus, the temperature rise on the back surface can be suppressed.
Moreover, by performing construction so that the adhesive layer is in contact with the joint portion, water tightness can be imparted to the joint portion, and the construction is easy.

以下に、図面を参照しながら、本発明の実施例について説明する。   Embodiments of the present invention will be described below with reference to the drawings.

熱膨張性耐火材A及びD
表1に示した配合量の、メタロセンポリエチレン、エポキシ樹脂、硬化剤、中和処理された熱膨張性黒鉛、水酸化アルミニウム、炭酸カルシウム及びポリリン酸アンモニウムをロール混練して、所定厚みの熱膨張性耐火材A及びDのシートを得た。
Thermally expandable refractory materials A and D
The metallocene polyethylene, epoxy resin, curing agent, neutralized heat-expandable graphite, aluminum hydroxide, calcium carbonate, and ammonium polyphosphate having the blending amounts shown in Table 1 are kneaded and roll-expanded to a predetermined thickness. Sheets of refractory materials A and D were obtained.

熱膨張性耐火材B及びC
熱膨張性耐火材Bとして、3M社製「ファイアバリア」(クロロプレンゴムとバーミキュライトを含有する樹脂組成物からなるシート材料)を使用し、熱膨張性耐火材Cとして、三井金属塗料社製「メジヒカット」(ポリウレタン樹脂と熱膨張性黒鉛を含有する樹脂組成物からなるシート材料)を使用した。
Thermally expandable refractory materials B and C
3M “Fire Barrier” (a sheet material made of a resin composition containing chloroprene rubber and vermiculite) is used as the thermally expandable refractory material B, and “Mejihikat” manufactured by Mitsui Kinzoku Paint Co., Ltd. is used as the thermally expandable refractory material C. (Sheet material comprising a resin composition containing polyurethane resin and thermally expandable graphite).

体積膨張率の測定
上記熱膨張性耐火材A,B,C及びDのシートを100mm×100mmのサイズに切断したサンプルに、ATLAS社製コーンカロリメーター「CONE2」を用いて50kW/m2 の熱量を30分間照射して燃焼、膨張させ、耐火断熱層を形成した。得られた耐火断熱層の厚みから、下式により厚み方向の膨張倍率を算出し、表1に示した。
厚み方向の膨張倍率(倍)=t/t0 、ここでtは膨張後の厚み、t0 は膨張前の厚みをそれぞれ示す。厚み方向の膨張倍率は体積膨張率と見なされる。尚、厚み方向の膨張倍率が20倍を超える場合は、内寸が100mm×100mm×高さ30mmの鉄製又はアルミ箔製の箱を作製し、箱の下にサンプルを配置して測定した。
Measurement of volume expansion rate Samples obtained by cutting sheets of the above-described thermally expandable refractory materials A, B, C and D into a size of 100 mm × 100 mm were subjected to a calorific value of 50 kW / m 2 using an ATLAS corn calorimeter “CONE2”. Was irradiated for 30 minutes to burn and expand to form a refractory heat insulation layer. The expansion ratio in the thickness direction was calculated from the thickness of the obtained refractory heat insulation layer according to the following formula and shown in Table 1.
Expansion ratio (times) in the thickness direction = t / t 0 , where t is the thickness after expansion, and t 0 is the thickness before expansion. The expansion ratio in the thickness direction is regarded as the volume expansion coefficient. When the expansion ratio in the thickness direction exceeded 20 times, an iron or aluminum foil box having an inner dimension of 100 mm × 100 mm × height 30 mm was prepared, and a sample was placed under the box for measurement.

熱膨張性耐火材の熱伝導率の測定
上記熱膨張性耐火材A,B,C及びDのシートについて、英弘精機社製保温材熱伝導率測定装置「HC−073」を用いて、25℃における熱伝導率を測定し、表1に示した。
Measurement of thermal conductivity of thermally expandable refractory material About the sheet of the above thermally expandable refractory materials A, B, C and D, using a heat insulating material thermal conductivity measuring device “HC-073” manufactured by Eiko Seiki Co., Ltd., 25 ° C. The thermal conductivity of was measured and shown in Table 1.

Figure 0004220994
Figure 0004220994

(実施例1)
熱膨張性耐火材Aの構成成分をニーダーで混練した後、得られた混練物とポリエチレン発泡体とを共押出し、円筒状のポリエチレン発泡体の周囲に熱膨張性耐火材層が被覆された積層体を得た。さらに、熱膨張性耐火材層にアクリル系粘着剤(綜研化学社製「SK1311」、主成分アクリル酸ブチル)を塗布乾燥して粘着剤層を形成し、図1に示した3層構造の筒状積層体(直径13mm)からなる耐火性部材5を作製した。図1中、5aはポリエチレン発泡体(緩衝性材料層)、5bは熱膨張性耐火材層、5cは粘着剤層をそれぞれ示す。
(Example 1)
After kneading the components of the heat-expandable refractory material A with a kneader, the obtained kneaded product and polyethylene foam are coextruded, and a laminate in which a heat-expandable refractory material layer is coated around a cylindrical polyethylene foam Got the body. Further, an acrylic pressure-sensitive adhesive (“SK1311” manufactured by Soken Chemical Co., Ltd., main component butyl acrylate) is applied and dried on the thermally expandable refractory material layer to form a pressure-sensitive adhesive layer, and the three-layer structure shown in FIG. A refractory member 5 made of a layered laminate (diameter 13 mm) was produced. In FIG. 1, 5a indicates a polyethylene foam (buffer material layer), 5b indicates a thermally expandable refractory material layer, and 5c indicates an adhesive layer.

別途、図2に示したように、2枚のALC板(積水ハウス社製「ダインコンクリートウォール75」、サイズ:縦575mm×横445mm×厚さ75mm)1a,1bを、角形鋼管(サイズ:幅150mm×高さ100mm×厚さ4.5mm)2にコンクリート用ビス4を用いて固定し、10mm幅の目地部3を設けた。この目地部3に上記耐火性部材5の粘着剤層5cがALC板1a及びbの側面と接するように挿入して目地部3を塞いだ後、この目地部3の外側からEPDM製のガスケット6(目地幅10mm用、挿入深さ30mm)を充填してシールし、耐火性試験体を得た。   Separately, as shown in FIG. 2, two ALC plates ("Dyne Concrete Wall 75" manufactured by Sekisui House Co., Ltd., size: 575 mm long x 445 mm wide x 75 mm thick) 1a, 1b are formed into square steel pipes (size: width 150 mm × height 100 mm × thickness 4.5 mm) 2 and fixed with a concrete screw 4 to provide a joint portion 3 having a width of 10 mm. The adhesive layer 5c of the fireproof member 5 is inserted into the joint portion 3 so as to be in contact with the side surfaces of the ALC plates 1a and 1b to close the joint portion 3, and then an EPDM gasket 6 is formed from the outside of the joint portion 3. Filled and sealed (for joint width 10 mm, insertion depth 30 mm) to obtain a fireproof test specimen.

(実施例2)
熱膨張性耐火材Bのシートの一面にクロロプレン系接着剤を塗布してポリエチレン発泡体を積層した後、他面にアクリル系粘着剤(綜研化学社製「SK1311」、主成分アクリル酸ブチル)を塗布乾燥して粘着剤層を形成し、図3に示した3層構造の積層体からなる耐火性部材5を作製した。図3中、51aはポリエチレン発泡体(緩衝性材料層)、51bは熱膨張性耐火材層、51cは粘着剤層をそれぞれ示す。
(Example 2)
After applying a chloroprene adhesive on one side of the sheet of the heat-expandable refractory material B and laminating a polyethylene foam, an acrylic adhesive (“SK1311” manufactured by Soken Chemical Co., Ltd., main component butyl acrylate) is applied on the other side. The pressure-sensitive adhesive layer was formed by coating and drying, and the fireproof member 5 made of the laminate having the three-layer structure shown in FIG. 3 was produced. In FIG. 3, 51a indicates a polyethylene foam (buffer material layer), 51b indicates a thermally expandable refractory material layer, and 51c indicates an adhesive layer.

この耐火性部材を、図4に示したように、粘着剤層51cが外側となるようにU字状に折り曲げた後、実施例1と同様の目地部3に粘着剤層51cがALC板側面と接するように挿入して目地部3を塞いだ後、この目地部3の外側からEPDM製のガスケット61(目地幅10mm用、挿入深さ30mm)を充填してシールし、耐火性試験体を得た。   As shown in FIG. 4, the fire-resistant member is folded in a U shape so that the pressure-sensitive adhesive layer 51 c is on the outside, and then the pressure-sensitive adhesive layer 51 c is placed on the side surface of the ALC plate on the joint portion 3 similar to that of the first embodiment. After sealing the joint portion 3 by inserting it in contact with the gasket, an EPDM gasket 61 (for joint width 10 mm, insertion depth 30 mm) is filled and sealed from the outside of the joint portion 3, and a fireproof test specimen is attached. Obtained.

(実施例3)
熱膨張性耐火材Cのシートの一面にウレタン系接着剤を塗布してポリエチレン発泡体を積層し、他面にアクリル系粘着剤(綜研化学社製「SK1311」、主成分アクリル酸ブチル)を塗布乾燥して粘着剤層を形成し、図3に示した3層構造の積層体からなる耐火性部材5を作製した。次いで、耐火性部材の粘着剤層が外側となるようにU字状に折り曲げた後目地部に挿入し、実施例2と同様の構成の耐火性試験体を得た。
(Example 3)
Apply urethane adhesive on one side of the sheet of heat-expandable refractory material C to laminate polyethylene foam, and apply acrylic adhesive (“SK1311”, main component butyl acrylate, manufactured by Soken Chemical Co., Ltd.) on the other side. It dried and formed the adhesive layer and produced the fireproof member 5 which consists of a laminated body of the 3 layer structure shown in FIG. Subsequently, it was inserted in the joint part after bending in a U shape so that the pressure-sensitive adhesive layer of the fire-resistant member was on the outside, and a fire-resistant test body having the same configuration as in Example 2 was obtained.

(実施例4)
熱膨張性耐火材Dの構成成分をロール混練した後、得られた樹脂組成物をカレンダー成形機でシート状に成形し、60mm幅の熱膨張性耐火材Dのシートを得た。この熱膨張性耐火材Dのシートの一面にウレタン系接着剤を塗布して、ポリエチレン発泡体を積層した後、他面の両端部にアクリル系粘着剤(綜研化学社製「SK1311」、主成分アクリル酸ブチル)を塗布乾燥して、20mm幅の粘着剤層を形成し、図5に示した両端部が三層構造からなる耐火性部材52を作製した。図5中、52aはポリエチレン発泡体(緩衝性材料層)、52bは熱膨張性耐火材層、52cは粘着剤層をそれぞれ示す。
(Example 4)
After roll kneading the constituents of the heat-expandable refractory material D, the obtained resin composition was formed into a sheet shape with a calendering machine to obtain a sheet of the heat-expandable refractory material D having a width of 60 mm. After applying urethane adhesive on one side of the sheet of this heat-expandable refractory material D and laminating a polyethylene foam, acrylic adhesive (“SK1311” manufactured by Soken Chemical Co., Ltd. (Butyl acrylate) was applied and dried to form a pressure-sensitive adhesive layer having a width of 20 mm, and a refractory member 52 having a three-layer structure at both ends shown in FIG. 5 was produced. In FIG. 5, 52a indicates a polyethylene foam (buffer material layer), 52b indicates a thermally expandable refractory material layer, and 52c indicates an adhesive layer.

上記耐火性部材の粘着剤層52cが外側となるようにU字状に折り曲げた後、粘着剤層52cがALC板側面と接するように目地部に挿入して目地部を塞ぎ、実施例2と同様の構成の耐火性試験体を得た。   Example 2 After bending the adhesive layer 52c of the fireproof member into a U shape so as to be on the outside, the adhesive layer 52c is inserted into the joint portion so as to contact the side surface of the ALC plate, and the joint portion is closed. A fireproof test specimen having the same configuration was obtained.

(実施例5,6)
熱膨張性耐火材Aの構成成分をロール混練した後、得られた樹脂組成物をカレンダー成形機でシート状に成形し、60mm幅の熱膨張性耐火材Aのシートを得た。このシートの一面にウレタン系接着剤を塗布して、セラミックブランケット(実施例5)〔実施例6ではアルミクラフト紙付ロックウール使用〕を積層し、他面にアクリル系粘着剤(綜研化学社製「SK1311」、主成分アクリル酸ブチル)を塗布乾燥して粘着剤層を形成し、図3と同様の三層構造からなる耐火性部材を作製した。
次いで、耐火性部材の粘着剤層51cが外側となるようにU字状に折り曲げた後目地部に挿入し、実施例2と同様の構成の耐火性試験体を得た。
(Examples 5 and 6)
After the components of the heat-expandable refractory material A were roll-kneaded, the obtained resin composition was formed into a sheet shape with a calender molding machine to obtain a sheet of the heat-expandable refractory material A having a width of 60 mm. A urethane adhesive is applied to one side of this sheet, and a ceramic blanket (Example 5) (in Example 6, rock wool with aluminum kraft paper is used) is laminated. An acrylic adhesive (manufactured by Soken Chemical Co., Ltd.) is applied to the other side. “SK1311”, the main component butyl acrylate) was applied and dried to form an adhesive layer, and a refractory member having the same three-layer structure as in FIG. 3 was produced.
Subsequently, it was inserted into the joint part after being bent in a U shape so that the pressure-sensitive adhesive layer 51c of the fireproof member was on the outside, and a fireproof test specimen having the same configuration as in Example 2 was obtained.

(比較例1)
熱膨張性耐火材のシートを全く使用せず、実施例1と同様に作製した目地部に円筒状のポリエチレン発泡体のみを挿入した後、さらに目地部の外側から実施例1と同様のEPDM製ガスケットを充填して、耐火性試験体を得た。
(Comparative Example 1)
After using only a cylindrical polyethylene foam into the joint part produced in the same manner as in Example 1 without using any sheet of a heat-expandable refractory material, the EPDM product as in Example 1 is further made from the outside of the joint part. The gasket was filled to obtain a fireproof test specimen.

(比較例2)
熱膨張性耐火材のシートを全く使用せず、実施例1と同様に作製した目地部にロックウールのみを挿入した後、さらに目地部の外側から実施例1と同様のEPDM製ガスケットを充填して、耐火性試験体を得た。
(Comparative Example 2)
Without using any sheet of heat-expandable refractory material, after inserting only rock wool into the joint part produced in the same manner as in Example 1, the same EPDM gasket as in Example 1 was further filled from the outside of the joint part. Thus, a fire resistance test body was obtained.

耐火性試験
上記実施例及び比較例の耐火性試験体について、JIS A 1304に準拠して1時間加熱した際の裏面温度(図2の上方から加熱し、図2中7の位置で温度測定)を測定し、表2に示した。表中、裏面温度が260℃未満のものを○、260℃以上のものを×でそれぞれ示した。
Fire resistance test For the fire resistance test specimens of the above examples and comparative examples, the back surface temperature when heated for 1 hour in accordance with JIS A 1304 (heated from above in FIG. 2 and measured at the position 7 in FIG. 2). Was measured and shown in Table 2. In the table, those having a back surface temperature of less than 260 ° C. are indicated by ◯, and those having a temperature of 260 ° C. or more by ×.

防水性試験
縦200mm×横200mm×厚さ30mmのアクリル樹脂板を、目地部が10mm間隔となるように隣接して設置し、この目地部に上記実施例及び比較例の耐火性試験体と同様にして耐火性材料及びガスケットを配置した。
次いで、このアクリル樹脂板上に直径75mm×長さ600mmの硬質塩化ビニル管を立て、アクリル樹脂板との隙間がないようにシーリング材でシールした後、硬質塩化ビニル管内に550mmの高さまで水を注入し、目地部裏側への漏水の有無を目視観察した。表中、漏水のないものを○、漏水のあるものを×で示した。
Waterproof test An acrylic resin plate having a length of 200 mm, a width of 200 mm, and a thickness of 30 mm is installed adjacent to each other so that the joints are spaced by 10 mm, and the joints are similar to the fireproof test specimens of the above-described examples and comparative examples. In this manner, a refractory material and a gasket were arranged.
Next, a rigid vinyl chloride tube having a diameter of 75 mm × length of 600 mm is set up on the acrylic resin plate, sealed with a sealing material so that there is no gap with the acrylic resin plate, and then water is poured into the rigid vinyl chloride tube to a height of 550 mm. The presence of water leakage to the back of the joint was visually observed. In the table, those having no water leakage are indicated by ○, and those having water leakage are indicated by ×.

Figure 0004220994
Figure 0004220994

表中、実施例は耐火試験においてガスケットは脱落したが、熱膨張性耐火材層が膨張して目地部が充填されたので、裏面温度は260℃未満であった。これに対して、比較例ではガスケットは脱落して裏面温度は360℃に達し、260℃を大きく超えた。また、防水性試験において、実施例は目地部裏側への漏水はなかったのに対して、比較例では目地部裏側への漏水が認められた。   In the table, in the examples, the gasket dropped out in the fire resistance test, but the thermally expandable refractory material layer expanded and filled the joint, so the back surface temperature was less than 260 ° C. On the other hand, in the comparative example, the gasket dropped out, the back surface temperature reached 360 ° C., and greatly exceeded 260 ° C. Moreover, in the waterproof test, water leakage to the joint part back side was observed in the examples, whereas water leakage to the joint part back side was observed in the comparative example.

尚、表中で使用した各成分は下記の通りである。
・メタロセンポリエチレン:ダウケミカル社製「EG8200」
・エポキシ樹脂:油化シェル社製「E807」(ビスフェノール型エポキシモノマー)
・硬化剤:油化シェル社製「EKFL052」(ジアミン系硬化剤)
In addition, each component used in the table is as follows.
Metallocene polyethylene: “EG8200” manufactured by Dow Chemical
Epoxy resin: “E807” (bisphenol type epoxy monomer) manufactured by Yuka Shell
・ Curing agent: “EKFL052” (diamine-based curing agent) manufactured by Yuka Shell

・ポリリン酸アンモニウム:クラリアント社製「エキソリット422」
・中和処理された熱膨張性黒鉛:東ソー社製「フレームカットGREP−EG」
・水酸アルミニウム:昭和電工社製「ハイジライトH−31」
・炭酸カルシウム:備北粉化社製「ホワイトンBF−300」
-Ammonium polyphosphate: "Exolit 422" manufactured by Clariant
・ Neutralized heat-expandable graphite: “Frame Cut GREP-EG” manufactured by Tosoh Corporation
・ Aluminum hydroxide: “Hijilite H-31” manufactured by Showa Denko KK
・ Calcium carbonate: “Whiteon BF-300” manufactured by Bihoku Flour Chemical Co., Ltd.

・ポリエチレン発泡体:積水化学社製
・セラミックブランケット:ニチアス社製「ファインフレックスブランケット」
・ロックウールフェルト:ニチアス社製「MGフェルト」(40k、アルミクラフト紙付)
・ Polyethylene foam: Sekisui Chemical Co., Ltd. ・ Ceramic blanket: Nichias “Fine Flex Blanket”
・ Rock wool felt: “MG felt” manufactured by NICHIAS (40k, with aluminum kraft paper)

耐火性部材の一例を示す模式断面図である。It is a schematic cross section which shows an example of a refractory member. 耐火試験体の一例を示す模式断面図である。It is a schematic cross section which shows an example of a fireproof test body. 耐火性部材の他の一例を示す模式断面図である。It is a schematic cross section which shows another example of a refractory member. 耐火試験体の他の一例を示す模式断面図である。It is a schematic cross section which shows another example of a fireproof test body. 耐火性部材の他の一例を示す模式断面図である。It is a schematic cross section which shows another example of a refractory member.

符号の説明Explanation of symbols

1a,1b ALC板
2 角形鋼管
3 目地部
4 コンクリート用ビス
5,51,52 耐火性部材
5a,51a,52a 緩衝性材料層
5b,51b,52b 熱膨張性耐火材層
5c,51c,52c 粘着剤層
6,61 ガスケット
DESCRIPTION OF SYMBOLS 1a, 1b ALC board 2 Square steel pipe 3 Joint part 4 Concrete screws 5, 51, 52 Refractory members 5a, 51a, 52a Buffering material layers 5b, 51b, 52b Thermal expansion refractory material layers 5c, 51c, 52c Adhesive Layer 6, 61 Gasket

Claims (1)

加熱によって膨張して耐火断熱層を形成しうる熱膨張性耐火材層の一面に緩衝性材料層が積層され、他面に粘着剤層が積層されてなる耐火性部材であって、該熱膨張性耐火材層を50kW/m2 の加熱条件下で30分間加熱した後の体積膨張率が3〜100倍である外壁の目地部用耐火性部材を、前記外壁の目地部用耐火性部材に含まれる粘着剤層を外側としてU字状に折り曲げる工程と、
前記外壁の目地部用耐火性部材を、2枚の隣接する外壁材によって形成された目地部へ、前記粘着剤層が前記外壁材の側面に接する様に充填する工程と、
を有することを特徴とする、外壁の目地部用耐火性部材の施工方法。
A heat-resistant member formed by laminating a buffer material layer on one surface of a heat-expandable refractory material layer that can be expanded by heating to form a fire-resistant heat insulating layer, and a pressure-sensitive adhesive layer on the other surface. A fireproof member for joints on the outer wall having a volume expansion coefficient of 3 to 100 times after heating the heat-resistant material layer under heating conditions of 50 kW / m 2 for 30 minutes is used as the fireproof member for joints on the outer wall. Folding the U-shaped adhesive layer included outside,
Filling the outer wall joint refractory member into joint parts formed by two adjacent outer wall materials so that the adhesive layer contacts the side surface of the outer wall material;
The construction method of the fireproof member for joint parts of an outer wall characterized by having.
JP2005372884A 2005-12-26 2005-12-26 Refractory material Expired - Fee Related JP4220994B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005372884A JP4220994B2 (en) 2005-12-26 2005-12-26 Refractory material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005372884A JP4220994B2 (en) 2005-12-26 2005-12-26 Refractory material

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP36738299A Division JP2001182188A (en) 1999-12-24 1999-12-24 Fire resistive member

Publications (2)

Publication Number Publication Date
JP2006097467A JP2006097467A (en) 2006-04-13
JP4220994B2 true JP4220994B2 (en) 2009-02-04

Family

ID=36237543

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005372884A Expired - Fee Related JP4220994B2 (en) 2005-12-26 2005-12-26 Refractory material

Country Status (1)

Country Link
JP (1) JP4220994B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06322849A (en) * 1993-05-14 1994-11-22 Sekisui Chem Co Ltd Waterproof structure of vertical outer wall joint, waterproof construction method, and gasket applied thereto
US5765332A (en) * 1995-02-21 1998-06-16 Minnesota Mining And Manufacturing Company Fire barrier protected dynamic joint
JP2000110274A (en) * 1998-10-08 2000-04-18 Sekisui Chem Co Ltd Flame-resistant joint material and work execution method thereof

Also Published As

Publication number Publication date
JP2006097467A (en) 2006-04-13

Similar Documents

Publication Publication Date Title
JP2008184896A (en) Refractory member and its construction method
JP5280987B2 (en) Fireproof compartment penetration structure
JP3148209U (en) Penetration through structure of compartment
JP4068758B2 (en) Adhesive fireproof sheet
JP5139693B2 (en) Fireproof coating structure
JP2004324370A (en) Fire resistant member and its construction method
JP2002172181A (en) Fire preventing section penetrating member and fire preventing section penetrating part structure using the same
JP4220995B2 (en) Refractory material
JP3790468B2 (en) Fireproof joint structure
JP2002013224A (en) Fire resistive sheathing method and fire resistive sheath structure for steel frame
JP4057275B2 (en) Fireproof joint structure
JP4157888B2 (en) Refractory material
JP2001182188A (en) Fire resistive member
JP2001011979A (en) Fire-resistant member
JP2000104366A (en) Fire resistant component
JP2001173124A (en) Fire resistive member
JP4320108B2 (en) Wall structure
JP4220994B2 (en) Refractory material
JP3581597B2 (en) Fire-resistant coated steel structure
JPH11201374A (en) Refractory heat insulation material for piping, and its execution method
JP4052757B2 (en) Refractory steel cladding
JP2000127297A (en) Fire-resistant coating material
JP2001262942A (en) Fire-resistant structure
JP4320110B2 (en) Fireproof wall structure
JP2000291174A (en) Fire protecting and resistant panel wall

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060724

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080620

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080818

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081022

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081114

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees