JP4220117B2 - Radioactive liquid treatment system - Google Patents

Radioactive liquid treatment system Download PDF

Info

Publication number
JP4220117B2
JP4220117B2 JP2000330348A JP2000330348A JP4220117B2 JP 4220117 B2 JP4220117 B2 JP 4220117B2 JP 2000330348 A JP2000330348 A JP 2000330348A JP 2000330348 A JP2000330348 A JP 2000330348A JP 4220117 B2 JP4220117 B2 JP 4220117B2
Authority
JP
Japan
Prior art keywords
filter
filtrate
pipe
tank
control device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000330348A
Other languages
Japanese (ja)
Other versions
JP2002139595A (en
Inventor
友晴 石井
哲也 野田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Plant Systems and Services Corp
Original Assignee
Toshiba Corp
Toshiba Plant Systems and Services Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Plant Systems and Services Corp filed Critical Toshiba Corp
Priority to JP2000330348A priority Critical patent/JP4220117B2/en
Publication of JP2002139595A publication Critical patent/JP2002139595A/en
Application granted granted Critical
Publication of JP4220117B2 publication Critical patent/JP4220117B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、原子力発電所等で発生する洗濯廃液、シャワードレン、または化学的酸素要求量(COD)成分や油分等を含有する放射性廃液を処理するための放射性廃液処理システムに関する。
【0002】
【従来の技術】
原子力発電所等で発生する洗濯廃液またはシャワードレン等の放射性廃液は、粉末活性炭による吸着処理およびろ過処理を施し、洗剤成分および洗濯等により洗濯物から廃液に移行した汚れ成分とともに放射性物質を除去した後、その処理水をプラント外へ放出したりする。
【0003】
洗濯廃液またはシャワードレンの処理は、処理水の放射性物質濃度または環境影響調査書記載の水質[SS(浮遊物質)濃度、COD(化学的酸素要求量)濃度、n−ヘキサン抽出物質濃度、pH]が各原子力発電所で定める管理値以下になるように実施される。
【0004】
この種の従来の放射性廃棄物処理システムを図5により説明する。
図5において、放射性廃液を集める収集タンク1の底部に配管を介してポンプ2の吸込側を接続し、このポンプ2の吐出側をろ過器3に接続している。このろ過器3のろ過水出口側はろ過水流出配管10を介してサンプタンク4に接続している。
【0005】
ろ過水流出配管10から分岐して収集タンク1に接続する戻り配管5が接続し、ろ過器3のケーク排出側はケーク排出弁19を介してドラム缶6に接続している。収集タンク1には粉末活性炭供給機7が接続している。また、戻り配管5には収集タンク戻り弁20が接続し、ろ過水流出配管10にはサンプタンク入口弁21が接続している。
【0006】
上述した放射性廃液処理システムは、洗濯廃液またはシャワードレン等の放射性廃液(原液)を収集タンク1に受け入れ、この受け入れた廃液中に含まれる溶解成分である化学的酸素要求量(COD)を低減するのに十分な粉末活性炭を粉末活性炭供給機7から投入または注入している。
【0007】
これらの溶解成分を吸着した収集タンク1内の放射性廃液はポンプ2によりろ過器3へ移送される。ろ過器3で溶解成分を吸着した粉末活性炭と廃液中に含まれる浮遊物質(SS)をろ過し、ろ過水をろ過水流出配管10を通してサンプタンク4へ回収する。ろ過器3でろ過された粉末活性炭と浮遊物質は、ろ過器3内で濃縮され、ケーク状になってケーク排出弁19を通してドラム缶6に排出され、ドラム缶6内に充填される。
【0008】
ろ過器3は、ろ過室3a内に攪拌羽根3bとろ過板3cとが狭い間隔で交互に配列され、攪拌羽根3bはろ過時にモータ17の回転駆動により一定の速度で回転する。ろ過板3cは、ろ液排出機構18を有し、ろ過板3cの両面にはろ過膜が張設されている。
【0009】
収集タンク1からポンプ2を通してろ過器3へ供給された放射性廃液は、ろ過室3aの一方から加圧供給され、ろ過板3cの両面に張設されたろ過膜の表面に形成される粉末活性炭と浮遊物質のケーク層により精密ろ過され、ろ液はろ過板3cのろ液排出機構18からろ過水流出配管10を経て戻り弁20またはサンプタンク入口弁21の開閉により排出され、戻り配管5から収集タンク1あるいはろ過水流出配管10からサンプタンク4へ移送される。
【0010】
ろ過板3cの両面に張設されたろ過膜の表面に粉末活性炭と浮遊物質のケーク層が形成され、ケーク層は、攪拌羽根3bの作用により一定の厚さ以上には成長せず、ろ過板3cの間隔を通り抜けてろ過室3aの他方に配設したケーク排出弁19の方向へ移動する間にろ過・脱水される。
【0011】
上述したケーク層が形成されていない場合は、ろ液排出機構18を経て外部に排出されるろ液は粉末活性炭と浮遊物質を多く含むため、戻り配管5から収集タンク1へ移送される。ケーク層が形成されると、ろ液は清澄になるため、収集タンク戻り弁20またはサンプタンク入口弁21の開閉によりサンプタンク4へ移送される。
【0012】
上述したケーク層が形成されていない場合は、ケーク層を安定に成長させるためにモータ17を制御しろ過板3bを低速で回転させる。ケーク層が形成すればモータ17によりろ過板3bを高速で回転させる。ケークは、ケーク排出弁19から固いペースト状になってドラム缶6に排出される。なお、攪拌羽根3bはトルク制御装置によりモータ17のトルクが制御される。
【0013】
【発明が解決しようとする課題】
ところで、上記従来の放射性廃液処理システムにおいては、処理運転開始時などにおいてろ過板3cの両面に張設されたろ過膜の表面に形成される粉末活性炭と浮遊物質のケーク層が存在しない状態から、ケーク層が形成されてろ液が清澄となりサンプタンク4へ移送できるろ過水質になるまでを時間で監視していた。この時間は試験運転等により確認されたろ液清澄時間に対して、十分に余裕を持った時間とする必要がある。しかしながら、余裕の分だけ処理時間が長くなる課題がある。
【0014】
また、ろ液清澄時間経過後にサンプタンク4への移送を開始した後も、ろ過板3cの両面に張設されたろ過膜に異常が生じた場合、清澄でなくなったろ液がサンプタンク4へ流入する可能性があり、ろ過水質に対する信頼性の課題がある。
【0015】
本発明は上記課題を解決するためになされたもので、ろ過板3cの両面に張られたろ過膜の表面に形成される粉末活性炭と浮遊物質のケーク層の状態を間接的に確認することにより処理時間を短縮し、かつろ過水質に対する信頼性を向上した放射性廃液処理システムを提供することにある。
【0016】
【課題を解決するための手段】
請求項1に係る発明は、放射性廃液の収集タンクと、この収集タンクの出口側にポンプを介在して接続したろ過器と、このろ過器のろ過水出口側にろ過水流出配管を介在して接続したサンプタンクと、前記収集タンクに接続した粉末活性炭供給機と、前記ろ過水流出配管から分岐して他端が前記収集タンクに接続する戻り配管と、前記ろ過器内に設置された攪拌羽根と、前記ろ過水流出配管に設けた濁度計とを具備し、前記戻り配管に戻り弁を取り付け、前記サンプタンクに接続した前記ろ過水流出配管にサンプタンク入口弁を取り付け、前記濁度計の検出信号を入力し、前記戻り弁または前記サンプタンク入口弁に制御信号を出力する計測制御装置を設け、前記計測制御装置の出力信号を前記攪拌羽根の回転数を制御するトルク制御装置に入力する出力信号系を設けてなることを特徴とする。
【0017】
この発明によれば、ろ過水の濁度を計測することにより、ろ過板の両面に張られたろ過膜の表面に形成される粉末活性炭と浮遊物質のケーク層の状態を確保し、ろ過処理時間を短縮できる。また、ケーク層形成後にサンプタンクへろ過水の移送を開始した後も、ケーク層の状態を間接的に確認することで、ろ過水質に対する信頼性を向上できる。
また、ろ過器のろ過水出口側の濁度を計測する濁度計を計測制御装置により監視し、濁度が設定値以上になれば警報を発すると同時に、計測制御装置の遠隔自動操作により収集タンク戻り弁またはサンプタンク入口弁を切り替えてろ過後のろ過水流を収集タンクまたはサンプタンクに切り替えて流入することができる。
この場合、特に、前記計測制御装置の出力信号を前記攪拌羽根の回転数を制御するトルク制御装置に入力する出力信号系をさらに設ける構成とすれば、ろ過器のろ過水流出配管出口側の濁度を監視する計測制御装置の遠隔自動操作によりろ過器内の攪拌羽根の回転速度を低速回転に切り替えることができる。
【0021】
請求項2に係る発明は、放射性廃液の収集タンクと、この収集タンクの出口側にポンプを介在して接続したろ過器と、このろ過器のろ過水出口側にろ過水流出配管を介在して接続したサンプタンクと、前記収集タンクに接続した粉末活性炭供給機と、前記ろ過水流出配管から分岐して他端が前記収集タンクに接続する戻り配管と、前記ろ過器内に設置された攪拌羽根と、前記ポンプの吐出側と前記ろ過水流出配管との間に差圧計取付配管を介して設けられた差圧計とを具備し、前記戻り配管に戻り弁を取り付け、前記サンプタンクに接続した前記ろ過水流出配管にサンプタンク入口弁を取り付け、前記差圧計の検出信号を入力し、前記戻り弁または前記サンプタンク入口弁に制御信号を出力する計測制御装置を設けるとともに、前記計測制御装置の出力信号を前記攪拌羽根の回転数を制御するトルク制御装置に入力する出力信号系を設けてなることを特徴とする。
【0022】
この発明によれば、ろ過処理にあたり、ろ過器の入口側とろ過水流出側の圧力差を計測することにより、ろ過板の両面に張られたろ過膜の表面に形成される粉末活性炭と浮遊物質のケーク層の状態を間接的に確認し処理できる。また、ケーク層形成後にサンプタンクへの移送を開始した後も、ケーク層の状態を間接的に確認することで、ろ過水質に対する信頼性を向上できる。
また、ろ液をサンプタンクへ移送している間に差圧計の計測値を計測制御装置により監視し、差圧が設定値以下になれば警報を発すると同時に、計測制御装置の遠隔自動操作により収集タンク戻り弁を開およびサンプタンク入口弁を閉状態とし、ろ液を戻り弁を閉状態とし、ろ液を戻り配管を介して収集タンクへ移送する。戻り弁またはサンプタンク入口弁を切り替えることにより、ろ過後のろ過水流を収集タンクまたはサンプタンクに流入することができる。
この場合、特に、前記計測制御装置の出力信号を前記攪拌羽根の回転数を制御するトルク制御装置に入力する出力信号系をさらに設ける構成とすれば、計測制御装置の遠隔自動操作によりろ過器の攪拌羽根を低速の回転に切り替えることができる。また、ろ過水の入口側とろ過水の出口側の圧力差を計測することによりろ過器内の攪拌羽根の回転速度を制御することができる。
【0026】
【発明の実施の形態】
図1および図3を参照しながら本発明に係る放射性廃液処理システムの第1の実施の形態を説明する。なお、図1と同一部分には同一符号を付している。
図1において、放射性廃液を集める収集タンク1の底部に配管の一端を接続し、この配管の他端にポンプ2の吸込側を接続し、このポンプ2の吐出側をろ過器3に配管接続する。
【0027】
このろ過器3内のろ過室3aに設置したろ過板3cにろ液排出機構18を取り付け、このろ液排出機構18に接続するろ過水流出配管10にろ過水の濁度を計測する濁度計(Tu)8を設置する。この濁度計8の出口側をろ過水流出配管10を介してサンプタンク4に接続し、このサンプタンク4に接続するろ過水流出配管10に計測制御装置11による出力信号線13からの遠隔操作により開閉するサンプタンク入口弁21を設置する。
【0028】
濁度計8の出口側とサンプタンク入口弁21の入口側との間のろ過水流出配管10から分岐して戻り配管5の一端を接続し、その他端を収集タンク1に接続する。この戻り配管5には計測制御装置11による遠隔操作により開閉する収集タンク戻り弁20を設置する。ろ過器3のケーク排出側をケーク排出弁19を介してドラム缶6に接続する。収集タンク1には粉末活性炭供給機7を接続する。
【0029】
ろ過器3は、ろ過室3a内に攪拌羽根3bとろ過板3cとが狭い間隔で交互に配列され、攪拌羽根3bはろ過時にモータ17の回転駆動により一定の速度で回転する。ろ過板3cは、ろ液排出機構18を有し、ろ過板3cの両面にろ過膜が張設されている。
【0030】
計測制御装置11の入力側は検出信号線12を介して濁度計8が接続し、その出力側は出力信号線13を介して戻り弁20,サンプタンク入口弁21およびトルク制御装置14に接続している。トルク制御装置14はトルク制御信号線16を介してモータ17に接続している。
【0031】
収集タンク1からポンプ2を通してろ過器3へ供給する廃液は、ろ過器3のろ過室3aの一方から加圧供給され、ろ過板3cの間隔を通り抜けて移動する間にろ過・脱水される。
【0032】
ろ過器3のろ過板3cでろ過された溶解成分を吸着した粉末活性炭と浮遊物質(SS)は、ろ過室3a内で濃縮され、ケーク状になる。ケークは、ろ過室3aの他方に配設したケーク排出弁19から固いペースト状になってドラム缶6内に排出される。ろ液はろ過板3cのろ液排出機構18からろ過水流出配管10を経て外部に排出され、戻り配管7から収集タンク1またはサンプタンク4へ移送される。なお、攪拌羽根3bはトルク制御装置14によりモータ17を介してトルク制御される。
【0033】
処理運転は、収集ポンプ2を起動し、収集タンク1からろ過器3のろ過室3aの一方から原液を加圧供給する。ろ過器3はろ過板3cの両面に張設されたろ過膜の表面に粉末活性炭と浮遊物資により安定なケーク層を形成させるために、攪拌羽根3bを低速で回転する。
【0034】
ろ液はろ過板3cのろ液排出機構18からろ過水流出配管10を経て外部に排出され、戻り配管5から収集タンク1へ移送される。この時、計測制御装置11の出力信号線13からの入力による遠隔自動操作により収集タンク戻り弁20は開およびサンプタンク入口弁21は閉状態とする。
【0035】
ろ過器3のろ過水流出配管10に設置した濁度計8を計測制御装置11により監視し、濁度が設定値以下になれば計測制御装置11の遠隔自動操作によりトルク制御装置14からのトルク制御信号線16によるモータ17の制御でろ過器3の攪拌羽根3bを高速で回転する。その後も濁度が設定値以下であれば計測制御装置11による遠隔操作により収集タンク戻り弁20を閉およびサンプタンク入口弁21は開状態とし、ろ液をサンプタンク4へ移送する。
【0036】
ろ液をサンプタンク4へ移送している間にろ過器3のろ過水流出配管10に設置した濁度計8を計測制御装置11により監視し、濁度が設定値以上になれば警報を発すると同時に、計測制御装置11の遠隔自動操作により収集タンク戻り弁20を開およびサンプタンク入口弁21は閉状態とし、ろ液を戻り配管5を介して収集タンク1へ移送する。さらに、計測制御装置11の遠隔自動操作によりモータ17を制御してろ過器3の攪拌羽根3bを低速の回転に切り替える。
【0037】
処理運転の経過時間に対する濁度計8の計測値と、ろ液をサンプリングしてSS(浮遊物質)濃度を測定した分析結果を比較すると、図3に示す通りほとんど同様の傾向を持った曲線を得ることができる。図3は横軸が時間で、縦軸が濁度とSS濃度との関係を示している。
【0038】
この結果は、ろ液の濁度計の計測値を監視することによりろ液に含まれるSS(浮遊物質)濃度の異常を検知し、計測制御装置11による遠隔自動制御によりサンプタンク4もしくは収集タンク1への移送切り替え制御が可能であることを示している。
【0039】
つまり、濁度計8の計測値が一定値以下であれば、ろ液のSS(浮遊物質)濃度も低いため、ろ過板3bのろ過膜表面に粉末活性炭と浮遊物質のケーク層が十分に形成されている。
【0040】
つぎに図2および図4により本発明に係る放射性廃液処理システムの第2の実施の形態を説明する。なお、図2中、図1と同一部分には同一符号を付して重複する部分の説明は省略する。
【0041】
図1に示す第1の実施の形態における濁度計8と同様の機能を目的として、本実施の形態では図2に示したようにろ過器3の入口側と、ろ過器3のろ過水流出配管10との圧力差を計測するために差圧計取付配管15を介して差圧計(dP)9を設置したことにある。
【0042】
本実施の形態は、第1の実施の形態の場合と同様に処理運転を開始した後、差圧計9の測定値を計測制御装置11により監視し、差圧が設定値以上になれば計測制御装置11の遠隔自動操作によりろ過器3の攪拌羽根3bを高速で回転する。その後も差圧が設定値以上であれば計測制御装置11による遠隔操作により収集タンク戻り弁20を閉およびサンプタンク入口弁21は開状態とし、ろ液をサンプタンク4へ移送する。
【0043】
ろ液をサンプタンク4へ移送している間に差圧計9の計測値を計測制御装置11により監視し、差圧が設定値以下になれば警報を発すると同時に、計測制御装置11の遠隔自動操作により収集タンク戻り弁20を開およびサンプタンク入口弁21を閉状態とし、ろ液を戻り配管5を介して収集タンク1へ移送する。さらに、計測制御装置11の遠隔自動操作によりろ過器3の攪拌羽根3bを低速の回転に切り替える。
【0044】
処理運転の経過時間に対する差圧計9の計測値と、ろ液をサンプリングしてSS(浮遊物質)濃度を測定した分析結果を比較すると、図4に示すようにx=a(aは定数)にほぼ対象な関係を得ることができる。
【0045】
この結果は、ろ過器3の差圧を監視することによりろ過板3cの表面に張設されたろ過膜の表面に形成されるケーク層の異常を検知し、計測制御装置11による遠隔自動制御によりサンプタンク4もしくは収集タンク1への移送切り替え制御が可能であることを示している。
【0046】
つまり、差圧計9の計測値が一定値以上であれば、ろ過板bのろ過膜表面に粉末活性炭と浮遊物質のケーク層が十分に形成されており、ケーク層による精密ろ過によりろ液のSS(浮遊物質)濃度を所定値以下に低減できていることを確認できる。
【0047】
なお、本実施の形態に第1の実施の形態を組み合わせた構成、すなわち濁度計8と差圧計9を併せ設置し、相補的に廃液処理の際の切り替え制御を行う構成としてもよい。
【0048】
【発明の効果】
本発明によれば、ろ過器の処理にあたり、ろ過板の両面に張設されたろ過膜の表面に形成される粉末活性炭と浮遊物質のケーク層の状態を間接的に確認することにより処理時間を短縮し、かつろ過水質に対する信頼性を向上できる。
【0049】
したがって、ろ過器により原子力発電所等で発生する放射性物質を含む洗濯廃液またはシャワードレン等の放射性廃液(原液)中の放射性物質を除去し、環境影響調査書記載の水質基準を満足させることができる。
【図面の簡単な説明】
【図1】本発明に係る放射性廃液処理システムの第1の実施の形態を示す系統図。
【図2】本発明に係る放射性廃液処理システムの第2の実施の形態を示す系統図。
【図3】図1に示した第1の実施の形態において、処理時間に対するろ過器出口濁度およびSS(浮遊物質)濃度の変化を示す特性図。
【図4】図2に示した第2の実施の形態において、処理時間に対するろ過器差圧およびSS(浮遊物質)濃度の変化を示す特性図。
【図5】従来の放射性廃液処理システムを示す系統図。
【符号の説明】
1…収集タンク、2…ポンプ、3…ろ過器、4…サンプタンク、5…戻り配管、6…ドラム缶、7…粉末活性炭供給機、8…濁度計(Tu)、9…差圧計(dP)、10…ろ過水流出配管、11…計測制御装置、12…検出信号線、13…出力信号線、14…トルク制御装置、15…差圧計取付配管、16…トルク制御信号線、17…モータ、18…ろ過水排出配管、19…ケーク排出弁、20…収集タンク戻り弁、21…サンプタンク入口弁。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a radioactive waste liquid treatment system for treating laundry waste liquid, shower drain, or radioactive waste liquid containing chemical oxygen demand (COD) components, oil, and the like generated at a nuclear power plant or the like.
[0002]
[Prior art]
Washing waste liquid generated at nuclear power plants, etc. or radioactive waste liquid such as shower drain were subjected to adsorption treatment and filtration treatment with powdered activated carbon to remove radioactive substances together with detergent components and dirt components transferred from laundry to waste liquid by washing etc. Thereafter, the treated water is discharged outside the plant.
[0003]
Washing wastewater or shower drain is treated with radioactive material concentration in the treated water or water quality described in the environmental impact report [SS (floating matter) concentration, COD (chemical oxygen demand) concentration, n-hexane extract substance concentration, pH]. Is carried out so as to be below the control value determined by each nuclear power plant.
[0004]
A conventional radioactive waste treatment system of this type will be described with reference to FIG.
In FIG. 5, the suction side of the pump 2 is connected to the bottom of the collection tank 1 for collecting radioactive waste liquid via a pipe, and the discharge side of the pump 2 is connected to the filter 3. The filtered water outlet side of the filter 3 is connected to the sump tank 4 via the filtered water outflow pipe 10.
[0005]
A return pipe 5 branched from the filtrate water outflow pipe 10 and connected to the collection tank 1 is connected, and the cake discharge side of the filter 3 is connected to the drum 6 through a cake discharge valve 19. A powdered activated carbon feeder 7 is connected to the collection tank 1. A collection tank return valve 20 is connected to the return pipe 5, and a sump tank inlet valve 21 is connected to the filtered water outflow pipe 10.
[0006]
The radioactive waste liquid treatment system described above receives radioactive waste liquid (raw liquid) such as laundry waste liquid or shower drain into the collection tank 1 and reduces the chemical oxygen demand (COD), which is a dissolved component contained in the received waste liquid. Sufficient powdered activated carbon is charged or injected from the powdered activated carbon feeder 7.
[0007]
The radioactive liquid waste in the collection tank 1 adsorbing these dissolved components is transferred to the filter 3 by the pump 2. The powdered activated carbon adsorbing dissolved components and the suspended solids (SS) contained in the waste liquid are filtered by the filter 3, and the filtered water is collected in the sump tank 4 through the filtered water outflow pipe 10. The powdered activated carbon and the suspended solids filtered by the filter 3 are concentrated in the filter 3, become a cake, are discharged into the drum can 6 through the cake discharge valve 19, and are filled in the drum can 6.
[0008]
In the filter 3, the stirring blades 3 b and the filter plates 3 c are alternately arranged in the filtration chamber 3 a at a narrow interval, and the stirring blade 3 b rotates at a constant speed by the rotation drive of the motor 17 during filtration. The filtration plate 3c has a filtrate discharge mechanism 18, and filtration membranes are stretched on both sides of the filtration plate 3c.
[0009]
The radioactive waste liquid supplied from the collection tank 1 through the pump 2 to the filter 3 is pressurized and supplied from one side of the filtration chamber 3a, and the powdered activated carbon formed on the surfaces of the filtration membranes stretched on both sides of the filter plate 3c The filtrate is finely filtered by the cake layer of suspended solids, and the filtrate is discharged from the filtrate discharge mechanism 18 of the filter plate 3c through the filtrate outlet pipe 10 by opening / closing the return valve 20 or the sump tank inlet valve 21 and collected from the return pipe 5 It is transferred from the tank 1 or the filtered water outflow pipe 10 to the sump tank 4.
[0010]
A cake layer of powdered activated carbon and suspended solids is formed on the surface of the filtration membrane stretched on both surfaces of the filter plate 3c, and the cake layer does not grow beyond a certain thickness by the action of the stirring blade 3b. While moving through the interval 3c in the direction of the cake discharge valve 19 disposed on the other side of the filtration chamber 3a, filtration and dehydration are performed.
[0011]
When the above-described cake layer is not formed, the filtrate discharged to the outside through the filtrate discharge mechanism 18 contains a large amount of powdered activated carbon and suspended solids, and thus is transferred from the return pipe 5 to the collection tank 1. When the cake layer is formed, the filtrate becomes clarified and is transferred to the sump tank 4 by opening / closing the collection tank return valve 20 or the sump tank inlet valve 21.
[0012]
If the above-described cake layer is not formed, the motor 17 is controlled to rotate the filter plate 3b at a low speed in order to grow the cake layer stably. If the cake layer is formed, the filter plate 3b is rotated at a high speed by the motor 17. The cake is discharged into the drum 6 from the cake discharge valve 19 as a hard paste. In the stirring blade 3b, the torque of the motor 17 is controlled by a torque control device.
[0013]
[Problems to be solved by the invention]
By the way, in the above-mentioned conventional radioactive liquid waste treatment system, from the state where there is no powdered activated carbon formed on the surfaces of the filtration membrane stretched on both surfaces of the filtration plate 3c at the start of the treatment operation and the cake layer of suspended solids, It was monitored over time until a cake layer was formed and the filtrate became clear and filtered water was transferred to the sump tank 4. This time needs to be sufficiently long with respect to the filtrate clarification time confirmed by the test operation or the like. However, there is a problem that the processing time becomes longer by a margin.
[0014]
In addition, even after starting the transfer to the sump tank 4 after the filtrate clarification time has elapsed, if an abnormality occurs in the filtration membrane stretched on both sides of the filter plate 3c, the filtrate that has become unclear flows into the sump tank 4. There is a problem of reliability with respect to filtered water quality.
[0015]
The present invention has been made to solve the above problems, and by indirectly confirming the state of the powdered activated carbon formed on the surfaces of the filtration membrane stretched on both sides of the filter plate 3c and the cake layer of suspended solids. An object of the present invention is to provide a radioactive liquid waste treatment system that shortens the treatment time and improves the reliability of the filtered water quality.
[0016]
[Means for Solving the Problems]
The invention according to claim 1 includes a collection tank for radioactive waste liquid, a filter connected to the outlet side of the collection tank via a pump, and a filtered water outlet pipe on the filtered water outlet side of the filter. A connected sump tank, a powdered activated carbon feeder connected to the collection tank, a return pipe branched from the filtered water outflow pipe and connected to the collection tank at the other end, and a stirring blade installed in the filter And a turbidimeter provided in the filtrate outlet pipe, a return valve is attached to the return pipe, a sump tank inlet valve is attached to the filtrate outlet pipe connected to the sump tank, and the turbidimeter Is provided with a measurement control device that outputs a control signal to the return valve or the sump tank inlet valve, and the output signal of the measurement control device is used as a torque control device that controls the rotation speed of the stirring blades. Characterized by comprising providing an output signal system for force.
[0017]
According to this invention, by measuring the turbidity of filtered water, the state of the cake layer of powdered activated carbon and suspended solids formed on the surface of the filtration membrane stretched on both sides of the filter plate is secured, and the filtration time Can be shortened. Moreover, even after starting the transfer of filtered water to the sump tank after the formation of the cake layer, the reliability of the filtered water quality can be improved by indirectly checking the state of the cake layer.
In addition, a turbidimeter that measures the turbidity at the filtered water outlet side of the filter is monitored by a measurement control device, and if the turbidity exceeds the set value, an alarm is issued and at the same time collected by remote automatic operation of the measurement control device The filtered water flow after filtration by switching the tank return valve or sump tank inlet valve can be switched to the collection tank or sump tank to flow in.
In this case, in particular, if an output signal system for inputting the output signal of the measurement control device to the torque control device for controlling the rotation speed of the stirring blade is further provided, the turbidity on the outlet side of the filtered water outflow pipe of the filter The rotation speed of the stirring blade in the filter can be switched to a low speed rotation by remote automatic operation of the measurement control device for monitoring the degree.
[0021]
The invention according to claim 2 includes a collection tank for radioactive waste liquid, a filter connected to the outlet side of the collection tank via a pump, and a filtered water outflow pipe on the filtered water outlet side of the filter. A connected sump tank, a powdered activated carbon feeder connected to the collection tank, a return pipe branched from the filtered water outflow pipe and connected to the collection tank at the other end, and a stirring blade installed in the filter And a differential pressure gauge provided via a differential pressure gauge attachment pipe between the discharge side of the pump and the filtrate outflow pipe, a return valve is attached to the return pipe, and the sump tank is connected to the sump tank. Install the sump tank inlet valve in the filtered water outlet pipe, receives a detection signal of the differential pressure gauge, the return valve or the sump tank and outputs a control signal to the inlet valve is provided a measurement control unit Rutotomoni, the measurement control Characterized by comprising providing an output signal system which inputs the output signal of the location to the torque control device for controlling the rotational speed of the stirring blade.
[0022]
According to this invention, in the filtration process, by measuring the pressure difference between the inlet side of the filter and the filtered water outflow side, the powdered activated carbon and suspended solids formed on the surfaces of the filtration membranes stretched on both sides of the filter plate The state of the cake layer can be checked and processed indirectly. Further, even after the transfer to the sump tank is started after the formation of the cake layer, the reliability of the filtered water quality can be improved by indirectly checking the state of the cake layer.
Also, while the filtrate is being transferred to the sump tank, the measured value of the differential pressure gauge is monitored by the measurement control device, and if the differential pressure falls below the set value, an alarm is issued and at the same time, the remote control operation of the measurement control device The collection tank return valve is opened and the sump tank inlet valve is closed, the filtrate is returned to the closed state, and the filtrate is transferred to the collection tank via the return pipe. By switching the return valve or the sump tank inlet valve, the filtered water flow after filtration can flow into the collection tank or sump tank.
In this case, in particular, if the output signal system for inputting the output signal of the measurement control device to the torque control device for controlling the rotation speed of the stirring blade is further provided, the filter of the filter is controlled by remote automatic operation of the measurement control device. The stirring blade can be switched to low speed rotation. Moreover, the rotational speed of the stirring blade in the filter can be controlled by measuring the pressure difference between the filtered water inlet side and the filtered water outlet side.
[0026]
DETAILED DESCRIPTION OF THE INVENTION
A first embodiment of a radioactive liquid waste treatment system according to the present invention will be described with reference to FIGS. 1 and 3. In addition, the same code | symbol is attached | subjected to the same part as FIG.
In FIG. 1, one end of a pipe is connected to the bottom of a collection tank 1 that collects radioactive waste liquid, the suction side of the pump 2 is connected to the other end of the pipe, and the discharge side of the pump 2 is connected to a filter 3. .
[0027]
A turbidimeter for measuring the turbidity of filtrate water in a filtrate discharge pipe 10 connected to the filtrate discharge mechanism 18 by attaching a filtrate discharge mechanism 18 to a filter plate 3c installed in the filtration chamber 3a in the filter 3 (Tu) 8 is installed. The outlet side of the turbidimeter 8 is connected to the sump tank 4 via the filtrate drain pipe 10, and the filtrate controller 10 connected to the sump tank 4 is remotely operated from the output signal line 13 by the measurement controller 11. A sump tank inlet valve 21 that opens and closes is installed.
[0028]
A branch from the filtered water outflow pipe 10 between the outlet side of the turbidimeter 8 and the inlet side of the sump tank inlet valve 21 is branched to connect one end of the return pipe 5 and the other end is connected to the collection tank 1. The return pipe 5 is provided with a collection tank return valve 20 that is opened and closed by remote control by the measurement control device 11. The cake discharge side of the filter 3 is connected to the drum 6 via the cake discharge valve 19. A powdered activated carbon feeder 7 is connected to the collection tank 1.
[0029]
In the filter 3, the stirring blades 3 b and the filter plates 3 c are alternately arranged in the filtration chamber 3 a at a narrow interval, and the stirring blade 3 b rotates at a constant speed by the rotation drive of the motor 17 during filtration. The filtration plate 3c has a filtrate discharge mechanism 18, and filtration membranes are stretched on both sides of the filtration plate 3c.
[0030]
The turbidimeter 8 is connected to the input side of the measurement control device 11 via the detection signal line 12, and the output side thereof is connected to the return valve 20, sump tank inlet valve 21 and torque control device 14 via the output signal line 13. is doing. The torque control device 14 is connected to the motor 17 via the torque control signal line 16.
[0031]
The waste liquid supplied from the collection tank 1 to the filter 3 through the pump 2 is pressurized and supplied from one of the filtration chambers 3a of the filter 3, and is filtered and dehydrated while moving through the interval between the filter plates 3c.
[0032]
The powdered activated carbon adsorbing the dissolved components filtered by the filter plate 3c of the filter 3 and the suspended substance (SS) are concentrated in the filtration chamber 3a to form a cake. The cake is discharged into the drum 6 in the form of a hard paste from a cake discharge valve 19 disposed on the other side of the filtration chamber 3a. The filtrate is discharged to the outside from the filtrate discharge mechanism 18 of the filter plate 3 c through the filtrate outlet pipe 10 and transferred from the return pipe 7 to the collection tank 1 or the sump tank 4. The stirring blade 3b is torque-controlled by a torque control device 14 via a motor 17.
[0033]
In the processing operation, the collection pump 2 is activated, and the stock solution is pressurized and supplied from one of the filtration chambers 3 a of the filter 3 from the collection tank 1. The filter 3 rotates the stirring blade 3b at a low speed in order to form a stable cake layer with powdered activated carbon and suspended solids on the surface of the filtration membrane stretched on both surfaces of the filter plate 3c.
[0034]
The filtrate is discharged to the outside from the filtrate discharge mechanism 18 of the filter plate 3 c through the filtrate outlet pipe 10 and transferred from the return pipe 5 to the collection tank 1. At this time, the collection tank return valve 20 is opened and the sump tank inlet valve 21 is closed by remote automatic operation by input from the output signal line 13 of the measurement control device 11.
[0035]
The turbidity meter 8 installed in the filtered water outflow pipe 10 of the filter 3 is monitored by the measurement control device 11, and when the turbidity falls below the set value, the torque from the torque control device 14 is remotely operated by the measurement control device 11. The stirring blade 3b of the filter 3 is rotated at high speed by the control of the motor 17 by the control signal line 16. Thereafter, if the turbidity is equal to or lower than the set value, the collection tank return valve 20 is closed and the sump tank inlet valve 21 is opened by remote operation by the measurement controller 11, and the filtrate is transferred to the sump tank 4.
[0036]
While the filtrate is being transferred to the sump tank 4, the turbidimeter 8 installed in the filtered water outflow pipe 10 of the filter 3 is monitored by the measurement control device 11, and an alarm is issued if the turbidity exceeds the set value. At the same time, the collection tank return valve 20 is opened and the sump tank inlet valve 21 is closed by remote automatic operation of the measurement control device 11, and the filtrate is transferred to the collection tank 1 through the return pipe 5. Further, the motor 17 is controlled by remote automatic operation of the measurement control device 11 to switch the stirring blade 3b of the filter 3 to low speed rotation.
[0037]
When the measured value of the turbidimeter 8 with respect to the elapsed time of the processing operation is compared with the analysis result obtained by sampling the filtrate and measuring the SS (suspended substance) concentration, a curve having almost the same tendency as shown in FIG. 3 is obtained. Obtainable. In FIG. 3, the horizontal axis represents time, and the vertical axis represents the relationship between turbidity and SS concentration.
[0038]
As a result, abnormalities in the SS (floating matter) concentration contained in the filtrate are detected by monitoring the measured value of the turbidimeter of the filtrate, and the sump tank 4 or collection tank is remotely controlled automatically by the measurement control device 11. It shows that the transfer switching control to 1 is possible.
[0039]
That is, if the measured value of the turbidimeter 8 is below a certain value, the SS (floating matter) concentration of the filtrate is low, so that a powdered activated carbon and a suspended matter cake layer are sufficiently formed on the filtration membrane surface of the filter plate 3b. Has been.
[0040]
Next, a second embodiment of the radioactive liquid waste processing system according to the present invention will be described with reference to FIGS. In FIG. 2, the same parts as those in FIG.
[0041]
For the purpose of the same function as the turbidimeter 8 in the first embodiment shown in FIG. 1, in this embodiment, as shown in FIG. 2, the inlet side of the filter 3 and the filtered water outflow of the filter 3. This is because a differential pressure gauge (dP) 9 is installed via a differential pressure gauge mounting pipe 15 in order to measure a pressure difference with the pipe 10.
[0042]
In the present embodiment, after the processing operation is started as in the case of the first embodiment, the measurement value of the differential pressure gauge 9 is monitored by the measurement control device 11, and the measurement control is performed if the differential pressure becomes equal to or greater than the set value. The stirring blade 3b of the filter 3 is rotated at a high speed by remote automatic operation of the apparatus 11. Thereafter, if the differential pressure is equal to or higher than the set value, the collection tank return valve 20 is closed and the sump tank inlet valve 21 is opened by remote operation by the measurement control device 11, and the filtrate is transferred to the sump tank 4.
[0043]
While the filtrate is being transferred to the sump tank 4, the measurement value of the differential pressure gauge 9 is monitored by the measurement control device 11. When the differential pressure falls below the set value, an alarm is issued and the measurement control device 11 is automatically remote controlled. By operation, the collection tank return valve 20 is opened and the sump tank inlet valve 21 is closed, and the filtrate is transferred to the collection tank 1 through the return pipe 5. Furthermore, the stirring blade 3b of the filter 3 is switched to low speed rotation by remote automatic operation of the measurement control device 11.
[0044]
When the measured value of the differential pressure gauge 9 with respect to the elapsed time of the processing operation is compared with the analysis result obtained by sampling the filtrate and measuring the SS (suspended substance) concentration, as shown in FIG. 4, x = a (a is a constant). You can get an almost targeted relationship.
[0045]
As a result, the abnormality of the cake layer formed on the surface of the filter membrane stretched on the surface of the filter plate 3c is detected by monitoring the differential pressure of the filter 3, and the remote control by the measurement control device 11 is performed. It shows that transfer switching control to the sump tank 4 or the collection tank 1 is possible.
[0046]
That is, if the measured value of the differential pressure gauge 9 is a certain value or more, a cake layer of powdered activated carbon and suspended solids is sufficiently formed on the filter membrane surface of the filter plate b, and SS of the filtrate is obtained by microfiltration with the cake layer. It can be confirmed that the (floating matter) concentration can be reduced to a predetermined value or less.
[0047]
Note that a configuration in which the first embodiment is combined with the present embodiment, that is, a configuration in which the turbidity meter 8 and the differential pressure meter 9 are installed together and the switching control at the time of waste liquid treatment is performed in a complementary manner.
[0048]
【The invention's effect】
According to the present invention, in the treatment of the filter, the treatment time is reduced by indirectly confirming the state of the powdered activated carbon formed on the surfaces of the filtration membrane stretched on both sides of the filtration plate and the suspended material cake layer. It can shorten and improve the reliability of filtered water quality.
[0049]
Therefore, radioactive substances in radioactive waste liquid (raw liquid) such as washing waste liquid or shower drain containing radioactive substances generated at nuclear power plants etc. can be removed with a filter to satisfy the water quality standards described in the environmental impact report. .
[Brief description of the drawings]
FIG. 1 is a system diagram showing a first embodiment of a radioactive liquid waste treatment system according to the present invention.
FIG. 2 is a system diagram showing a second embodiment of a radioactive liquid waste treatment system according to the present invention.
FIG. 3 is a characteristic diagram showing changes in filter outlet turbidity and SS (floating matter) concentration with respect to processing time in the first embodiment shown in FIG. 1;
4 is a characteristic diagram showing changes in filter differential pressure and SS (floating matter) concentration with respect to processing time in the second embodiment shown in FIG. 2; FIG.
FIG. 5 is a system diagram showing a conventional radioactive liquid waste treatment system.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Collection tank, 2 ... Pump, 3 ... Filter, 4 ... Sump tank, 5 ... Return piping, 6 ... Drum can, 7 ... Powdered activated carbon supply machine, 8 ... Turbidimeter (Tu), 9 ... Differential pressure gauge (dP ), 10 ... filtrated water outflow pipe, 11 ... measurement control device, 12 ... detection signal line, 13 ... output signal line, 14 ... torque control device, 15 ... differential pressure gauge mounting pipe, 16 ... torque control signal line, 17 ... motor , 18 ... Filtrated water discharge pipe, 19 ... Cake discharge valve, 20 ... Collection tank return valve, 21 ... Sump tank inlet valve.

Claims (2)

放射性廃液の収集タンクと、この収集タンクの出口側にポンプを介在して接続したろ過器と、このろ過器のろ過水出口側にろ過水流出配管を介在して接続したサンプタンクと、前記収集タンクに接続した粉末活性炭供給機と、前記ろ過水流出配管から分岐して他端が前記収集タンクに接続する戻り配管と、前記ろ過器内に設置された攪拌羽根と、前記ろ過水流出配管に設けた濁度計とを具備し、
前記戻り配管に戻り弁を取り付け、前記サンプタンクに接続した前記ろ過水流出配管にサンプタンク入口弁を取り付け、前記濁度計の検出信号を入力し、前記戻り弁または前記サンプタンク入口弁に制御信号を出力する計測制御装置を設け、前記計測制御装置の出力信号を前記攪拌羽根の回転数を制御するトルク制御装置に入力する出力信号系を設けてなることを特徴とする放射性廃液処理システム。
A collection tank for radioactive liquid waste, a filter connected to the outlet side of the collection tank via a pump, a sump tank connected to the filtrate outlet side of the filter via a filtrate outlet pipe, and the collection A powdered activated carbon feeder connected to the tank, a return pipe branched from the filtered water outflow pipe and connected at the other end to the collection tank, a stirring blade installed in the filter, and the filtered water outflow pipe A turbidimeter installed,
A return valve is attached to the return pipe, a sump tank inlet valve is attached to the filtrate outflow pipe connected to the sump tank, a detection signal of the turbidimeter is input, and the return valve or the sump tank inlet valve is controlled. A radioactive waste liquid treatment system comprising: a measurement control device that outputs a signal; and an output signal system that inputs an output signal of the measurement control device to a torque control device that controls the rotation speed of the stirring blade.
放射性廃液の収集タンクと、この収集タンクの出口側にポンプを介在して接続したろ過器と、このろ過器のろ過水出口側にろ過水流出配管を介在して接続したサンプタンクと、前記収集タンクに接続した粉末活性炭供給機と、前記ろ過水流出配管から分岐して他端が前記収集タンクに接続する戻り配管と、前記ろ過器内に設置された攪拌羽根と、前記ポンプの吐出側と前記ろ過水流出配管との間に差圧計取付配管を介して設けられた差圧計とを具備し、
前記戻り配管に戻り弁を取り付け、前記サンプタンクに接続した前記ろ過水流出配管にサンプタンク入口弁を取り付け、前記差圧計の検出信号を入力し、前記戻り弁または前記サンプタンク入口弁に制御信号を出力する計測制御装置を設けるとともに、前記計測制御装置の出力信号を前記攪拌羽根の回転数を制御するトルク制御装置に入力する出力信号系を設けてなることを特徴とする放射性廃液処理システム。
A collection tank for radioactive liquid waste, a filter connected to the outlet side of the collection tank via a pump, a sump tank connected to the filtrate outlet side of the filter via a filtrate outlet pipe, and the collection A powdered activated carbon feeder connected to the tank, a return pipe branched from the filtrate outflow pipe and connected at the other end to the collection tank, a stirring blade installed in the filter, and a discharge side of the pump A differential pressure gauge provided via a differential pressure gauge mounting pipe between the filtered water outflow pipe,
A return valve is attached to the return pipe, a sump tank inlet valve is attached to the filtrate outflow pipe connected to the sump tank, a detection signal of the differential pressure gauge is input, and a control signal is sent to the return valve or the sump tank inlet valve and outputs the measurement control device provided Rutotomoni, wherein the measurement controller radioactive waste processing system the output signal characterized by comprising providing an output signal based input to a torque control device for controlling the rotational speed of the stirring blade of .
JP2000330348A 2000-10-30 2000-10-30 Radioactive liquid treatment system Expired - Lifetime JP4220117B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000330348A JP4220117B2 (en) 2000-10-30 2000-10-30 Radioactive liquid treatment system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000330348A JP4220117B2 (en) 2000-10-30 2000-10-30 Radioactive liquid treatment system

Publications (2)

Publication Number Publication Date
JP2002139595A JP2002139595A (en) 2002-05-17
JP4220117B2 true JP4220117B2 (en) 2009-02-04

Family

ID=18806885

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000330348A Expired - Lifetime JP4220117B2 (en) 2000-10-30 2000-10-30 Radioactive liquid treatment system

Country Status (1)

Country Link
JP (1) JP4220117B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101085259B1 (en) 2010-02-11 2011-11-22 한국수력원자력 주식회사 Device for treatment of waste liquid
JP2014052326A (en) * 2012-09-10 2014-03-20 Public Works Research Center Radioactive substance containment processing method
JP6157851B2 (en) * 2012-12-28 2017-07-05 株式会社東芝 Washing waste liquid treatment apparatus and washing waste liquid treatment method

Also Published As

Publication number Publication date
JP2002139595A (en) 2002-05-17

Similar Documents

Publication Publication Date Title
RU2371236C2 (en) Apparatus of automatic rinsing of membrane filter in water purifier
JPS583723B2 (en) Agglomeration effect detection device
JP3924919B2 (en) Water filtration equipment
JP4220117B2 (en) Radioactive liquid treatment system
JP3473309B2 (en) Operation control device for membrane separation device
CA2155034C (en) Process and apparatus for controlling the dewatering of suspensions
US20070170106A1 (en) Installation and method for the treatment of sewage sludge, and membrane unit
JP2684483B2 (en) Membrane filtration device
JPH10131073A (en) Apparatus for recovering white water
JPH11169851A (en) Water filter and its operation
CN108554180A (en) Increase the system in reverse osmosis membrane service life
KR101269642B1 (en) Particulate filtering equipment capable of automatic partial backwashing
JP3671794B2 (en) Aggregation processing apparatus and slurry property measuring apparatus
JPH051358Y2 (en)
RU2243022C1 (en) Filtration installation
CN219308081U (en) Filtering device and filtering system
JPS62191097A (en) Raw sewage treatment method
JP3465383B2 (en) Filtration method of downflow filtration device
JP3492036B2 (en) Backwash sludge strainer
JP3257959B2 (en) Solid-liquid separation method
KR890001099B1 (en) Reverse washing method
JPH11221409A (en) In-line type sheet piece applied drum rotary filter
JPH11300116A (en) Method for reducing backwashing water of filtration
JPH04326927A (en) Membrane separator
JPS5976509A (en) Operating method of device for removing clogging of screen for solid-liquid separation

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040319

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061107

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070315

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080415

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080805

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081002

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081111

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4220117

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121121

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121121

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131121

Year of fee payment: 5

EXPY Cancellation because of completion of term