JP4219940B2 - Polishing pad - Google Patents

Polishing pad Download PDF

Info

Publication number
JP4219940B2
JP4219940B2 JP2006054961A JP2006054961A JP4219940B2 JP 4219940 B2 JP4219940 B2 JP 4219940B2 JP 2006054961 A JP2006054961 A JP 2006054961A JP 2006054961 A JP2006054961 A JP 2006054961A JP 4219940 B2 JP4219940 B2 JP 4219940B2
Authority
JP
Japan
Prior art keywords
polishing pad
work surface
polymer
product
microelement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2006054961A
Other languages
Japanese (ja)
Other versions
JP2006186394A (en
Inventor
ハインツ エフ. レインハーツ
ジョン ヴィー.エィチ. ロバーツ
ハリー ジョージ マクレーン
エルミール ウイリアム ジェンセン
ウィリアム ディー. バディンガー
Original Assignee
ローム アンド ハース エレクトロニック マテリアルズ シーエムピー ホウルディングス インコーポレイテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ローム アンド ハース エレクトロニック マテリアルズ シーエムピー ホウルディングス インコーポレイテッド filed Critical ローム アンド ハース エレクトロニック マテリアルズ シーエムピー ホウルディングス インコーポレイテッド
Priority to JP2006054961A priority Critical patent/JP4219940B2/en
Publication of JP2006186394A publication Critical patent/JP2006186394A/en
Application granted granted Critical
Publication of JP4219940B2 publication Critical patent/JP4219940B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Description

この発明は、半導体デバイス等の加工品の表面を研磨又は平坦化するための研磨パッドに関するものである。   The present invention relates to a polishing pad for polishing or flattening the surface of a workpiece such as a semiconductor device.

従来の加工品の研磨、平坦化(planarizing)の方法は、基質材料の選択に影響する様々な作業条件にさらされる高分子基材又は研磨パッド等の製品により行われていた。例えば、研磨されている加工品の性質、研磨速度ならびに圧力における変動、研磨作業の間に生ずる温度上昇、および作業に用いる研磨スラリーの性質が基材の選択に影響を与える。   Conventional methods of polishing and planarizing workpieces have been performed with products such as polymeric substrates or polishing pads that are exposed to various working conditions that affect the choice of substrate material. For example, the nature of the workpiece being polished, variations in polishing rate and pressure, the temperature rise that occurs during the polishing operation, and the properties of the polishing slurry used in the operation affect the choice of substrate.

前記従来の製品は一般的にその厚さ全体を通して不均一な物理的性質を有する多重積層(multilayer laminations)又は複層基材(stratified substrates)から形成されている。半導体デバイスを研磨するため広く用いられる典型的な複層パッドの例は、ポリテックス スープリーム(Politex Supreme)パッドで、デラウェア州ニューアークのロデール社(Rodel Incorporated)から市販されている。典型的なポリテックス スープリーム パッドはポリエステルフェルトから成る1mmから2mm厚の堅固であるが弾力性のある多孔質底部層とポリウレタン結合材を含む数層から構成されている。約0.05mmから 0.3mm厚の海綿状で弾力性のある微小多孔質ウレタン層が底部層の上に積層されている。頂部層は垂直方向の、傾斜の付いた細孔を有し、細孔の傾斜がパッドの頂部に向かって狭くなっている垂直ウレタン構造(vertical urethane structures)から構成されている。頂部層は極めて柔らかく、多孔質で弾力性がある。典型的な研磨作業では、このような複層パッドの頂部層が急速に磨耗する。頂部層が磨耗して後続の層が露出するにつれ、パッドの研磨特性が変化して不均一な研磨率をもたらし、加工品表面における均質でない研磨特性を生ずる。   Such conventional products are generally formed from multilayer laminations or stratified substrates having non-uniform physical properties throughout their thickness. An example of a typical multi-layer pad that is widely used to polish semiconductor devices is the Politex Supreme pad, commercially available from Rodel Incorporated, Newark, Delaware. A typical polytex soupream pad consists of a 1 to 2 mm thick rigid but resilient porous bottom layer of polyester felt and several layers including a polyurethane binder. A sponge-like and elastic microporous urethane layer having a thickness of about 0.05 mm to 0.3 mm is laminated on the bottom layer. The top layer is composed of vertical urethane structures with vertical, inclined pores with the pore slope narrowing towards the top of the pad. The top layer is very soft, porous and elastic. In a typical polishing operation, the top layer of such a multilayer pad wears rapidly. As the top layer wears and subsequent layers are exposed, the polishing characteristics of the pad change, resulting in a non-uniform polishing rate, resulting in non-uniform polishing characteristics on the workpiece surface.

従来の高分子研磨パッドは、多くの場合、重合と混合および最終パッド製品の切断と成形の不正確な制御に起因する、品質のばらつきを有する。従って、研磨されている加工品に与えられる表面品質、原料除去率および平坦化率のような研磨特性がパッドバッチ間で特に大きく変動する。   Conventional polymeric polishing pads often have quality variations due to inaccurate control of polymerization and mixing and cutting and molding of the final pad product. Accordingly, polishing characteristics such as surface quality, raw material removal rate and planarization rate imparted to the workpiece being polished vary particularly significantly between pad batches.

そこで、この発明は、加工品を研磨又は平坦化するための製品を提供することを課題とする。   Therefore, an object of the present invention is to provide a product for polishing or flattening a processed product.

前記課題を解決するため、この発明は次のような技術的手段を講じている。   In order to solve the above problems, the present invention takes the following technical means.

本発明は、研磨スラリーと共に使用される、半導体デバイスを研磨又は平坦化するための研磨パッドであって、研磨パッド上に作業面と、研磨パッド内に作業面に隣接する副表面とを有する高分子マトリックス;及び高分子マトリックス中の溶解性の高分子微小エレメントを含み、溶解性の高分子微小エレメントは、作業面と副表面の両方に位置し、作業面は、凸部が0.1〜10mmの間隔であり、パターンを形成する凹凸を有し、高分子マトリックスは、磨耗すると副表面が新しい作業面となることができるものである、研磨パッドに関する。   The present invention is a polishing pad for polishing or planarizing a semiconductor device used with a polishing slurry, wherein the polishing pad has a work surface on the polishing pad and a secondary surface adjacent to the work surface in the polishing pad. A molecular matrix; and a soluble polymer microelement in the polymer matrix, wherein the soluble polymer microelement is located on both the work surface and the subsurface, and the work surface has a convex portion of 0.1 to The polymer matrix relates to a polishing pad having an interval of 10 mm, having irregularities forming a pattern, and a polymer matrix that can become a new work surface when worn.

また、本発明は、凸部が、作業面に、高分子微小エレメントの平均直径の1000倍よりも小さい長さを有する、上記の研磨パッドに関し、凸部が、高分子微小エレメントの平均直径の2000倍よりも小さい深さを有する、上記の研磨パッドに関する。さらに、本発明は、パターンが、1〜5mmの幅の凸部を有するミニサイズのパターンである、上記の研磨パッドに関し、パターンが、5mm超の幅の凸部を有するマクロサイズのパターンである、上記の研磨パッドに関する。加えて、本発明は、溶解性の高分子微小エレメントが砂糖である、上記の研磨パッドに関する。 In addition, the present invention relates to the above polishing pad, wherein the convex portion has a length on the work surface that is smaller than 1000 times the average diameter of the polymer microelement, and the convex portion has an average diameter of the polymer microelement. The present invention relates to the above polishing pad having a depth smaller than 2000 times. Furthermore, the present invention relates to the above polishing pad, wherein the pattern is a mini-size pattern having convex portions with a width of 1 to 5 mm, and the pattern is a macro-sized pattern having convex portions with a width of more than 5 mm. The present invention relates to the polishing pad. In addition, the present invention relates to the above polishing pad, wherein the soluble polymeric microelement is sugar.

本発明は、研磨スラリーと共に使用される、半導体デバイスを研磨又は平坦化するための研磨パッドであって、高分子マトリックス及びマトリックス中に水溶性の砂糖を含み、水溶性砂糖は、作業面と副表面の両方に位置し、作業面は、間隔が0.1〜10mmであり、パターンを形成する凸部を有する、研磨パッドに関する。 The present invention is a polishing pad for polishing or planarizing a semiconductor device used with a polishing slurry, comprising a polymer matrix and a water-soluble sugar in the matrix, the The working surface relates to a polishing pad that is located on both surfaces and has a convex portion that forms a pattern with an interval of 0.1 to 10 mm.

また、本発明は、凸部が、作業面に、水溶性の砂糖の平均直径の1000倍よりも小さい長さを有する、上記の研磨パッドに関し、凸部が、水溶性の砂糖の平均直径の2000倍よりも小さい深さを有する、上記の研磨パッドに関する。さらに、本発明は、パターンが、1mm〜5mmの幅の凸部を有するミニサイズのパターンである、上記の研磨パッドに関し、パターンが、5mm超の幅の凸部を有するマクロサイズのパターンである、上記の研磨パッドに関する。 The present invention also relates to the above polishing pad, wherein the convex portion has a length on the work surface that is smaller than 1000 times the average diameter of the water-soluble sugar, and the convex portion has an average diameter of the water-soluble sugar. The present invention relates to the above polishing pad having a depth smaller than 2000 times. Furthermore, the present invention relates to the above polishing pad, wherein the pattern is a mini-size pattern having convex portions having a width of 1 mm to 5 mm, and the pattern is a macro-sized pattern having convex portions having a width of more than 5 mm. The present invention relates to the polishing pad.

本発明の研磨パッドは、研磨パッドの作業面が再生し、作業面が加工品と接触するにつれて大きく変化しないため、加工品の表面を均質に平坦化することができる。   In the polishing pad of the present invention, since the work surface of the polishing pad is regenerated and does not change greatly as the work surface comes into contact with the workpiece, the surface of the workpiece can be uniformly flattened.

以下、この発明の実施形態を図面を参照して説明する。   Embodiments of the present invention will be described below with reference to the drawings.

本発明の研磨パッドを用いての加工品の表面の平坦化は、高分子マトリックスに複数の空隙スペースを有する高分子微小エレメントを含浸して作業面および前記作業面に隣接する副表面を有するようにした製品を作業環境に接触させることにより、前記作業面に隣接して位置する高分子微小エレメントのシェルの少なくとも一部分が開口され、前記開口された高分子微小エレメントが前記副表面に埋め込まれた高分子微小エレメントよりも硬さが減じ、前記製品の作業面が再生するようにしたものである。   The planarization of the surface of the workpiece using the polishing pad of the present invention is performed so that the polymer matrix is impregnated with polymer microelements having a plurality of void spaces and has a work surface and a subsurface adjacent to the work surface. By bringing the manufactured product into contact with the work environment, at least a part of the shell of the polymer microelement located adjacent to the work surface is opened, and the opened polymer microelement is embedded in the subsurface. The work surface of the product is regenerated with less hardness than the polymer microelements.

添付図面を参照すると、全体的に同様の参照数字が同様のエレメントを示しているが、図1〜3、5〜9および11に10、110、210、310 および410 の記号が付された、本発明に使用する製品の例が示されている。   Referring to the accompanying drawings, like reference numerals generally indicate like elements, but FIGS. 1-3, 5-9 and 11 are labeled 10, 110, 210, 310 and 410, Examples of products used in the present invention are shown.

製品10は、ほぼ円形のシート又は研磨パッド12であることが好ましく、図5および7で最も良く示されている。当業者は、このパッド12は、必要に応じて例えばほぼ方形、長方形あるいは任意の適切な形状とすることができるとわかるであろう。   Product 10 is preferably a generally circular sheet or polishing pad 12 and is best shown in FIGS. One skilled in the art will recognize that the pad 12 can be, for example, approximately square, rectangular, or any suitable shape as desired.

製品10等はそれ自体研磨パッドとして使用できるし、あるいは、研磨スラリーが半導体デバイス、シリコンデバイス、クリスタル、ガラス、セラミック、高分子可塑材料、金属、石又は他の表面に所望の表面仕上げを施すために使用される研磨作業の基材として用いることもできる。製品10等から成る研磨パッド12は、当業者に周知で、市販で容易に入手できる潤滑油、冷却剤および種々の研磨スラリーと共に用いることができる。このようなスラリーの典型的な成分には、水やオイルのような液体媒体、酸化アルミニウム、炭化シリコン、二酸化シリコン、酸化セリウムおよびガーネットのような研磨剤、塩基、酸、塩、界面活性剤、または、加工品の性質による他の薬剤、あるいはこれらの組み合わせが含まれる。   The product 10 etc. can itself be used as a polishing pad, or because the polishing slurry provides the desired surface finish on semiconductor devices, silicon devices, crystals, glass, ceramics, polymeric plastic materials, metals, stones or other surfaces. It can also be used as a base material for polishing work used in the above. The polishing pad 12 comprising the product 10 or the like is well known to those skilled in the art and can be used with lubricating oils, coolants and various polishing slurries that are readily available commercially. Typical components of such slurries include liquid media such as water and oil, abrasives such as aluminum oxide, silicon carbide, silicon dioxide, cerium oxide and garnet, bases, acids, salts, surfactants, Alternatively, other drugs depending on the nature of the processed product, or combinations thereof are included.

製品10等は、例えば、ラッピング(lapping)、平坦化、研磨又は成形のような研磨作業により加工品(図示せず)の表面(同じく図示せず)を変えるのに有用である。研磨される加工品は好ましくは、例えば水晶、シリコン、ガラス、電子および光学基板ならびに高密度多層電子デバイスのような裂けやすい物質から成るものとする。加工品は、ポリシリコン、熱酸化膜、および金属材料の多重層から成る半導体デバイス(図示せず)であり、各層は、その上にそれに続く層が付着される前に平坦化される。   The product 10 or the like is useful for changing the surface (also not shown) of a workpiece (not shown) by a polishing operation such as lapping, planarization, polishing or molding, for example. The workpiece to be polished should preferably consist of fragile materials such as quartz, silicon, glass, electronic and optical substrates and high density multilayer electronic devices. The workpiece is a semiconductor device (not shown) consisting of multiple layers of polysilicon, thermal oxide, and metal material, each layer being planarized before subsequent layers are deposited thereon.

図1で最も良く示されているように、製品10は好ましくは研磨および平坦化作業で典型的に用いられる水性流体スラリーを通さない高分子マトリックス14から成る。高分子マトリックス 14 はウレタン、メラミン、ポリエステル、ポリスルフォン、ポリビニールアセテート、弗化炭化水素等、ならびにこれらの類似物、混合物、共重合体とグラフトから形成できる。当業者は研磨作業の間における研削磨耗に対して十分な靱性と剛性を備える他の任意の高分子も、本発明の精神と範囲に合致する形で使用可能であることを理解するものと思われる。現在のところ好ましい形として、高分子マトリックス14はウレタン重合体から成る。ウレタン重合体は好ましくはコネチカット州ミドルベリーのユニローヤル ケミカル社(Uniroyal Chemical Co.)から市販で入手できるアジプレン(Adiprene)種の生成物のようなポリエーテル系ウレタンプレポリマー(polyether-based liquidurethane)から形成される。好ましいウレタンプレポリマー(liquid urethane)は重量比で約9から9.3%のイソシアネート基(free isocyanate)を含有する。他のイソシアネートを帯びる生成物およびプリポリマーも本発明の精神と範囲に合致する形で使用可能である。   As best shown in FIG. 1, the product 10 preferably comprises a polymeric matrix 14 that is impermeable to aqueous fluid slurries typically used in polishing and planarization operations. The polymeric matrix 14 can be formed from urethane, melamine, polyester, polysulfone, polyvinyl acetate, fluorinated hydrocarbons, and the like, mixtures, copolymers and grafts thereof. Those skilled in the art will appreciate that any other polymer with sufficient toughness and stiffness to grind wear during the polishing operation can be used in a manner consistent with the spirit and scope of the present invention. It is. In the presently preferred form, the polymer matrix 14 comprises a urethane polymer. The urethane polymer is preferably from a polyether-based liquidurethane such as a product of the Adiprene species commercially available from Uniroyal Chemical Co., Middlebury, Connecticut. It is formed. Preferred urethane prepolymers contain from about 9 to 9.3% free isocyanate by weight. Other isocyanate-bearing products and prepolymers can be used in a manner consistent with the spirit and scope of the present invention.

ウレタンプレポリマーは好ましくは多官能アミン、ジアミン、トリアミン又はウレタン/尿素橋かけ網目中に存在するヒドロキシル/アミンのような多官能ヒドロキシル化合物又は混合官能性化合物と反応して尿素化学結合および硬化/橋かけ重合体網目の形成を可能にするものであるものとする。現在のところ好ましいものとして、ウレタンプレポリマーは、ミシガン州アドリアンのアンダーソンデベロップメント社(Anderson Development Co.)から生成物「Curene(R)442 」として市販で入手できる、4,4′−メチレン−ビス〔2−クロロアニリン(chloroaniline)〕(「MOCA」)と反応している。   The urethane prepolymer preferably reacts with polyfunctional amines, diamines, triamines or polyfunctional hydroxyl compounds or mixed functional compounds such as hydroxyl / amine present in the urethane / urea crosslinked network to react with urea chemical bonds and cure / bridges. It is intended to enable the formation of a crossed polymer network. As presently preferred, the urethane prepolymer is 4,4'-methylene-bis [commercially available as the product "Cureene (R) 442" from Anderson Development Co., Adrian, Michigan. It reacts with 2-chloroaniline] ("MOCA").

図1で最も良く示されるように、高分子マトリックス14には複数の高分子微小エレメント16が含浸されている。好ましくは、少なくとも一部の高分子微小エレメントが全体的に柔軟であるものとする。適切な高分子微小エレメントには無機塩、砂糖と水溶性ガムおよび樹脂が含まれる。このような高分子微小エレメントの例には、ポリビニールアルコール、ペクチン、ポリビニールピロリドン(polyvinyl pyrrolidone)、ハイドロキシエチルセルローズ(hydroxyethylcellulose)、メチルセルローズ、ハイドロプロピルメチルセルローズ(hydropropylmethylcellulose)、カーボキシメチルセルローズ(carboxymethylcellulose)、ハイドロキシプロピルセルローズ(hydroxypropylcellulose)、ポリアクリル酸(polyacrylic acids)、ポリアクリルアミド(polyacrylamides)、ポリエチレングリコール(polyethylene glycols)、ポリハイドロキシエーテルアクリライト(polyhydroxyetheracrylites)、澱粉、マレイン酸共重合体(maleic acid copolymers)、ポリエチレンオキシド(polyethylene oxide)、ポリウレタン(polyurethanes)、およびそれらの組み合わせが含まれる。微小エレメント16は化学的に例えば分岐、ブロッキング、および橋かけにより可溶性、膨張力および他の特性を変えるように変性できる。   As best shown in FIG. 1, the polymer matrix 14 is impregnated with a plurality of polymer microelements 16. Preferably, at least some of the polymer microelements are totally flexible. Suitable polymeric microelements include inorganic salts, sugar and water soluble gums and resins. Examples of such polymeric microelements include polyvinyl alcohol, pectin, polyvinyl pyrrolidone, hydroxyethylcellulose, methylcellulose, hydropropylmethylcellulose, carboxymethylcellulose. ), Hydroxypropylcellulose, polyacrylic acids, polyacrylamides, polyethylene glycols, polyhydroxyetheracrylites, starch, maleic acid copolymers ), Polyethylene oxide, polyurethanes, and combinations thereof. The microelements 16 can be chemically modified to alter solubility, swelling power and other properties, for example by branching, blocking, and crosslinking.

現在のところ好ましい形として、高分子微小エレメント16の各々は約150μm以下の平均直径を有し、さらに好ましくは、約10μmの平均直径を有するものとする。当業者は、微小エレメントの平均直径は変わる可能性があること、および同じ又は異なるサイズの微小エレメント16或いは異なる微小エレメント16の混合物を必要に応じて高分子マトリックス14に含浸できることを理解できよう。   As presently preferred, each of the polymeric microelements 16 has an average diameter of about 150 μm or less, and more preferably has an average diameter of about 10 μm. One skilled in the art will appreciate that the average diameter of the microelements can vary and that the polymeric matrix 14 can be impregnated with the same or different sized microelements 16 or a mixture of different microelements 16 as required.

現在のところ好ましい形として、高分子微小エレメント16の各々は約1μmから約100μmの間隔を置くものとする。好ましくは、高分子微小エレメント16は実質的に高分子マトリックス14の全体にわたって高剪断混合により均等に配分されるものとする。その結果生じた複合混合物が反応ウレタン重合体の粘度が微小エレメントの高分子混合物との十分な調合を可能にするには大きくなり過ぎる前に従来のモールドに移される。当業者は、種々の熱硬化性プラスチック及び硬化剤により異なる温度で低粘度領域(window)が変化する可能性があることを理解できよう。この結果生じた混合物はモールド中で約15分にわたってゲル化される。ゲル化時間は温度、並びに高分子マトリックス及び微小エレメントの選択のような要因に基づき変化することがある。混合物は次いで約93〜107℃(約200〜225°F)で約4〜6時間にわたって硬化され、室温(約21℃(約70°F)まで冷却される。硬化温度は要因の中で特に高分子マトリックスおよび用いられる微小エレメントのタイプによって変化し得る。 The presently preferred form is that each of the polymeric microelements 16 is spaced from about 1 μm to about 100 μm. Preferably, the polymeric microelements 16 are evenly distributed by high shear mixing substantially throughout the polymeric matrix 14. The resulting composite mixture is transferred to a conventional mold before the viscosity of the reactive urethane polymer becomes too high to allow sufficient blending with the microelement polymer mixture. One skilled in the art will appreciate that the low viscosity window may vary at different temperatures with various thermoset plastics and curing agents. The resulting mixture gels in the mold for about 15 minutes. Gelation time may vary based on factors such as temperature and polymer matrix and microelement selection. The mixture is then cured at about 93-107 ° C. ( about 200-225 ° F.) for about 4-6 hours and cooled to room temperature ( about 21 ° C. ( about 70 ° F. ) ). The curing temperature can vary among the factors, particularly depending on the polymer matrix and the type of microelement used.

この結果生じた製品10はモールドから取り出されて切断、薄切り等の作業で所望の厚さにされ、次いで整形されて研磨パッド12を形成する。当業者は、成形された混合物が切断、薄切りその他の作業で本発明に従い必要に応じて任意の厚さ又は形状に加工され得ることを理解できよう。   The resulting product 10 is removed from the mold, cut to the desired thickness by operations such as cutting and slicing, and then shaped to form the polishing pad 12. One skilled in the art will appreciate that the shaped mixture can be processed to any thickness or shape as needed in accordance with the present invention in cutting, slicing and other operations.

目的とする用途又は作業により、少なくとも一部の高分子微小エレメント16の形状が図1で示されるように、全体的に球状となることがある。好ましくは、このような微小球体は中空で、各球体が約0.1μmの厚さを持つシェルを有するものとする。   Depending on the intended use or operation, the shape of at least some of the polymer microelements 16 may be generally spherical as shown in FIG. Preferably, such microspheres are hollow and each sphere has a shell having a thickness of about 0.1 μm.

図1で最も良く示されるように、各高分子微小エレメント16はその中に空隙スペース22を有する。少なくともいくつかの高分子微小エレメント16は、好ましくは、図3で最も良く示されるように、その中に複数の空隙スペース22を有する。各空隙スペース22が全体的に大気圧より高い圧力のガスを含み、高分子マトリクッス14の作業面18および副表面24の双方で、微小エレメント 16′、16それぞれの構造的保全の維持を助けるようにしている。   As best shown in FIG. 1, each polymeric microelement 16 has a void space 22 therein. At least some of the polymeric microelements 16 preferably have a plurality of void spaces 22 therein, as best shown in FIG. Each void space 22 generally contains a gas at a pressure higher than atmospheric pressure to help maintain the structural integrity of each of the microelements 16 ′, 16 on both the working surface 18 and the secondary surface 24 of the polymeric matrix 14. I have to.

高分子微小エレメントは図11で最も良く示されるように、浸透可能又は孔明け可能のシェル20を有することができ、それにより微小エレメント16′内の空隙スペース22が作業環境に対して開口する。   The polymeric microelement can have a permeable or pierceable shell 20 as best shown in FIG. 11, thereby opening a void space 22 in the microelement 16 'to the working environment.

図1で最も良く示されるように、製品10の好ましい例は、作業面18に位置する少なくとも一部の高分子微小エレメント16′が作業環境(図示せず)又は研磨スラリーと接触すると軟化する。例えば、メチルセルローズのような水溶性セルローズエーテルは水性研磨スラリーの水分と接触するや否や溶解する。   As best shown in FIG. 1, a preferred example of the product 10 softens when at least some of the polymeric microelements 16 'located on the work surface 18 come into contact with a work environment (not shown) or abrasive slurry. For example, water-soluble cellulose ether such as methyl cellulose dissolves as soon as it comes into contact with the water in the aqueous polishing slurry.

図1で最も良く示されるように、他の好ましい例において、作業面18に位置する少なくとも一部の高分子微小エレメント16′が作業環境と接触すると直ちに膨張する。例えば、長連鎖セルローズエーテルは水性研磨スラリーの水分と接触するや否や膨張する。   As best shown in FIG. 1, in another preferred example, at least some of the polymeric microelements 16 'located on the work surface 18 expand immediately upon contact with the work environment. For example, long chain cellulose ether expands as soon as it comes into contact with moisture in the aqueous polishing slurry.

製品10は図1〜3で最も良く示されるように、作業面18およびそれに隣接する副表面24を有する。好ましくは、作業面18は約5μmから約60μmの厚さとする。製品10の厚さは作業面18の主要平面(図示せず)に対して総体的に垂直な方向で好ましくは約300μmと約400μmの間にあるものとする。   Product 10 has a work surface 18 and a secondary surface 24 adjacent thereto, as best shown in FIGS. Preferably, the work surface 18 is about 5 μm to about 60 μm thick. The thickness of the product 10 is preferably between about 300 μm and about 400 μm in a direction generally perpendicular to the main plane (not shown) of the work surface 18.

本発明の長所は、製品10が作業環境と接触した時、製品10の作業面18における高分子微小エレメント16′が開口して副表面24に埋め込まれた高分子微小エレメント16よりも硬さが減じることにある。さらに、硬さが減じた高分子微小エレメント16′は硬さが減じた微小エレメントを取り巻く高分子マトリックス14の一部分15に対する支持力が減り、それにより高分子マトリックスのその周囲部分15の有効硬度を減ずる。従って、作業面18が全体的に副表面24より柔らかい状態で、少なくとも2つのレベルの硬度が製品10で作られる。   The advantage of the present invention is that when the product 10 comes into contact with the work environment, the polymer microelements 16 ′ on the work surface 18 of the product 10 open and are harder than the polymer microelements 16 embedded in the secondary surface 24. It is to reduce. Further, the reduced polymer microelements 16 'have less support for the portion 15 of the polymer matrix 14 surrounding the reduced hardness microelements, thereby increasing the effective hardness of the surrounding portion 15 of the polymer matrix. Decrease. Thus, at least two levels of hardness are made of the product 10 with the work surface 18 generally softer than the secondary surface 24.

本発明の別の長所は、加工品の表面又は作業環境との接触によるような形で製品の作業面18が磨耗するにつれ、作業面18に直接隣接する副表面24が新しい作業面となり、2つの硬度レベルが継続的に再生され、このことが加工品のより均一で一貫した研磨およびパッド12のより均一な磨滅を可能にすることにある。   Another advantage of the present invention is that as the work surface 18 of the product wears out, such as by contact with the surface of the workpiece or the work environment, the secondary surface 24 immediately adjacent to the work surface 18 becomes a new work surface. One hardness level is continuously regenerated, which allows for a more uniform and consistent polishing of the workpiece and a more even wear of the pad 12.

以下、製品10の具体例について説明する。なお、この発明は、以下の例に限定されない。   Hereinafter, a specific example of the product 10 will be described. In addition, this invention is not limited to the following examples.

〔製品の具体例1〕
高分子マトリックスは、約66℃(約150°Fで、2997gのユニローヤル アジプレンL−325 (Uniroyal Adiprene L-325)ポリエーテル系ウレタンプレポリマーを768gの「Curene(R)442 」(4,4′−メチレン−ビス〔2−クロロアニリン〕「MOCA」)と混合することで調整された。この温度で、ウレタン/多官能アミン混合物は約2.5分のポットライフ(pot life)(「低粘度領域」)を有する。
[Specific product example 1]
The polymer matrix was about 66 ° C. ( about 150 ° F. ) and 2997 g of Uniroyal Adiprene L-325 polyether urethane urethane prepolymer of 768 g of “Curene® 442” (4 4'-methylene-bis [2-chloroaniline] "MOCA"). At this temperature, the urethane / polyfunctional amine mixture has a pot life ("low viscosity region") of about 2.5 minutes.

この低粘度領域の間、大気圧より大きい圧力のガスを含む空隙スペースを有するエクスパンセル 551 DE(Expancel 551 DE)中空高分子微小球体69gが、高分子混合物とロデール社(Rodel Inc.)の高速剪断調合および混合装置を用いて微小球体を高分子混合物中に全体的に均一に配分するため3450rpmで調合され、混合物が低粘度領域の間に従来のモールドに移され、ゲル化のため15分間放置された。   During this low-viscosity region, 69 g of Expancel 551 DE hollow polymer microspheres having void spaces containing gas at pressures greater than atmospheric pressure were obtained from the polymer mixture and Rodel Inc. Using high speed shear compounding and mixing equipment, the microspheres were compounded at 3450 rpm to distribute the entire polymer evenly throughout the polymer mixture, and the mixture was transferred to a conventional mold during the low viscosity region and 15 for gelation. Left for a minute.

そのモールドが次いでコッホ オーブン社(Koch Oven Corporation)から市販で入手できるような、硬化オーブン内に置かれた。混合物はオーブンで約93℃(約200°Fにおいて約5時間にわたり硬化された。硬化後にオーブンへの電力が遮断され、成形された製品10の温度が約21℃(約70°F(室温)になるまで混合物がオーブンで約4〜6時間にわたって放冷された。成形製品は次いで研磨パッドを形成するため切断された。その結果生じた研磨パッド12の微小球体間の平均距離は約75μmと約300μmの間にあると思われる。 The mold was then placed in a curing oven, such as commercially available from Koch Oven Corporation. The mixture was cured in an oven at about 93 ° C. ( about 200 ° F. ) for about 5 hours. After curing, power to the oven was turned off and the mixture was allowed to cool in the oven for about 4-6 hours until the temperature of the molded product 10 was about 21 ° C. ( about 70 ° F. (room temperature) ) . The molded product was then cut to form a polishing pad. The resulting average distance between the microspheres of the polishing pad 12 appears to be between about 75 μm and about 300 μm.

図4に示されるように、約1mmの間隔の模様又はチップを有する典型的な半導体デバイスを平坦化するためパッドが用いられた時、平坦化率(μm-1)はエクスパンセル(Expancel)微小球体が埋め込まれた20ミル厚のウレタンパッド(四角の記号で示す)について、微小球体を持たない同様のウレタンパッド(丸の記号で示す)の4倍大きい。換言すれば、図4は本発明に従う微小エレメントが埋め込まれたウレタンパッドを用いると、微小エレメントを持たないウレタンパッドの4倍早くデバイスが平坦化されることを示す。   As shown in FIG. 4, when a pad is used to planarize a typical semiconductor device having a pattern or chip with a spacing of about 1 mm, the planarization rate (μm-1) is an Expancel. A 20 mil thick urethane pad with embedded microspheres (indicated by a square symbol) is four times larger than a similar urethane pad without a microsphere (indicated by a circle symbol). In other words, FIG. 4 shows that using a urethane pad with embedded microelements according to the present invention flattens the device four times faster than a urethane pad without microelements.

図10に示されるように、成形された製品の比重は微小球体の流量が増加するにつれて減少する。一般的に、パッドの比重が約0.75から約0.8 であることが好ましいが、これはエクスパンセル(Expancel)微小球体の流量毎分約53g に相当する。   As shown in FIG. 10, the specific gravity of the molded product decreases as the microsphere flow rate increases. In general, it is preferred that the specific gravity of the pad be from about 0.75 to about 0.8, which corresponds to an Expancel microsphere flow rate of about 53 grams per minute.

〔製品の具体例2〕
高分子マトリックスが 2997gのユニローヤル アジプレン L−325 (Uniroyal Adiprene L-325)ウレタンを 768gの「Curene(R)442 MOCA」と混合し、ウレタンポリマーをペンシルバニア州アレンタウンのエアー プロダクツ アンド ケミカルズ社(Air Products and Chemicals Corporation)から市販で入手できる、部分的にアセチレートされたポリビニールアルコール粉末87gと高速剪断調合することで調整された。低粘度領域の間(2.5 分)、混合物が例1の製品のそれと同様の仕方でモールドに注入され、ゲル化の上でオーブン約107℃(約225°Fで約6時間にわたり硬化され、室温になるまでさまされた。ウレタンのアミン基(MOCA amino groups)との遙に速い反応の故に、基本的にポリビニールアルコールのOH基とウレタンプレポリマーのイソシアネート基にいかなる反応も発生していないと思われる。
[Specific product example 2]
Unipolymer Adiprene L-325 urethane with a polymer matrix of 2997 g was mixed with 768 g of “Cureene® 442 MOCA” and the urethane polymer was mixed with Air Products and Chemicals, Inc. (Allentown, Pa.) Products and Chemicals Corporation) were prepared by high-speed shear blending with 87 g of partially acetylated polyvinyl alcohol powder available commercially. During the low viscosity region (2.5 minutes), the mixture is poured into the mold in a manner similar to that of the product of Example 1 and cured in an oven at about 107 ° C. ( about 225 ° F. ) for about 6 hours on gelling. And wandered to room temperature. It seems that basically no reaction has occurred between the OH group of the polyvinyl alcohol and the isocyanate group of the urethane prepolymer because of the very fast reaction with the amine groups of the urethane (MOCA amino groups).

〔製品の具体例3〕
高分子マトリックスが 3625gのアジプレン L−213 (Adiprene L-213)を930gの「Curene(R)442 MOCA」と混合することで例1のそれと同様の仕方で調製された。低粘度領域の間(約2.5分)、ニューヨーク州タッカホーのフリーマン インダストリー社(Freeman Industries Inc.)から市販で入手できる、ペクチン粉末58gがウレタンポリマーと高速剪断調合されてペクチン粉末をウレタン混合物全体に均一に配分した。低粘度領域の間(2.5 分)、この結果生じたウレタン/ペクチン混合物が例1で示されたものと同様の仕方でモールドに注入され、ゲル化の上で約107℃(約225°Fで約6時間にわたり硬化され、さまされ、処理された。
[Specific product example 3]
A polymeric matrix was prepared in a manner similar to that of Example 1 by mixing 3625 g of Adiprene L-213 with 930 g of “Curene® 442 MOCA”. During the low viscosity region (approximately 2.5 minutes), 58 g of pectin powder, commercially available from Freeman Industries Inc., Tuckahoe, New York, is high speed shear compounded with urethane polymer to mix the pectin powder with the entire urethane mixture. Evenly distributed. During the low viscosity region (2.5 minutes), the resulting urethane / pectin mixture is injected into the mold in a manner similar to that shown in Example 1 and is about 107 ° C ( about 225 ° C) on gelling. F ) for about 6 hours, cured, wrinkled and processed.

〔製品の具体例4〕
高分子マトリックスが 2997gのアジプレン L−325 (Adiprene L-325)をニュージャージー州パリシパニーのバスフ ケミカルズ社(BASF Chemicals Corp.)又はニュージャージー州ウエインのジーエーエフ ケミカルズ社(GAF Chemicals Corp.)から市販で入手できる、65gのポリビニールピロリドン粉末と約30 秒間混合して均質の調合物を作ることで調製された。「Curene(R)442MOCA」(768g)が約212〜228°Fの温度で溶かされ、ウレタン/ポリビニールピロリドン混合物と高速剪断調合され低粘度領域の間、すなわち、2.5分が経過する前にモールドに注入された。この結果生じた混合物が例1で示されたものと同様の仕方でゲル化の上、約107℃(約225°Fで約6時間にわたり加熱されてさまされ、研磨パッドの形に切断された。
[Example 4 of product]
Adiprene L-325 with a polymeric matrix of 2997 g is commercially available from BASF Chemicals Corp. of Parisipany, NJ or GAF Chemicals Corp. of Wayne, NJ Prepared by mixing with 65 g of polyvinylpyrrolidone powder for about 30 seconds to make a homogeneous formulation. “Curene® 442MOCA” (768 g) is melted at a temperature of about 212-228 ° F. and high speed shear compounded with a urethane / polyvinylpyrrolidone mixture between the low viscosity regions, ie, before 2.5 minutes have elapsed. Was injected into the mold. The resulting mixture is gelled in the same manner as shown in Example 1 and then heated at about 107 ° C. ( about 225 ° F. ) for about 6 hours and cut into a polishing pad shape. It was.

〔製品の具体例5〕
高分子マトリックスが 3625gの「Adiprene L-213」を930gの「Curene(R)442 MOCA」と混合することで調製された。低粘度領域の間、65gの白色、自由流動性を持つハイドロキシエチルセルローズ(hydroxyethylcellulose)〔コネチカット州ダンベリーのユニオン カーバイド ケミカルズアンド プラスティック社(Union Carbide Chemicals and Plastics Corp.)から市販で入手できる〕がウレタン混合物と調合された。ハイドロキシエチルセルローズ(hydroxyethylcellulose)は有機溶剤中で不溶性であるが、温水又は冷水中で溶解する。複合混合物が次いで例1に示されたものと同様の仕方で処理された。
[Specific product example 5]
A polymer matrix was prepared by mixing 3625 g of “Adiprene L-213” with 930 g of “Cureene® 442 MOCA”. 65 g of white, free-flowing hydroxyethylcellulose (available commercially from Union Carbide Chemicals and Plastics Corp., Danbury, Conn.) During the low viscosity range is a urethane mixture It was formulated. Hydroxyethylcellulose is insoluble in organic solvents, but dissolves in hot or cold water. The composite mixture was then processed in a manner similar to that shown in Example 1.

図5〜9で最も良く示される別の例において、製品10の作業面18はさらに凹面および/又は凸面部分又は加工構造28を備えるミニ又はマクロサイズのパターン又は溝26を設けることができる。溝26は作業面18の少なくとも一部分に作業面18を機械加工、浮彫り、ターニング、研磨、模写およびレーザ加工のような機械的溝付け法により形成できる。当業者は、溝26が例えばエッチングのような種々の他の機械的又は化学的方法により形成できることを理解できよう。   In another example best shown in FIGS. 5-9, the work surface 18 of the product 10 may further be provided with mini- or macro-sized patterns or grooves 26 comprising concave and / or convex portions or processing structures 28. The grooves 26 can be formed in at least a portion of the work surface 18 by mechanical grooving methods such as machining, embossing, turning, polishing, copying and laser machining. One skilled in the art will appreciate that the grooves 26 can be formed by a variety of other mechanical or chemical methods such as etching.

作業面18を溝付けすることにより、50%まで又はそれ以上の表面を露出して研磨の間における滓の除去を容易にすることができる。これに加えて、作業面18の溝付けは微小エレメント16′が作業環境に対して露出する数を増やすことで研磨作用を強化する。溝26は必要に応じて様々のパターン、輪郭、溝、渦巻き、半径、ドット、又は他の任意の形状で形成できる。パッド12の作業面18を溝付けすることは、微小規模で一連の硬度変化を付けることになる。例えば、加工構造28は、より硬い副表面24に加えて硬いコアと柔らかい外表面を持つ円錐又は穂先を形成するように成形できる。   Grooving the work surface 18 can expose up to 50% or more of the surface to facilitate removal of wrinkles during polishing. In addition, the grooving of the work surface 18 enhances the polishing action by increasing the number of microelements 16 'exposed to the work environment. The grooves 26 can be formed in various patterns, contours, grooves, spirals, radii, dots, or any other shape as desired. Grooving the work surface 18 of the pad 12 results in a series of hardness changes on a microscale. For example, the processed structure 28 can be shaped to form a cone or tip with a hard core and a soft outer surface in addition to the harder subsurface 24.

好ましくは、加工構造28は約0.1mmから約10mmの間の距離で間隔をあけ、約1mmと約10mmとの間の深さを有する。一般的に、加工構造28が第1の寸法(first dimension)で高分子微小エレメント16の平均直径の約1000倍よりも小さい長さを有することが好ましい。加工構造28が高分子微小エレメント16の平均直径の約2000倍よりも小さい深さを有することも好ましい。   Preferably, the work structure 28 is spaced at a distance between about 0.1 mm and about 10 mm and has a depth between about 1 mm and about 10 mm. In general, it is preferred that the processed structure 28 has a length that is less than about 1000 times the average diameter of the polymeric microelements 16 in the first dimension. It is also preferred that the processed structure 28 has a depth that is less than about 2000 times the average diameter of the polymeric microelements 16.

図5と6で最も良く示されるように、作業面18は約1000μmと5mmの間の幅を有する加工構造28を含むミニサイズの溝を備えることができる。図5と6で示されるミニサイズの溝は偏心円パターンであるものの、当業者はミニサイズの溝が上述したものを含む渦巻きその他のパターンとなり得ることを理解できよう。   As best shown in FIGS. 5 and 6, the work surface 18 can comprise a mini-sized groove that includes a processing structure 28 having a width of between about 1000 μm and 5 mm. Although the mini-sized grooves shown in FIGS. 5 and 6 are eccentric circular patterns, those skilled in the art will appreciate that the mini-sized grooves can be spirals or other patterns including those described above.

図7と8で最も良く示されるように、作業面18はその各々が約5mmより大きい幅を有する加工構造28を含むマクロサイズの溝を備えることができる。図7と8で示されるように、ミニサイズの溝は全体的に方形の格子であるものの、当業者はミニサイズの溝が必要に応じて上述したものを含む任意のパターンで形成できることを理解できよう。   As best shown in FIGS. 7 and 8, the work surface 18 may comprise macro-sized grooves that include a machining structure 28 each having a width greater than about 5 mm. As shown in FIGS. 7 and 8, although the mini-sized grooves are generally rectangular grids, those skilled in the art will understand that the mini-sized grooves can be formed in any pattern, including those described above, as needed. I can do it.

マクロサイズの溝およびミニサイズの溝は浮彫り、ターニング、研磨、模写およびレーザ加工のような典型的機械加工法および当業者に周知の様々な他の方法により形成できる。   Macro-sized and mini-sized grooves can be formed by typical machining methods such as embossing, turning, polishing, replication, and laser machining, and various other methods well known to those skilled in the art.

〔製品の具体例6〕
標準的旋盤および単一先端工具を用いて、円形および方形格子パターンそれぞれを、旋盤又はフライス盤の回転板に真空装着された作業面18の上に重ね合わせることにより、図5から8の示す作業面18が切削された。組合せ切削工具(ganged cutting tools)あるいはぎざぎさ歯(serrated teeths)が定間隔に付けられた特注切削コーム(combs)を有する従来のフライス盤が、作業面18を所望のパターンに加工するのに用いられた。
[Example 6 of the product]
Using a standard lathe and a single tip tool, each of the circular and square grid patterns is superimposed on the work surface 18 vacuum mounted to the lathe or milling machine rotating plate to provide the work surface shown in FIGS. 18 was cut. Conventional milling machines with custom cutting combs with ganged cutting tools or serrated teeth spaced at regular intervals are used to machine the working surface 18 into the desired pattern. It was.

図5に最も良く示されているように、環状のミニサイズの溝が研磨パッドに付けられて1.397mm(0.055″)のピッチを有する溝を形成し、それぞれの溝は0.356mm(0.014″)の深さを有する。溝の形状は図6に示されるように、パッドの内径に向かって60度の傾斜を持つのこ歯ねじ形状(buttress thread)である。   As best shown in FIG. 5, annular mini-sized grooves are applied to the polishing pad to form grooves having a pitch of 1.397 mm (0.055 ″), each groove being 0.356 mm. (0.014 ″) depth. The shape of the groove is a buttress thread with a 60 degree slope towards the inner diameter of the pad, as shown in FIG.

図7と8に示されている方形格子マクロサイズの溝28は、水平フライス盤上で加工されて、幅0.813mm(0.032″)および深さ0.635mm(0.025″)の溝を持つ複数の方形を作り、この溝によって6.35 mm(0.025″)の加工構造28が定められる。   The square lattice macro-sized grooves 28 shown in FIGS. 7 and 8 are machined on a horizontal milling machine and are 0.813 mm (0.032 ″) wide and 0.635 mm (0.025 ″) deep grooves. This groove defines a 6.35 mm (0.025 ″) processed structure 28.

図9で最も良く示されるように、作業面18は炭酸ガスレーザの使用により生じた、約1000μmと5mmの間にある幅を有する加工構造28を含むミニサイズの溝を備えることもできる。好ましくは、ミクロサイズの溝は作業面18上の砕片パターンの形状で作られるものとする。ここで定義する「砕片パターン(fractal Pattern)」とは、加工構造が相互に異なる反復加工構造を有する反復パターンを意味する。砕片パターンは、コッホ アイランド アンド レイク(Koch Island& Lake)砕片パターンのゴスパーアイランド(Gosper Island)変形(「Gosperpattern」)(図9に示される)のような確定的又は非確定的数学的式(mathematical formulas)により作ることができる。適切な砕片モデルには円形、球形およびスイスチーズ トレマス(tremas)がふくまれるものの、当業者は必要に応じて本発明に従い他の適切な砕片パターンが使用できることを理解できよう。好ましくは、砕片パターンは雑然とした(chaotic)又はランダムな形とする。   As best shown in FIG. 9, the work surface 18 can also be provided with mini-sized grooves that include processing features 28 having a width between about 1000 μm and 5 mm, produced by the use of a carbon dioxide laser. Preferably, the micro-sized grooves are made in the form of a debris pattern on the work surface 18. The “fractal pattern” as defined herein means a repetitive pattern having repetitive machining structures with different machining structures. The debris pattern can be a deterministic or non-deterministic mathematical expression such as the Gosper Island variant ("Gosperpattern") (shown in FIG. 9) of the Koch Island & Lake debris pattern. formulas). Although suitable debris models include round, spherical and Swiss cheese tremas, those skilled in the art will appreciate that other suitable debris patterns can be used in accordance with the present invention as needed. Preferably, the debris pattern is chaotic or random.

〔製品の具体例7〕
図9で最も良く示されるように、溝又はミニサイズの溝は100ワットの連続波出力を有する典型的な炭酸ガスレーザを用いて研磨パッド12に加工された。電力定格、出力およびビーム焦点は約0.458mm(0.018″)の深さと約0.127mm(0.005″)以下の幅を持つ溝を切削するように選択された。ミニサイズの溝は上述したコッホアイランド アンド レイク(Koch Island & Lake)砕片パターンのゴスパー アイランド(Gosper Island)変形であった。砕片パターン像はレーザビームの動きを制御してパッド12の作業面18に砕片パターンを形成する従来のコンピューターの数値制御装置へ電子的に読み込まれ、プログラムされた。気体痕の蓄積を防ぐために、接着遮蔽物(adhesive mask)がパッド上に置かれた。この接着遮蔽物は同時に、溝の縁に溶着する付随マイナー(attendant minor)も減少させた。
[Specific product example 7]
As best shown in FIG. 9, grooves or mini-sized grooves were processed into the polishing pad 12 using a typical carbon dioxide laser having a 100 watt continuous wave output. The power rating, power, and beam focus were selected to cut a groove having a depth of about 0.458 mm (0.018 ") and a width of about 0.127 mm (0.005") or less. The mini-size groove was the Gosper Island variant of the Koch Island & Lake fragment pattern described above. The debris pattern image was electronically read and programmed into a conventional computer numerical controller that controls the movement of the laser beam to form a debris pattern on the work surface 18 of the pad 12. An adhesive mask was placed on the pad to prevent accumulation of gas marks. This adhesive shield also reduced the attendant minor that welded to the edge of the groove.

別の方法として、又は追加的に、ミニサイズの溝を形成するために、隔離「メサ(mesa)」パターンを作業面18に浮き彫りすることができる。例えば、従来の30 トンプレス機を用いて約25 トンの圧力を加え、パッド12の作業面18にミニサイズの溝を浮き彫りすることが出来る。浮き彫り効果を強化するため、熱を加えることができる。   Alternatively, or additionally, an isolated “mesa” pattern can be embossed on the work surface 18 to form a mini-sized groove. For example, using a conventional 30-ton press, a pressure of about 25 tons can be applied to emboss a mini-size groove on the work surface 18 of the pad 12. Heat can be applied to enhance the relief effect.

本発明に従う製品10以下を利用する、半導体デバイスの表面を平坦化する本発明に従う方法が一般的に以下で説明される。   A method according to the present invention for planarizing the surface of a semiconductor device utilizing an article 10 or less according to the present invention is generally described below.

図1〜3において、本方法は一般的に高分子マトリックス14を備える製品10又は110 を設ける初期段階を具備する。高分子マトリックス14は複数の高分子微小エレメント16が含浸されている。高分子マトリックス14を設け、マトリックス14に微小エレメント16を含浸する段階の詳細は上述されており、そのこれ以上の論議は不必要であると考えられ、際限がないと思われる。好ましくは、製品10又は110 の作用面18は溝付けされ、加工構造28を形成して拡大された作業面を設け、作業面が全体的に平坦であれば通常は露出されない微小エレメントを作業環境に対して露出するものとする。   1-3, the method generally comprises an initial stage of providing a product 10 or 110 comprising a polymeric matrix 14. The polymer matrix 14 is impregnated with a plurality of polymer microelements 16. Details of the steps of providing the polymer matrix 14 and impregnating the matrix 14 with the microelements 16 have been described above, and further discussion thereof is considered unnecessary and seems to be unlimited. Preferably, the working surface 18 of the product 10 or 110 is grooved to form a work structure 28 to provide an enlarged work surface, and if the work surface is generally flat, the microelements that are not normally exposed are removed from the work environment. Shall be exposed.

本方法は製品10又は110 の作業面18の少なくとも一部分を、製品10又は110 の作業面18における高分子微小エレメント16′が隣接する副表面24に位置する高分子微小エレメント16よりも硬さが減じるように作業環境に接触させる段階をさらに具備する。例えば作業面18の近傍に位置する少なくとも一部の高分子微小エレメント16のシェル20の一部分がその一部分を薄切り、研削、切断および孔明けのうち少なくとも一つの方法により、或いは化学的にシェル20の一部分を変化又は軟化することにより開口され、作業面18の高分子微小エレメント16′の一部分を副表面24に位置する微小エレメント16より硬さが減ずるようにする。どのようにして作業面18における高分子エレメント16′の硬さが減らせ得るかに関する詳細は上述されており、そのこれ以上の論議は不必要であると考えられ、際限がないと思われる。   The method provides that at least a portion of the work surface 18 of the product 10 or 110 is harder than the polymer microelement 16 located on the adjacent subsurface 24 where the polymer microelement 16 'in the work surface 18 of the product 10 or 110 is adjacent. The method further includes contacting the work environment so as to reduce. For example, a portion of the shell 20 of at least some of the polymer microelements 16 located in the vicinity of the work surface 18 may be sliced, ground, cut and drilled by at least one method, or chemically. A part of the polymer microelement 16 ′ of the work surface 18 is opened by changing or softening a part, so that the hardness of the microelement 16 located on the sub-surface 24 is reduced. Details regarding how the stiffness of the polymeric element 16 ′ on the work surface 18 can be reduced have been described above, and further discussion thereof is deemed unnecessary and seems unlimited.

本方法は半導体デバイス(図示せず)の表面(同様に図示せず)を製品の作業面18の少なくとも一部分に、半導体デバイスの表面が十分に平坦化されるように接触される段階をさらに具備する。製品10又は研磨パッド12は当業者に周知のような従来の研磨機に取り付けられる。好ましくは、作業面18は平坦化される半導体デバイスの表面に全体的に平行に向けられ、例えば、必要に応じて半導体デバイスの表面を平坦化又は研削するように直線又は円形の摺動接触で動かされるものとする。   The method further comprises contacting a surface of a semiconductor device (not shown) (also not shown) with at least a portion of the work surface 18 of the product such that the surface of the semiconductor device is sufficiently planarized. To do. Product 10 or polishing pad 12 is attached to a conventional polishing machine as is well known to those skilled in the art. Preferably, the work surface 18 is oriented generally parallel to the surface of the semiconductor device to be planarized, for example with linear or circular sliding contact so as to planarize or grind the surface of the semiconductor device as required. Shall be moved.

パッド12の作業面18が半導体デバイスの表面との摺動接触で研削されるにつれ、副表面24の一部分が露出され、副表面24の微小エレメント16が研削されるか又は化学的な変化を受けるか、或いは軟化されて前に研削された作業面に類似する物理的特性を有する新しい作業面18を形成する。従って、半導体デバイスの表面と接触する作業面18が実質的に連続して再生され、半導体デバイスの表面に終始一貫した平坦化又は研磨作用を及ぼす。   As the working surface 18 of the pad 12 is ground in sliding contact with the surface of the semiconductor device, a portion of the minor surface 24 is exposed and the microelements 16 on the minor surface 24 are ground or undergo chemical changes. Alternatively, it is softened to form a new work surface 18 having physical properties similar to the previously ground work surface. Accordingly, the work surface 18 that contacts the surface of the semiconductor device is substantially continuously regenerated, providing a consistent planarization or polishing action to the surface of the semiconductor device.

本発明に従う製品の作業面18を再生する本発明に従う方法が一般的に以下で説明される。   A method according to the present invention for regenerating a work surface 18 of a product according to the present invention is generally described below.

図11において、本方法は高分子マトリックス14を備える製品410又はパッド12を設け、マトリックス14に複数の高分子微小エレメント16を含浸する初期段階を具備する。製品10を形成する段階の詳細は上述されており、そのこれ以上の論議は不必要であると考えられ、際限がないと思われる。   In FIG. 11, the method includes providing an article 410 or pad 12 comprising a polymeric matrix 14 and impregnating the matrix 14 with a plurality of polymeric microelements 16. Details of the stage of forming the product 10 have been described above, and further discussion is considered unnecessary and seems unlimited.

本方法は作業面18の近傍に位置する少なくとも一部の高分子微小エレメント16のシェル20の少なくとも一部分を、開口した微小エレメント16′が副表面24の微小エレメント16より硬さが減ずるように開口する段階をさらに具備する。高分子微小エレメントを開口する段階は微小エレメント16のシェル20各々の一部分を薄切り、研削、切断および孔明けのうち少なくとも一つを備えることができる。図11で最も良く示されるように、作業面18における微小エレメント16′のシェル20はその一部分が図11で断面で示されている組み合わせ(combined)ポメルゲーション(pommelgation)および孔明け装置30により孔明けできる。装置30は作業面18と微小エレメント16に孔明けするに十分な剛性を有する任意の材料、例えばステンレススチール、アルミニウムその他の金属から形成することができる。装置30は作業面18の近傍に位置する高分子微小エレメント16のシェル20の少なくとも一部分に孔を明ける複数の鋭い工具又は針32を備える。   The method opens at least a portion of the shell 20 of at least some of the polymeric microelements 16 located near the work surface 18 so that the open microelements 16 ′ are less rigid than the microelements 16 of the secondary surface 24. The method further includes the step of: The step of opening the polymer microelement can comprise slicing, grinding, cutting and drilling a portion of each shell 20 of the microelement 16. As best shown in FIG. 11, the shell 20 of the microelement 16 ′ on the work surface 18 is perforated by a combined pommelgation and drilling device 30, a portion of which is shown in cross section in FIG. 11. I can dawn. The apparatus 30 can be formed from any material that has sufficient rigidity to drill into the work surface 18 and the microelements 16, such as stainless steel, aluminum, or other metals. The apparatus 30 includes a plurality of sharp tools or needles 32 that drill holes in at least a portion of the shell 20 of the polymeric microelement 16 located near the work surface 18.

針32に加えて、装置30は針32が作業面18に深く孔明けし過ぎることを防ぐ、少なくとも一つの、好ましくは複数のパッド34を備える。好ましくは、針32は作業面18に約60μmの深さで孔を明けるものとするが、当業者は装置30の孔明け深さが必要に応じて60μmから増減する任意の深さをとり得ることが理解できよう。例えば、60μmより大きな深さに達する作業面18に孔を明けるため、長い針32を用いることができる。   In addition to the needle 32, the device 30 comprises at least one, preferably a plurality of pads 34, that prevent the needle 32 from being drilled too deeply into the work surface 18. Preferably, the needle 32 is drilled in the working surface 18 at a depth of about 60 μm, but those skilled in the art can take any depth in which the drilling depth of the device 30 increases or decreases from 60 μm as needed. I can understand that. For example, a long needle 32 can be used to drill a hole in the working surface 18 that reaches a depth greater than 60 μm.

当業者は必要に応じて複数回数にわたって微小エレメント16が開口され、又はパッド12が孔明けされ得ることが理解できよう。   One skilled in the art will appreciate that the microelements 16 can be opened multiple times or the pads 12 can be drilled as needed.

別の例においては、作業面18の近傍に位置する高分子微小エレメント16のシェル20の少なくとも一部分が、作業面18における部分的に変化した高分子微小エレメント16が副表面24に埋め込まれた高分子微小エレメント16より硬さが減ずるように作業環境により化学的に変化又は軟化される。例えば、高分子微小エレメント16は水を含む作業環境に接触した時に少なくとも一部分が溶解するメチルセルローズ又は水酸化プロピルメチルセルローズを備える水溶性セルローズエーテルから形成できる。   In another example, at least a portion of the shell 20 of the polymeric microelement 16 located in the vicinity of the work surface 18 is a high height where the partially altered polymeric microelement 16 on the work surface 18 is embedded in the secondary surface 24. It is chemically changed or softened by the working environment so that the hardness is reduced as compared with the molecular microelement 16. For example, the polymeric microelement 16 can be formed from water-soluble cellulose ether comprising methylcellulose or propylmethylmethylcellulose that is at least partially dissolved when contacted with a working environment containing water.

前述の説明から、本発明が半導体デバイスのような加工品の表面を変化する製品、およびこのような製品の作業面の一部分に位置する高分子微小エレンメントの有効剛性を減少し、このような製品の作業面を再生し、さらに半導体デバイスの表面をこのような製品を利用して平坦化する方法を具備することが理解できる。本製品は基板その他の加工品をより迅速かつ均一に研磨又は平坦化するため使用できる。   From the foregoing description, the present invention reduces the effective stiffness of a product that changes the surface of a workpiece, such as a semiconductor device, and a polymeric microelement located on a portion of the work surface of such a product, such as It can be seen that it comprises a method of reclaiming the work surface of a product and planarizing the surface of the semiconductor device using such a product. This product can be used to polish or planarize substrates and other workpieces more quickly and uniformly.

研磨パッドとしては、研磨スラリーと共に使用される、加工品を研磨又は平坦化するための製品であって、それ自体は実質的に加工品の表面を研磨しない高分子微小エレメントが複数、含浸された高分子マトリックスからなる製品(ただし、高分子微小エレメントが大気圧より大きい圧力のガスを含む空隙スペースを有するものを除く)もある。高分子マトリックスに複数の空隙スペースを有する高分子微小エレメントを含浸して作業面および前記作業面に隣接する副表面を有するようにした製品を作業環境に接触させることにより、前記作業面に隣接して位置する高分子微小エレメントのシェルの少なくとも一部分が開口され、前記開口された高分子微小エレメントが前記副表面に埋め込まれた高分子微小エレメントよりも硬さが減じ、前記製品の作業面が再生するようにしている。   The polishing pad is impregnated with a plurality of polymer microelements that are used in conjunction with the polishing slurry to polish or planarize the workpiece and do not substantially polish the surface of the workpiece itself. There are also products made of a polymer matrix (except those in which the polymer microelements have void spaces containing gas at a pressure greater than atmospheric pressure). A product having a work surface and a sub-surface adjacent to the work surface impregnated with a polymer microelement having a plurality of void spaces in the polymer matrix is brought into contact with the work environment, thereby adjacent to the work surface. At least a part of the shell of the polymer microelement located at the top is opened, the polymer microelement opened is less hard than the polymer microelement embedded in the secondary surface, and the work surface of the product is regenerated Like to do.

前記高分子微小エレメントのシェルが、前記シェルの一部分の薄切り、研削、切断および孔明のいずれかにより開口されるものとすることができる。   The shell of the polymer microelement may be opened by any one of thinning, grinding, cutting and drilling of a part of the shell.

前記作業面の近傍に位置する高分子微小エレメントが、そのシェルの少なくとも一部分が作業環境により化学的に変化することにより、前記副表面に埋め込まれた高分子微小エレメントよりも硬さが減じるようにすることができる。   The polymer microelement located in the vicinity of the work surface is less hard than the polymer microelement embedded in the sub-surface when at least a part of the shell is chemically changed by the work environment. can do.

前記作業面の一部分に溝を付け、作業環境と接触したときに剛性が減少するようにすることができる。   A portion of the work surface can be grooved to reduce stiffness when in contact with the work environment.

また、前記加工品は、半導体デバイスとすることができる。   Further, the processed product can be a semiconductor device.

上述例の広い発明的着想から逸脱することなく例に他の改変を加え得ることは当業者により認識されよう。従って、本発明が開示された例に限定されず、添付の特許請求範囲により定義される本発明の精神と範囲内にあるすべての変更を包含する意図のあることが理解される筈である。   Those skilled in the art will recognize that other modifications can be made to the examples without departing from the broad inventive idea of the above examples. Accordingly, it is to be understood that the invention is not intended to be limited to the disclosed examples, but is intended to encompass all modifications within the spirit and scope of the invention as defined by the appended claims.

本発明で使用する製品の略断面図。The schematic sectional drawing of the product used by this invention. 本発明で使用する製品の変更態様の略断面図。The schematic sectional drawing of the change aspect of the product used by this invention. 本発明で使用する製品の変更態様の、製品作業面における微小エレメントが作業環境に接した時に膨張した状態を示す略断面図。The schematic sectional drawing which shows the state expanded when the micro element in the product work surface of the change aspect of the product used by this invention contacted the working environment. 典型的な半導体デバイスの表面における模様間距離の関数としての平坦化率のグラフ。FIG. 5 is a graph of the planarization rate as a function of interpattern distance at the surface of a typical semiconductor device. 本発明で使用するミニサイズの溝付きパッドの変更態様の概略線図。The schematic diagram of the change aspect of the mini size grooved pad used by this invention. 図5の線6−6に沿う、パッドの拡大部分断面図。FIG. 6 is an enlarged partial cross-sectional view of the pad taken along line 6-6 of FIG. 本発明で使用するマクロサイズの溝付きパッドの変更態様の概略線図。The schematic diagram of the change aspect of the macro size grooved pad used by this invention. 図7の線8−8に沿う、パッドの拡大部分断面図。FIG. 8 is an enlarged partial cross-sectional view of the pad taken along line 8-8 of FIG. 本発明で使用する砕片(fractal)パターンのミニサイズの溝付きパッドの変更態様。A variation of the mini-sized grooved pad of the fractal pattern used in the present invention. 本発明で使用する製品の微小球体の流量の関数としての比重を示す棒グラフ。FIG. 5 is a bar graph showing the specific gravity as a function of the flow rate of the microspheres of the product used in the present invention. 本発明で使用する製品の作業面における微小エレメントのシェルの一部をポメルゲート(pommelgate)して突き刺すデバイスの概略線図。1 is a schematic diagram of a device that pierces a part of a shell of a microelement on a work surface of a product used in the present invention by pommelgate. FIG.

符号の説明Explanation of symbols

10 製品
18 作業面
16 高分子微小エレメント
20 シェル
24 副表面
22 空隙スペース
10 Products 18 Work surface 16 Polymer microelement 20 Shell 24 Subsurface 22 Void space

Claims (5)

多層電子デバイスを平坦化するための、作業面を有する研磨パッドであって、
研磨パッドは、高分子マトリックスと、高分子マトリックス中に深さ方向に均等に埋め込まれた溶解性の高分子微小エレメントを含み、ここで、高分子微小エレメントは、ポリビニールアルコール、ペクチン、ポリビニールピロリドン、ハイドロキシエチルセルローズ、メチルセルローズ、ハイドロプロピルメチルセルローズ、カーボキシメチルセルローズ、ハイドロキシプロピルセルローズ、ポリアクリル酸、ポリアクリルアミド、ポリエチレングリコール、ポリハイドロキシエーテルアクリライト、澱粉、マレイン酸共重合体、ポリエチレンオキシド及びポリウレタンからなる群より選択され、
研磨パッドの作業面には、溝が設けられ、
多層電子デバイスを平坦化する作業において作業面が磨耗すると、新たな作業面が再生する、
研磨パッド。
A polishing pad having a work surface for planarizing a multilayer electronic device comprising:
The polishing pad includes a polymer matrix and a soluble polymer microelement that is uniformly embedded in the polymer matrix in the depth direction, where the polymer microelement includes polyvinyl alcohol, pectin, polyvinyl Pyrrolidone, hydroxyethyl cellulose, methyl cellulose, hydropropyl methyl cellulose, carboxymethyl cellulose, hydroxypropyl cellulose, polyacrylic acid, polyacrylamide, polyethylene glycol, polyhydroxyether acrylate, starch, maleic acid copolymer, polyethylene oxide and Selected from the group consisting of polyurethane,
The work surface of the polishing pad is provided with a groove,
When the work surface is worn in the process of flattening the multilayer electronic device, a new work surface is regenerated.
Polishing pad.
溝が、渦巻き、ドット、方形格子、同心円又は砕片パターンを形成するように設けられている、請求項1記載の研磨パッド。   The polishing pad of claim 1, wherein the grooves are provided to form spirals, dots, square grids, concentric circles, or debris patterns. 溝が、高分子微小エレメントの平均直径の2000倍よりも小さい深さを有する、請求項1又は2記載の研磨パッド。   The polishing pad according to claim 1 or 2, wherein the groove has a depth smaller than 2000 times the average diameter of the polymer microelements. 溶解性の高分子微小エレメントが澱粉である、請求項1〜3のいずれか1項記載の研磨パッド。 The polishing pad according to claim 1, wherein the soluble polymer microelement is starch . 高分子マトリックスがウレタンである、請求項1〜4のいずれか1項記載の研磨パッド。The polishing pad according to claim 1, wherein the polymer matrix is urethane.
JP2006054961A 2006-03-01 2006-03-01 Polishing pad Expired - Lifetime JP4219940B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006054961A JP4219940B2 (en) 2006-03-01 2006-03-01 Polishing pad

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006054961A JP4219940B2 (en) 2006-03-01 2006-03-01 Polishing pad

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2003062690A Division JP3801998B2 (en) 2003-03-10 2003-03-10 Products for polishing or flattening workpieces

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP2007078767A Division JP4798713B2 (en) 2007-03-26 2007-03-26 Polishing pad manufacturing method
JP2008130985A Division JP2008238399A (en) 1992-08-19 2008-05-19 Polishing pad

Publications (2)

Publication Number Publication Date
JP2006186394A JP2006186394A (en) 2006-07-13
JP4219940B2 true JP4219940B2 (en) 2009-02-04

Family

ID=36739205

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006054961A Expired - Lifetime JP4219940B2 (en) 2006-03-01 2006-03-01 Polishing pad

Country Status (1)

Country Link
JP (1) JP4219940B2 (en)

Also Published As

Publication number Publication date
JP2006186394A (en) 2006-07-13

Similar Documents

Publication Publication Date Title
JP4798713B2 (en) Polishing pad manufacturing method
JP2008238399A (en) Polishing pad
JP3072526B2 (en) Polishing pad and method of using the same
EP1015175B1 (en) Abrasive articles comprising a fluorochemical agent for wafer surface modification
US6641471B1 (en) Polishing pad having an advantageous micro-texture and methods relating thereto
JP6290004B2 (en) Soft and conditionable chemical mechanical window polishing pad
US20070173187A1 (en) Chemical mechanical polishing pad with micro-holes
EP2025460A2 (en) Improved chemical mechanical polishing pad and methods of making and using same
WO1998049723A1 (en) Method of planarizing the upper surface of a semiconductor wafer
WO2012050952A1 (en) Method of grooving a chemical-mechanical planarization pad
JP3425894B2 (en) How to flatten the surface of a processed product
JP3801998B2 (en) Products for polishing or flattening workpieces
JP4219940B2 (en) Polishing pad

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060926

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20061226

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20070104

RD13 Notification of appointment of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7433

Effective date: 20070202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071120

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20080219

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20080222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080519

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081028

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081112

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131121

Year of fee payment: 5

EXPY Cancellation because of completion of term