JP4219779B2 - Single crystal growth method and apparatus - Google Patents

Single crystal growth method and apparatus Download PDF

Info

Publication number
JP4219779B2
JP4219779B2 JP2003326247A JP2003326247A JP4219779B2 JP 4219779 B2 JP4219779 B2 JP 4219779B2 JP 2003326247 A JP2003326247 A JP 2003326247A JP 2003326247 A JP2003326247 A JP 2003326247A JP 4219779 B2 JP4219779 B2 JP 4219779B2
Authority
JP
Japan
Prior art keywords
single crystal
heating
rod
heating source
diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003326247A
Other languages
Japanese (ja)
Other versions
JP2005089263A (en
Inventor
博 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Machinery Inc
Original Assignee
Canon Machinery Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Machinery Inc filed Critical Canon Machinery Inc
Priority to JP2003326247A priority Critical patent/JP4219779B2/en
Publication of JP2005089263A publication Critical patent/JP2005089263A/en
Application granted granted Critical
Publication of JP4219779B2 publication Critical patent/JP4219779B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Description

本発明は単結晶育成方法および装置に関し、詳しくは、集中加熱方式のフローティング法により単結晶を育成する際に、育成する単結晶の大きさに応じて適切な溶融帯を形成可能にして単結晶の大口径化を可能にした単結晶育成方法および装置に関するものである。   The present invention relates to a method and an apparatus for growing a single crystal, and more specifically, when a single crystal is grown by a floating method using a concentrated heating method, an appropriate melting zone can be formed according to the size of the single crystal to be grown. The present invention relates to a method and apparatus for growing a single crystal that can increase the diameter of the material.

単結晶を育成する場合、フローティングゾーン式の単結晶育成装置を用いることは公知である(例えば、特許文献1参照。)。   When growing a single crystal, it is known to use a floating zone type single crystal growing apparatus (see, for example, Patent Document 1).

このフローティングゾーン式の単結晶育成装置の一例を、図7に示す。図7は、熱源にハロゲンランプを用いた双楕円型の単結晶育成装置40の縦断正面図で、図8は図7のB−B線に沿う横断面図を示し、図9は被加熱部の拡大正面図を示す。   An example of this floating zone type single crystal growth apparatus is shown in FIG. 7 is a longitudinal front view of a double elliptical single crystal growth apparatus 40 using a halogen lamp as a heat source, FIG. 8 is a cross-sectional view taken along line BB in FIG. 7, and FIG. The enlarged front view of is shown.

単結晶育成装置40は、対称形の2つの回転楕円面鏡41,42を有し、各々の一方の焦点F0,F0が一致するように対向結合させて加熱炉を構成する。この回転楕円面鏡41,42の内面、すなわち反射面は、赤外線を高反射率で反射させるために金めっき処理が施されている。各回転楕円面鏡41,42の他方の焦点F1,F2付近には、加熱源、例えば、ハロゲンランプ等の赤外線ランプ43,44が固定配置してある。各回転楕円面鏡41,42の一致した焦点F0には被加熱部45が位置し、上方から鉛直方向に延びる上結晶駆動軸46の下端に固定した原料棒47と、下方から鉛直方向に延びる下結晶駆動軸48の上端に固定された種結晶棒49とを突き合わせてある。前記上結晶駆動軸46および下結晶駆動軸48は、図示するように、保持部材50,51によって気密に保持され、図示しないサーボモータ等の駆動モータで回転自在、かつ、同期または相対速度を有して昇降自在に保持されている。 The single crystal growing apparatus 40 includes two symmetrical spheroid mirrors 41 and 42, which are coupled to face each other so that the respective focal points F 0 and F 0 coincide with each other to constitute a heating furnace. The inner surfaces of the spheroid mirrors 41 and 42, that is, the reflecting surfaces are subjected to gold plating in order to reflect infrared rays with high reflectivity. Near the other focal points F 1 and F 2 of the spheroid mirrors 41 and 42, heating sources, for example, infrared lamps 43 and 44 such as halogen lamps are fixedly arranged. A heated portion 45 is positioned at the coincident focal point F 0 of each of the spheroid mirrors 41 and 42, and a raw material rod 47 fixed to the lower end of the upper crystal drive shaft 46 extending in the vertical direction from above, and a vertical direction from below. A seed crystal rod 49 fixed to the upper end of the extending lower crystal drive shaft 48 is abutted. The upper crystal drive shaft 46 and the lower crystal drive shaft 48 are hermetically held by holding members 50 and 51 as shown in the figure, can be rotated by a drive motor such as a servo motor (not shown), and have a synchronous or relative speed. It is held up and down freely.

前記原料棒47および種結晶棒49が配置された空間m1を、赤外線ランプ43,44が配置された空間m2と区画して、単結晶育成室52を形成する透明な石英管53を設けて、上記単結晶育成室52に結晶育成に対して好適な不活性ガスを充満させ、一方、赤外線ランプ43,44を安全に点灯させるために、赤外線ランプ43,44を空冷する。 The space m 1 in which the raw material rod 47 and the seed crystal rod 49 are arranged is partitioned from the space m 2 in which the infrared lamps 43 and 44 are arranged, and a transparent quartz tube 53 that forms a single crystal growth chamber 52 is provided. The single crystal growth chamber 52 is filled with an inert gas suitable for crystal growth, while the infrared lamps 43 and 44 are air-cooled in order to turn on the infrared lamps 43 and 44 safely.

このように、回転楕円面鏡41,42内において、石英管53によって限定された空間m1を単結晶育成室52とすることにより、石英管53を設けないで回転楕円面鏡41,42からなる加熱炉全体を単結晶育成室とする場合に比較して、単結晶育成室52の容積が格段に小さくなり、したがって、この単結晶育成室52を短時間で所定の単結晶育成雰囲気に置換でき、かつ、その雰囲気状態を容易に維持できる。 As described above, the space m 1 limited by the quartz tube 53 in the spheroid mirrors 41 and 42 is used as the single crystal growth chamber 52, so that the quartz tube 53 is not provided and the spheroid mirrors 41 and 42 are not provided. Compared with the case where the entire heating furnace is a single crystal growth chamber, the volume of the single crystal growth chamber 52 is remarkably reduced. Therefore, the single crystal growth chamber 52 is replaced with a predetermined single crystal growth atmosphere in a short time. And the atmospheric state can be easily maintained.

前記の単結晶育成装置40によれば、回転楕円面鏡41,42の第1,第2の焦点F1,F2に配置された赤外線ランプ43,44から照射される赤外線を、上記回転楕円面鏡41,42で反射させ、共通の焦点F0に位置する被加熱部45に集光させて赤外線加熱する。この赤外線加熱による輻射エネルギにより、被加熱部45の原料棒47の下端および種結晶棒49の上端を加熱溶融させながら、円滑に接触させることにより、図9に示すように、原料棒47と種結晶棒49間の被加熱部45にフローティングゾーン54を形成させる。 According to the single crystal growing apparatus 40, infrared rays irradiated from the infrared lamps 43 and 44 arranged at the first and second focal points F 1 and F 2 of the spheroid mirrors 41 and 42 are converted into the spheroids. is reflected by the surface mirror 41, it is focused on the heated portion 45 located in a common focal point F 0 to infrared heating. By bringing the lower end of the raw material rod 47 and the upper end of the seed crystal rod 49 of the heated portion 45 into contact with each other smoothly by heating and melting the radiant energy by the infrared heating, as shown in FIG. A floating zone 54 is formed in the heated portion 45 between the crystal rods 49.

そして、下端に原料棒47を固定した上結晶駆動軸46と上端に種結晶棒49を固定した下結晶駆動軸48とを共に回転させ、かつ、同期または相対速度を有してゆっくり下方に向かって移動させることによって、原料棒47と種結晶棒49間のフローティングゾーン54が次第に原料棒47側に移動していって、結晶が成長していき単結晶が育成される。なお、図9における47aは原料棒47側の固液界面を示し、49aは種結晶棒49側の固液界面を示している。   Then, the upper crystal drive shaft 46 with the raw material rod 47 fixed at the lower end and the lower crystal drive shaft 48 with the seed crystal rod 49 fixed at the upper end are rotated together and slowly moved downward with synchronization or relative speed. As a result, the floating zone 54 between the raw material rod 47 and the seed crystal rod 49 is gradually moved toward the raw material rod 47, and the crystal grows to grow a single crystal. 9, 47a indicates a solid-liquid interface on the raw material rod 47 side, and 49a indicates a solid-liquid interface on the seed crystal rod 49 side.

このようなフローティングゾーン式の単結晶育成装置40を用いれば、ハロゲンランプ等の赤外線ランプ43,44から照射される赤外線を、上記回転楕円面鏡41,42の全面で反射させ、共通の焦点F0に位置する被加熱部45に集光させて赤外線加熱するので、比較的低出力の小型の赤外線ランプ43,44で、被加熱部45を高温度に加熱できるのみならず、赤外線ランプ43,44の入力電力を制御することで、被加熱部45の温度を容易かつ確実に制御できる。 If such a floating zone type single crystal growth apparatus 40 is used, infrared rays irradiated from infrared lamps 43 and 44 such as halogen lamps are reflected on the entire surfaces of the spheroid mirrors 41 and 42, and a common focus F is obtained. Since the infrared rays are heated by being condensed on the heated portion 45 positioned at 0 , the heated portion 45 can be heated to a high temperature with the small infrared lamps 43 and 44 having a relatively low output. By controlling the input power of 44, the temperature of the heated portion 45 can be easily and reliably controlled.

また、原料棒47および種結晶棒49の融液が他の物質に接触しないフローティング状態で単結晶が育成できるので、坩堝式に比較して坩堝から溶出する不純物によって、育成される単結晶の純度を低下させることがなく、高純度の単結晶を容易に育成することができる。   Further, since the single crystal can be grown in a floating state in which the melt of the raw material rod 47 and the seed crystal rod 49 does not come into contact with other substances, the purity of the single crystal grown by the impurities eluted from the crucible compared to the crucible type A high-purity single crystal can be easily grown without lowering the thickness.

特開平3−88790号公報(第2頁左上欄、図5,図6)Japanese Patent Laid-Open No. 3-88790 (2nd page, upper left column, FIGS. 5 and 6)

ところで、従来の単結晶育成装置40においては、加熱源である赤外線ランプ43,44が単結晶育成装置40ごとに決められたものを使用するようになっているため、育成しようとする単結晶の口径が変化すると、それに応じた赤外線ランプ43,44を使用しなければならず、小口径の単結晶から大口径の単結晶への連続育成が困難であった。   By the way, in the conventional single crystal growth apparatus 40, since the infrared lamps 43 and 44 which are heating sources use what was decided for each single crystal growth apparatus 40, the single crystal to be grown When the diameter is changed, the infrared lamps 43 and 44 corresponding to the diameter must be used, and continuous growth from a single crystal having a small diameter to a single crystal having a large diameter is difficult.

従来の単結晶育成装置40では、赤外線ランプ43,44が、図10に示すように、単一のコイル状フィラメント55を使用したものであるため、コイル状フィラメント55の直径寸法dに対して150%程度の口径の単結晶育成が限界で、それよりも大きな口径の単結晶は育成できないという問題点があった。因みに、例えば、直径寸法7mm×長さ寸法24mmのコイル状フィラメントを用いた場合、TiO2で口径φ12mm、超伝導材料Bi2Sr2CaCu8+δの良質な単結晶育成は、口径φ8mmが限界であった。また、直径寸法14mm×長さ寸法25mmのコイル状フィラメントを用いた場合、金属間化合物TiAlで口径φ16mmが限界であった。 In the conventional single crystal growth apparatus 40, the infrared lamps 43 and 44 use a single coiled filament 55 as shown in FIG. There is a problem that single crystal with a diameter of about% is limited, and a single crystal with a larger diameter cannot be grown. Incidentally, for example, when a coiled filament having a diameter of 7 mm × length of 24 mm is used, the diameter of φ12 mm is the limit for high-quality single crystal growth of TiO 2 with a diameter of φ12 mm and the superconductive material Bi 2 Sr 2 CaCu 8+ δ. Met. Further, when a coiled filament having a diameter of 14 mm and a length of 25 mm was used, the diameter of the intermetallic compound TiAl was limited to 16 mm.

一方、直径寸法が大きなコイル状フィラメントの赤外線ランプを用いても、良質な単結晶の育成は困難であった。すなわち、単結晶を育成する場合には、通常、最初は小口径の結晶棒から次第に大口径の単結晶を育成していかなければ、良質な単結晶が育成できないため、このような小口径の結晶棒から大口径の単結晶へと育成する過程で適切な加熱が不可欠である。ところが、最初から直径寸法が大きなコイル状フィラメントを用いても、原料棒47や種結晶棒49の直径寸法が小さい段階で被加熱部45のフローティングゾーン54の高さ寸法Hが過大な加熱条件しか得られず、融液が重力により落下し易く、結局、大口径の単結晶を育成することはできないという問題点があった。   On the other hand, even when an infrared lamp with a coiled filament having a large diameter was used, it was difficult to grow a high-quality single crystal. That is, when a single crystal is grown, a high-quality single crystal cannot be grown unless a single crystal having a large diameter is first grown gradually from a small-diameter crystal rod. Appropriate heating is essential in the process of growing from a crystal rod to a large-diameter single crystal. However, even if a coil-shaped filament having a large diameter is used from the beginning, the height dimension H of the floating zone 54 of the heated portion 45 is only excessively high when the diameter of the raw material rod 47 and the seed crystal rod 49 is small. There was a problem that the melt could not be obtained due to gravity and the single crystal having a large diameter could not be grown.

そこで、本発明は、小口径の単結晶から大口径の単結晶への育成過程で適切な加熱を行って、小口径の単結晶から大口径の単結晶を育成することが可能な単結晶育成方法および単結晶育成装置を提供することを目的とするものである。   Accordingly, the present invention provides a single crystal growth capable of growing a single crystal having a large diameter from a single crystal having a small diameter by performing appropriate heating in the growth process from the single crystal having a small diameter to a single crystal having a large diameter. It is an object of the present invention to provide a method and a single crystal growing apparatus.

本発明の単結晶育成方法は、上記課題を解決するために、回転楕円面鏡と、この回転楕円面鏡の一方の焦点に配置された加熱源と、この加熱源の赤外線を回転楕円面鏡で反射して他方の焦点に配置された原料棒および種結晶棒に照射して単結晶を育成する単結晶育成方法において、前記加熱源を、複数個のコイル状フィラメントを平面状態で、かつ、水平方向に並置して構成し、それら複数個のコイル状フィラメントを、育成する単結晶の大きさに応じて選択的に使用することを特徴とするものである(請求項1)。   In order to solve the above-mentioned problems, the method for growing a single crystal of the present invention includes a spheroid mirror, a heating source disposed at one focal point of the spheroid mirror, and an infrared ray from the heating source. In the single crystal growth method for growing a single crystal by irradiating a raw material rod and a seed crystal rod that are reflected at the other focal point and growing a single crystal, the heating source is a planar state of a plurality of coiled filaments, and The coils are arranged side by side in the horizontal direction, and the plurality of coiled filaments are selectively used according to the size of a single crystal to be grown (claim 1).

また、本発明の単結晶育成方法は、回転楕円面鏡と、この回転楕円面鏡の一方の焦点に配置された加熱源と、この加熱源の赤外線を回転楕円面鏡で反射して他方の焦点に配置された原料棒および種結晶棒に照射して単結晶を育成する単結晶育成方法において、前記加熱源を、隣り合うコイル状フィラメントを互いに千鳥形に上下に配置し、かつ、全体として横方向に配置して構成し、それら複数個のコイル状フィラメントを、育成する単結晶の大きさに応じて選択的に使用することを特徴とするものである(請求項2)。   The method for growing a single crystal according to the present invention includes a spheroid mirror, a heating source disposed at one focal point of the spheroid mirror, and the infrared light of the heating source reflected by the spheroid mirror. In the method of growing a single crystal by irradiating a raw material rod and a seed crystal rod arranged at the focal point, the heating source is arranged such that adjacent coiled filaments are vertically arranged in a staggered manner, and as a whole A plurality of coiled filaments are arranged in the transverse direction and are selectively used according to the size of the single crystal to be grown (claim 2).

ここで、「隣り合うコイル状フィラメントを互いに千鳥形に上下に配置し、かつ、全体として横方向に配置して構成し、」なる用語は、例えば、複数個のコイル状フィラメントを有し、横方向に隣り合うフィラメントを互いに千鳥形に上下に配置し、かつ、全体として複数のコイル状フィラメントを平面視で横方向に配置する場合を含むものである。   Here, the term “adjacent coiled filaments are arranged in a staggered manner and arranged in a lateral direction as a whole” includes, for example, a plurality of coiled filaments, This includes the case where filaments adjacent to each other are arranged vertically in a zigzag manner, and a plurality of coiled filaments are arranged in the lateral direction in plan view as a whole.

また、本発明の単結晶育成方法は、前記コイル状フィラメントの通電時の電力を漸増させることを特徴とするものである(請求項3)。   In addition, the method for growing a single crystal according to the present invention is characterized by gradually increasing the power when the coiled filament is energized (Claim 3).

ここで、「通電時の電力を漸増させる」なる用語は、通電時のフィラメントの電力が漸増されるものであればよく、電圧を漸増させる場合、電流を漸増させる場合、あるいは電圧と電流の両方を漸増させる場合のいずれをも含んでいる。   Here, the term “gradually increasing the electric power during energization” is sufficient as long as the electric power of the filament during energization is gradually increased. When the voltage is increased gradually, the current is increased gradually, or both the voltage and current are increased. Any of the cases of gradually increasing is included.

また、本発明の単結晶育成方法は、前記加熱源が複数で、口径が大きい単結晶の育成時に、前記複数の加熱源のうち、一部の加熱源を上方に変位させて被加熱部における加熱域を種結晶棒側に拡大させることによって、種結晶棒側の固液界面のせり上がりを防止することを特徴とするものである(請求項4)。   In the single crystal growth method of the present invention, when a single crystal having a plurality of heating sources and a large diameter is grown, a part of the plurality of heating sources is displaced upward in the heated portion. By expanding the heating region to the seed crystal rod side, the solid-liquid interface on the seed crystal rod side is prevented from rising (Claim 4).

上記の「複数の加熱源のうち、一部の加熱源」なる用語は、例えば、双楕円型単結晶育成装置の場合は2つの加熱源のうち、片方の加熱源を意味し、4楕円型単結晶育成装置の場合は4つの加熱源のうち、対向する1組の加熱源を意味する。   The term “part of heating sources among the plurality of heating sources” means, for example, one of the two heating sources in the case of a bi-elliptical single crystal growth apparatus, and is a four-elliptic type. In the case of a single crystal growth apparatus, it means a set of opposed heating sources among the four heating sources.

本発明の単結晶育成装置は、回転楕円面鏡と、この回転楕円面鏡の一方の焦点に配置された加熱源と、この加熱源の赤外線を回転楕円面鏡で反射して他方の焦点に配置された原料棒および種結晶棒に照射して単結晶を育成する単結晶育成装置において、前記加熱源を、複数個のコイル状フィラメントを平面状に並置し、かつ、水平方向に配置して構成し、それら複数個のコイル状フィラメントを、個別の電源に接続したことを特徴とするものである(請求項5)。   The single crystal growth apparatus of the present invention includes a spheroid mirror, a heating source disposed at one focal point of the spheroid mirror, and the infrared ray of the heating source reflected by the spheroid mirror to the other focal point. In the single crystal growing apparatus for irradiating the arranged raw material rod and seed crystal rod to grow a single crystal, the heating source has a plurality of coiled filaments juxtaposed in a plane and arranged in a horizontal direction. The plurality of coiled filaments are connected to individual power sources (claim 5).

また、本発明の単結晶育成装置は、回転楕円面鏡と、この回転楕円面鏡の一方の焦点に配置された加熱源と、この加熱源の赤外線を回転楕円面鏡で反射して他方の焦点に配置された原料棒および種結晶棒に照射して単結晶を育成する単結晶育成装置において、前記加熱源を、複数個のコイル状フィラメントを横方向および上下に配置し、かつ、全体として横方向に配置して構成し、それら複数個のコイル状フィラメントを、個々の電源に接続したことを特徴とするものである(請求項6)。   Further, the single crystal growing apparatus of the present invention includes a spheroid mirror, a heating source arranged at one focal point of the spheroid mirror, and infrared rays of the heating source reflected by the spheroid mirror. In a single crystal growth apparatus for irradiating a raw material rod and a seed crystal rod arranged at a focal point to grow a single crystal, the heating source includes a plurality of coiled filaments arranged laterally and vertically, and as a whole A plurality of coiled filaments are arranged in the horizontal direction and connected to individual power sources. (Claim 6)

ここで、「複数個のコイル状フィラメントを横方向および上下に配置し、かつ、全体として横方向に配置して構成し、」なる用語は、前述と同様に、例えば、横方向に隣り合うフィラメントを互いに上下に千鳥状に配置し、かつ、全体として複数のコイル状フィラメントを平面視で横方向に配置する場合を含むものである。   Here, the term “a plurality of coiled filaments are arranged in the horizontal direction and in the vertical direction and arranged in the horizontal direction as a whole” is, for example, a filament adjacent in the horizontal direction as described above. Are arranged in a zigzag pattern above and below, and a plurality of coiled filaments as a whole are arranged in the lateral direction in plan view.

また、本発明の単結晶育成装置は、前記電源が、その電力を漸増させることができる電力可変電源であることを特徴とするものである(請求項7)。   In the single crystal growth apparatus of the present invention, the power source is a variable power source capable of gradually increasing the power (Claim 7).

ここで、「電力可変電源」なる用語は、電圧可変電源の場合、電流可変電源の場合、電圧・電流可変電源の場合のいずれをも含むものである。   Here, the term “power variable power supply” includes any of a voltage variable power supply, a current variable power supply, and a voltage / current variable power supply.

また、本発明の単結晶育成装置は、前記加熱源が複数で、そのうちの一部の加熱源を、上方に変位可能に構成したことを特徴とするものである(請求項8)。   In addition, the single crystal growing apparatus of the present invention is characterized in that a plurality of the heat sources are provided, and a part of the heat sources can be displaced upward (Claim 8).

上記の単結晶育成方法によれば、育成する単結晶の口径に応じて、サイズが小さい単結晶の場合は、中央部のコイル状フィラメントのみに通電し、被加熱部の加熱域の断面積を小さくし、育成する単結晶の口径が大きい場合は、中央部のコイル状フィラメントおよび左右両側部のコイル状フィラメントに通電して、被加熱部の加熱域の断面積を大きくすることによって、小口径の単結晶から大口径の単結晶まで育成することができる。   According to the single crystal growth method described above, according to the diameter of the single crystal to be grown, in the case of a single crystal having a small size, only the coiled filament at the center is energized, and the cross-sectional area of the heating area of the heated portion is determined. When the diameter of the single crystal to be grown is small and large, energize the coiled filament in the center and the coiled filaments on the left and right sides, and increase the cross-sectional area of the heated area of the heated part, thereby reducing the diameter From a single crystal to a single crystal having a large diameter.

ところで、育成する単結晶の口径が大きくなると、口径が小さい単結晶の育成時に比較して、同一の輻射エネルギの下では、フローティングゾーンの高さ寸法が小さくなると共に、フローティングゾーンの融液の粘度が高くなり、融液が原料棒および種結晶棒の間から食み出して落下する可能性がある。   By the way, when the diameter of the single crystal to be grown increases, the height of the floating zone becomes smaller and the viscosity of the melt in the floating zone under the same radiation energy as compared to the growth of a single crystal having a small diameter. And the melt may erode out between the raw material rod and the seed crystal rod and fall.

また、育成する単結晶の口径の増大に伴って、種結晶棒側の固液界面がせり上がってくる現象が生じる。このような種結晶棒側の固液界面がせり上がってくる理由は、育成された単結晶は、ポーラスな原料棒よりも密度が高く、しかも、各分子は結合されているため、結晶内部での熱伝導や結晶表面からの熱放射が大きくなって、結晶からの放熱量が多くなるため、結果的に種結晶棒側の温度が低くなって、種結晶棒側の固液界面が、より高温部のフローティングゾーン内部(中央部)に移動していくことによる。単結晶の口径がそれほど大きくない場合は、種結晶棒側の固液界面のせり上がり現象は顕著ではないが、単結晶の口径が大きくなると、種結晶棒側の固液界面のせり上がり現象が顕著に認められるようになる。   Further, as the diameter of the single crystal to be grown increases, a phenomenon occurs in which the solid-liquid interface on the seed crystal rod side rises. The reason why such a solid-liquid interface on the side of the seed crystal rod rises is that the grown single crystal has a higher density than the porous raw material rod, and each molecule is bonded. Heat conduction and heat radiation from the crystal surface increase, and the amount of heat released from the crystal increases. As a result, the temperature on the seed crystal rod side decreases, and the solid-liquid interface on the seed crystal rod side becomes more By moving inside the floating zone (central part) of the hot part. If the diameter of the single crystal is not so large, the rise phenomenon of the solid-liquid interface on the seed crystal rod side is not remarkable, but if the diameter of the single crystal is increased, the rise phenomenon of the solid-liquid interface on the seed crystal rod side It becomes noticeable.

上記の単結晶育成方法によれば、隣り合うコイル状フィラメントが、水平状ではなく、若干の高低差をもって上下に千鳥形に配置することが可能であるが、この上下千鳥形のコイル状フィラメントは赤外線が回転楕円面鏡により他方の焦点に集光することにより、被加熱部の加熱域が上下方向に厚みをもって形成されることができ、細いフィラメントを複数並べただけではゾーン高さが稼げないので、2段に例えば千鳥形に配置させて、加熱密度を維持して加熱体積を上げた発熱体を形成させ、育成中の溶融体の安定維持を図るものである。   According to the above-mentioned single crystal growth method, adjacent coiled filaments are not horizontal, but can be arranged in a staggered pattern with a slight difference in elevation, but the upper and lower staggered coiled filaments are Infrared light is condensed on the other focal point by the spheroid mirror, so that the heating area of the heated part can be formed with a thickness in the vertical direction, and the zone height cannot be gained simply by arranging a plurality of thin filaments. Therefore, the heating element is arranged in two stages, for example in a zigzag pattern, and the heating element is maintained to increase the heating volume, thereby stably maintaining the melt during growth.

また、前記コイル状フィラメントの通電時の電力を漸増させる単結晶育成方法によれば、単結晶育成過程で単結晶の口径の増大に応じて、コイル状フィラメントへの通電電力を漸増させて、そのときの単結晶の口径に適合する加熱を行うことができ、より円滑に小口径の単結晶から大口径の単結晶を連続的に育成することができる。   Further, according to the single crystal growth method for gradually increasing the power during energization of the coiled filament, the power supplied to the coiled filament is gradually increased in accordance with the increase in the diameter of the single crystal during the single crystal growth process, Heating suitable for the diameter of the single crystal at the time can be performed, and a single crystal having a large diameter can be continuously grown from a single crystal having a small diameter more smoothly.

また、加熱源が複数で、口径が大きい単結晶の育成時に、前記複数の加熱源のうち、一部の加熱源を上方に変位させて被加熱部における加熱域を種結晶棒側に拡大させることによって、種結晶棒側の固液界面のせり上がりを防止することができる。   Further, when growing a single crystal having a plurality of heating sources and a large diameter, a part of the plurality of heating sources is displaced upward to expand the heating region in the heated portion to the seed crystal rod side. As a result, the rise of the solid-liquid interface on the seed crystal rod side can be prevented.

前述のように、育成する単結晶の口径が大きくなると、口径が小さい単結晶の育成時に比較して、フローティングゾーンの高さ寸法が小さくなると共に、フローティングゾーンの融液の粘度が高くなり、融液が原料棒および種結晶棒の間から食み出して落下し易くなる場合がある。また、育成する単結晶の口径の増大に伴って、種結晶棒側の固液界面近傍の温度低下によって、種結晶棒側の固液界面がせり上がってくる現象が生じる。   As described above, when the diameter of the single crystal to be grown increases, the height of the floating zone decreases and the viscosity of the melt in the floating zone increases as compared to the growth of a single crystal with a small diameter. In some cases, the liquid is likely to fall out between the raw material rod and the seed crystal rod and fall. Further, as the diameter of the single crystal to be grown increases, a phenomenon occurs in which the solid-liquid interface on the seed crystal rod side rises due to a temperature drop near the solid-liquid interface on the seed crystal rod side.

上記の単結晶育成方法によれば、育成する単結晶の口径が小さい場合は中央部のコイル状フィラメントに通電して単結晶を育成し、育成する単結晶の口径が大きくなると、両側部のコイル状フィラメントにも通電して被加熱部の加熱域の断面積を大きくすると共に、一部の加熱源を上方に変位させることによって、被加熱部の加熱域を下方側、すなわち、種結晶棒側に拡大させて、フローティングゾーンの高さ寸法を種結晶棒側に拡大して、単結晶の大口径化による種結晶棒側の固液界面のせり上がりを防止して、円滑に単結晶を大口径化することができる。   According to the single crystal growth method described above, when the diameter of the single crystal to be grown is small, the single-crystal is grown by energizing the coiled filament at the center. Energizing the filament to increase the cross-sectional area of the heated area of the heated part and displace some heating sources upward, thereby lowering the heated area of the heated part, that is, the seed crystal rod side The height of the floating zone is expanded to the seed crystal rod side to prevent the solid crystal / liquid interface on the seed crystal rod side from rising due to the large diameter of the single crystal, and the single crystal is smoothly enlarged. Can be calibrated.

本発明の単結晶育成装置は、回転楕円面鏡と、この回転楕円面鏡の一方の焦点に配置された加熱源と、この加熱源の赤外線を回転楕円面鏡で反射して他方の焦点に配置された原料棒および種結晶棒に照射して単結晶を育成する単結晶育成装置において、前記加熱源を、複数個のコイル状フィラメントを平面状に並置し、かつ、水平方向に配置して構成し、それら複数個のコイル状フィラメントを、個別の電源に接続したので、小口径の単結晶を育成する場合は、中央部のコイル状フィラメントのみに通電し、被加熱部の加熱域の断面積を小さくし、小口径の単結晶から大口径の単結晶を育成する場合は、中央部のコイル状フィラメントに加えて、左右両側部のコイル状フィラメントに個別の電源により通電して、被加熱部の加熱域の断面積を大きくすることによって、小口径の単結晶から大口径の単結晶まで円滑に育成することが可能となる   The single crystal growth apparatus of the present invention includes a spheroid mirror, a heating source disposed at one focal point of the spheroid mirror, and the infrared ray of the heating source reflected by the spheroid mirror to the other focal point. In the single crystal growing apparatus for irradiating the arranged raw material rod and seed crystal rod to grow a single crystal, the heating source has a plurality of coiled filaments juxtaposed in a plane and arranged in a horizontal direction. Since the plurality of coiled filaments are connected to individual power sources, when growing a single crystal having a small diameter, only the coiled filament in the center is energized and the heating area of the heated part is cut off. When growing a single crystal with a small diameter from a single crystal with a small diameter, in addition to the coiled filament at the center, the coiled filaments on both the left and right sides are energized by separate power supplies and heated The cross-sectional area of the heating zone By listening, it is possible to smoothly grown from a single crystal of small-diameter up to a single crystal of large diameter

また、本発明の単結晶育成装置は、回転楕円面鏡と、この回転楕円面鏡の一方の焦点に配置された加熱源と、この加熱源の赤外線を回転楕円面鏡で反射して他方の焦点に配置された原料棒および種結晶棒に照射して単結晶を育成する単結晶育成装置において、前記加熱源を、複数個のコイル状フィラメントを横方向および上下に配置し、かつ、全体として横方向に配置して構成し、それら複数個のコイル状フィラメントを、個々の電源に接続したので、複数のコイル状フィラメントを、水平状ではなく、若干の高低差をもって上下に千鳥形などに配置することが可能なので、複数のコイル状フィラメントを横一列(水平状態)に配置した構成に対して、これらのコイル状フィラメントによって形成される被加熱部の加熱域が上下方向に厚みをもって形成されるため、口径が大きい単結晶の育成時に、上下に厚みを持つ加熱域によって、種結晶棒側の固液界面近傍が十分に加熱されて、種結晶棒側の固液界面のせり上がりを防止して、口径の大きい単結晶を円滑に育成することができる。   Further, the single crystal growing apparatus of the present invention includes a spheroid mirror, a heating source arranged at one focal point of the spheroid mirror, and infrared rays of the heating source reflected by the spheroid mirror. In a single crystal growth apparatus for irradiating a raw material rod and a seed crystal rod arranged at a focal point to grow a single crystal, the heating source includes a plurality of coiled filaments arranged laterally and vertically, and as a whole Since the plurality of coiled filaments are arranged in the horizontal direction and these coiled filaments are connected to individual power supplies, the plurality of coiled filaments are not horizontally arranged but arranged in a staggered pattern with a slight difference in elevation. In contrast to a configuration in which a plurality of coiled filaments are arranged in a horizontal row (horizontal state), the heating area of the heated portion formed by these coiled filaments has a thickness in the vertical direction. Therefore, when a single crystal having a large diameter is grown, the vicinity of the solid-liquid interface on the seed crystal rod side is sufficiently heated by the heating region having a thickness above and below, so that the solid-liquid interface on the seed crystal rod side is sufficiently heated. A single crystal having a large diameter can be grown smoothly by preventing the rising.

また、本発明の単結晶育成装置は、前記電源が、その電力を漸増させることができる電力可変電源であるので、単結晶育成過程における単結晶の口径の増大に応じて、コイル状フィラメントへの通電電力を漸増させて、そのときの単結晶の口径に最適な加熱を行うことができ、より円滑に小口径の単結晶から大口径の単結晶を連続的に育成することができる。   In the single crystal growth apparatus of the present invention, since the power source is a power variable power source that can gradually increase the power, the coil filament is applied to the coil filament according to the increase in the diameter of the single crystal in the single crystal growth process. By gradually increasing the energizing power, the optimum heating can be performed for the diameter of the single crystal at that time, and a single crystal having a large diameter can be continuously grown from a single crystal having a small diameter more smoothly.

また、本発明の単結晶育成装置は、前記加熱源が複数で、そのうちの一部の加熱源を、上方に変位可能に構成したので、単結晶の大口径化に伴って種結晶棒側の固液界面がせり上ろうとしても、一部の加熱源を上方に変位させることによって、被加熱部の加熱域を下方,すなわち、種結晶棒側に拡大して、加熱域,すなわちフローティングゾーンの高さ寸法を種結晶棒側に拡大して、種結晶棒側の固液界面近傍を十分に加熱して、種結晶棒側の固液界面のせり上がりを防止することができ、単結晶を円滑に大口径化することができる。   In the single crystal growth apparatus of the present invention, the plurality of heating sources are configured such that a part of the heating sources can be displaced upward. Even if the solid-liquid interface rises, by displace some heating sources upward, the heating area of the heated part is expanded downward, that is, to the seed crystal rod side, and the heating area, that is, the floating zone By expanding the height dimension to the seed crystal rod side and sufficiently heating the vicinity of the solid-liquid interface on the seed crystal rod side, it is possible to prevent the solid-liquid interface on the seed crystal rod side from rising, The diameter can be increased smoothly.

以下、本発明の単結晶育成方法および単結晶育成装置の実施の形態について、図面を参照して説明する。図1は、加熱源に後述するコイル状フィラメントを有する赤外線ランプを用いた双楕円型の単結晶育成装置10における要部の概略縦断正面図で、図2は図1の単結晶育成装置10におけるA−A線に沿う概略横断面図を示す。   Hereinafter, embodiments of a single crystal growth method and a single crystal growth apparatus of the present invention will be described with reference to the drawings. FIG. 1 is a schematic longitudinal front view of a main part of a double elliptical single crystal growing apparatus 10 using an infrared lamp having a coiled filament as a heating source, which will be described later, and FIG. 2 is a diagram of the single crystal growing apparatus 10 of FIG. The schematic cross-sectional view which follows an AA line is shown.

単結晶育成装置10は、対称形の2つの回転楕円面鏡11,12を有する。各回転楕円面鏡11,12は一方の焦点F1,F2と他方の焦点F0とを有し、各々の他方の焦点F0(図2参照)が一致するように対向結合させて加熱炉を構成している。この回転楕円面鏡11,12の内面,すなわち反射面は、赤外線を高反射率で反射させるために金めっき処理が施されている。 The single crystal growing apparatus 10 includes two symmetrical spheroid mirrors 11 and 12. Each spheroid mirror 11, 12 has one focal point F 1 , F 2 and the other focal point F 0, and is heated by being coupled oppositely so that the other focal point F 0 (see FIG. 2) coincides. It constitutes a furnace. The inner surfaces of the spheroid mirrors 11 and 12, that is, the reflection surfaces are subjected to gold plating in order to reflect infrared rays with high reflectivity.

各回転楕円面鏡11,12の一方の焦点F1,F2付近には、例えば、後述するコイル状フィラメントを有するハロゲンランプ等の赤外線ランプ13,14が固定配置してある。各回転楕円面鏡11,12の一致した他方の焦点F0には、被加熱部15が位置し、この被加熱部15を含むように石英管16が鉛直方向に設置されている。 Infrared lamps 13 and 14 such as halogen lamps having coiled filaments, which will be described later, are fixedly arranged in the vicinity of one of the focal points F 1 and F 2 of the spheroid mirrors 11 and 12. A heated portion 15 is located at the other focal point F 0 where the spheroid mirrors 11 and 12 coincide with each other, and a quartz tube 16 is installed in the vertical direction so as to include the heated portion 15.

この石英管16は、石英管16の内方部分m1をそれ以外の回転楕円面鏡11,12の内方部分m2と区分することによって、石英管16の内方部分m1を単結晶育成に適する雰囲気に置換し、かつ、その雰囲気状態を維持し易くするものである。一方で、各回転楕円面鏡11,12内の内方部分m2の赤外線ランプ13,14を、石英管16の内方部分m1内の被加熱部15に影響を与えることなく冷却するのに役立つ。   The quartz tube 16 is suitable for growing a single crystal by dividing the inner part m1 of the quartz tube 16 from the inner parts m2 of the other spheroid mirrors 11 and 12 by dividing the inner part m1 of the quartz tube 16 into a single crystal. The atmosphere is replaced and the atmospheric state is easily maintained. On the other hand, it is useful for cooling the infrared lamps 13 and 14 of the inner part m2 in each of the spheroid mirrors 11 and 12 without affecting the heated part 15 in the inner part m1 of the quartz tube 16. .

各回転楕円面鏡11,12の一致した焦点F0に位置する被加熱部15では、上方から鉛直方向に延びる上結晶駆動軸17の下端に固定した原料棒18と、下方から鉛直方向に延びる下結晶駆動軸19の上端に固定された種結晶棒20とを突き合わせている。前記上結晶駆動軸17および下結晶駆動軸19は、図示するように、保持部材21,22によって気密に保持され、図示しないサーボモータ等の駆動モータで回転自在、かつ、同期して、または相対速度を有して昇降自在に保持されている。 In the heated portion 15 located at the coincident focal point F 0 of each spheroid mirror 11, 12, the raw material rod 18 fixed to the lower end of the upper crystal drive shaft 17 extending in the vertical direction from above, and extending in the vertical direction from below. A seed crystal rod 20 fixed to the upper end of the lower crystal drive shaft 19 is abutted. The upper crystal drive shaft 17 and the lower crystal drive shaft 19 are hermetically held by holding members 21 and 22 as shown in the figure, and can be freely rotated by a drive motor such as a servo motor (not shown) and synchronized or relative to each other. It has a speed and is held up and down.

上記の単結晶育成装置10において、赤外線ランプ13,14は、それぞれ図3に示すように、複数(図示例では4個)のコイル状フィラメント23a,23b,23c,23dを平面状に並置し、かつ、単結晶育成装置10の一方の焦点F1,F2付近に水平方向(左右方向)に配置している。前記複数のコイル状フィラメント23a〜23dは、例えば、中央部のコイル状フィラメント23aおよび23bが直列接続され、また、両側(左右)のコイル状フィラメント23cおよび23dが直列接続されて、石英24により封入されており、中央部のコイル状フィラメント23aおよび23bの直列接続の両端には端子部25,26を、また、両側(左右)のコイル状フィラメント23cおよび23dの直列接続の両端には端子部27,28を有する。 In the single crystal growth apparatus 10 described above, the infrared lamps 13 and 14 each have a plurality of (four in the illustrated example) coiled filaments 23a, 23b, 23c, and 23d juxtaposed in a plane, as shown in FIG. and they are arranged in a horizontal direction (lateral direction) in the vicinity of the focal point F 1, F 2 of one of the single crystal growing apparatus 10. The plurality of coiled filaments 23a to 23d are encapsulated by quartz 24, for example, coiled filaments 23a and 23b at the center are connected in series, and coiled filaments 23c and 23d on both sides (left and right) are connected in series. Terminal portions 25 and 26 are provided at both ends of the series connection of the coiled filaments 23a and 23b in the central portion, and terminal portions 27 are provided at both ends of the series connection of the coiled filaments 23c and 23d on both sides (left and right). , 28.

そして、中央部のコイル状フィラメント23aおよび23bの直列接続の端子部25,26は電源(V1)29に接続され、両側(左右)のコイル状フィラメント23cおよび23dの直列接続の端子部27,28は、電源(V2)30に選択的に接続される。   The terminal portions 25 and 26 connected in series between the coiled filaments 23a and 23b at the center are connected to the power source (V1) 29, and the terminal portions 27 and 28 connected in series between the coiled filaments 23c and 23d on both sides (left and right). Are selectively connected to a power supply (V2) 30.

したがって、電源(V1)29により、中央部のコイル状フィラメント23a,23bのみの通電により、被加熱部15に断面積が小さい加熱域が形成される。次に、直列接続された中央部のコイル状フィラメント23a,23bを通電状態にしたまま、両側(左右)のコイル状フィラメント23c,23dに、電源(V2)30により通電すると、中央部のコイル状フィラメント23a,23bの通電による輻射エネルギに、両側(左右)のコイル状フィラメント23c,23dの通電による輻射エネルギが加算されて、被加熱部15における加熱域の断面積を大きくすることができる。   Therefore, a heating region having a small cross-sectional area is formed in the heated portion 15 by energizing only the coiled filaments 23a and 23b in the central portion by the power source (V1) 29. Next, when the coiled filaments 23c and 23d on both sides (left and right) are energized by the power source (V2) 30 while the centrally connected coiled filaments 23a and 23b connected in series are energized, The radiation energy by energization of the coiled filaments 23c and 23d on both sides (left and right) is added to the radiation energy by energization of the filaments 23a and 23b, so that the cross-sectional area of the heating area in the heated portion 15 can be increased.

次に、上記の単結晶育成装置10の動作について説明する。まず、石英管16内を不活性ガス等適切な雰囲気で置換した後、回転楕円面鏡11,12の一方の焦点F1,F2近傍に配置された赤外線ランプ13,14の中央部のコイル状フィラメント23a,23bのみに電源(V1)29により通電して、赤外線ランプ13,14から照射される赤外線を、上記回転楕円面鏡11,12で反射させ、共通の他方の焦点F0に位置する被加熱部15に集光させて赤外線加熱する。この赤外線加熱による輻射エネルギにより、被加熱部15の原料棒18の下端および種結晶棒20の上端を加熱溶融させながら、円滑に接触させることにより、図4(A)に示すように、原料棒18と種結晶棒20間の被加熱部15に、断面積が小さいフローティングゾーン(以下、FZという)31を形成させる。 Next, the operation of the single crystal growing apparatus 10 will be described. First, after replacing the inside of the quartz tube 16 with an appropriate atmosphere such as an inert gas, the coils at the center of the infrared lamps 13 and 14 disposed in the vicinity of one of the focal points F 1 and F 2 of the spheroid mirrors 11 and 12. Jo filaments 23a, and energized only by the power supply (V1) 29 23b, the infrared ray emitted from the infrared lamps 13 and 14, is reflected by the spheroidal mirror 11, at the focal point F 0 of the common of the other The heated part 15 is condensed and heated by infrared rays. By making the lower end of the raw material rod 18 of the heated portion 15 and the upper end of the seed crystal rod 20 heat and melt smoothly by the radiation energy by this infrared heating, as shown in FIG. A floating zone (hereinafter referred to as “FZ”) 31 having a small cross-sectional area is formed in the heated portion 15 between 18 and the seed crystal rod 20.

なお、図4(A)および後述する図4(B)において、コイル状フィラメント23a〜23dは、実際には原料棒18および種結晶棒20の軸線方向(紙面)に対して直交する方向に配置されているが、そのように描いたのでは図面上で図4(A)と図4(B)との違いが判り難いので、説明の都合上、紙面に平行に描いている。   In FIG. 4A and later-described FIG. 4B, the coil filaments 23a to 23d are actually arranged in a direction orthogonal to the axial direction (paper surface) of the raw material rod 18 and the seed crystal rod 20. However, since it is difficult to understand the difference between FIG. 4 (A) and FIG. 4 (B) on the drawing if it is drawn as such, it is drawn parallel to the paper surface for convenience of explanation.

そして、下端に原料棒18を固定した上結晶駆動軸17と、上端に種結晶棒20を固定した下結晶駆動軸19とを共に回転させ(例えば、20〜30rpm)、かつ、同期してゆっくり下方に向かって移動させることによって、原料棒18と種結晶棒20間の被加熱部15に形成されたFZ31が次第に原料棒18側に移動していって、単結晶が育成される。なお、図4(A)における18aは原料棒18側の固液界面を示し、20aは種結晶棒20側の固液界面を示している。   Then, the upper crystal drive shaft 17 with the raw material rod 18 fixed to the lower end and the lower crystal drive shaft 19 with the seed crystal rod 20 fixed to the upper end are rotated together (for example, 20 to 30 rpm) and slowly in synchronization. By moving downward, the FZ 31 formed in the heated portion 15 between the raw material rod 18 and the seed crystal rod 20 is gradually moved to the raw material rod 18 side, and a single crystal is grown. In FIG. 4A, 18a indicates a solid-liquid interface on the raw material rod 18 side, and 20a indicates a solid-liquid interface on the seed crystal rod 20 side.

このとき、赤外線ランプ13,14は、中央部のコイル状フィラメント23a,23bのみに通電しているので、被加熱部15に集光される赤外線の加熱域の断面積は小さく、したがって、FZ31の直径寸法は小さく、育成可能な単結晶の口径D1は小さい。 At this time, since the infrared lamps 13 and 14 are energized only to the coiled filaments 23a and 23b at the center, the cross-sectional area of the infrared heating region condensed on the heated portion 15 is small. The diameter dimension is small, and the diameter D 1 of the single crystal that can be grown is small.

上記のようにして、小口径の単結晶が育成できたら、次に、この小口径の単結晶を大口径化する。そのためには、下端に原料棒18を固定した上結晶駆動軸17と上端に種結晶棒20を固定した下結晶駆動軸19とに相対速度を持たせて下降させる。例えば、下端に原料棒18を固定した上結晶駆動軸17の下降速度を、上端に種結晶棒20を固定した下結晶駆動軸19の下降速度よりも大きくすることによって、両結晶駆動軸17,19の下降速度差に基づいて、FZ31の直径寸法は漸増し、その結果、単結晶を大口径(D2)化することができる。 When a single crystal having a small diameter can be grown as described above, the single crystal having a small diameter is then enlarged. For this purpose, the upper crystal drive shaft 17 with the raw material rod 18 fixed to the lower end and the lower crystal drive shaft 19 with the seed crystal rod 20 fixed to the upper end are lowered with a relative speed. For example, by making the descending speed of the upper crystal drive shaft 17 with the raw material rod 18 fixed to the lower end larger than the descending speed of the lower crystal drive shaft 19 with the seed crystal rod 20 fixed to the upper end, both crystal drive shafts 17, Based on the lowering speed difference of 19, the diameter dimension of the FZ31 gradually increases, and as a result, the single crystal can be made large diameter (D 2 ).

なお、上記のように、両結晶駆動軸17,19の下降速度差を利用する方法に代えて、予め原料棒18の形状を、下端は細く、上になるに従って太くなるような異形状に形成しておくことにより、両結晶駆動軸17,19の下降速度を等しくして、大口径化を可能にすることもできる。   As described above, instead of the method using the difference in descending speed between the crystal drive shafts 17 and 19, the shape of the raw material rod 18 is previously formed in a different shape so that the lower end is thin and becomes thicker as it goes up. By preliminarily, the descending speeds of both crystal drive shafts 17 and 19 can be made equal to enable a large diameter.

上記のFZ31の大口径化と共に、この大口径化されたFZ31を適切に加熱形成するために、別電源(V2)30で、図4(B)に示すように、左右のコイル状フィラメント23c,23dにも通電する。すると、中央部のコイル状フィラメント23a,23bによる輻射エネルギに加えて、左右のコイル状フィラメント23c,23dの輻射エネルギも照射されるので、被加熱部15に照射される輻射エネルギが増大すると共に、被加熱部15に照射される赤外線の加熱域の断面積が増大し、中央部のコイル状フィラメント23a,23bのみに通電した場合に比較して、直径寸法の増大したFZ31を適切に加熱することができ、例えば、口径D2が25mm程度の単結晶を育成することが可能になる。 In order to appropriately heat and form the large-diameter FZ31 together with the above-mentioned large-diameter FZ31, as shown in FIG. 4B, left and right coiled filaments 23c, It also energizes 23d. Then, in addition to the radiant energy of the coiled filaments 23a and 23b in the central part, the radiant energy of the left and right coiled filaments 23c and 23d is also irradiated. Compared with the case where the cross-sectional area of the infrared heating region irradiated to the heated portion 15 is increased and only the coiled filaments 23a and 23b at the center are energized, the FZ31 having an increased diameter is appropriately heated. For example, a single crystal having a diameter D 2 of about 25 mm can be grown.

なお、電源(V1)29により中央のフィラメント23a,23bに通電する場合、および電源(V2)30により両側(左右)のフィラメント23c,23dに通電する場合に、電力可変電源,例えば、電圧可変電源を用いて、単結晶の口径が比較的小さい期間は、電源(V1)29により比較的低電圧で通電し、口径の増大に伴って、その印加電圧を漸増していき、口径が所定値に達すると、電源(V2)30にも通電し、口径の増大に伴って、その印加電圧を漸増するようにすれば、単結晶の育成過程で単結晶の口径に相応しい加熱域の断面積で結晶を育成することが可能になる。   In addition, when energizing the central filaments 23a and 23b by the power source (V1) 29 and energizing the filaments 23c and 23d on both sides (left and right) by the power source (V2) 30, the power variable power source, for example, the voltage variable power source When the diameter of the single crystal is relatively small, the power source (V1) 29 is energized at a relatively low voltage, the applied voltage is gradually increased as the diameter increases, and the diameter reaches a predetermined value. When the voltage reaches the power source (V2) 30 and the applied voltage is gradually increased as the diameter increases, the crystal in the cross-sectional area of the heating region suitable for the diameter of the single crystal can be obtained in the process of growing the single crystal. Can be nurtured.

図4(B)のFZ31の口径の増大過程において、領域A部分が電圧可変電源(V1)29により電力を漸増させて口径を大きくする過程に対応し、領域B部分が電圧可変電源(V1)29と共に、電圧可変電源(V2)30により電力を漸増させて口径をさらに大きくする過程に対応する部分である。   In the process of increasing the diameter of the FZ 31 in FIG. 4B, the area A corresponds to the process of gradually increasing the power by the voltage variable power supply (V1) 29 and the area B is the voltage variable power supply (V1). 29 is a portion corresponding to a process of further increasing the diameter by gradually increasing the electric power by the voltage variable power supply (V2) 30.

上記のように複数のコイル状フィラメント23a〜23dに選択的に通電することにより、小口径の単結晶から、大口径の単結晶まで連続的に育成することが可能になる。しかも、電源として、その電力を漸増させることが可能な電力可変電源を用いることによって、FZ31の口径の増大に伴って、加熱域の断面積を次第に大きくすることが可能になり、単結晶の育成過程において、その口径の増大に伴って最適な加熱を行うことにより、小口径の単結晶から大口径の単結晶をより一層円滑に育成することができる。   By selectively energizing the plurality of coiled filaments 23a to 23d as described above, it becomes possible to continuously grow from a single crystal having a small diameter to a single crystal having a large diameter. In addition, by using a power variable power source capable of gradually increasing the power as the power source, it becomes possible to gradually increase the cross-sectional area of the heating region as the diameter of the FZ31 increases, and grow single crystals. In the process, a single crystal having a large diameter can be grown more smoothly from a single crystal having a small diameter by performing optimum heating as the diameter increases.

なお、上記実施形態では、赤外線ランプ13,14のフィラメントとして、4個のコイル状フィラメント23a〜23dを有するものについて説明したが、任意数のコイル状フィラメントを有するものでもよい。コイル状フィラメントの数が増えると、それに応じて中央部、中間部、両端部のコイル状フィラメンを選択使用して、より大口径の単結晶まで円滑に育成可能になる。   In the above-described embodiment, the filaments of the infrared lamps 13 and 14 have been described as having four coiled filaments 23a to 23d, but may have any number of coiled filaments. As the number of coiled filaments increases, it becomes possible to grow smoothly up to a single crystal having a larger diameter by selecting and using coiled filaments at the center, middle and both ends accordingly.

また、コイル状フィラメントの数は、偶数のみならず3個または5個以上の奇数でもよい。すなわち、中央部は例えば1個のコイル状フィラメントとし、その両側の中間部、さらにその両側の両端部と、選択的に使用して、同様に、小口径の単結晶からより大口径の単結晶まで育成可能になる。このように、中央部のコイル状フィラメントを1個にする場合は、例えば、その中央部のコイル状フィラメントの直径寸法を、中間部や両側部のコイル状フィラメントの直径寸法と異ならせて設置することもできる。   Moreover, the number of coil-shaped filaments may be not only an even number but also three or five or more odd numbers. That is, the central portion is, for example, a single coiled filament, and selectively used in the middle portion on both sides and further on both end portions on the both sides. Similarly, from a single crystal having a small diameter to a single crystal having a larger diameter. Can be cultivated. In this way, when the central coiled filament is made into one piece, for example, the diameter of the coiled filament at the center is set different from the diameter of the coiled filament at the middle or both sides. You can also.

なお、中央部のコイル状フィラメント23a,23bと、左右のコイル状フィラメント23c,23dとに、個別の電源(V1)29,(V2)30により通電する場合に、左右のコイル状フィラメント23c,23dの供給電力(供給電圧および/または供給電流)を、中央部のコイル状フィラメント23a,23bの供給電力(供給電圧および/または供給電流)よりも異ならせることができる。   Note that when the coiled filaments 23a and 23b at the center and the left and right coiled filaments 23c and 23d are energized by individual power sources (V1) 29 and (V2) 30, the left and right coiled filaments 23c and 23d are energized. The supply power (supply voltage and / or supply current) can be made different from the supply power (supply voltage and / or supply current) of the coiled filaments 23a, 23b at the center.

また、電源(V1)29,(V2)30は、直流安定化電源が望ましいが、単相または多相交流電源や高周波電源を用いることもできる。   The power supplies (V1) 29 and (V2) 30 are preferably DC stabilized power supplies, but single-phase or multiphase AC power supplies and high-frequency power supplies can also be used.

さらに、単結晶の大口径化の過程では、単結晶の口径の増大に伴って、種結晶棒20側の固液界面20a近傍の加熱エネルギが不足して、種結晶棒20側の固液界面20aがせり上がる現象が認められ、被加熱部15の加熱域の高さ寸法が小さいと、種結晶棒20側の固液界面20aのせり上がりを防止して良好なFZ31を形成できない場合がある。   Further, in the process of increasing the diameter of the single crystal, as the diameter of the single crystal increases, the heating energy in the vicinity of the solid-liquid interface 20a on the seed crystal rod 20 side is insufficient, and the solid-liquid interface on the seed crystal rod 20 side. When the phenomenon that 20a rises is recognized and the height dimension of the heated region of the heated portion 15 is small, the solid-liquid interface 20a on the seed crystal rod 20 side is prevented from rising and a good FZ31 may not be formed. .

上記のような種結晶棒20側の固液界面20aのせり上がりの対処法として、例えば、隣り合う複数のフィラメントを、互いに上下千鳥形に配置することも可能である。   As a countermeasure against the rising of the solid-liquid interface 20a on the side of the seed crystal rod 20 as described above, for example, a plurality of adjacent filaments can be arranged in a staggered manner with respect to each other.

図5(A)(B)に示す赤外線ランプ13’,14’は、4個のコイル状フィラメント23e〜23hのうち、第1番目と第3番目のコイル状フィラメント23g,23fを上方に配置し、第2番目と第4番目のコイル状フィラメント23e,23hは下方に配置し、隣り合う複数のコイル状フィラメント23e〜23hを、互いに上下に千鳥形に配置したものである。   Infrared lamps 13 'and 14' shown in FIGS. 5 (A) and 5 (B) have the first and third coiled filaments 23g and 23f out of the four coiled filaments 23e to 23h. The second and fourth coiled filaments 23e and 23h are arranged below, and a plurality of adjacent coiled filaments 23e to 23h are arranged in a zigzag shape above and below each other.

このような上下千鳥形に配置することにより、被加熱部15の輻射エネルギ密度を高めると共に、被加熱部15の加熱域の高さ寸法を拡大することができ、種結晶棒20側の固液界面20aの近傍を十分に加熱して、種結晶棒20側の固液界面20aのせり上がりを防止することができ、円滑に単結晶の大口径化を図ることができる。   By arranging in such an upper and lower zigzag shape, the radiant energy density of the heated portion 15 can be increased, and the height of the heating area of the heated portion 15 can be increased, and the solid liquid on the seed crystal rod 20 side can be expanded. It is possible to sufficiently heat the vicinity of the interface 20a to prevent the solid-liquid interface 20a on the seed crystal rod 20 side from rising, and to smoothly increase the diameter of the single crystal.

さらにまた、赤外線ランプ13,14の輻射エネルギは回転楕円面鏡11,12で反射されて焦点F0に上下反転されて集光されるので、例えば、複数個のコイル状フィラメント23を平面状に配置した赤外線ランプ13,14のうち、片方の赤外線ランプ13または14を、大口径の単結晶育成時に、その供給電力を増大すると共に、上方に変位させて、被加熱部15の加熱域を下方,すなわち、種結晶棒20側に拡大させるようにすることができる。 Furthermore, since the radiant energy of the infrared lamps 13 and 14 is reflected by the ellipsoidal mirrors 11 and 12 and inverted up and down to the focal point F 0 , for example, the plurality of coiled filaments 23 are planarized. Among the arranged infrared lamps 13 and 14, one of the infrared lamps 13 or 14 is increased in power supply when the single crystal having a large diameter is grown, and is displaced upward to lower the heating area of the heated portion 15. That is, it can be expanded to the seed crystal rod 20 side.

図6(A)〜(E)は、このように赤外線ランプ13または14を上方に変位させて単結晶の大口径化を行う場合の各段階の状態を示す。図6(A)に示すように、赤外線ランプ13,14を定位置に配置し、その中央部のコイル状フィラメント23a,23bに通電して、被加熱部15における口径D1の原料棒18および種結晶棒20に高さ寸法H1のFZ311を形成および移動することによって、小口径D1の単結晶を育成する。 FIGS. 6A to 6E show the state of each stage when the diameter of the single crystal is increased by displacing the infrared lamp 13 or 14 upward as described above. As shown in FIG. 6 (A), an infrared lamp 13, 14 is arranged in a fixed position, the coiled filament 23a of the central portion, by energizing the 23b, and the raw material rod 18 of diameter D 1 at the heated portion 15 A single crystal having a small diameter D 1 is grown by forming and moving an FZ 31 1 having a height dimension H 1 on the seed crystal rod 20.

次に、図6(B)に示すように、中央部のコイル状フィラメント23a,23bへの供給電力を漸増させながら、上結晶駆動軸17と下結晶駆動軸19の相対速度を異ならせることなどによって、被加熱部15に高さ寸法H2のFZ312を形成して、単結晶の口径D2(>D1)を漸増させていく。このとき、単結晶の口径D2の漸増によって、FZ312の高さ寸法H2はH1より小さくなる。 Next, as shown in FIG. 6B, the relative speeds of the upper crystal drive shaft 17 and the lower crystal drive shaft 19 are made different while gradually increasing the power supplied to the coiled filaments 23a and 23b at the center. Thus, the FZ31 2 having the height dimension H 2 is formed in the heated portion 15, and the diameter D 2 (> D 1 ) of the single crystal is gradually increased. At this time, the height dimension H 2 of the FZ31 2 becomes smaller than H 1 due to the gradual increase of the diameter D 2 of the single crystal.

次に、図6(C)に示すように、中央部のコイル状フィラメント23a,23bへの供給電力が所定値になると、両側のコイル状フィラメント23c,23dの供給電力を漸増させながら、被加熱域15に高さ寸法がH3のFZ313を形成することによって、大口径D3(>D2)の単結晶を寸法L1だけ育成する。このとき、口径がD3の単結晶の育成によって、FZ312の高さ寸法H3はH2より小さくなる。 Next, as shown in FIG. 6C, when the power supplied to the coiled filaments 23a and 23b at the center reaches a predetermined value, the power supplied to the coiled filaments 23c and 23d on both sides is gradually increased while being heated. By forming FZ31 3 having a height dimension of H 3 in the region 15, a single crystal having a large diameter D 3 (> D 2 ) is grown by a dimension L 1 . At this time, the height dimension H 3 of FZ31 2 becomes smaller than H 2 due to the growth of a single crystal having a diameter of D 3 .

次に、図6(D)に示すように、中央部のコイル状フィラメント23a,23bへの供給電力が所定値になると、被加熱部15に高さ寸法がH4のFZ314を形成し、大口径D3の単結晶を寸法L2だけ育成する。このとき、口径がD3の単結晶の育成によって、FZ314の高さ寸法H4はH3より小さくなる。 Next, as shown in FIG. 6 (D), coiled filaments 23a of the central portion, the electric power supplied to 23b becomes a predetermined value, the height to form a FZ31 4 of H 4 in the heated portion 15, A single crystal having a large diameter D 3 is grown by a dimension L 2 . At this time, the height dimension H 4 of FZ31 4 becomes smaller than H 3 due to the growth of a single crystal having a diameter of D 3 .

次に、FZ314の高さ寸法H4が良好な単結晶を育成するためには狭過ぎるので、図7(E)に示すように、赤外線ランプ13または14の位置を上方に変位させて被加熱部15の加熱域を種結晶棒20側に拡大すると共に、赤外線ランプ13および14への供給電力を増大して、加熱域の加熱条件を適性化して、高さ寸法がH5のFZ315を形成して、大口径D3の単結晶を寸法L3のように育成していく。このとき、加熱域の拡大および供給電力の増大によって、FZ315の高さ寸法H5はH4よりも大きくなる。 Then, since too narrow for FZ31 4 of height H 4 is to grow a good single crystal, as shown in FIG. 7 (E), by displacing the position of the infrared lamp 13 or 14 above the the heating zone of the heating section 15 while expanding the seed crystal rod 20, increasing the electric power supplied to the infrared lamps 13 and 14, the heating condition of the heating zone and suitability of, FZ31 height dimension H 5 5 And a single crystal having a large diameter D 3 is grown to a dimension L 3 . At this time, the expansion and increase in the power supplied heating zone, the height H 5 in FZ31 5 is larger than H 4.

以上のようにして、口径がD1の原料棒18および種結晶棒20から、複数のフィラメント23a〜23dの選択的使用、それらフィラメントへの通電電力の漸増、片方の赤外線ランプ13または14の上方への変位などにより、その口径(D)を漸増させながら、大口径D3の単結晶を育成することができる。 As described above, the feed rod 18 and the seed crystal rod 20 of the caliber D 1, selective use of a plurality of filaments 23 a to 23 d, increasing the energizing power to them filaments, the upper one of the infrared lamp 13 or 14 A single crystal having a large diameter D 3 can be grown while gradually increasing its diameter (D) due to the displacement of the crystal.

なお、上記実施形態では、双楕円型単結晶育成装置について説明したが、4楕円型の単結晶育成装置にも適用することができる。   In addition, although the said embodiment demonstrated the bi-elliptical type single crystal growth apparatus, it is applicable also to a 4 elliptical type single crystal growth apparatus.

本発明の実施形態の単結晶育成方法および単結晶育成装置について説明する縦断正面図である。It is a vertical front view explaining the single crystal growth method and single crystal growth apparatus of embodiment of this invention. 図1に示す本発明の単結晶育成装置におけるA−A線に沿った横断面図である。It is a cross-sectional view along the AA line in the single crystal growth apparatus of this invention shown in FIG. 図1の単結晶育成装置における加熱源の拡大平面図である。FIG. 2 is an enlarged plan view of a heating source in the single crystal growing apparatus of FIG. 1. (A)は図1の単結晶育成装置における中央部のコイル状フィラメントの通電状態を示す模式的平面図と被加熱部の拡大正面図、 (B)は図1の単結晶育成装置における中央部および両側のコイル状フィラメントの通電状態を示す模式的平面図と被加熱部の拡大正面図である。(A) is a schematic plan view showing an energized state of a coiled filament at the central portion in the single crystal growth apparatus of FIG. 1 and an enlarged front view of a heated portion. (B) is a central portion in the single crystal growth apparatus of FIG. It is the typical top view which shows the energized state of the coiled filament of both sides, and the enlarged front view of a to-be-heated part. (A)は本発明に係る単結晶育成装置の異なる赤外線ランプのコイル状フィラメントの配置を示す平面図、 (B)は(A)の赤外線ランプにおけるコイル状フィラメントの側面図である。(A) is a top view which shows arrangement | positioning of the coiled filament of the different infrared lamp of the single crystal growth apparatus based on this invention, (B) is a side view of the coiled filament in the infrared lamp of (A). (A)〜(E)は小口径の単結晶から大口径の単結晶を育成する各段階での要部拡大正面図である。(A)-(E) are the principal part enlarged front views in each step which grows a large-diameter single crystal from a small-diameter single crystal. 従来の単結晶育成装置における縦断正面図である。It is a vertical front view in the conventional single crystal growth apparatus. 図7の単結晶育成装置におけるB−B線に沿った横断面図である。It is a cross-sectional view along the BB line in the single crystal growing apparatus of FIG. 図7の単結晶育成装置における被加熱部の拡大正面図である。It is an enlarged front view of the to-be-heated part in the single crystal growth apparatus of FIG. 図7の単結晶育成装置におけるコイル状フィラメントの直径寸法dと育成可能な単結晶の口径Dとの関係を説明する被加熱部の拡大正面図である。FIG. 8 is an enlarged front view of a heated portion for explaining the relationship between the diameter d of a coiled filament and the diameter D of a single crystal that can be grown in the single crystal growth apparatus of FIG. 7.

符号の説明Explanation of symbols

10 単結晶育成装置
11,12 回転楕円面鏡
13,14,13’,14’ 加熱源(赤外線ランプ)
15 被加熱部
16 石英管
17 上結晶駆動軸
18 原料棒
18a 原料棒側の固液界面
19 下結晶駆動軸
20 種結晶棒
20a 種結晶棒側の固液界面
23a〜23h コイル状フィラメント
24 石英
25〜28 端子部
29,30 電源
31,311〜315 フローティングゾーン(FZ)
D,D1〜D3 単結晶の口径
H,H1〜H5 フローティングゾーン(FZ)の高さ寸法
10 Single crystal growth apparatus 11, 12 Spherical ellipsoidal mirror 13, 14, 13 ', 14' Heat source (infrared lamp)
DESCRIPTION OF SYMBOLS 15 Heated part 16 Quartz tube 17 Upper crystal drive shaft 18 Raw material rod 18a Solid-liquid interface on the raw material rod side 19 Lower crystal drive shaft 20 Seed crystal rod 20a Solid-liquid interface on the seed crystal rod side 23a-23h Coiled filament 24 Quartz 25 to 28 terminal portions 29, 30 power supply 31, 31 1-31 5 floating zone (FZ)
D, D 1 to D 3 single crystal diameter H, H 1 to H 5 Floating zone (FZ) height dimensions

Claims (8)

回転楕円面鏡と、この回転楕円面鏡の一方の焦点に配置された加熱源と、この加熱源の赤外線を回転楕円面鏡で反射して他方の焦点に配置された原料棒および種結晶棒に照射して単結晶を育成する単結晶育成方法において、
前記加熱源を、複数個のコイル状フィラメントを平面状に並置し、かつ、水平方向に配置して構成し、それら複数個のコイル状フィラメントを、育成する単結晶の大きさに応じて選択的に使用することを特徴とする単結晶育成方法。
A spheroid mirror, a heating source disposed at one focal point of the spheroid mirror, a raw material rod and a seed crystal rod disposed at the other focal point by reflecting the infrared rays of the heating source by the spheroid mirror In a single crystal growth method for growing a single crystal by irradiating
The heating source is configured by arranging a plurality of coiled filaments side by side in a plane and arranging them horizontally, and the plurality of coiled filaments are selectively selected according to the size of a single crystal to be grown. A method for growing a single crystal, characterized by being used in the above.
回転楕円面鏡と、この回転楕円面鏡の一方の焦点に配置された加熱源と、この加熱源の赤外線を回転楕円面鏡で反射して他方の焦点に配置された原料棒および種結晶棒に照射して単結晶を育成する単結晶育成方法において、
前記加熱源を、隣り合うコイル状フィラメントを互いに千鳥形に上下に配置し、かつ、全体として横方向に配置して構成し、それら複数個のコイル状フィラメントを、育成する単結晶の大きさに応じて選択的に使用することを特徴とする単結晶育成方法。
A spheroid mirror, a heating source disposed at one focal point of the spheroid mirror, a raw material rod and a seed crystal rod disposed at the other focal point by reflecting the infrared rays of the heating source by the spheroid mirror In a single crystal growth method for growing a single crystal by irradiating
The heating source is configured by arranging adjacent coiled filaments vertically in a staggered manner and in the lateral direction as a whole, and the plurality of coiled filaments are grown to the size of a single crystal to be grown. A method for growing a single crystal, which is selectively used according to the method.
前記コイル状フィラメントの通電時の電力を漸増させることを特徴とする請求項1または2に記載の単結晶育成方法。 The method for growing a single crystal according to claim 1, wherein the electric power during energization of the coiled filament is gradually increased. 前記加熱源が複数で、口径が大きい単結晶の育成時に、前記複数の加熱源のうち、一部の加熱源を上方に変位させて被加熱部における加熱域を種結晶棒側に拡大させることによって、種結晶棒側の固液界面のせり上がりを防止することを特徴とする請求項1から3のいずれかに記載の単結晶育成方法。 When growing a single crystal having a plurality of heating sources and a large diameter, a part of the heating sources among the plurality of heating sources is displaced upward to expand the heating region in the heated portion to the seed crystal rod side. 4. The method for growing a single crystal according to claim 1, wherein the solid-liquid interface on the seed crystal rod side is prevented from rising. 回転楕円面鏡と、この回転楕円面鏡の一方の焦点に配置された加熱源と、この加熱源の赤外線を回転楕円面鏡で反射して他方の焦点に配置された原料棒および種結晶棒に照射して単結晶を育成する単結晶育成装置において、
前記加熱源を、複数個のコイル状フィラメントを平面状に並置し、かつ、水平方向に配置して構成し、それら複数個のコイル状フィラメントを、個々の電源に接続したことを特徴とする単結晶育成装置。
A spheroid mirror, a heating source disposed at one focal point of the spheroid mirror, a raw material rod and a seed crystal rod disposed at the other focal point by reflecting the infrared rays of the heating source by the spheroid mirror In a single crystal growth apparatus that irradiates a single crystal to grow a single crystal,
The heating source is configured by arranging a plurality of coiled filaments side by side in a plane and horizontally, and the plurality of coiled filaments are connected to individual power sources. Crystal growth device.
回転楕円面鏡と、この回転楕円面鏡の一方の焦点に配置された加熱源と、この加熱源の赤外線を回転楕円面鏡で反射して他方の焦点に配置された原料棒および種結晶棒に照射して単結晶を育成する単結晶育成装置において、
前記加熱源を、複数個のコイル状フィラメントを横方向および上下に配置し、かつ、全体として横方向に配置して構成し、それら複数個のコイル状フィラメントを、個々の電源に接続したことを特徴とする単結晶育成装置。
A spheroid mirror, a heating source disposed at one focal point of the spheroid mirror, a raw material rod and a seed crystal rod disposed at the other focal point by reflecting the infrared rays of the heating source by the spheroid mirror In a single crystal growth apparatus that irradiates a single crystal to grow a single crystal,
The heating source is configured by arranging a plurality of coiled filaments in the horizontal direction and the vertical direction, and as a whole in the horizontal direction, and connecting the plurality of coiled filaments to individual power sources. A single crystal growth device characterized.
前記電源が、その電力を漸増させることができる電力可変電源であることを特徴とする請求項5または6に記載の単結晶育成装置。 The single crystal growth apparatus according to claim 5 or 6, wherein the power source is a variable power source capable of gradually increasing the power. 前記加熱源が複数で、そのうちの一部の加熱源を、上方に変位可能に構成したことを特徴とする請求項5から7のいずれかに記載の単結晶育成装置。

The single crystal growth apparatus according to claim 5, wherein a plurality of the heat sources are provided, and some of the heat sources are configured to be displaceable upward.

JP2003326247A 2003-09-18 2003-09-18 Single crystal growth method and apparatus Expired - Fee Related JP4219779B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003326247A JP4219779B2 (en) 2003-09-18 2003-09-18 Single crystal growth method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003326247A JP4219779B2 (en) 2003-09-18 2003-09-18 Single crystal growth method and apparatus

Publications (2)

Publication Number Publication Date
JP2005089263A JP2005089263A (en) 2005-04-07
JP4219779B2 true JP4219779B2 (en) 2009-02-04

Family

ID=34456483

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003326247A Expired - Fee Related JP4219779B2 (en) 2003-09-18 2003-09-18 Single crystal growth method and apparatus

Country Status (1)

Country Link
JP (1) JP4219779B2 (en)

Also Published As

Publication number Publication date
JP2005089263A (en) 2005-04-07

Similar Documents

Publication Publication Date Title
US3943324A (en) Apparatus for forming refractory tubing
EP2128308B1 (en) Floating zone melting apparatus
CN1946882A (en) Single crystals and methods for fabricating same
TWI400368B (en) Floating band melting device
KR20100100920A (en) Floating-zone melting apparatus
Kitazawa et al. A new thermal imaging system utilizing a Xe arc lamp and an ellipsoidal mirror for crystallization of refractory oxides
KR101574749B1 (en) Upper heater for manufacturing single crystal, single crystal manufacturing apparatus and single crystal manufacturing method
JP2011144081A (en) Apparatus and method for growing single crystal
US3761677A (en) Apparatus for producing single crystals including halogen lamps aligned with the common major axes of a spheroidal reflector pair
JP4219779B2 (en) Single crystal growth method and apparatus
KR101654856B1 (en) Heater for growing single crystal and single crystal grower using it and method for growing single crystal
JP6006191B2 (en) Single crystal manufacturing apparatus and single crystal manufacturing method
JP5926432B1 (en) Single crystal manufacturing apparatus and single crystal manufacturing method
Lüdge et al. Floating zone crystal growth
JP2550344B2 (en) Infrared heating single crystal manufacturing equipment
JP2007145629A (en) Method and apparatus for growing single crystal
KR100428699B1 (en) Large Crystal Growing Apparatus Having Vertical and Horizontal Temperature Gradients and Growing Method thereof
CA1047743A (en) Method and apparatus for forming refractory tubing
JP2022073173A (en) Method and apparatus for manufacturing ruthenium oxide single crystal
JPS5846619A (en) Epitaxial growth method of amorphous silicon or polycrystalline silicon on wafer
KR20160121050A (en) Single crystal grower having multiple crucibles
JP2005247668A (en) Single crystal growing apparatus
EP3945148A1 (en) Laser-based afterheating for crystal growth
JP2982642B2 (en) Infrared heating single crystal manufacturing equipment
JP2000233935A (en) Device for heat-treating glass material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081024

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081029

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081112

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121121

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131121

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees