JP4219161B2 - Spiral type membrane element and manufacturing method thereof - Google Patents

Spiral type membrane element and manufacturing method thereof Download PDF

Info

Publication number
JP4219161B2
JP4219161B2 JP2002377166A JP2002377166A JP4219161B2 JP 4219161 B2 JP4219161 B2 JP 4219161B2 JP 2002377166 A JP2002377166 A JP 2002377166A JP 2002377166 A JP2002377166 A JP 2002377166A JP 4219161 B2 JP4219161 B2 JP 4219161B2
Authority
JP
Japan
Prior art keywords
heat
permeation
membrane
supply
side channel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002377166A
Other languages
Japanese (ja)
Other versions
JP2004202442A (en
Inventor
眞一 地蔵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP2002377166A priority Critical patent/JP4219161B2/en
Publication of JP2004202442A publication Critical patent/JP2004202442A/en
Application granted granted Critical
Publication of JP4219161B2 publication Critical patent/JP4219161B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、種々の流体(液体あるいは気体)中に存在する特定成分を分離等するスパイラル型膜エレメント及びその製造方法に関する。より詳細には、膜の両側端辺近傍に封止構造を形成する方法の改善に関するものである。
【0002】
【従来の技術】
従来のスパイラル型膜エレメントは、2枚の膜の透過側に透過側流路材を介在させて袋状に3辺を封止した1組みの積層体(膜リーフ)を有孔の中空管に接続し、接続した積層体を供給側流路材を介在させつつスパイラル状に巻回した構造が知られていた。また、透過側の流路長を短くすべく、複数組みの積層体(膜リーフ)を用いたものも知られている。
【0003】
後者の基本構造としては、膜の供給側に供給側流路材を及び透過側に透過側流路材を配置した積層体が有孔の中空管にスパイラル状に巻回され、供給側流路と透過側流路とが直接連通しないための封止構造を有するものが一般的である。より具体的には、供給側流路材を膜の分離層側に挟み込んだ二つ折り膜リーフ及びこれに隣接する透過側流路材とからなる膜素材群の単数あるいは複数の積層体を、有孔の中空管の周りに巻き付けたものが既に公知である(例えば、特許文献1参照)。
【0004】
このようなスパイラル型膜エレメントの製造方法としては、図6(a)〜(c)に示すように、まず折り返した膜1と供給側流路材2からなる膜リーフ3と、透過側流路材4を重ねて配置し、これを一定の間隔(中空管5の外周長さを膜リーフ3の枚数分で除した長さ)ずらして積層体を作製し、次いで、上記積層体を中空管5に巻き付けていく方法が採用されている。なお、図6は、膜リーフ3が各々独立して連続しない形態(単独リーフ)を例示しているが、各々の膜リーフ3の膜1が連続した形態も知られている。
【0005】
このような膜エレメントの供給側流路と透過側流路とが連通しないように封止する方法としては、通常、膜リーフを巻回する前に、膜リーフの両側端辺及び膜リーフ先端部(巻き終わり部)に接着剤として2液混合系のウレタン樹脂等を塗布し、巻回後に静置状態で時間をかけて硬化させる方法が採用されている。しかし、混合系樹脂は、次のような種々の問題点を抱えている。第一に、混合系樹脂は粘性があるため巻回時に生じる材料のズレなどによりシワが発生する恐れがありシール性が不完全になる可能性がある。第二に、混合系樹脂を使用する場合、工数・材料(樹脂)コストが増加する。第三に、混合系樹脂は混合直後より硬化が進み巻回終了までの時間が制限される。
【0006】
また、熱融着性材料を封止に使用する技術として、図7(a)〜(b)に示すように、分離物流路材(透過側流路材4)の両側端辺及び先端部にホットメルトタイプのテープ状接着剤Tを仮固定し、電磁波照射することにより分離膜1と接着させる方法が知られている(例えば、特許文献2参照)。この方法によると、混合系樹脂の粘性による材料のズレの問題がなく、また接着剤の塗布工程が不要となり、工程時間を短縮することができる。
【0007】
【特許文献1】
米国特許3,417,870号公報(第1頁、図2)
【特許文献2】
特開平7−204471号公報(第2頁、図3)
【0008】
【発明が解決しようとする課題】
しかしながら、テープ状接着剤を用いる方法では、図7(a)に示すように、透過側流路材4の表面にテープ状接着剤Tが仮固定され、内部に十分含浸されていないため、熱融着が行われても、図7(b)に示すように、透過側流路材4の空隙部に樹脂が十分充填されず、透過側流路材4の中央部に気泡や巣抜け4aが残留し易い。このような巣抜け4aの部分により透過側流路と供給側流路とが連通すると、封止構造のシール性が損なわれ、膜の分離性能が低下する。また、巻回工程などにおいて、テープ状接着剤の脱落やめくれが発生し易く、仮固定の条件や巻回条件の管理が煩雑になるという問題が存在する。
【0009】
そこで、本発明の目的は、熱融着性材料を使用する場合の利点を生かしながら、封止構造のシール性を大幅に改善し、しかも製造工程も簡易化できるスパイラル型膜エレメント、及びその製造方法を提供することにある。
【0010】
【課題を解決するための手段】
上記目的は、下記の如き本発明により達成できる
【0011】
即ち、本発明のスパイラル型膜エレメントの製造方法は、膜の供給側に供給側流路材を及び透過側に透過側流路材を配置した積層体を形成する工程と、少なくともこの積層体を有孔の中空管にスパイラル状に巻回する工程と、供給側流路と透過側流路とが直接連通しないための封止構造を形成する工程とを有するスパイラル型膜エレメントの製造方法において、前記膜の両側端辺近傍の封止構造を形成するにあたり、加熱により溶融状態とされた熱融着性材料を透過側流路材の空隙部に含浸・固化することにより、透過側流路材の表面から突出するように熱融着性材料を予め充填し、その熱融着性材料を再度加熱して前記膜に熱融着させて封止構造を形成することを特徴とする。上記において、前記熱融着性材料を充填した透過側流路材を用いて積層体を形成した後、前記中空管への巻回を行い、巻回後の状態で加熱して前記熱融着を行うことが好ましい。
【0013】
[作用効果]
発明の製造方法によると、前記膜の両側端辺近傍の封止構造を形成するにあたり、予め熱融着性材料を空隙部に充填した透過側流路材を用い、その熱融着性材料を前記膜に熱融着させて封止構造を形成するため、従来法のように透過側流路材に仮固定したテープ状接着剤により熱融着する方法と比較して、流路材内部に気泡や巣抜けが残留し難くいので、封止構造のシール性を大幅に改善することができる。また、テープ状接着剤の脱落やめくれに起因する歩留り低下等の問題も少なくなり、仮固定の条件や巻回条件の管理も簡易化できる。しかも、熱融着性材料を使用して封止構造を形成するため、混合系樹脂(二液接着剤)による封止構造と比較して、製造工程上有利な面が多い。
【0014】
前記熱融着性材料を充填した透過側流路材を用いて積層体を形成した後、前記中空管への巻回を行い、巻回後の状態で加熱して前記熱融着を行う場合、巻回の際には熱融着されていないため巻回工程がスムーズに行え、予め熱融着性材料を空隙部に充填しているため、巻回状態で加熱することで十分なシール性が確保できる。なお、従来のようにテープ状接着剤を使用する方法では、シール性を確保するためには巻回前に熱融着を行うのが有利となるが、巻回工程においてシワの発生などの問題が生じる場合があった。
【0015】
【発明の実施の形態】
以下、本発明の実施の形態について、図面を参照しながら説明する。図1(a)〜図3(b)は、本発明のスパイラル型膜エレメントの製造方法の一例を模式的に示す工程図である。本実施形態では、熱融着性材料11を充填した透過側流路材4を用いて積層体S1を形成した後、中空管5への巻回を行い、巻回後の状態で加熱して熱融着を行う例を示す。
【0016】
本発明の製造方法は、図1(a)〜図2(b)に示すように、膜1の供給側に供給側流路材2を及び透過側に透過側流路材4を配置した積層体S1を形成する工程を有する。本実施形態では、図2(a)〜(b)に示すように、連続する膜1を用いて、交互に折り返された膜1の供給側に供給側流路材2を及び透過側に透過側流路材4を配置する例を示す。
【0017】
まず、図1(a)に示すように、連続膜である膜1の両端を部分的に熱融着(緻密化)して融着部1aを形成する。この工程は省略することも可能であるが、膜1の両側端辺付近の封止構造のシール性を高める上で、予め熱融着を行うのが好ましい。連続膜としては、例えば幅500〜2000mm、好ましくは幅900〜1200mmを使用する。その場合、これをロールから繰り出しながら、両端から100mmの領域の間に、50mm以下の幅で熱融着(ヒートシール、超音波ウェルダーなど)を連続的に行う。好ましくは、両端から30mmの領域の間に、30mm以下の幅で熱融着を行う。
【0018】
本発明に用いられる膜1としては、透過に一定以上の圧力損失を有する多孔質膜又は非多孔質膜であればよく、具体的には、精密濾過膜、限外濾過膜、ナノ濾過膜、逆浸透膜、イオン交換膜、気体分離膜、透析膜、などが挙げられる。膜の材質としては、ポリプロピレン、ポリエチレン等のポリオレフィン、ポリスルホン、ポリエーテルスルホン、ポリスチレン、ポリアクリロニトリル、酢酸セルロース、ポリアミド、ポリイミド、フッ素樹脂等の高分子膜を用いることができる。また、上記の膜1は多孔質支持層のような補強層を有していてもよい。その場合、一般的には補強層の側に透過側流路材4が配置される。
【0019】
次に、図1(b)に示すように、透過側流路材4の両側端辺付近(封止構造の形成位置)の空隙部に熱融着性材料11を充填する。透過側流路材4としては、スパイラル型膜エレメントとして従来公知の透過側流路材が何れも使用でき、ネット、メッシュ、線材織物、繊維織物、不織布、など何れでもよい。また、その材質もポリプロピレン、ポリエチレン、ポリエチレンテレフタレート(PET)、ポリアミド、エポキシ、ウレタン等の樹脂の他、天然高分子、ゴム、金属など何れでもよい。但し、分離操作等の際に流路材からの溶出が問題となる場合、それを考慮して材質を選択するのが好ましい。
【0020】
透過側流路材4の厚みは0.2〜1mmであることが好ましく、透過側流路材4の厚み方向における空隙率は10%以上60%以下であることが好ましい。また、透過側流路材4がネット状である場合、そのピッチが0.3mm以上5mm以下であることが好ましい。
【0021】
熱融着性材料11としては、常温で固体であり加熱により融着可能な材料であればよく、エチレン/酢酸ビニル共重合体(EVA)、ポリエチレン、ポリウレタン、アクリル樹脂、テルペン樹脂、ロジン樹脂、などのホットメルト接着剤の他、その他の熱可塑性樹脂、熱可塑性エラストマー、その混合物などが使用できる。
【0022】
充填の方法としては、溶融状態の材料を含浸・固化させる方法、溶液状態の材料を含浸後に溶媒を除去する方法、微粒子状の材料を内部に充填して溶融させる方法など何れもよい。但し、透過側流路材4の空隙内に確実に充填する観点から、溶融状態の材料を含浸・固化させる方法が好ましく、溶融状態の材料を透過側流路材4に押出して展開したり、テープ状または紐状等の材料を金型や別のヒータで加熱して含浸させたりすればよい。
【0023】
本発明では、特に図4(a)に示すように、周方向に連続する成形溝21aを有するロール21を2本対向させて、回転するロール21間に透過側流路材4を通過させながら、溶融状態(又は軟化状態)の熱融着性材料11を含浸させる方法が好ましい。その際、ロール21やヒータによる加熱で、固体の熱融着性材料11を溶融状態(又は軟化状態)にしてもよいが、特に、ロール21を通過させる前の透過側流路材4に熱融着性材料11を溶融状態で展開して含浸させる方法が好ましい。
【0024】
この方法によると、図4(b)に示すように、展開された溶融状態の熱融着性材料11aが透過側流路材4に含浸し、これがロール21間を通過することによって、成形溝21aの深さと幅に応じた厚みと幅の熱融着性材料11が成形される。
【0025】
熱融着性材料11を充填した状態での厚みは、透過側流路材4の表面より0〜1.0mm、特に0〜0.5mmだけ表面が高くなる厚みとするのが好ましい。これより薄いと、熱融着後のシール性が不十分となる傾向があり、これより厚いと、熱融着性樹脂等の広がりによる有効膜面積の損失が生じたり、熱融着性樹脂等の広がりによる巻きゆるみが生じて熱融着後のシール性が不十分となる傾向がある。
【0026】
次に、図1(c)に示すように、膜1の透過側(図面の下側)に透過側流路材4を仮固定する。仮固定の方法としては、熱融着性材料11を部分的に熱融着させる方法、仮止めテープを使用する方法など何れでもよいが、熱融着性材料11を部分的に熱融着させる方法が好ましい。熱融着の条件は後の融着工程と比べて低温で行うのが好ましい。
【0027】
次に、図1(c)に示すように、供給側(図面の上側)の膜面に等間隔で、補強用の粘着テープ12の10〜100mm幅を、長さ方向に500〜2000mmの等間隔で幅方向にシワの入らないように貼り付ける。好ましくは、10〜50mm幅の粘着テープ12を、長さ方向に500〜1500mmの等間隔で貼り付ける。粘着テープ12は、PETテープなど何れでもよい。これは連続で折りたたんだときの山折り側、谷折り側になる部分である。
【0028】
本発明では前記膜1を折り返すにあたり、予め膜1の折り返し線に沿って、溝状、折目状、圧密状の筋目やミシン目などを形成するのが好ましい。具体的な形成方法としては、例えば溝付きの金型、溝付きロール、又は一対のロールなどを受け側として、上部から直線状又はミシン目状の刃物や回転刃を押しつけて挟み込む方法が挙げられる。
【0029】
次に、図2(a)に示すように、例えば幅500〜2000mm、好ましくは幅900〜1200mmの供給側流路材2を500〜2000mmに切断しておき、粘着テープ12を貼り付けたところに交互に供給側流路材2を固定していく。固定方法については、熱融着、ステープル、テープ、樹脂などあるが超音波ウェルダーが好ましい。
【0030】
供給側流路材2としては、スパイラル型膜エレメントとして従来公知の供給側流路材が何れも使用でき、ネット、メッシュ、線材織物、繊維織物、不織布、溝付きシート、波形シートなど何れでもよい。また、その材質もポリプロピレン、ポリエチレン、ポリエチレンテレフタレート(PET)、ポリアミド等の樹脂の他、天然高分子、ゴム、金属など何れでもよい。但し、分離操作等の際に流路材からの溶出が問題となる場合、それを考慮して材質を選択するのが好ましい。
【0031】
供給側流路材2の厚みは0.3mm以上2mm以下であることが好ましく、供給側流路材2の厚み方向における空隙率は10%以上70%以下であることが好ましい。また、供給側流路材2がネット状である場合、そのピッチが0.5mm以上10mm以下であることが好ましい。
【0032】
次に、図2(b)に示すように、供給側流路材2を固定した粘着テープ12の部分のほぼ中央部分を供給側流路材2が内側になるように折り返す。それを設定リーフ分折り返して、積層体S1とする。折り返しは、手や治具を用いて折り返したり、これを自動化した装置を用いて行うことができる。なお、設定リーフ数は、例えば8インチサイズのもので15〜50リーフである。この時、透過側流路材4を挟み込む側の折り返し部は折目のない状態とする。
【0033】
上記の際、折目部の安定化、形状保持、強度アップなどのために、膜1を折り返す際や折り返し後に加熱加圧を行なうのが好ましい。具体的には、一対の加熱プレートを用いて折り返し部を挟み込む方法、一対の加熱したロール間を通過させる方法、折り返し部を保持可能な隙間を形成した加熱体に折り返し部を押し込む方法などが挙げられる。この加熱加圧は、折り返す際又は折り返し後、あるいは折り返し際及び折り返し後に行えばよいが、折り返し後に加熱加圧状態を一定時間保持するのが好ましい。
【0034】
本発明では、図3(a)〜(b)に示すように、少なくともこの積層体S1を有孔の中空管5にスパイラル状に巻回する工程を有する。本実施形態では、積層体S1の巻き始め側を直接中空管5に固着又は固定してから巻回を行う例を示す。
【0035】
まず、図3(a)に示すように、透過側流路材4を仮止めした膜1の一つ目にあたる巻き始め部を中空管5に固着し、各リーフを中空管5の円周の長さに合わせた間隔でずらして固着又は配置する。
【0036】
中空管5としては、従来公知のものが何れも使用でき、例えば金属、繊維強化プラスチック、プラスチックまたはセラミックスなどからなる、有孔の中空管であればよい。孔の形状、大きさ、位置、個数なども膜種類などに応じて、従来公知のものがいずれも採用できる。
【0037】
中空管5の外径と長さは、スパイラル型膜エレメントのサイズに応じて適宜決定される。例えば外径10〜100mm、長さ500〜2000mmであり、好ましくは外径12〜38mm、長さ900〜1200mmである。この例では、中空管5が透過側の流路(例えば集水管)となる。
【0038】
積層体S1(膜リーフ)を中空管5に固着する方法としては、熱融着や超音波融着の他、接着剤による接着、粘着テープ、両面テープ、熱融着材による接着、機械的な固着など何れでもよい。固着の部位としては、等間隔でなくとも膜等の配置の仕方で修正することができるが、略等間隔とするのが好ましい。略等間隔とする場合、中空管5の外周長を固着する膜リーフの数で除した間隔とするのが好ましい。
【0039】
次に、スパイラル状に巻回する工程を行うが、図3(b)に示すように、巻回体R1の外周に単数又は複数のロール15を押し当てながら中空管5を回転させて巻回を行うのが好ましい。
【0040】
中空管5を回転させる方法としては、従来の巻き取り装置が使用でき、巻付用のチャックに中空管5をセットして回転させればよい。回転速度としては、巻回体R1の外周部の周速で例えば10mm/min〜50m/minである。
【0041】
上記の際、ロール15は、回転自在または回転の制動力もしくは駆動力を有するものの何れでもよいが、回転自在または微小な制動力を有するものが好ましい。本発明では、上記のような巻回工程によって積層体S1を最後まで巻回してもよいが、巻回の途中又は終了後に、単数又は複数のロール15を更に強い圧力で押し当てながら中空管5を回転させて巻回体R1を巻き締める工程を実施してもよい。なお、本実施形態のように連続リーフ式の場合、最後まで巻回することで、リーフの外周側の仮折りをすることも可能である。上記の巻き締め工程では、圧力及び速度をコントロールすることで、巻き締まり状態をコントロールできる。なお、巻回後の巻回体R1に外装シートを巻き付けてもよい。
【0042】
本発明は、供給側流路と透過側流路とが直接連通しないための封止構造を形成する工程を有するが、図3(c)に示すように、膜1の両側端辺近傍の封止構造A1を形成するにあたり、予め熱融着性材料11を空隙部に充填した透過側流路材4を用い、その熱融着性材料11を前記膜1に熱融着させて封止構造を形成する。
【0043】
本実施形態では、巻回後の巻回体R1の状態で加熱して当該熱融着を行う。熱融着の条件としては、熱融着性材料11の種類等にもよるが、加熱温度が90〜160℃が好ましく、110〜130℃がより好ましい。また、加熱時間は、加熱温度にもよるが、30〜90が好ましい。なお、熱融着は、直接加熱を行う方法の他、マイクロ波、高周波等の電磁波、赤外線、その他のエネルギー線などを利用して加熱する方法などでもよい。電磁波を利用する方法については、特開平7−204471号公報に詳細に説明されている。
【0044】
本発明では、封止構造A1以外の封止構造を更に形成してもよいが、この工程は従来法と同様にして行うことができる。当該工程は、何れの時点で行ってもよく、複数の工程で行ってもよい。例えば、膜1の両側端辺近傍の封止構造より更に内周側の中空管5との近接部を封止して封止構造A2を形成する工程を、別途行ってもよい。また、連続膜を使用せずに複数の膜リーフを使用する場合に、膜1の外側端辺を封止する工程などを行ってもよい。封止構造A2の封止工程については、熱融着テープを用いた熱融着や超音波融着の他、接着剤による接着、粘着テープ、両面テープ、熱融着材による接着などを実施してもよい。また、後者の封止工程については、これらの方法以外に、前述した予め熱融着性材料11を空隙部に充填した透過側流路材4を用いる方法が有効である。これについては後に詳述する。
【0045】
なお、巻回の後に、熱融着等した封止部分の残留応力を除去するために、適当な温度で熱処理したり、あるいは前記巻回工程を熱融着等が離反しない温度で加熱等しながら行ってもよい。また、巻回工程の後に、膜1の外周面にネット等の外周部流路材を巻回してもよい。
【0046】
本発明のスパイラル型膜エレメントは、本発明の製造方法によって好適に製造し得るものである。即ち、図3(c)に示すように、膜1の供給側に供給側流路材2を及び透過側に透過側流路材4を配置した積層体S1が有孔の中空管5にスパイラル状に巻回され、供給側流路と透過側流路とが直接連通しないための封止構造を有するスパイラル型膜エレメントにおいて、前記膜1の両側端辺近傍の封止構造A1は、前記透過側流路材4の空隙部に表裏連通して充填された熱融着性材料11によって前記膜1が熱融着された構造である。具体的な材料、形状、構造等は、前述した通りである。
【0047】
[他の実施形態]
(1)前述の実施形態では、熱融着性材料を充填した透過側流路材を用いて積層体を形成した後、中空管への巻回を行い、巻回後の状態で加熱して熱融着を行う例を示したが、中空管への巻回を行う前に熱融着を行って封止構造を形成してもよい。
【0048】
(2)前述の実施形態では、連続膜を使用した連続リーフを積層体として巻回する例を示したが、本発明では、単独リーフを複数用意し、これを使用して積層体を形成した後にこれを中空管に巻回してもよい。また、長尺の単独リーフを1組みのみ使用してこれを中空管に巻回してもよい。
【0049】
その場合、膜の外側端辺を封止する方法として、前述した予め熱融着性材料を空隙部に充填した透過側流路材を用いる方法が有効である。例えば図5に示すように、透過側流路材4の膜リーフ両側端辺及び膜リーフ先端部にあたる部分に、熱融着性材料11を充填したものを使用し、この供給側流路材2を膜1の供給側に挟み込んだ二つ折り膜リーフを2枚の透過側流路材4の間に挿入、固定し中心管に巻き付けた後、熱融着すればよい。この場合も前述と同様のロールを用いる方法で、連続的に熱融着性材料11を透過側流路材4の両側に充填し、更に、幅方向の熱融着性材料11を充填した後、切断することにより、予め熱融着性材料11を3辺近傍の空隙部に充填した透過側流路材4を作製することができる。
【0050】
(3)前述の実施形態では、中空管を透過側の流路とすべく、透過側流路材を多孔シートに固着する例を示したが、濃度分極によるケークの形成等が問題とならない場合など、中空管を供給側の流路とすべく、供給側流路材を多孔シートに固着してもよい。
【0051】
(4)前述の実施形態では、連続膜の透過側に透過側流路材を配置した後、供給側に供給側流路材を配置し、これを交互に折り返して積層体を形成する例を示したが、配置の順番や折り返しとの順序関係などは、何れでもよい。
【0052】
【実施例】
以下、本発明の構成と効果を具体的に示す実施例等について説明する。
【0053】
実施例1
図1(a)〜図3(b)に示す工程に従って、次の材料、条件等にてスパイラル型膜エレメントを作製し、その評価を行った。
【0054】
日東電工(株)製のRO膜ES10を繰り出しながら両側端辺のヒートシールを連続的に行なった。また、前記ロール間を通過させてホットメルト樹脂(アスハラケミカル(株)製、EVA)を透過側流路材(トリコットタイプ、ポリエステル樹脂)の表面からの厚みが0.1mmになるように含浸・充填した。これを部分加熱し膜の透過側の面に仮接着させた。供給側の膜面にて折り目にあたる箇所に等間隔でテープを幅方向横断するように貼り付けた。テープを貼りつけた後、折り目になる部分に金属製薄板、受け側に金型で荷重を与え供給側が谷の方向で筋目を入れた。必要な大きさに切断した供給側流路材を用意し、折り目部分としてテープを貼り付けた部分に供給側流路材を超音波ウエルダーにて固定した。供給側流路材を固定したテープ部分のほぼ中央部分を折り曲げ、設定した膜リーフの数分折り曲げた。このとき.反対側の折り返し部分(供給側山折り側)は折り曲げていない状態とした。折り目部の強度アップのためにエア圧力で熱プレスを行った。このようにして積層体を準備した。
【0055】
以上のようにして組立てられたものについて巻付用のチャックに中空管をセットし、チャックを一定の速度で回転させて全膜リーフを巻き上げた。このときロールを2方向から一定の圧力でエレメントに当てて端面を揃え、連続リーフ式の場合は外周側の仮折りをした。一定回数回転させた後、1本のロールを更に当てて巻き締めていった。このとき膜リーフにシワ、折れ、ズレの発生は無かった。
【0056】
巻き上げたエレメントを130℃の乾燥機中で1時間静置し、ホットメルト樹脂を融着させ、その後室温に戻して固化させた。固化が終了したエレメントについて、水中で中心管より0.05MPa の圧力でリーフ内の透過側をエア加圧しシール性を確認した結果、供給側からのバブルの発生は認められなかった。また、膜特性を測定した結果、所定の膜性能を満足した。
【図面の簡単な説明】
【図1】本発明のスパイラル型膜エレメントの製造方法の一例を模式的に示す工程図
【図2】本発明のスパイラル型膜エレメントの製造方法の一例を模式的に示す工程図
【図3】本発明のスパイラル型膜エレメントの製造方法の一例を模式的に示す工程図
【図4】図1に示す工程の一部を更に詳細に示す工程図
【図5】本発明のスパイラル型膜エレメントの製造方法の他の例を示す説明図
【図6】従来のスパイラル型膜エレメントの製造方法の一例を模式的に示す工程図
【図7】従来のスパイラル型膜エレメントの製造方法の熱融着状態を示す説明図
【符号の説明】
1 膜
2 供給側流路材
4 透過側流路材
5 中空管
11 熱融着性材料
S1 積層体
R1 巻回体
A1 膜の両側端辺近傍の封止構造
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a spiral membrane element that separates specific components present in various fluids (liquid or gas) and a method for manufacturing the same. More specifically, the present invention relates to an improvement in a method for forming a sealing structure near both side edges of a film.
[0002]
[Prior art]
A conventional spiral membrane element is a perforated hollow tube comprising a set of laminated bodies (membrane leaves) in which three sides are sealed in a bag shape with a permeate-side channel material interposed on the permeate side of two membranes. There has been known a structure in which the connected laminated body is wound in a spiral shape with a supply-side channel material interposed therebetween. Also known is a method using a plurality of laminated bodies (film leaves) in order to shorten the flow path length on the permeate side.
[0003]
The basic structure of the latter is that a laminated body in which a supply-side channel material is arranged on the membrane supply side and a permeation-side channel material is arranged on the permeation side is spirally wound around a perforated hollow tube. The one having a sealing structure for preventing the passage and the permeate-side flow path from communicating directly is generally used. More specifically, a single or a plurality of laminates of a membrane material group including a bi-fold membrane leaf sandwiching the supply-side channel material on the separation layer side of the membrane and a permeate-side channel material adjacent thereto are provided. What was wound around the hollow tube of a hole is already well-known (for example, refer patent document 1).
[0004]
As a manufacturing method of such a spiral membrane element, as shown in FIGS. 6A to 6C, first, a membrane leaf 3 composed of a folded membrane 1 and a supply-side channel material 2, and a permeate-side channel The material 4 is placed in an overlapping manner, and this is shifted by a certain distance (the length obtained by dividing the outer peripheral length of the hollow tube 5 by the number of the membrane leaves 3) to produce a laminated body. A method of winding around the empty tube 5 is employed. FIG. 6 illustrates a form in which the film leaves 3 are not continuous independently (single leaves), but a form in which the films 1 of the film leaves 3 are continuous is also known.
[0005]
As a method of sealing so that the supply-side flow path and the permeation-side flow path of such a membrane element do not communicate with each other, normally, before winding the membrane leaf, both side edges of the membrane leaf and the tip of the membrane leaf A method in which a two-component mixed urethane resin or the like is applied as an adhesive to the (winding end portion) and is allowed to cure in a stationary state after winding. However, the mixed resin has various problems as follows. First, since the mixed resin is viscous, wrinkles may occur due to material misalignment that occurs during winding, and the sealing performance may be incomplete. Second, when a mixed resin is used, man-hours and material (resin) costs increase. Third, the mixed resin is hardened immediately after mixing and the time until the end of winding is limited.
[0006]
Further, as a technique for using a heat-fusible material for sealing, as shown in FIGS. 7A to 7B, on both side edges and the tip of the separated channel material (permeation side channel material 4). A method is known in which a hot-melt type tape-like adhesive T is temporarily fixed and adhered to the separation membrane 1 by irradiation with electromagnetic waves (see, for example, Patent Document 2). According to this method, there is no problem of material misalignment due to the viscosity of the mixed resin, and an adhesive application step is not required, and the process time can be shortened.
[0007]
[Patent Document 1]
US Pat. No. 3,417,870 (first page, FIG. 2)
[Patent Document 2]
JP-A-7-204471 (2nd page, FIG. 3)
[0008]
[Problems to be solved by the invention]
However, in the method using the tape-like adhesive, as shown in FIG. 7A, the tape-like adhesive T is temporarily fixed on the surface of the permeate-side flow path member 4 and is not sufficiently impregnated inside. Even if the fusion is performed, as shown in FIG. 7B, the resin is not sufficiently filled in the gap portion of the permeate-side channel material 4, and bubbles or nests 4a are formed in the central portion of the permeate-side channel material 4. Tends to remain. When the permeation-side flow path and the supply-side flow path communicate with each other through the nest 4a, the sealing performance of the sealing structure is impaired, and the membrane separation performance is degraded. In addition, in the winding process and the like, there is a problem that the tape-like adhesive is easily dropped and turned up, and management of temporary fixing conditions and winding conditions becomes complicated.
[0009]
Accordingly, an object of the present invention is to provide a spiral membrane element capable of greatly improving the sealing performance of the sealing structure and simplifying the manufacturing process while taking advantage of the use of the heat-fusible material, and the manufacturing thereof. It is to provide a method.
[0010]
[Means for Solving the Problems]
  The above object can be achieved by the present invention as follows..
[0011]
  That isThe spiral membrane element manufacturing method of the present invention includes a step of forming a laminate in which a supply-side channel material is disposed on the membrane supply side and a permeation-side channel material is disposed on the permeation side, and at least the laminate is provided. In a method for manufacturing a spiral membrane element, comprising a step of spirally winding around a hollow tube of a hole, and a step of forming a sealing structure for preventing the supply-side channel and the permeate-side channel from communicating directly with each other. In forming a sealing structure in the vicinity of both side edges of the film,Molten by heatingHeat fusible materialPermeate side channel materialIn the gapBy impregnation and solidification, pre-filled with heat-fusible material so that it protrudes from the surface of the permeate-side channel material., Its heat-fusible materialHeat againA sealing structure is formed by heat fusion to the film. In the above, after forming a laminated body using the permeation-side flow path material filled with the heat-fusible material, the laminate is wound around and heated in the state after the winding to heat the heat-fusion. It is preferable to wear.
[0013]
    [Function and effect]
  BookAccording to the manufacturing method of the invention, in forming the sealing structure near both side edges of the film, the permeation-side flow path material in which the gap portion is previously filled with the heat-fusible material is used, and the heat-fusible material is In order to form a sealing structure by heat-sealing to the film, compared with the method of heat-sealing with a tape-like adhesive temporarily fixed to the permeate-side flow path material as in the conventional method, Since bubbles and nest removal hardly remain, the sealing performance of the sealing structure can be greatly improved. In addition, problems such as a drop in yield due to falling off and turning of the tape-like adhesive are reduced, and management of temporary fixing conditions and winding conditions can be simplified. In addition, since a sealing structure is formed using a heat-fusible material, there are many advantageous aspects in the manufacturing process as compared with a sealing structure using a mixed resin (two-component adhesive).
[0014]
After forming a laminated body using a permeate-side channel material filled with the heat-fusible material, the laminate is wound around the hollow tube and heated in the state after the winding to perform the heat-sealing. In the case of winding, since it is not heat-sealed, the winding process can be performed smoothly, and since the gap is filled with the heat-fusible material in advance, a sufficient seal can be obtained by heating in the wound state. Sex can be secured. In the conventional method using a tape-like adhesive, it is advantageous to heat-seal before winding in order to ensure the sealing performance, but there are problems such as generation of wrinkles in the winding process. May occur.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1A to FIG. 3B are process diagrams schematically showing an example of a method for manufacturing a spiral membrane element of the present invention. In this embodiment, after forming laminated body S1 using the permeation | transmission side flow path material 4 filled with the heat-fusible material 11, it winds around the hollow tube 5, and heats in the state after winding. An example of performing heat fusion is shown.
[0016]
As shown in FIGS. 1A to 2B, the production method of the present invention is a laminate in which a supply-side channel material 2 is disposed on the supply side of the membrane 1 and a permeation-side channel material 4 is disposed on the permeation side. Forming the body S1. In the present embodiment, as shown in FIGS. 2A to 2B, the continuous membrane 1 is used, and the supply-side channel material 2 is transmitted to the supply side of the alternately folded film 1 and transmitted to the transmission side. The example which arrange | positions the side channel material 4 is shown.
[0017]
First, as shown in FIG. 1A, both ends of a continuous film 1 are partially heat-sealed (densified) to form a fused portion 1a. Although this step can be omitted, in order to improve the sealing performance of the sealing structure in the vicinity of both side edges of the film 1, it is preferable to perform heat fusion in advance. As the continuous film, for example, a width of 500 to 2000 mm, preferably a width of 900 to 1200 mm is used. In this case, heat fusion (heat sealing, ultrasonic welder, etc.) is continuously performed with a width of 50 mm or less between the regions of 100 mm from both ends while feeding it from the roll. Preferably, heat fusion is performed with a width of 30 mm or less between regions of 30 mm from both ends.
[0018]
The membrane 1 used in the present invention may be a porous membrane or a non-porous membrane having a pressure loss of a certain level or more for permeation. Specifically, a microfiltration membrane, an ultrafiltration membrane, a nanofiltration membrane, Examples include reverse osmosis membranes, ion exchange membranes, gas separation membranes, and dialysis membranes. As the material of the membrane, a polymer membrane such as polyolefin such as polypropylene or polyethylene, polysulfone, polyethersulfone, polystyrene, polyacrylonitrile, cellulose acetate, polyamide, polyimide, fluororesin, or the like can be used. The membrane 1 may have a reinforcing layer such as a porous support layer. In that case, the permeate-side flow path member 4 is generally disposed on the reinforcing layer side.
[0019]
Next, as shown in FIG. 1 (b), the heat-fusible material 11 is filled in the voids in the vicinity of both side edges (sealing structure forming position) of the permeation-side channel material 4. As the permeation side channel material 4, any conventionally known permeation side channel material can be used as the spiral membrane element, and any of net, mesh, wire woven fabric, fiber woven fabric, non-woven fabric, etc. may be used. Further, the material may be any of natural polymers, rubbers, metals, etc., in addition to resins such as polypropylene, polyethylene, polyethylene terephthalate (PET), polyamide, epoxy, and urethane. However, when elution from the channel material becomes a problem during the separation operation or the like, it is preferable to select the material in consideration thereof.
[0020]
The thickness of the permeate side channel material 4 is preferably 0.2 to 1 mm, and the porosity in the thickness direction of the permeate side channel material 4 is preferably 10% or more and 60% or less. Moreover, when the permeation | transmission side flow-path material 4 is net shape, it is preferable that the pitch is 0.3 mm or more and 5 mm or less.
[0021]
The heat-fusible material 11 may be any material that is solid at room temperature and can be fused by heating, such as ethylene / vinyl acetate copolymer (EVA), polyethylene, polyurethane, acrylic resin, terpene resin, rosin resin, Other thermoplastic resins, thermoplastic elastomers, mixtures thereof, etc. can be used in addition to hot melt adhesives such as
[0022]
As a filling method, any of a method of impregnating and solidifying a material in a molten state, a method of removing a solvent after impregnating a material in a solution state, a method of filling and melting a fine particle material inside may be used. However, from the viewpoint of reliably filling the gaps in the permeate-side flow path material 4, a method of impregnating and solidifying the molten material is preferable, and the molten material is extruded into the permeate-side flow path material 4 and developed. A material such as a tape or string may be impregnated by heating with a mold or another heater.
[0023]
In the present invention, in particular, as shown in FIG. 4A, two permeating rolls 21 having molding grooves 21a that are continuous in the circumferential direction are opposed to each other, and the permeation-side channel material 4 is passed between the rotating rolls 21. A method of impregnating the heat-fusible material 11 in a molten state (or a softened state) is preferable. At this time, the solid heat-fusible material 11 may be brought into a molten state (or a softened state) by heating with a roll 21 or a heater. In particular, heat is applied to the permeate-side channel material 4 before passing the roll 21. A method of spreading and impregnating the fusible material 11 in a molten state is preferable.
[0024]
According to this method, as shown in FIG. 4 (b), the expanded heat-fusible material 11 a is impregnated into the permeate-side flow path material 4, and this passes between the rolls 21, thereby forming the forming groove. The heat-fusible material 11 having a thickness and width corresponding to the depth and width of 21a is formed.
[0025]
The thickness in the state where the heat-fusible material 11 is filled is preferably 0 to 1.0 mm, particularly preferably 0 to 0.5 mm, higher than the surface of the permeate-side channel material 4. If it is thinner than this, the sealing property after heat fusion tends to be insufficient, and if it is thicker than this, the loss of the effective film area due to the spread of the heat-fusible resin, etc. There is a tendency that the looseness of winding due to the spread of the film causes insufficient sealing performance after heat fusion.
[0026]
Next, as shown in FIG. 1C, the permeation-side flow path member 4 is temporarily fixed on the permeation side (lower side of the drawing) of the membrane 1. As a temporary fixing method, any of a method of partially heat-sealing the heat-fusible material 11 and a method of using a temporary fixing tape may be used, but the heat-fusible material 11 is partially heat-sealed. The method is preferred. It is preferable to carry out the heat-sealing conditions at a lower temperature than in the subsequent fusion process.
[0027]
Next, as shown in FIG. 1 (c), the reinforcing adhesive tape 12 has a width of 10 to 100 mm at an equal interval on the supply side (upper side of the drawing), a length of 500 to 2000 mm, etc. Attach it so that there are no wrinkles in the width direction at intervals. Preferably, the adhesive tape 12 having a width of 10 to 50 mm is attached at regular intervals of 500 to 1500 mm in the length direction. The adhesive tape 12 may be any PET tape. This is the portion that becomes the mountain fold side and the valley fold side when folded continuously.
[0028]
In the present invention, when the film 1 is folded, it is preferable that grooves, creases, compacted lines, perforations, and the like are formed in advance along the folding line of the film 1. As a specific forming method, for example, there is a method in which a linear or perforated blade or rotary blade is pressed and sandwiched from the upper side as a receiving side, for example, a grooved mold, a grooved roll, or a pair of rolls. .
[0029]
Next, as shown to Fig.2 (a), when the supply side flow-path material 2 of width 500-2000mm, for example, preferably 900-1200mm is cut | disconnected to 500-2000mm, and the adhesive tape 12 is affixed, for example The supply-side channel material 2 is fixed alternately. The fixing method includes heat fusion, staple, tape, resin, etc., but an ultrasonic welder is preferable.
[0030]
As the supply-side channel material 2, any conventionally known supply-side channel material can be used as the spiral membrane element, and any of a net, a mesh, a wire woven fabric, a fiber woven fabric, a nonwoven fabric, a grooved sheet, a corrugated sheet, and the like may be used. . The material may be any of natural polymers, rubber, metals, etc., in addition to resins such as polypropylene, polyethylene, polyethylene terephthalate (PET), polyamide and the like. However, when elution from the channel material becomes a problem during the separation operation or the like, it is preferable to select the material in consideration thereof.
[0031]
The thickness of the supply-side channel material 2 is preferably 0.3 mm or more and 2 mm or less, and the porosity in the thickness direction of the supply-side channel material 2 is preferably 10% or more and 70% or less. Moreover, when the supply side flow-path material 2 is net shape, it is preferable that the pitch is 0.5 mm or more and 10 mm or less.
[0032]
Next, as shown in FIG. 2B, the substantially central portion of the portion of the adhesive tape 12 to which the supply side flow path member 2 is fixed is folded back so that the supply side flow path member 2 is inside. It is folded back by the set leaf to obtain a laminate S1. The folding can be performed using a hand or a jig, or using an apparatus that automates the folding. The number of set leaves is, for example, 15 to 50 leaves for an 8-inch size. At this time, the folded portion on the side sandwiching the permeate-side flow path member 4 is not folded.
[0033]
At the time of the above, it is preferable to perform heating and pressurization when the film 1 is folded or after folding in order to stabilize the crease, maintain the shape, and increase the strength. Specifically, a method of sandwiching the folded portion using a pair of heating plates, a method of passing between a pair of heated rolls, a method of pushing the folded portion into a heating body in which a gap capable of holding the folded portion is formed, etc. It is done. This heating and pressurization may be performed at the time of folding or after folding, or at the time of folding and after folding, but it is preferable to hold the heating and pressing state for a certain time after folding.
[0034]
In this invention, as shown to Fig.3 (a)-(b), it has the process of winding this laminated body S1 around the perforated hollow tube 5 spirally. In the present embodiment, an example in which winding is performed after the winding start side of the laminate S1 is directly fixed or fixed to the hollow tube 5 is shown.
[0035]
First, as shown in FIG. 3 (a), the winding start portion corresponding to the first membrane 1 to which the permeation-side flow path member 4 is temporarily fixed is fixed to the hollow tube 5, and each leaf is attached to the circle of the hollow tube 5. It is fixed or arranged at an interval according to the circumference.
[0036]
As the hollow tube 5, any conventionally known tube can be used. For example, it may be a perforated hollow tube made of metal, fiber reinforced plastic, plastic, ceramics, or the like. Any known hole shape, size, position, number, etc. may be employed depending on the type of film.
[0037]
The outer diameter and length of the hollow tube 5 are appropriately determined according to the size of the spiral membrane element. For example, the outer diameter is 10 to 100 mm and the length is 500 to 2000 mm, preferably the outer diameter is 12 to 38 mm and the length is 900 to 1200 mm. In this example, the hollow tube 5 is a permeate-side flow channel (for example, a water collection tube).
[0038]
As a method of fixing the laminated body S1 (membrane leaf) to the hollow tube 5, in addition to heat fusion and ultrasonic fusion, adhesion by an adhesive, adhesion tape, double-sided tape, adhesion by a heat fusion material, mechanical Any fixing may be used. The fixing sites can be corrected by the arrangement of the film or the like, not necessarily at regular intervals, but are preferably at substantially regular intervals. In the case of substantially equal intervals, it is preferable to set the interval obtained by dividing the outer peripheral length of the hollow tube 5 by the number of membrane leaves to be fixed.
[0039]
Next, a spiral winding process is performed. As shown in FIG. 3B, the hollow tube 5 is rotated while the single or plural rolls 15 are pressed against the outer periphery of the wound body R1. It is preferable to perform the times.
[0040]
As a method of rotating the hollow tube 5, a conventional winding device can be used. The hollow tube 5 may be set and rotated on a winding chuck. The rotation speed is, for example, 10 mm / min to 50 m / min as the peripheral speed of the outer peripheral portion of the wound body R1.
[0041]
In the above case, the roll 15 may be any one that is rotatable or has a rotational braking force or driving force, but is preferably one that is rotatable or has a minute braking force. In the present invention, the laminate S1 may be wound to the end by the winding process as described above, but the hollow tube is pressed while pressing one or more rolls 15 with a stronger pressure during or after the winding. You may implement the process of rotating 5 and winding wound body R1. In the case of the continuous leaf type as in the present embodiment, it is possible to temporarily fold the outer peripheral side of the leaf by winding to the end. In the above-described tightening step, the tightening state can be controlled by controlling the pressure and speed. In addition, you may wind an exterior sheet | seat around the wound body R1 after winding.
[0042]
The present invention includes a step of forming a sealing structure for preventing the supply-side channel and the permeate-side channel from communicating directly with each other. As shown in FIG. In forming the stopper structure A1, the permeation-side flow path material 4 in which the heat-fusible material 11 is filled in the gap portion in advance is used, and the heat-fusible material 11 is heat-sealed to the film 1 to provide a sealing structure. Form.
[0043]
In the present embodiment, the heat sealing is performed by heating in the state of the wound body R1 after winding. Although the heat fusion conditions depend on the type of the heat-fusible material 11, the heating temperature is preferably 90 to 160 ° C, more preferably 110 to 130 ° C. The heating time is preferably 30 to 90, although it depends on the heating temperature. In addition to the method of performing direct heating, heat fusion may be performed by a method of heating using electromagnetic waves such as microwaves and high frequencies, infrared rays, and other energy rays. A method using electromagnetic waves is described in detail in JP-A-7-204471.
[0044]
In the present invention, a sealing structure other than the sealing structure A1 may be further formed, but this step can be performed in the same manner as in the conventional method. This step may be performed at any time, and may be performed in a plurality of steps. For example, a step of forming the sealing structure A2 by sealing a portion closer to the hollow tube 5 on the inner peripheral side than the sealing structure in the vicinity of both side edges of the membrane 1 may be performed separately. Further, when using a plurality of membrane leaves without using a continuous membrane, a step of sealing the outer edge of the membrane 1 may be performed. Regarding the sealing process of the sealing structure A2, in addition to heat fusion and ultrasonic fusion using a heat fusion tape, adhesion by an adhesive, adhesive tape, double-sided tape, adhesion by a heat fusion material, etc. are carried out. May be. For the latter sealing step, in addition to these methods, the above-described method using the permeation-side channel material 4 in which the heat-fusible material 11 is previously filled in the gap is effective. This will be described in detail later.
[0045]
In addition, after winding, in order to remove the residual stress of the sealed portion that has been heat-sealed, heat treatment is performed at an appropriate temperature, or the winding process is heated at a temperature at which heat-sealing etc. is not separated. You may go while. Further, after the winding step, an outer peripheral channel material such as a net may be wound around the outer peripheral surface of the film 1.
[0046]
The spiral membrane element of the present invention can be suitably manufactured by the manufacturing method of the present invention. That is, as shown in FIG. 3 (c), the laminated body S1 in which the supply-side channel material 2 is arranged on the supply side of the membrane 1 and the permeation-side channel material 4 is arranged on the permeation side becomes a perforated hollow tube 5. In the spiral membrane element wound in a spiral shape and having a sealing structure for preventing the supply-side flow path and the permeation-side flow path from communicating directly, the sealing structure A1 in the vicinity of both side edges of the film 1 In this structure, the membrane 1 is heat-sealed by a heat-fusible material 11 that is filled in the gap portion of the permeate-side channel material 4 so as to communicate with the front and back. Specific materials, shapes, structures, etc. are as described above.
[0047]
[Other Embodiments]
(1) In the above-mentioned embodiment, after forming a laminated body using the permeation | transmission side flow path material filled with the heat-fusible material, it winds to a hollow tube and heats in the state after winding. Although an example in which heat sealing is performed has been described, a sealing structure may be formed by performing heat sealing before winding around a hollow tube.
[0048]
(2) In the above-described embodiment, an example of winding a continuous leaf using a continuous film as a laminated body has been shown. However, in the present invention, a plurality of single leaves are prepared and a laminated body is formed using the single leaf. Later, this may be wound around a hollow tube. Alternatively, only one set of long single leaves may be used and wound around a hollow tube.
[0049]
In that case, as a method for sealing the outer side edge of the film, the method using the permeation-side flow path material in which the gap portion is previously filled with the heat-fusible material is effective. For example, as shown in FIG. 5, the supply side channel material 2 is used by filling the heat-sealable material 11 in the portions corresponding to the both sides of the membrane leaf and the tip of the membrane leaf of the transmission side channel material 4. A bifold membrane leaf sandwiched between the membrane 1 and the supply side of the membrane 1 is inserted and fixed between the two permeation-side flow path members 4, wound around the central tube, and then heat-sealed. Also in this case, after the heat-sealable material 11 is continuously filled on both sides of the permeate-side channel material 4 by the method using the same roll as described above, and further, the heat-sealable material 11 in the width direction is filled. By cutting, the permeation-side flow path material 4 in which the heat-fusible material 11 is previously filled in the gaps in the vicinity of the three sides can be produced.
[0050]
(3) In the above-described embodiment, an example in which the permeation-side flow path material is fixed to the porous sheet so that the hollow tube is used as the permeation-side flow path has been described. In some cases, the supply-side channel material may be fixed to the porous sheet so that the hollow tube serves as the supply-side channel.
[0051]
(4) In the above-described embodiment, an example in which a permeation-side flow path material is disposed on the permeation side of the continuous membrane, and then a supply-side flow path material is disposed on the supply side, and this is alternately folded to form a laminate. As shown, the order of arrangement and the order relationship with folding may be any.
[0052]
【Example】
Examples and the like specifically showing the configuration and effects of the present invention will be described below.
[0053]
Example 1
In accordance with the steps shown in FIGS. 1 (a) to 3 (b), a spiral membrane element was produced under the following materials and conditions, and evaluated.
[0054]
While the RO membrane ES10 manufactured by Nitto Denko Corporation was fed out, heat sealing was continuously performed on both side edges. Moreover, the hot-melt resin (manufactured by Ashara Chemical Co., Ltd., EVA) is impregnated so that the thickness from the surface of the permeate-side channel material (tricot type, polyester resin) is 0.1 mm by passing between the rolls -Filled. This was partially heated and temporarily adhered to the permeate side surface of the membrane. The tape was affixed across the width direction at equal intervals on the supply-side film surface at the fold line. After affixing the tape, a metal thin plate was applied to the crease, and a load was applied to the receiving side with a mold, and the supply side was scored in the direction of the valley. A supply-side channel material cut to a required size was prepared, and the supply-side channel material was fixed to the portion where the tape was applied as a fold portion with an ultrasonic welder. The substantially central portion of the tape portion to which the supply-side flow path material was fixed was bent, and bent by the number of set membrane leaves. At this time. The opposite folded portion (supply side mountain fold side) was not folded. In order to increase the strength of the crease, hot pressing was performed with air pressure. In this way, a laminate was prepared.
[0055]
A hollow tube was set in the winding chuck of the assembly assembled as described above, and the entire membrane leaf was wound up by rotating the chuck at a constant speed. At this time, the roll was applied to the element with a constant pressure from two directions to align the end faces. In the case of the continuous leaf type, the outer peripheral side was temporarily folded. After rotating a certain number of times, one roll was further applied and tightened. At this time, there were no wrinkles, folds or deviations in the membrane leaf.
[0056]
The wound element was allowed to stand in a dryer at 130 ° C. for 1 hour to fuse the hot melt resin, and then returned to room temperature and solidified. As for the element that had been solidified, air permeation was performed on the permeate side of the leaf from the central tube in water at a pressure of 0.05 MPa, and as a result of checking the sealing performance, no bubbles were observed from the supply side. Further, as a result of measuring the film characteristics, the predetermined film performance was satisfied.
[Brief description of the drawings]
FIG. 1 is a process chart schematically showing an example of a method for producing a spiral membrane element of the present invention.
FIG. 2 is a process chart schematically showing an example of a method for producing a spiral membrane element of the present invention.
FIG. 3 is a process diagram schematically showing an example of a method for producing a spiral membrane element of the present invention.
4 is a process diagram showing a part of the process shown in FIG. 1 in more detail.
FIG. 5 is an explanatory view showing another example of the manufacturing method of the spiral membrane element of the present invention.
FIG. 6 is a process diagram schematically showing an example of a conventional method for manufacturing a spiral membrane element.
FIG. 7 is an explanatory view showing a heat-sealed state of a conventional method for manufacturing a spiral membrane element.
[Explanation of symbols]
1 Membrane
2 Supply-side channel material
4 Permeation side channel material
5 Hollow tube
11 Heat-sealable material
S1 Laminate
R1 roll
A1 Sealing structure near both sides of the film

Claims (3)

膜の供給側に供給側流路材を及び透過側に透過側流路材を配置した積層体を形成する工程と、少なくともこの積層体を有孔の中空管にスパイラル状に巻回する工程と、供給側流路と透過側流路とが直接連通しないための封止構造を形成する工程とを有するスパイラル型膜エレメントの製造方法において、
前記膜の両側端辺近傍の封止構造を形成するにあたり、加熱により溶融状態とされた熱融着性材料を透過側流路材の空隙部に含浸・固化することにより、透過側流路材の表面から突出するように熱融着性材料を予め充填し、その熱融着性材料を再度加熱して前記膜に熱融着させて封止構造を形成することを特徴とするスパイラル型膜エレメントの製造方法。
A step of forming a laminated body in which a supply-side channel material is arranged on the supply side of the membrane and a permeation-side channel material is arranged on the permeate side, and a step of winding at least this laminate in a spiral shape around a perforated hollow tube And a method of manufacturing a spiral membrane element having a step of forming a sealing structure so that the supply-side channel and the permeate-side channel do not directly communicate with each other.
In forming a sealing structure in the vicinity of both side edges of the membrane, a permeation-side flow path material is obtained by impregnating and solidifying a void portion of the permeation-side flow path material with a heat-fusible material that has been melted by heating. Spiral type film characterized by pre-filling a heat-fusible material so as to protrude from the surface of the film and heating the heat-fusible material again to heat-fuse the film to form a sealing structure Element manufacturing method.
前記熱融着性材料を充填した透過側流路材を用いて積層体を形成した後、前記中空管への巻回を行い、巻回後の状態で加熱して前記熱融着を行う請求項1記載のスパイラル型膜エレメントの製造方法。  After forming a laminated body using a permeate-side flow path material filled with the heat-fusible material, the laminate is wound around the hollow tube and heated in the state after the winding to perform the heat-sealing. The method for producing a spiral membrane element according to claim 1. 周方向に連続する成形溝を有する2本のロール間に前記透過側流路材を通過させながら、熱融着性材料を含浸させることにより、前記成形溝の深さと幅に応じた厚みの前記熱融着性材料を成形することを特徴とする請求項1又は2に記載のスパイラル型膜エレメントの製造方法。 While passing through the permeation-side passage material between two rolls having molding grooves circumferentially continuous, by Rukoto impregnated with heat-fusible material, the thickness corresponding to the depth and width of the forming groove The method for manufacturing a spiral membrane element according to claim 1 or 2, wherein the heat-fusible material is formed.
JP2002377166A 2002-12-26 2002-12-26 Spiral type membrane element and manufacturing method thereof Expired - Fee Related JP4219161B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002377166A JP4219161B2 (en) 2002-12-26 2002-12-26 Spiral type membrane element and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002377166A JP4219161B2 (en) 2002-12-26 2002-12-26 Spiral type membrane element and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2004202442A JP2004202442A (en) 2004-07-22
JP4219161B2 true JP4219161B2 (en) 2009-02-04

Family

ID=32814423

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002377166A Expired - Fee Related JP4219161B2 (en) 2002-12-26 2002-12-26 Spiral type membrane element and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4219161B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MX2007007774A (en) * 2004-12-22 2007-11-12 Dressel Pte Ltd Company Membrane card and method for the production and use thereof.
EP1874427A1 (en) * 2005-03-29 2008-01-09 Grahamtek Technologies Singapore Pte Ltd Manufacture of casings for use in the desalination of water and the filtration of liquids
JP4682952B2 (en) * 2006-07-31 2011-05-11 株式会社デンソー Vehicle air conditioning system
JP4622952B2 (en) * 2006-07-31 2011-02-02 株式会社デンソー Air conditioning system for vehicles
JP5297515B2 (en) * 2011-11-21 2013-09-25 パナソニック株式会社 Manufacturing method of bag-like separation membrane
JP6521422B2 (en) * 2014-02-07 2019-05-29 日東電工株式会社 Spiral type separation membrane element
JP7037306B2 (en) 2016-09-16 2022-03-16 日東電工株式会社 Spiral type membrane element

Also Published As

Publication number Publication date
JP2004202442A (en) 2004-07-22

Similar Documents

Publication Publication Date Title
JP3261656B2 (en) Spirally wound membrane members
US4419241A (en) Tubular filter element for the filtration of fluids
KR100990348B1 (en) Spiral membrane element and process for producing the same
EP0508646A1 (en) Filter element and spiral-wound membrane cartridge containing same
KR20120096495A (en) Method for applying tape layer to outer periphery of spiral wound module
CN104837544B (en) Membrane stack filtering module
JP2004202382A (en) Manufacturing method for spiral type membrane element
JP4936435B2 (en) Spiral type membrane element and manufacturing method thereof
JP4219161B2 (en) Spiral type membrane element and manufacturing method thereof
JP2004202371A (en) Method for manufacturing spiral type membrane element
JP2003275545A (en) Spiral type membrane element and manufacturing method therefor
JP2006247629A (en) Spiral pattern membrane element and its manufacturing method
US20020070158A1 (en) Membrane element and process for its production
JP4070002B2 (en) Spiral type membrane element and manufacturing method thereof
WO2020123243A9 (en) Spiral wound filtration device and methods of manufacture
JP6631163B2 (en) Separation membrane element
JP2005199141A (en) Spiral type membrane element and production method therefor
JP2002509014A (en) Separation system, membrane module, filter element and method of manufacturing filter element
JP2007268524A (en) Spiral membrane element and method for producing the same
WO2000044481A1 (en) Method for sealing axial seam of spiral wound filtration modules
JP4342592B2 (en) Method for producing hollow fiber membrane element and hollow fiber membrane module
JP4342006B2 (en) Method for producing hollow fiber membrane element and method for producing hollow fiber membrane module
JP2710089B2 (en) Method for producing hollow fiber membrane bundle
JPH0698280B2 (en) Method for manufacturing support tube for permeable membrane
JP2003275547A (en) Spiral type membrane element and manufacturing method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071211

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080206

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080529

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080724

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081107

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141121

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees