JP4218818B2 - Method for removing metal sulfide and forming corrosion-resistant covering member - Google Patents

Method for removing metal sulfide and forming corrosion-resistant covering member Download PDF

Info

Publication number
JP4218818B2
JP4218818B2 JP2000275464A JP2000275464A JP4218818B2 JP 4218818 B2 JP4218818 B2 JP 4218818B2 JP 2000275464 A JP2000275464 A JP 2000275464A JP 2000275464 A JP2000275464 A JP 2000275464A JP 4218818 B2 JP4218818 B2 JP 4218818B2
Authority
JP
Japan
Prior art keywords
metal
metal sulfide
sulfide
heat
resistant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000275464A
Other languages
Japanese (ja)
Other versions
JP2002089205A (en
Inventor
修平 中浜
茂 澤田
浩 八鍬
良夫 原田
武馬 寺谷
猛 三木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tocalo Co Ltd
Elliott Ebara Turbomachinery Corp
Original Assignee
Tocalo Co Ltd
Elliott Ebara Turbomachinery Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tocalo Co Ltd, Elliott Ebara Turbomachinery Corp filed Critical Tocalo Co Ltd
Priority to JP2000275464A priority Critical patent/JP4218818B2/en
Publication of JP2002089205A publication Critical patent/JP2002089205A/en
Application granted granted Critical
Publication of JP4218818B2 publication Critical patent/JP4218818B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)
  • Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)
  • ing And Chemical Polishing (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、例えば硫黄化合物を含む高温の燃焼ガスに曝露されるガスタービンやジェットエンジン部材等の表面に腐食生成物として形成される金属硫化物を除去する金属硫化物の除去方法、及び金属硫化物を除去した部品を再利用した耐食性被覆部材の形成方法に関する。本発明は、硫黄化合物を含む化石燃料の燃焼ガスを熱源とするボイラ、ディーゼルエンジン、熱処理炉、反応炉などで使用されたり、石油の蒸留、分解ガス、反応ガスを取り扱う石油化学装置などで使用される耐熱合金の表面に生成される金属硫化物の除去にも適用される
【0002】
【従来の技術】
例えば、ディーゼル、ボイラ、ガスタービン及びジェットエンジンなどの原動機関では、熱効率の向上を目的として精力的な開発研究が進められている。ここで、熱効率の向上は、同時に、構成部材に対する過酷な熱負荷の増大を強いる結果ともなっている。従って、これらの原動機関の高温部に使用される金属材料としては、使用環境下では高い機械的強度を有すると共に、耐高温酸化性および耐高温腐食性に優れることが要求される。特に、V,NaおよびSなどの不純物を含む燃料を使用する場合には、これらの不純物を含む無機化合物が高温状態で金属材料を激しく腐食損耗させるので、このような環境においても長時間安定した状態を維持することが必要である。
【0003】
このような要求に応えるため、従来から、Cr,Ni,Mo,Co,W,Ta,AlおよびTiなどの非鉄金属元素を主成分とする、いわゆる超合金と呼ばれる耐熱合金類が多数開発されてきた。これらの超合金類は、高温強度が最優先されるため、強度の向上に役立たない金属元素の添加は必然的にその割合が低く抑えられる傾向にある。このような強度の向上に役立たない金属元素の代表は、Cr,Al,Si等であるが、一方でこれらの元素は耐酸化性、耐高温腐食性に優れていることから、上記のような高温強度を優先した超合金は、耐酸化性や耐高温腐食性に乏しいのが一般的である。
【0004】
このような状況に鑑み、高温環境下で使用する耐熱合金部材に対しては、予め耐食性を有する金属元素または複数の金属元素(合金)で表面を被覆することが実施されている。例えば、Cr,Al,Siのような金属を拡散処理方法によって被覆したり、溶射法によって耐熱・耐高温酸化性の合金を被覆したり、さらに耐熱合金を溶射被覆した後、その上からAlを拡散浸透させるようにしたもの等が種々開発されている。
【0005】
発明者らは、石油分解ガスを取り扱うタービン動翼の化学的及び物理的損傷(微粉体によるエロージョン損傷)を防止するため、炭化クロムサーメットを溶射被覆させた技術を提案して、耐食性のみならず耐摩耗性にも優れた被覆の開発に努めてきた。
【0006】
【発明が解決しようとする課題】
例えば、ガスタービンやジェットエンジンの高温被曝部材(タービン動静翼、ディスク、燃焼器ライナーなど)には、高温強度に優れたNi基超合金、Co基超合金などが一般に使用されているが、これらの合金中には、必ず耐熱金属元素としてNi,Crが含まれている。これらのNi,Crは、高温の燃焼ガス中に含まれている硫黄化合物と反応してNiSx,CrSxなどの耐熱性に乏しい金属硫化物を生成する。これらの金属硫化物は、合金の結晶粒界を選択的に浸食しつつ成長するため、タービン動静翼等の寿命を著しく短命化させ、ときには部材を破損させることがある。
【0007】
以上の金属硫化物の生成は、タービン動翼とディスクの嵌合部などのように、非常に高い仕上精度が要求されるところにも発生するが、このような箇所は、溶射、拡散浸透処理などによる防食被覆が施工できないため、極めて危険な状態にある。すなわち、このような部分は、タービンの運転時に大きな遠心応力が負荷されるため、タービン動翼、ディスク材とも僅かな金属硫化物の生成、特に結晶粒界における金属硫化物の生成は大きな破損事故を誘発する原因となる。
【0008】
しかしながら、前記従来技術は、そのいずれもが金属部材と環境を構成するガス成分との間で行われる腐食反応を防止するようにしたものであり、金属部材表面に腐食反応の結果として生成された金属硫化物の除去技術や除去後の耐食性付与技術については全く知られていなかった。
【0009】
このため、例えばタービン動翼にあっては、その翼面を耐食性被覆によって保護したとしても、ディスクとの嵌合部を耐食性被覆によって保護することができず、一定期間の運転後、これを廃却する必要に迫られるので、大きな経済的負担となっているといった問題があった。
【0010】
本発明は上記に鑑みてなされたものであり、金属部材表面に生成された腐食生成物としての金属硫化物を除去する金属硫化物の除去方法、及び金属硫化物を除去した部品を再利用した耐食性被覆部材の形成方法を提供することを目的とする。
【0011】
【課題を解決するための手段】
請求項1に記載の発明は、耐熱合金からなり、耐熱合金中の耐熱金属元素と硫黄化合物との反応で金属硫化物が表面に生成された金属製部材を、600℃〜1200℃の酸化性雰囲気中で、3〜30h加熱することを特徴とする金属硫化物の除去方法である。金属硫化物は、NiS,CrSとも酸化性雰囲気下で600℃以上に加熱するとガス状のSOを発生し、残渣物として非常に粗しょうでブラッシングで簡単に除去可能なNiO,Crを生成する。このため、金属製部材に生成されていた金属硫化物を完全に除去でき、しかも金属製部材の形状、寸法変化を伴わないため再利用が可能となる。
【0012】
請求項2に記載の発明は、前記酸化性雰囲気として、空気、酸素または水蒸気のいずれか、若しくはこれらを混合したものを使用することを特徴とする請求項1記載の金属硫化物の除去方法である。
【0013】
請求項3に記載の発明は、耐熱合金からなり、耐熱合金中の耐熱金属元素と硫黄化合物との反応で金属硫化物が表面に生成された金属製部材を、600℃〜1200℃の酸化性雰囲気中で、3〜30h加熱して金属硫化物を除去し、表面を清浄化した後、表面に耐高温硫化被覆を形成することを特徴とする耐食性被覆部材の形成方法である。これにより、良好な密着性を有する耐高温硫化被覆を形成して、高価な部材の再利用が可能となる。
【0014】
【発明の実施の形態】
化石燃焼の燃焼ガスや石油分解ガス中に含まれている硫黄化合物の種類は、ガス状のものと固体もしくは溶融塩状のものに分けることができる。ガス状のものとして、SO, SO, HS,COSなどが挙げられ、固体もしくは溶融塩状のものとして、MSO,M,MFe(SO),MAl(SO)などが挙げられる。ここで、Mは、NaあるいはKを示す。
【0015】
ガス状の硫黄化合物は、高温環境中で金属成分と反応して固体状の硫黄化合物を生成する原因となるほか、金属部材とも直接腐食反応を起こして、その表面に金属部材成分との硫化物(NiS,CrS) を生成させる。固体もしくは溶融塩状の硫黄化合物は、もっぱら金属部材表面に付着して、金属部材表面に生成されている保護性の酸化膜を溶解してその機能を消失させるとともに、ここでも金属部材成分の硫化物を生成させる。
【0016】
このため、例えばタービン動静翼やディスク材等にあっては、雰囲気ガス中に僅かな量でも硫黄化合物が含まれていると、その表面に金属硫化物が生成される。これらの金属硫化物は、一般に融点が低いため(例えば、NiとNiの共晶は645℃で溶融状態を呈する)、硫化反応速度が異常に速くなるとともに、これが部材の結晶粒界に生成すると、早期に粒界が剥離して機械強度を消失するため非常に危険な状態になる。
【0017】
図1は、Ni基合金製のタービン動翼の翼根部の表面に生成した金属硫化物の断面を電子顕微鏡で観察した結果を模式的に示すものである。図1において、1は金属硫化物、2は結晶粒界、3は結晶粒子である。図1(a)に示すように、金属硫化物1は、比較的緻密な状態でタービン動翼の表面に対して平行的に生成するものもあれば、図1(b)に示すように、ほぼ垂直に内部へ深く成長するものもあり、また金属粒界を選択的に浸食しつつ成長するものもある。これらの金属硫化物は、タービン翼全面に亘って生成する場合もあれば、局所的に限定して発生する場合もあり、しかも外観上、目視によって判別できない特徴がある。
【0018】
次に、このようにしてタービン翼等の金属製部材の表面に生成された金属硫化物の除去方法について説明する。この方法は、空気,O,HOなどを含む酸化性の高温雰囲気中で金属製部材の表面に生成された金属硫化物を酸化させて除去する、いわゆる高温酸化方法を利用したものである。
【0019】
つまり、NiSやCrS等の金属硫化物は、酸化雰囲気中で600℃以上に加熱すると、下記の反応式で酸化する。
NiS+1・1/2 O→XSO+NiO
CrS+1・1/2 O→XSO+CrO
【0020】
この酸化によって発生したガス状のSOは飛散し、NiO,Crが残渣物として金属製部材の表面に残るが、これらは非常に粗しょうでブラッシングによって簡単に除去することができる。これにより、タービン翼にあっては、翼面上に生成された金属硫化物が、翼面、翼根部とも完全に除去され、しかもタービン翼の形状、寸法変化を伴わないため、耐食性表面処理被覆を施工して再使用が可能となる。
【0021】
ここで、酸化性の雰囲気として空気をそのまま利用できるが、水蒸気(HO)やOも利用でき、さらに炭化水素の燃焼ガス、例えば都市ガス(CH)の燃焼ガスを利用することができる。この場合、燃焼ガスの主成分CO,HOは共に酸化力を持っているため、燃焼エネルギーを有効に使用することができる。
【0022】
高温酸化処理温度は、600℃〜1200℃の範囲が適当で、処理時間は、3〜30hの範囲が適当である。600℃より低温では、金属硫化物の除去に長時間を要し、また1200℃以上の高温では、タービン翼材等の金属製部材の冶金的組織変化が大きくなって、機械的強度の劣化が甚だしくなる欠点がある。
【0023】
なお、金属硫化物の除去方法としては、
▲1▼ 砥石による研磨、セラミックスや金属などの微粒子の吹き付けによるブラスト処理を使用した機械的方法、
▲2▼ 酸、アルカリなどの薬剤による溶解反応を利用した化学的方法、
▲3▼ 酸あるいはアルカリを含む電解液中で被処理体をアノードとして電解除去するようにした電気化学的方法、
▲4▼ 高温のHガス中で、金属硫化物を還元する方法(この場合、例えば、NiS+H→H+Niの還元反応で金属硫化物は硫化水素となって揮散する)、
等が考えられる。
【0024】
ここで、▲1▼の機械的方法は、複雑な形状を有するタービン翼等の金属製部品の研磨に多大な時間を必要とするばかりでなく、すでに精密な寸法に仕上げられて使用されたタービン翼等をこれ以上研磨することとなって設計上大きな問題が生じる。またこの方法では、金属硫化物の生成はもとより除去の確認も不可能であり、処理に対する信頼性に乏しい欠点がある。
【0025】
▲2▼の化学的方法は、金属硫化物が酸やアルカリに溶解することが少ない上、タービン翼等の健全部をも浸食するおそれがあり、さらに薬剤の使用は作業者はもちろん環境上も好ましいものではない。▲3▼の電気化学的方法も、電解液として薬剤を使用する問題点があるほか、複雑な形状を有するタービン翼の表面に均等な電流を通じさせることが不可能に近く、そのうえ、この方法でも健全部を溶解させる危険性が大きい。▲4▼の還元する方法は、取り扱い上危険なHガスを使用する欠点があるほか、その還元力には限界があり、熱力学的検討及び実験によって、ガスタービン翼等の表面に生成された金属硫化物は除去できないことが判った。
【0026】
これに対して、本発明の高温酸化方法によれば、これらの欠点がなく、タービン翼にあっては、タービン翼の形状、寸法変化を伴うことなく、翼面上に生成された金属硫化物を完全に除去することができる。
【0027】
次に、金属硫化物を除去したタービン翼等の金属製部材を再利用するには、先ず、全体を軽くブラッシングして清浄化した後、耐高温硫化腐食性及び耐高温酸化性に優れた被覆を加工する。この加工方法としては、CrまたはAl拡散浸透法が挙げられる。
【0028】
これは、金属Cr粒子、アルミナ、NHClなどを含む浸透剤中に金属製部材(金属硫化物を除去したタービン翼材)を埋没させた後、HガスまたはArガスを流しつつ、800〜1000℃の雰囲気で5〜20h加熱するようにしたものである。この操作によって、金属製部材の全面に亘ってCrが拡散して耐高温硫化性が向上する。この処理は、NHClの熱分解によるHClの生成とCr粉末との反応によるCrClガスの生成を伴う一種の化学蒸着法(Chemical Vapor Deposition)であるため、金属硫化物が除去されたタービン翼等の金属製部品上の小さな凹部の中でも微細なCr粒子が付着する特徴がある。上記の化学反応を具体的に示すと次の通りである。
【0029】
NHCl→NH+HCl (分解反応)
2HCl+Cr(粒子)→CrCl+H(ハロゲン化クロムの生成反応)
CrCl+H→Cr+2HCl (Crの気相析出反応)
なお、金属Cr粒子に代えて金属Al,Al-Cr合金,Al-Ni合金などを用いると金属製部品の表面にはAlの拡散浸透層が得られる。
【0030】
また、このCrまたはAl拡散浸透法の他に、プラズマ溶射法や高速フレーム溶射法などによって、Ni,Cr,Al,Coなどを含む合金皮膜を形成したり、電気めっき法によって、金属製部品に良好な密着性を有するCr,Niなどのめっき皮膜で被覆したり、空気を除いた後、Arを導入して50〜500hPaの減圧状態の容器中で、電子ビーム熱源によって耐食合金を蒸発させ、この金属蒸気を被処理体の表面に付着させる(Physical Vapor Deposition法) こと等によって、容易に耐食性を有する被覆を形成することができる。
【0031】
なお、溶射被覆形成後に、その上にCrまたはAlの拡散処理を施す複合処理や電気めっき皮膜の上にCrまたはAlの拡散処理を行うようにしても良いことは勿論である。
【0032】
【実施例】
(実施例1)
タービン翼材として使用されているNi基超合金(20%Cr-14%Co-4%Mo-3%Ti-1.5%Al-残りNi(質量%))から試験片(寸法:幅10mm×長さ30mm×厚さ3mm)を切り出した後、これを硫化水素1000ppm・残りNガスの雰囲気中で850℃×10h加熱することによって、試験片の全面に亘って金属硫化物層を生成させたものを硫化物除去用試験片として作製した。
【0033】
その後、この試験片を用いてHガス(比較例1)、空気(実施例1−1)及び水蒸気(実施例1−2)を流通した500℃〜1250℃の雰囲気中で5時間加熱した後、試験片表面に生成していた金属硫化物の存在の有無を光学顕微鏡にて観察した。その結果を表1に示す。
【表1】

Figure 0004218818
この表1から明らかなように、Hガス中(比較例1)では、1000℃以上の高温雰囲気において、水素ガスによる還元反応によって若干の金属硫化物の分解が行われているが、完全に除去されていない。これに対し、空気中(実施例1−1)及び水蒸気中(実施例1−2)では、600℃以上の温度でほぼ完全に金属硫化物は除去され、除去された金属面は、非常に薄い酸化膜は生成するものの、試験片全体としては全く異常は認められなかった。
【0034】
以上の結果から、Ni基合金上に生成した金属硫化物の除去には、水素ガスによる還元反応より、空気(O)及び水蒸気(HO)による酸化反応を利用する方が有効であることが判る。
【0035】
(実施例2)
約600℃の硫化水素を含む石油分解ガスの中で、3万時間運転したNi基タービン翼(化学組成:20%Cr-14%Co-4%Mo-3%Ti-1.5%Al-残りNi(質量%))の翼根部分に生成している金属硫化物の除去について調査した。このような実機翼では、金属硫化物の生成部を目視判定することが難しいため、翼根部を研磨紙によって丁寧に磨いた後、印画紙に10%HSOを含浸させた紙を貼り、さらにその上に錫板を置いて陰極とし、印画紙が乾燥しないように、30分間、HSOを滴下し続けながら、翼根部を陽極として直流による電解を行った。その後、印画紙を剥離すると、金属硫化物が存在していたところは、金属硫化物の生成に起因してセピア色となる現象を利用して判定した。
【0036】
この実施例では、運転後のタービン翼の翼根部には、全数、金属硫化物の存在が認められた。このタービン翼をHガス中で1000℃×16h加熱したところ、金属硫化物は全く除去できなかった。これに対し、空気中1000℃×5h、水蒸気中1000℃×5hの加熱処理を施したところ、金属硫化物の存在は全く認められず、完全に除去されていた。念のためタービン翼を切断して光学顕微鏡によって観察しても、金属硫化物は発見できなかった。なお、金属硫化物除去後、露出した金属面及び金属硫化物が生成していない健全部には、金属酸化膜の生成が認められたが、全体に薄く、10%塩酸によって除去可能であった。
【0037】
(実施例3)
実施例1で作製した硫化物除去試験片を用い、そのままの状態(比較例3−1)と金属硫化物を完全に除去した後に硬質Crめっきにより表面処理してめっき皮膜を形成した時(実施例3−1a,3−1b)、同じく、そのままの状態(比較例3−2)とCr拡散処理により表面処理被覆を形成した時(実施例3−2a,3−2b)の密着性を調査した。供試表面処理被覆とその条件は以下の通りである。
(a)硬質Crめっき:めっき液組成(CrO:250g/dm,HSO:2.5g/dm)温液53℃、電流密度15A/dmで8μm厚のCrめっきを析出させた。
(b)Cr拡散処理:Cr粉末30質量%,Al69質量%,NHCl1質量%の組成を有する浸透剤中に試験片を埋め込み、950℃×16h、Hガスを通しつつ処理を行った。
【0038】
表面処理後の試験片を切断し、その断面について光学顕微鏡により観察した。その結果を表2に示す。
【表2】
Figure 0004218818
この結果から明らかなように、試験片の表面に金属硫化物層が形成されていると、Crめっき、Cr拡散処理とも良好な被覆は形成されない。これに対し、金属硫化物を完全に除去した試験片面には、良好な密着性を示すCrめっき膜及びCr拡散被覆が形成されることが確認された。
【0039】
(実施例4)
各種の金属材料について、実施例1の場合と同様な硫化物除去用試験片を作製した後、金属硫化物の除去を行った。供試材料、及び金属硫化物除去法とその条件は以下の通りである。
(1)供試材料
(a)Co基合金:26%Cr-11%Ni-7.5%W-2%Fe-残りCo(質量%)
(b)Fe基耐熱合金:15%Cr-26%Ni-1.3%Mo-2%Ti-残りFe(質量%)
(2)金属硫化物除去法とその条件
空気中で1000℃×10h加熱
以上の条件で加熱した後、試験片を切断し、その断面を光学顕微鏡で観察したところ、全試験片とも金属硫化物除去されていた。
【0040】
【発明の効果】
以上説明したように、本発明によれば、金属製部品に形成された金属硫化物を完全に除去できるうえ、金属製部品の強度低下や寸法、形状に変化を与えないので、金属製部品を再度使用することができる。また再使用時には、耐高温硫化腐食性を向上させるための表面処理被覆も容易に形成することができる。
【0041】
従って、タービン動静翼やディスクなどに適用すれば、高価な部材の再使用が可能となり、消耗部材費の大幅な削減、耐食性の向上による長時間連続運転が可能となるほか、保守点検費の節減、運転効率の向上などが期待できる。
【図面の簡単な説明】
【図1】硫黄化合物を含む高温の石油分解ガス中で使用されていたNi基超合金製タービン動翼の翼根部に生成している金属硫化物の模式図で、(a)は、金属硫化物が金属面に対して平行に生成している模式図、(b)は、金属硫化物が結晶粒界に沿って深く内部へ浸食している模式図である。
【符号の説明】
1 金属硫化物
2 結晶粒界
3 結晶粒子[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for removing metal sulfide, which removes metal sulfide formed as a corrosion product on the surface of a gas turbine or jet engine member exposed to a high-temperature combustion gas containing a sulfur compound, for example, and metal sulfide The present invention relates to a method for forming a corrosion-resistant covering member that reuses a part from which an object has been removed. The present invention is used in boilers, diesel engines, heat treatment furnaces, reaction furnaces, etc. that use combustion gas of fossil fuels containing sulfur compounds as heat sources, or in petrochemical equipment that handles petroleum distillation, cracked gas, reaction gas, etc. also it applies to the removal of metal sulphide generated heat alloy surfaces that are.
[0002]
[Prior art]
For example, in a driving engine such as a diesel engine, a boiler, a gas turbine, and a jet engine, energetic development research is being carried out for the purpose of improving thermal efficiency. Here, the improvement in thermal efficiency is also the result of forcing a severe heat load on the components. Therefore, the metal material used in the high temperature part of these prime movers is required to have high mechanical strength in the environment of use and excellent resistance to high temperature oxidation and high temperature corrosion. In particular, when a fuel containing impurities such as V, Na, and S is used, an inorganic compound containing these impurities causes the metal material to be severely corroded and worn at high temperatures, so that it is stable for a long time even in such an environment. It is necessary to maintain the state.
[0003]
In order to meet such demands, many heat-resistant alloys called superalloys, which are mainly composed of non-ferrous metal elements such as Cr, Ni, Mo, Co, W, Ta, Al and Ti, have been developed. It was. In these superalloys, high temperature strength is given the highest priority, so the addition of metal elements that are not useful for improving strength inevitably tends to be kept at a low rate. Typical examples of such metal elements that are not useful for improving the strength are Cr, Al, Si, and the like. On the other hand, these elements are excellent in oxidation resistance and high temperature corrosion resistance. Superalloys that prioritize high-temperature strength are generally poor in oxidation resistance and high-temperature corrosion resistance.
[0004]
In view of such a situation, the surface of a heat-resistant alloy member used in a high-temperature environment is previously coated with a metal element or a plurality of metal elements (alloys) having corrosion resistance. For example, a metal such as Cr, Al, or Si is coated by a diffusion treatment method, a heat-resistant / high-temperature oxidation-resistant alloy is coated by a spraying method, or a heat-resistant alloy is further spray-coated, and then Al is coated thereon. Various materials that have been made to diffuse and penetrate have been developed.
[0005]
In order to prevent chemical and physical damage (erosion damage due to fine powder) of turbine blades handling petroleum cracked gas, the inventors have proposed a technique in which a chromium carbide cermet is spray-coated to provide not only corrosion resistance. Efforts have been made to develop a coating with excellent wear resistance.
[0006]
[Problems to be solved by the invention]
For example, Ni-base superalloys and Co-base superalloys with excellent high-temperature strength are generally used for high-temperature exposed members (turbine rotor blades, disks, combustor liners, etc.) of gas turbines and jet engines. These alloys always contain Ni and Cr as refractory metal elements. These Ni and Cr react with sulfur compounds contained in the high-temperature combustion gas to generate metal sulfides having poor heat resistance such as NiSx and CrSx. Since these metal sulfides grow while selectively eroding the crystal grain boundaries of the alloy, the life of turbine rotor blades and the like is significantly shortened, and sometimes the members are damaged.
[0007]
The above metal sulfide generation also occurs in places where extremely high finishing accuracy is required, such as the fitting part of turbine blades and discs. Since the anticorrosion coating cannot be applied, it is extremely dangerous. In other words, a large centrifugal stress is applied to these parts during turbine operation, so the generation of a small amount of metal sulfides, especially the generation of metal sulfides at grain boundaries, is a major damage accident. Cause inducing.
[0008]
However, all of the above prior arts are designed to prevent the corrosion reaction performed between the metal member and the gas component constituting the environment, and are generated as a result of the corrosion reaction on the surface of the metal member. None of the technology for removing metal sulfides or the technology for imparting corrosion resistance after removal has been known.
[0009]
For this reason, for example, in a turbine rotor blade, even if the blade surface is protected by a corrosion-resistant coating, the fitting portion with the disk cannot be protected by the corrosion-resistant coating, and this is discarded after a certain period of operation. There was a problem that it was a big economic burden because it was necessary to reject it.
[0010]
The present invention has been made in view of the above, and reused a metal sulfide removal method for removing metal sulfide as a corrosion product generated on the surface of a metal member, and a component from which metal sulfide has been removed. It aims at providing the formation method of a corrosion-resistant coating | coated member.
[0011]
[Means for Solving the Problems]
The invention according to claim 1 is made of a heat-resistant alloy, and a metal member having a metal sulfide formed on the surface by a reaction between a heat-resistant metal element and a sulfur compound in the heat-resistant alloy is oxidized at 600 ° C. to 1200 ° C. It is a method for removing a metal sulfide, characterized by heating in an atmosphere for 3 to 30 hours. Metal sulfides, both NiS X and CrS X , generate gaseous SO 2 when heated to 600 ° C. or higher in an oxidizing atmosphere, and NiO, Cr 2 O that can be easily removed by brushing with a very rough residue. 3 is generated. For this reason, the metal sulfide generated in the metal member can be completely removed, and the metal member can be reused because it does not change in shape and dimensions.
[0012]
The invention according to claim 2 is the method for removing metal sulfide according to claim 1, wherein any one of air, oxygen and water vapor, or a mixture thereof is used as the oxidizing atmosphere. is there.
[0013]
The invention according to claim 3 is made of a heat-resistant alloy, and a metal member having a metal sulfide formed on the surface by a reaction between a heat-resistant metal element and a sulfur compound in the heat-resistant alloy is oxidized at 600 ° C. to 1200 ° C. A method for forming a corrosion-resistant covering member, characterized in that, after heating in an atmosphere for 3 to 30 hours to remove metal sulfides and cleaning the surface, a high-temperature sulfide-resistant coating is formed on the surface . This makes it possible to form a high-temperature sulfide-resistant coating having good adhesion and to reuse expensive members.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
The types of sulfur compounds contained in fossil combustion gas and petroleum cracked gas can be classified into gaseous and solid or molten salt. Examples of gaseous substances include SO 2 , SO 3 , H 2 S, and COS. Examples of solid or molten salt substances include M X SO 4 , M X S 2 O 7 , M X Fe (SO 4 ). 2 , M X Al (SO 4 ) 3 and the like. Here, M represents Na or K.
[0015]
The gaseous sulfur compound reacts with the metal component in a high temperature environment to produce a solid sulfur compound, and also causes a direct corrosion reaction with the metal member to form a sulfide with the metal member component on the surface. (NiS X , CrS X ) is generated. The solid or molten salt-like sulfur compound adheres exclusively to the surface of the metal member, dissolves the protective oxide film formed on the surface of the metal member and loses its function. Product.
[0016]
For this reason, for example, in a turbine moving blade and disk, a disk material, and the like, if a small amount of sulfur compound is contained in the atmospheric gas, a metal sulfide is generated on the surface thereof. Since these metal sulfides generally have a low melting point (for example, the eutectic of Ni 3 S 2 and Ni exhibits a molten state at 645 ° C.), the sulfidation reaction rate becomes abnormally fast, and this is the crystal grain boundary of the member. If it is formed, the grain boundary peels off early and the mechanical strength is lost, which makes it extremely dangerous.
[0017]
FIG. 1 schematically shows a result of observing a cross section of a metal sulfide generated on the surface of a blade root portion of a turbine rotor blade made of an Ni-based alloy with an electron microscope. In FIG. 1, 1 is a metal sulfide, 2 is a grain boundary, and 3 is a crystal grain. As shown in FIG. 1A, some metal sulfides 1 are generated in parallel with the surface of the turbine rotor blade in a relatively dense state. As shown in FIG. Some grow deeply into the interior almost vertically, and others grow while selectively eroding metal grain boundaries. These metal sulfides may be generated over the entire surface of the turbine blade, or may be generated locally, and there is a feature that the appearance cannot be visually determined.
[0018]
Next, a method for removing the metal sulfide thus generated on the surface of the metal member such as the turbine blade will be described. This method utilizes a so-called high-temperature oxidation method that oxidizes and removes metal sulfides formed on the surface of a metal member in an oxidizing high-temperature atmosphere containing air, O 2 , H 2 O, and the like. is there.
[0019]
That is, metal sulfides such as NiS X and CrS X are oxidized by the following reaction formula when heated to 600 ° C. or higher in an oxidizing atmosphere.
NiS X + 1 · 1/2 O 2 → XSO 2 + NiO
CrS X + 1 · 1/2 O 2 → XSO 2 + CrO
[0020]
Gaseous SO 2 generated by this oxidation is scattered and NiO and Cr 2 O 3 remain on the surface of the metal member as residues, but these are very rough and can be easily removed by brushing. As a result, in the turbine blade, the metal sulfide produced on the blade surface is completely removed from both the blade surface and the blade root, and the shape and dimensions of the turbine blade are not changed. Can be used and reused.
[0021]
Here, air can be used as it is as an oxidizing atmosphere, but water vapor (H 2 O) or O 2 can also be used, and further, a hydrocarbon combustion gas, for example, a city gas (CH 4 ) combustion gas can be used. it can. In this case, since the main components CO 2 and H 2 O of the combustion gas both have oxidizing power, the combustion energy can be used effectively.
[0022]
The high temperature oxidation treatment temperature is suitably in the range of 600 ° C. to 1200 ° C., and the treatment time is suitably in the range of 3 to 30 hours. When the temperature is lower than 600 ° C., it takes a long time to remove the metal sulfide, and when the temperature is higher than 1200 ° C., the metallurgical structure change of the metal member such as the turbine blade material becomes large, and the mechanical strength is deteriorated. There is a drawback that makes it difficult.
[0023]
As a method for removing metal sulfides,
(1) A mechanical method using polishing with a grindstone and blasting by spraying fine particles of ceramics or metal,
(2) A chemical method using a dissolution reaction with a chemical such as acid or alkali,
(3) An electrochemical method in which an object to be treated is electrolytically removed as an anode in an electrolytic solution containing acid or alkali,
(4) Method of reducing metal sulfide in high-temperature H 2 gas (in this case, for example, the metal sulfide is volatilized as hydrogen sulfide by the reduction reaction of NiS X + H 2 → H 2 S X + Ni) ,
Etc. are considered.
[0024]
Here, the mechanical method {circle around (1)} not only requires a great deal of time for polishing metal parts such as turbine blades having a complicated shape, but also has already been used after being finished to precise dimensions. Since the blades and the like are further polished, a great design problem arises. In addition, this method has a drawback in that it is not possible to confirm the removal as well as the formation of metal sulfide, and the reliability of the treatment is poor.
[0025]
In the chemical method (2), metal sulfides are less likely to dissolve in acids and alkalis, and there is a risk of erosion of sound parts such as turbine blades. It is not preferable. The electrochemical method (3) has a problem of using a chemical as an electrolyte, and it is almost impossible to pass a uniform current through the surface of a turbine blade having a complicated shape. There is a high risk of dissolving the healthy part. The reduction method (4) has the disadvantage of using H 2 gas, which is dangerous in handling, and its reduction power is limited, and it is generated on the surface of gas turbine blades etc. by thermodynamic examination and experiment. It was found that the metal sulfide cannot be removed.
[0026]
On the other hand, according to the high temperature oxidation method of the present invention, these disadvantages are not present, and in the turbine blade, the metal sulfide generated on the blade surface without any change in the shape and dimensions of the turbine blade. Can be completely removed.
[0027]
Next, in order to reuse metal parts such as turbine blades from which metal sulfide has been removed, first, the whole is lightly brushed and cleaned, and then coated with excellent resistance to high-temperature sulfidation corrosion and high-temperature oxidation. Is processed. As this processing method, there is a Cr or Al diffusion penetration method.
[0028]
This is because a metal member (turbine blade material from which metal sulfide has been removed) is buried in a penetrant containing metal Cr particles, alumina, NH 4 Cl, etc., and then H 2 gas or Ar gas is allowed to flow, while 800 Heating is performed for 5 to 20 hours in an atmosphere of ˜1000 ° C. By this operation, Cr diffuses over the entire surface of the metal member and the high-temperature sulfidation resistance is improved. Since this process is a kind of chemical vapor deposition involving generation of HCl by thermal decomposition of NH 4 Cl and generation of CrCl 2 gas by reaction with Cr powder, the turbine from which metal sulfide has been removed There is a feature that fine Cr particles adhere even in small recesses on metal parts such as wings. The above chemical reaction is specifically shown as follows.
[0029]
NH 4 Cl → NH 3 + HCl (decomposition reaction)
2HCl + Cr (particles) → CrCl 2 + H 2 (chromium halide formation reaction)
CrCl 2 + H 2 → Cr + 2HCl (Cr vapor phase precipitation reaction)
If metal Al, Al—Cr alloy, Al—Ni alloy or the like is used instead of metal Cr particles, an Al diffusion / permeation layer is obtained on the surface of the metal part.
[0030]
In addition to this Cr or Al diffusion penetration method, an alloy film containing Ni, Cr, Al, Co, etc. is formed by plasma spraying method or high-speed flame spraying method, or metal parts are formed by electroplating method. After coating with a plating film such as Cr or Ni having good adhesion or removing air, the corrosion-resistant alloy is evaporated by an electron beam heat source in a reduced pressure state of 50 to 500 hPa by introducing Ar, By attaching this metal vapor to the surface of the object to be treated (Physical Vapor Deposition method), a coating having corrosion resistance can be easily formed.
[0031]
Needless to say, after the thermal spray coating is formed, the Cr or Al diffusion treatment may be performed on the composite treatment or electroplating film in which the Cr or Al diffusion treatment is performed thereon.
[0032]
【Example】
Example 1
Specimen from Ni-base superalloy (20% Cr-14% Co-4% Mo-3% Ti-1.5% Al-remaining Ni (mass%)) used as turbine blade material (dimension: width 10mm) X 30 mm long x 3 mm thick), and then heated to 850 ° C. for 10 h in an atmosphere of 1000 ppm hydrogen sulfide and the remaining N 2 gas to form a metal sulfide layer over the entire surface of the test piece What was made to produce was made as a test piece for sulfide removal.
[0033]
Then, H 2 gas using a test piece (Comparative Example 1) and heated air (Example 1-1) and water vapor (Example 1-2) at 500 ° C. to 1250 in an atmosphere of ° C. was circulated for 5 hours Then, the presence or absence of the metal sulfide produced | generated on the test piece surface was observed with the optical microscope. The results are shown in Table 1.
[Table 1]
Figure 0004218818
As is apparent from Table 1, in the H 2 gas (Comparative Example 1), some metal sulfide is decomposed by a reduction reaction with hydrogen gas in a high-temperature atmosphere of 1000 ° C. or higher. It has not been removed. On the other hand, in air (Example 1-1) and water vapor (Example 1-2), the metal sulfide is almost completely removed at a temperature of 600 ° C. or higher, and the removed metal surface is very Although a thin oxide film was formed, no abnormality was found in the entire test piece.
[0034]
From the above results, it is more effective to use the oxidation reaction with air (O 2 ) and water vapor (H 2 O) than the reduction reaction with hydrogen gas to remove the metal sulfide formed on the Ni-based alloy. I understand that.
[0035]
(Example 2)
Ni-based turbine blades (chemical composition: 20% Cr-14% Co-4% Mo-3% Ti-1.5% Al-) operated for 30,000 hours in petroleum cracked gas containing hydrogen sulfide at about 600 ° C The removal of the metal sulfide generated in the blade root portion of the remaining Ni (mass%) was investigated. In such an actual blade, it is difficult to visually determine the generation portion of the metal sulfide. Therefore, after carefully polishing the blade root portion with abrasive paper, a paper impregnated with 10% H 2 SO 4 is attached to the photographic paper. Further, a tin plate was placed thereon as a cathode, and direct electrolysis was performed using the blade root as an anode for 30 minutes while keeping H 2 SO 4 dropwise, so that the photographic paper was not dried. Thereafter, when the photographic paper was peeled off, the presence of the metal sulfide was determined using the phenomenon of sepia due to the formation of the metal sulfide.
[0036]
In this example, the presence of metal sulfide was found in all the blade roots of the turbine blade after operation. When this turbine blade was heated in H 2 gas at 1000 ° C. for 16 hours, no metal sulfide could be removed. In contrast, when heat treatment was performed at 1000 ° C. for 5 hours in air and 1000 ° C. for 5 hours in water vapor, the presence of metal sulfide was not recognized at all and was completely removed. As a precaution, metal sulfide was not found even when the turbine blade was cut and observed with an optical microscope. In addition, after removal of metal sulfide, formation of a metal oxide film was observed on the exposed metal surface and on a healthy part where metal sulfide was not formed, but it was thin as a whole and could be removed with 10% hydrochloric acid. .
[0037]
(Example 3)
Using the sulfide removal test piece prepared in Example 1 as it is (Comparative Example 3-1) and after completely removing the metal sulfide, surface treatment by hard Cr plating to form a plating film (Implementation) Example 3-1a, 3-1b), similarly, as it is (Comparative Example 3-2) and when the surface treatment coating is formed by Cr diffusion treatment (Examples 3-2a, 3-2b) did. The test surface treatment coating and its conditions are as follows.
(A) Hard Cr plating: plating solution composition (CrO 3 : 250 g / dm 3 , H 2 SO 4 : 2.5 g / dm 3 ) Precipitate 8 μm thick Cr plating at 53 ° C. warm solution and 15 A / dm 2 current density. I let you.
(B) Cr diffusion treatment: a test piece was embedded in a penetrant having a composition of 30% by mass of Cr powder, 69% by mass of Al 2 O 3, and 1 % by mass of NH 4 Cl, while passing H 2 gas at 950 ° C. × 16 h. Processed.
[0038]
The test piece after the surface treatment was cut, and the cross section was observed with an optical microscope. The results are shown in Table 2.
[Table 2]
Figure 0004218818
As is clear from this result, when a metal sulfide layer is formed on the surface of the test piece, a good coating is not formed for both Cr plating and Cr diffusion treatment. On the other hand, it was confirmed that a Cr plating film and a Cr diffusion coating exhibiting good adhesion were formed on the test piece surface from which the metal sulfide was completely removed.
[0039]
Example 4
For various metal materials, the same sulfide removal test piece as in Example 1 was prepared, and then the metal sulfide was removed. The test materials and metal sulfide removal method and the conditions are as follows.
(1) Test material (a) Co-based alloy: 26% Cr-11% Ni-7.5% W-2% Fe-remaining Co (mass%)
(B) Fe-based heat-resistant alloy: 15% Cr-26% Ni-1.3% Mo-2% Ti-remaining Fe (mass%)
(2) Metal sulfide removal method and its conditions Heating in air at 1000 ° C. for 10 hours After heating under the above conditions, the test piece was cut and the cross section was observed with an optical microscope. Had been removed.
[0040]
【The invention's effect】
As described above, according to the present invention, the metal sulfide formed on the metal part can be completely removed, and the strength and size and shape of the metal part are not reduced. Can be used again. In addition, a surface treatment coating for improving high-temperature sulfidation corrosion resistance can be easily formed during reuse.
[0041]
Therefore, if applied to turbine blades and vanes, disks, etc., it is possible to reuse expensive components, which can greatly reduce the cost of consumables, enable continuous operation for a long time by improving corrosion resistance, and reduce maintenance and inspection costs. Improvement of driving efficiency can be expected.
[Brief description of the drawings]
BRIEF DESCRIPTION OF DRAWINGS FIG. 1 is a schematic diagram of a metal sulfide generated at the root of a Ni-based superalloy turbine blade used in a high-temperature petroleum cracking gas containing a sulfur compound. FIG. 5B is a schematic diagram in which a product is generated in parallel to the metal surface, and FIG. 5B is a schematic diagram in which the metal sulfide is eroded deeply into the interior along the crystal grain boundary.
[Explanation of symbols]
1 Metal sulfide 2 Grain boundary 3 Crystal grain

Claims (3)

耐熱合金からなり、耐熱合金中の耐熱金属元素と硫黄化合物との反応で金属硫化物が表面に生成された金属製部材を、600℃〜1200℃の酸化性雰囲気中で、3〜30h加熱することを特徴とする金属硫化物の除去方法。A metal member made of a heat-resistant alloy and having a metal sulfide formed on the surface by a reaction between a heat-resistant metal element in the heat-resistant alloy and a sulfur compound is heated in an oxidizing atmosphere at 600 ° C. to 1200 ° C. for 3 to 30 hours. A method for removing metal sulfides. 前記酸化性雰囲気として、空気、酸素または水蒸気のいずれか、若しくはこれらを混合したものを使用することを特徴とする請求項1記載の金属硫化物の除去方法。  2. The method for removing metal sulfide according to claim 1, wherein any one of air, oxygen and water vapor, or a mixture thereof is used as the oxidizing atmosphere. 耐熱合金からなり、耐熱合金中の耐熱金属元素と硫黄化合物との反応で金属硫化物が表面に生成された金属製部材を、600℃〜1200℃の酸化性雰囲気中で、3〜30h加熱して金属硫化物を除去し、表面を清浄化した後、表面に耐高温硫化被覆を形成することを特徴とする耐食性被覆部材の形成方法。A metal member made of a heat-resistant alloy and having a metal sulfide formed on the surface by a reaction between a heat-resistant metal element in the heat-resistant alloy and a sulfur compound is heated in an oxidizing atmosphere at 600 ° C. to 1200 ° C. for 3 to 30 hours. A method for forming a corrosion-resistant coating member, comprising removing a metal sulfide and cleaning the surface, and then forming a high-temperature sulfide coating on the surface .
JP2000275464A 2000-09-11 2000-09-11 Method for removing metal sulfide and forming corrosion-resistant covering member Expired - Lifetime JP4218818B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000275464A JP4218818B2 (en) 2000-09-11 2000-09-11 Method for removing metal sulfide and forming corrosion-resistant covering member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000275464A JP4218818B2 (en) 2000-09-11 2000-09-11 Method for removing metal sulfide and forming corrosion-resistant covering member

Publications (2)

Publication Number Publication Date
JP2002089205A JP2002089205A (en) 2002-03-27
JP4218818B2 true JP4218818B2 (en) 2009-02-04

Family

ID=18761080

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000275464A Expired - Lifetime JP4218818B2 (en) 2000-09-11 2000-09-11 Method for removing metal sulfide and forming corrosion-resistant covering member

Country Status (1)

Country Link
JP (1) JP4218818B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5535771B2 (en) * 2010-06-02 2014-07-02 三菱重工業株式会社 Processing condition deriving apparatus and processing condition deriving method
JP2013217227A (en) * 2012-04-05 2013-10-24 Mitsubishi Heavy Ind Ltd Fuel gas compressor

Also Published As

Publication number Publication date
JP2002089205A (en) 2002-03-27

Similar Documents

Publication Publication Date Title
JP3027005B2 (en) Method for re-polishing corroded superalloy or heat-resistant steel member and re-polished member
KR890001033B1 (en) Improved coating compositions and its improved method for the protection of superalloys at elevated temperatures
Stringer High-temperature corrosion of superalloys
Goward et al. Pack cementation coatings for superalloys: a review of history, theory, and practice
JP6126852B2 (en) Gas turbine component coating and coating method
JP4942926B2 (en) Method of repairing a part using an environmental bond film and the resulting repaired part
EP1354977B1 (en) Method for repairing turbine engine components
JP4753720B2 (en) Alloy film for diffusion barrier, method for producing the same, and high temperature apparatus member
EP1595977A2 (en) Superalloy article having corrosion resistant coating thereon
EP1076158A1 (en) Gas turbine component having location-dependent protective coatings thereon
US20030083213A1 (en) Process for partial stripping of diffusion aluminide coatings from metal substrates, and related compositions
EP1197573A2 (en) Method for repairing a coated article
Bürgel Coating service experience with industrial gas turbines
JP4579383B2 (en) Method for removing dense ceramic thermal barrier coating from surface
JP4218818B2 (en) Method for removing metal sulfide and forming corrosion-resistant covering member
EP1123987A1 (en) Repairable diffusion aluminide coatings
US20060057416A1 (en) Article having a surface protected by a silicon-containing diffusion coating
JP2008088980A (en) Coated turbine engine component and its manufacturing method
US8518485B2 (en) Process for producing a component of a turbine, and a component of a turbine
Li et al. Comparative study on microstructure evolution and failure mechanisms of ordinary and refurbished EB-PVD TBC under cyclic oxidation.
Grünling et al. Coatings in industrial gas turbines: Experience and further requirements
JP2001214708A (en) Repairing metho for turbine part, pre-treating metho for hf cleaning, and turbine blade
JP2004076099A (en) Film-covered member resistant to high-temperature oxidation and its production method
Wilkens Repairing gas turbine hot section airfoils today
Smeggil et al. Study of the effects of gaseous environments on the hot corrosion of superalloy materials

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20031202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040304

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050404

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070918

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081028

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081106

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4218818

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121121

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121121

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121121

Year of fee payment: 4

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121121

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131121

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term