JP4218187B2 - Metal sludge measuring instrument for glass melting furnace - Google Patents

Metal sludge measuring instrument for glass melting furnace Download PDF

Info

Publication number
JP4218187B2
JP4218187B2 JP2000157982A JP2000157982A JP4218187B2 JP 4218187 B2 JP4218187 B2 JP 4218187B2 JP 2000157982 A JP2000157982 A JP 2000157982A JP 2000157982 A JP2000157982 A JP 2000157982A JP 4218187 B2 JP4218187 B2 JP 4218187B2
Authority
JP
Japan
Prior art keywords
measuring instrument
metal sludge
furnace
glass melting
melting furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000157982A
Other languages
Japanese (ja)
Other versions
JP2001330697A (en
Inventor
隆之 青澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2000157982A priority Critical patent/JP4218187B2/en
Publication of JP2001330697A publication Critical patent/JP2001330697A/en
Application granted granted Critical
Publication of JP4218187B2 publication Critical patent/JP4218187B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces

Description

【0001】
【発明の属する技術分野】
本発明は、高レベル放射性廃液をガラス固化する際に用いられるガラス溶融炉に係り、特にそのガラス溶融工程において発生する金属スラッジの測定器に関するものである。
【0002】
【従来の技術】
使用済み核燃料の再処理後に生ずる高レベル放射性廃液は、極めて高い放射線と崩壊熱を有しており、液体のままでは処分が困難であることから、図3及び図4に示すような構造をしたガラス溶融炉1内に送られ、ここでほう珪酸ガラス等のガラス原料と共に高温で溶かし合わされながらキャニスタcと称される耐食性のステンレス容器内に詰め込まれてガラス固化体として安定化された後、一定期間自然冷却されてから地中深く地層処分することが計画されている。
【0003】
図示するように、このガラス溶融炉1は、炉本体2の内底部を漏斗状(四角錐状)に窄めると共にその最下端部に炉2内の溶融ガラスを流下する流下孔3を有する底部電極4を備え、さらにその内部に一対の主電極5,5と補助電極6,6とを備えた構造となっている。
【0004】
そして、この炉本体2の天井壁に設けられた投入口7から高レベル放射性廃液とガラス原料を投入した後、先ず、主電極5,5間に電流を流すことでその表層部付近の高レベル放射性廃液とガラス原料とを十分に溶かし合わせ、次に、その下部に位置する補助電極6,6間に電気を流してその下層部の高レベル放射性廃液とガラス原料とを溶かし合わせ、最後に、底部電極4と主電極5,5間に電気を流して全体を溶融した後、その流下孔3から延びる流下ノズル8をその周囲の電熱コイル9で加熱してその内部に詰まっている固化ガラスを溶かして抜き出すことで炉2内の溶融ガラスをその下部に位置しているキャニスタc内に流下させてその内部にガラス固化体として密閉収容するようになっている。
【0005】
尚、この溶融炉1内で発生したガスはオフガスとして排気口7aから排気され、図示しないHEPAフィルター等で放射性物質が完全に捕集除去されて無害化された後、大気中に放出されるようになっている。
【0006】
【発明が解決しようとする課題】
ところで、このようなガラス溶融過程においては、高レベル放射性廃液中に含まれているルテニウムやパラジウム等といった白金系金属が金属酸化物として析出して比重の大きい金属スラッジが発生することがあり、これがその底部電極4上に堆積してその傾斜面2aに沿って成長し、やがて補助電極6あるいは主電極5まで到達して電極同士が短絡し、局部的に大きな電流が流れて電極4,5,6を損傷するといった不都合が考えられる。
【0007】
そのため、炉本体2内の金属スラッジの堆積の有無及び堆積量を正確かつ迅速に把握する必要が生じてくるが、現在ではそれを正確に把握する方法は提案されていない。
【0008】
尚、この金属スラッジの流出し易くするために、底部電極4の上面を漏斗状に加工することも考えられるが、そうすると、炉本体の内壁から脱落した煉瓦屑が流下孔3側に落ち込み、これを閉塞してしまうといった問題が生ずるため、得策ではない。
【0009】
そこで、本発明はこのような課題を有効に解決するために案出されたものであり、その目的は、金属スラッジの堆積の有無及び堆積量を正確に把握することができる新規なガラス溶融炉の金属スラッジ検出器を提供するものである。
【0010】
【課題を解決するための手段】
上記課題を解決するために本発明は、ガラス溶融炉の炉本体内に挿入され、その内底部に堆積した金属スラッジの堆積状況を測定する金属スラッジ測定器において、上記炉本体内に挿入される先端が閉じた管状の測定器本体内に一対の電極を挿入すると共に、その電極を絶縁材でその測定器本体内に絶縁支持し、その測定器本体の挿入先端部側面を開口すると共に、その開口部内に上記電極の先端を露出させて位置させたものである。
【0011】
すなわち、このような金属スラッジ測定器を炉本体内に挿入し、その電極間に通電すると、金属スラッジは溶融ガラスに比べてその導電率が高いため、その電極間の抵抗値を測定することにより、金属スラッジの堆積の有無を検出できることは勿論、その挿入位置を測定することで堆積状況も同時に正確に把握することができる。
【0012】
また、この検出器本体は挿入先端部が閉じると共に挿入先端部側面が開口し、その側面開口部から金属スラッジが内部に流れ込むことで導電率が測定されるようになっていることから、挿入時に測定器本体の挿入先端部が炉壁や炉底に衝突しても電極が損傷することなく、信頼性の高い検出を行うことができる。
【0013】
【発明の実施の形態】
次に、本発明を実施する好適一形態を添付図面を参照しながら説明する。
【0014】
図1は本発明にガラス溶融炉の金属スラッジ測定器10の実施の一形態を示したものである。
【0015】
図示するように、この金属スラッジ測定器10は、先端が閉じた管状の測定器本体11内に一対の棒状電極12,12を平行に挿入されると共に、その電極12,12がセラミック等の耐熱性の絶縁材13によってその測定器本体11内に絶縁支持されている。また、この測定器本体11の挿入先端部の側面には開口部14が形成されており、その開口部14内に上記電極12,12の先端が露出した状態で位置させた状態となっている。さらに、この電極12,12の他端部には電源回路が接続されており、その回路に電流を供給する電源部15と、その回路を流れる電気抵抗を測定する抵抗測定器16が接続されている。
【0016】
そして、このような構成をした本発明の金属スラッジ測定器10によって金属スラッジの有無及び堆積量を測定するには、先ず、図2に示すように炉本体2の天井壁2bに形成された挿入孔2cから挿入すると共に、その電極12,12間に電流を供給しながらその先端を炉本体2内の任意の位置、例えば、底部電極4上に位置させる。ここで、その底部電極4上に金属スラッジが存在していると、その金属スラッジが測定器本体11先端の開口部14からその電極12,12内に流れ込んで両電極12,12間の電流抵抗値が急激に減少することから、その電流抵抗値を抵抗測定器16によって検出することでその部位における金属スラッジの存在を確実に把握することができる。
【0017】
その後、このような状態から図2に示すようにその測定器本体11の先端を炉壁の斜面2aに沿って動かすと、金属スラッジが堆積している部分ではその抵抗値が殆ど変化しないが、金属スラッジが無くなった時点でその抵抗値が急激に変化(増加)するため、その測定器本体11の動きと抵抗値の変化を観察することによって炉本体2内の金属スラッジの有無は勿論、その堆積量、堆積部分等も正確に把握することができる。また、この測定器本体11はその先端が閉じて電極12,12が保護された状態であるため、電極12,12が直接炉壁に接触,衝突して破損してしまうおそれもない。
【0018】
尚、この金属スラッジは必ずしも炉底部、すなわち底部電極4上にのみ発生するとは限らない。すなわち、前述したように溶融初期においては、主電極5,5間にのみ電流を流して上層部のみを溶融し、底部のガラス原料は未溶融状態であるため、その中間部に層状に発生する場合もある。従って、このような溶融状態の場合は、その層界線に沿って本発明の金属スラッジ測定器10を動かすことによってその層界線上等の金属スラッジの堆積状況も正確に把握することができる。
【0019】
また、このガラス溶融炉1の内部及びその周囲は、極めて高レベルの放射線下であるため、これらの操作は予めその近傍に設けられたマニュピュレータ及びITVカメラ等によって遠隔操作で行われることはいうまでもない。
【0020】
【発明の効果】
以上要するに本発明によれば、金属スラッジの有無及び堆積量等の状況を正確に把握することができるため、炉内電極の短絡事故を未然に回避することが可能となる。また、ガラス溶融炉の試運転又はモックアップ試験等において金属スラッジの堆積状況による短絡事故の発生の虞を予め正確に得ることができるため、炉底構造の改良による効果等を正確に評価することができる等といった優れた効果を発揮することができる。
【図面の簡単な説明】
【図1】本発明に係るガラス溶融炉の金属スラッジ測定器を示す斜視図である。
【図2】本発明に係る金属スラッジ測定器を用いた金属スラッジ堆積状況の測定方法を示す概念図である。
【図3】従来のガラス溶融炉の構成を示す説明図である。
【図4】図3中X−X線断面図である。
【図5】図3中y部を示す部分拡大図である。
【符号の説明】
2 炉本体
10 金属スラッジ測定器
11 測定器本体
12 電極
13 絶縁材
14 開口部
15 電源部
16 抵抗測定器
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a glass melting furnace used when vitrifying high-level radioactive waste liquid, and more particularly to a measuring device for metal sludge generated in the glass melting process.
[0002]
[Prior art]
The high-level radioactive liquid waste generated after the reprocessing of spent nuclear fuel has extremely high radiation and decay heat, and is difficult to dispose of in the liquid state. After being sent into the glass melting furnace 1 and being melted together with a glass raw material such as borosilicate glass at a high temperature and packed in a corrosion-resistant stainless steel container called a canister c, the glass solidified body is stabilized. It is planned to dispose deeply underground after natural cooling for a period.
[0003]
As shown in the figure, this glass melting furnace 1 has a downhole 3 through which the inner bottom part of the furnace body 2 is narrowed in a funnel shape (square pyramid shape) and the molten glass in the furnace 2 flows down at the lowermost end part thereof. A bottom electrode 4 is provided, and a pair of main electrodes 5 and 5 and auxiliary electrodes 6 and 6 are provided therein.
[0004]
And after throwing in a high level radioactive waste liquid and a glass raw material from the inlet 7 provided in the ceiling wall of this furnace main body 2, first, by supplying an electric current between the main electrodes 5 and 5, the high level near the surface layer part is carried out. The radioactive liquid waste and the glass raw material are sufficiently melted together, and then electricity is passed between the auxiliary electrodes 6 and 6 located in the lower part to melt the high-level radioactive liquid waste and the glass raw material in the lower layer part, and finally, After flowing the electricity between the bottom electrode 4 and the main electrodes 5 and 5 to melt the whole, the falling nozzle 8 extending from the falling hole 3 is heated by the surrounding electric heating coil 9 and the solidified glass clogged in the inside is heated. By melting and extracting, the molten glass in the furnace 2 is caused to flow down into the canister c located at the lower part thereof and hermetically accommodated as a glass solidified body therein.
[0005]
The gas generated in the melting furnace 1 is exhausted as an off-gas from the exhaust port 7a, and radioactive substances are completely collected and removed by a HEPA filter or the like (not shown) so as to be released into the atmosphere. It has become.
[0006]
[Problems to be solved by the invention]
By the way, in such a glass melting process, a platinum-based metal such as ruthenium or palladium contained in the high-level radioactive liquid waste may precipitate as a metal oxide to generate a metal sludge having a large specific gravity. It accumulates on the bottom electrode 4 and grows along the inclined surface 2a, eventually reaches the auxiliary electrode 6 or the main electrode 5 and short-circuits between the electrodes, and a large current flows locally to cause the electrodes 4, 5, 6 may be inconvenient.
[0007]
Therefore, it is necessary to accurately and quickly grasp the presence and amount of metal sludge accumulated in the furnace body 2, but no method for accurately grasping it has been proposed at present.
[0008]
In order to facilitate the outflow of this metal sludge, it is conceivable to process the upper surface of the bottom electrode 4 into a funnel shape. This is not a good idea because it causes problems such as blocking.
[0009]
Therefore, the present invention has been devised in order to effectively solve such problems, and the purpose thereof is a novel glass melting furnace capable of accurately grasping the presence / absence and amount of deposition of metal sludge. A metal sludge detector is provided.
[0010]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present invention is inserted into the furnace body in a metal sludge measuring instrument which is inserted into the furnace body of a glass melting furnace and measures the deposition state of the metal sludge deposited on the inner bottom thereof. A pair of electrodes are inserted into a tubular measuring instrument body having a closed tip, the electrodes are insulated and supported in the measuring instrument body with an insulating material, and the insertion instrument tip side surface of the measuring instrument body is opened. The tip of the electrode is exposed and positioned in the opening.
[0011]
That is, when such a metal sludge measuring instrument is inserted into the furnace body and energized between the electrodes, the conductivity of the metal sludge is higher than that of the molten glass. Of course, it is possible to detect whether or not metal sludge is deposited, and it is also possible to accurately grasp the deposition status at the same time by measuring the insertion position.
[0012]
The detector body closes the insertion tip and opens the side surface of the insertion tip, and the conductivity is measured by flowing metal sludge into the inside from the side opening. Even if the insertion tip of the measuring instrument main body collides with the furnace wall or the furnace bottom, the electrode can be detected without any damage, and highly reliable detection can be performed.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Next, a preferred embodiment for carrying out the present invention will be described with reference to the accompanying drawings.
[0014]
FIG. 1 shows an embodiment of a metal sludge measuring instrument 10 for a glass melting furnace according to the present invention.
[0015]
As shown in the figure, this metal sludge measuring instrument 10 has a pair of rod-like electrodes 12 and 12 inserted in parallel into a tubular measuring instrument body 11 whose tip is closed, and the electrodes 12 and 12 are heat resistant such as ceramic. The insulating body 13 is insulated and supported in the measuring instrument main body 11. Further, an opening 14 is formed on the side surface of the insertion tip of the measuring instrument main body 11, and the electrode 12 is positioned in the opening 14 with the tip of the electrode 12 exposed. . Further, a power supply circuit is connected to the other end of the electrodes 12, 12, and a power supply unit 15 for supplying current to the circuit and a resistance measuring device 16 for measuring the electric resistance flowing through the circuit are connected. Yes.
[0016]
In order to measure the presence / absence of metal sludge and the amount of deposition by the metal sludge measuring instrument 10 of the present invention having such a configuration, first, an insertion formed on the ceiling wall 2b of the furnace body 2 as shown in FIG. While inserting from the hole 2c, supplying the electric current between the electrodes 12 and 12, the front-end | tip is located in arbitrary positions in the furnace main body 2, for example, the bottom electrode 4. FIG. Here, if metal sludge is present on the bottom electrode 4, the metal sludge flows into the electrodes 12, 12 from the opening 14 at the tip of the measuring instrument body 11, and the current resistance between the electrodes 12, 12. Since the value rapidly decreases, the current resistance value is detected by the resistance measuring device 16 so that the presence of the metal sludge at that portion can be reliably grasped.
[0017]
Thereafter, when the tip of the measuring instrument main body 11 is moved along the slope 2a of the furnace wall from such a state as shown in FIG. 2, the resistance value hardly changes in the portion where the metal sludge is accumulated, Since the resistance value suddenly changes (increases) when the metal sludge disappears, by observing the movement of the measuring instrument body 11 and the change in resistance value, of course, the presence or absence of metal sludge in the furnace body 2 Accumulated amount, accumulated part, etc. can be grasped. Further, since the measuring instrument main body 11 is in a state in which the tip is closed and the electrodes 12 and 12 are protected, there is no possibility that the electrodes 12 and 12 are directly contacted or collide with the furnace wall to be damaged.
[0018]
The metal sludge is not always generated only on the furnace bottom, that is, on the bottom electrode 4. That is, as described above, in the initial stage of melting, current is passed only between the main electrodes 5 and 5 to melt only the upper layer portion, and the glass raw material at the bottom portion is in an unmelted state, so that it is generated in layers in the middle portion. In some cases. Therefore, in such a molten state, the metal sludge measuring device 10 of the present invention is moved along the layer boundary line, so that the deposition state of the metal sludge on the layer boundary line can be accurately grasped.
[0019]
In addition, since the inside and the periphery of the glass melting furnace 1 are under a very high level of radiation, these operations are performed remotely by a manipulator, an ITV camera, or the like provided in the vicinity thereof. Not too long.
[0020]
【The invention's effect】
In short, according to the present invention, the presence / absence of metal sludge and the amount of deposition can be accurately grasped, so that it is possible to avoid a short-circuit accident of the in-furnace electrode. In addition, the possibility of occurrence of a short-circuit accident due to the deposition state of metal sludge can be obtained in advance in a trial operation or a mock-up test of a glass melting furnace, so that the effect of improving the furnace bottom structure can be accurately evaluated. An excellent effect such as being able to do so can be exhibited.
[Brief description of the drawings]
FIG. 1 is a perspective view showing a metal sludge measuring instrument for a glass melting furnace according to the present invention.
FIG. 2 is a conceptual diagram showing a method for measuring the state of metal sludge accumulation using the metal sludge measuring instrument according to the present invention.
FIG. 3 is an explanatory view showing a configuration of a conventional glass melting furnace.
4 is a cross-sectional view taken along line XX in FIG.
FIG. 5 is a partially enlarged view showing a portion y in FIG. 3;
[Explanation of symbols]
2 Furnace body
10 Metal sludge measuring instrument
11 Measuring instrument body
12 electrodes
13 Insulation material
14 opening
15 Power supply
16 Resistance measuring instrument

Claims (1)

ガラス溶融炉の炉本体内に挿入され、その内部に堆積した金属スラッジの堆積状況を測定する金属スラッジ測定器において、上記炉本体内に挿入される先端が閉じた管状の測定器本体内に一対の電極を挿入すると共に、その電極を絶縁材でその測定器本体内に絶縁支持し、その測定器本体の挿入先端部側面を開口すると共に、その開口部内に上記電極の先端を露出させて位置させたことを特徴とするガラス溶融炉の金属スラッジ測定器。A metal sludge measuring instrument that is inserted into a furnace body of a glass melting furnace and measures the deposition state of the metal sludge accumulated therein, a pair of pipes in the tubular measuring instrument body having a closed tip inserted into the furnace body. The electrode is inserted into the measuring instrument body with an insulating material, and the insertion tip side surface of the measuring instrument body is opened and the tip of the electrode is exposed in the opening. A metal sludge measuring instrument for a glass melting furnace, characterized in that
JP2000157982A 2000-05-24 2000-05-24 Metal sludge measuring instrument for glass melting furnace Expired - Fee Related JP4218187B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000157982A JP4218187B2 (en) 2000-05-24 2000-05-24 Metal sludge measuring instrument for glass melting furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000157982A JP4218187B2 (en) 2000-05-24 2000-05-24 Metal sludge measuring instrument for glass melting furnace

Publications (2)

Publication Number Publication Date
JP2001330697A JP2001330697A (en) 2001-11-30
JP4218187B2 true JP4218187B2 (en) 2009-02-04

Family

ID=18662522

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000157982A Expired - Fee Related JP4218187B2 (en) 2000-05-24 2000-05-24 Metal sludge measuring instrument for glass melting furnace

Country Status (1)

Country Link
JP (1) JP4218187B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4630976B2 (en) * 2007-08-31 2011-02-09 独立行政法人 日本原子力研究開発機構 Glass melting furnace
JP5360380B2 (en) * 2009-03-03 2013-12-04 株式会社Ihi Method for detecting state of metal particles in glass

Also Published As

Publication number Publication date
JP2001330697A (en) 2001-11-30

Similar Documents

Publication Publication Date Title
JP4218187B2 (en) Metal sludge measuring instrument for glass melting furnace
JP4630976B2 (en) Glass melting furnace
JP2002071891A (en) Resistance measuring instrument in glass melting furnace
JP4389367B2 (en) Residual glass cutting method for glass melting furnace
KR100992514B1 (en) Sampler for ultra low carbon steel
JP3377503B2 (en) Glass melting furnace for high level radioactive liquid waste
JP3590243B2 (en) Furnace wall cooling structure of electric melting furnace
JPH10122544A (en) Control method of molten boundary layer in melting furnace of incinerated residue
Michal et al. Capturing and condensation of SiO gas from industrial Si furnace
JP2002071888A (en) Apparatus and method for sampling glass melting furnace
JP4018037B2 (en) Metal distillation purification equipment
JP4258953B2 (en) Glass melting furnace for high-level radioactive liquid waste
JPS59116036A (en) Measuring device of viscosity of high-temperature melt
JPH07146078A (en) Crucible type induction furnace with molten metal leakage detector
CN210923212U (en) Device suitable for organic matter of soil is got rid of
JP5539470B2 (en) Coal ash sampling method
JP2004361003A (en) Dust collector to be used for steelmaking electric furnace in charging scrap
Piluso et al. Severe accident experiments on PLINIUS platform. Results of first experiments on COLIMA facility related to VVER-440. Presentation of planned VULCANO and KROTOS tests
JP3535730B2 (en) Plasma arc melting furnace and method for extracting molten metal from plasma arc melting furnace
JP3136343B2 (en) Metal melt sampling equipment
CN205608948U (en) Pyrocondensation pipe adds automatic smog detection alarm device of heat engine
CN208320856U (en) Crucible device is taken for building materials chemical analysis
JP3781326B2 (en) Detection method of furnace wall damage in plasma melting furnace
JP4449223B2 (en) Method for destroying calcined body of molten glass liquid surface
JP4449222B2 (en) Method for destroying calcined body of molten glass liquid surface

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070307

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081021

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081103

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121121

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131121

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees