JP4216693B2 - Vacuum degree control method and apparatus for air-cooled steam condensing device - Google Patents

Vacuum degree control method and apparatus for air-cooled steam condensing device Download PDF

Info

Publication number
JP4216693B2
JP4216693B2 JP2003375849A JP2003375849A JP4216693B2 JP 4216693 B2 JP4216693 B2 JP 4216693B2 JP 2003375849 A JP2003375849 A JP 2003375849A JP 2003375849 A JP2003375849 A JP 2003375849A JP 4216693 B2 JP4216693 B2 JP 4216693B2
Authority
JP
Japan
Prior art keywords
vacuum
value
air
vacuum degree
degree
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003375849A
Other languages
Japanese (ja)
Other versions
JP2005139963A (en
Inventor
学 立石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2003375849A priority Critical patent/JP4216693B2/en
Publication of JP2005139963A publication Critical patent/JP2005139963A/en
Application granted granted Critical
Publication of JP4216693B2 publication Critical patent/JP4216693B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

本発明は、蒸気タービンプラントに設けられる空冷式蒸気復水装置の真空度制御方法及び装置に関する。   The present invention relates to a vacuum degree control method and apparatus for an air-cooled steam condensing device provided in a steam turbine plant.

従来、タービン等からの排気蒸気を凝縮させる空冷式蒸気復水装置において、復水温度、復水圧力を制御するには、図10に示すような方法が知られている(例えば、特許文献1)。   Conventionally, in an air-cooled steam condensing device that condenses exhaust steam from a turbine or the like, a method as shown in FIG. 10 is known to control the condensate temperature and condensate pressure (for example, Patent Document 1). ).

この制御方法は、図示するようにボイラから蒸気導入管20を通して蒸気が流入する復水装置21内の蒸気圧を圧力検出器22で検出し、その気相圧力P1と圧力設定値SVPとの偏差を気相圧力制御器23でPID演算して圧力制御対称機器(軸流送風機)24を制御することで復水温度、復水圧力を制御するようにしている。   In this control method, as shown in the figure, the steam pressure in the condensing device 21 into which steam flows from the boiler through the steam introduction pipe 20 is detected by the pressure detector 22, and the deviation between the gas phase pressure P1 and the pressure set value SVP is detected. The condensate temperature and the condensate pressure are controlled by calculating the PID with the gas phase pressure controller 23 and controlling the pressure control symmetrical device (axial fan) 24.

また、復水器21から復水タンクに復水導入管25を通して流出する復水の液相圧力を液相圧力検出器26で検出し、その検出液相圧力P2と気相圧力P1との差圧と水位設定値SVLとの偏差を水位制御器27でPID演算して復水導入管25に設けられた調節弁28を制御し水位一定に制御するようにしている。   Further, the liquid phase pressure of the condensate flowing out from the condenser 21 to the condensate tank through the condensate introduction pipe 25 is detected by the liquid phase pressure detector 26, and the difference between the detected liquid phase pressure P2 and the gas phase pressure P1 is detected. The deviation between the pressure and the water level set value SVL is PID-calculated by the water level controller 27 and the control valve 28 provided in the condensate introduction pipe 25 is controlled to control the water level constant.

この空冷式蒸気復水装置は、通常複数台のファン(軸流送風機)24を並列運転し、その負荷需要(蒸気復水装置の熱負荷)に応じて運転台数を増減する必要がある。   In this air-cooled steam condensing device, usually, a plurality of fans (axial blowers) 24 are operated in parallel, and the number of operating units needs to be increased or decreased according to the load demand (heat load of the steam condensing device).

このため、例えば所定の台数の軸流送風機が稼動中、負荷変動により1台または複数台の追加稼動の要求があるときには、その要求数に一致した特定の1台または複数台の軸流送風機が追加稼動される。また、続いて1台または複数台の停止の要求があった場合には、先に追加稼動した軸流送風機が停止するようにしている。   For this reason, for example, when a predetermined number of axial fans are in operation and there is a request for additional operation of one or more due to load fluctuations, one or more specific axial fans that match the required number Additional operation. In addition, when there is a request for stopping one or more units, the axial blower that has been previously operated is stopped.

しかし、このような制御方法では、最初に運転を始めた機器ほど運転時間が長くなり、逆に最後に運転(追加稼動)される機器ほど運転時間が短くなるという問題があった。   However, in such a control method, there has been a problem that the operation time becomes longer for a device that starts operation first, and conversely, the operation time becomes shorter for a device that is operated last (additional operation).

この問題を解決する制御方法として、最後に運転および停止された軸流送風機に付された番号を記憶する運転カウンタおよび停止カウンタとを備えたシステムおいて、複数の軸流送風機のうち、所定数の機器に対して運転開始または停止をする場合には、運転カウンタまたは停止カウンタに記憶された番号に1を加えた番号が付された機器から当該運転を開始または停止を実施することで、多数の機器を均一に運転させるようにしたものがある(例えば、特許文献2)。
特開平10−185458号公報 特開2000−283051号公報
As a control method for solving this problem, in a system including an operation counter and a stop counter for storing a number assigned to the axially blower that has been last operated and stopped, a predetermined number of axial flow fans When starting or stopping the operation of the device, the operation is started or stopped from the device numbered by adding 1 to the number stored in the operation counter or the stop counter. There is one in which these devices are operated uniformly (for example, Patent Document 2).
Japanese Patent Laid-Open No. 10-185458 JP 2000-283051 A

しかしながら、上記のような制御は軸流送風機の運転負荷を均一にすることを目的としているため、蒸気復水装置の要求熱負荷によってはやはり任意の軸流送風機がその優先順位に従い頻繁な起動、停止を繰り返し、軸流送風機の起動又は停止台数が常に安定しない事象が発生してしまうことに変りはない。   However, since the control as described above is intended to make the operation load of the axial flow fan uniform, depending on the required heat load of the steam condensing device, any axial flow fan is frequently started according to its priority, There is no change that an event occurs in which the stoppage is repeated and the axial blower starts or stops constantly is not stable.

本発明は、上記の事情に鑑みなされたもので、制御要求値と検出値との差をPID演算する際に、比較的簡単な演算処理方法を適用することによって、いかなる蒸気復水装置の要求熱負荷においてもこの軸流送風機の頻繁な稼動、停止の繰り返しを防止できる空冷式復水装置の真空度制御方法及び装置を提供することを目的とする。   The present invention has been made in view of the above circumstances, and by applying a relatively simple calculation processing method when performing PID calculation of the difference between the control request value and the detection value, any required steam condensing apparatus is required. It is an object of the present invention to provide a method and an apparatus for controlling the degree of vacuum of an air-cooled condensing device that can prevent repeated operation and stop of the axial flow fan even under a thermal load.

本発明は上記の目的を達成するため、次のような方法及び装置により空冷式復水装置の真空度を制御する。   In order to achieve the above object, the present invention controls the degree of vacuum of the air-cooled condensing device by the following method and apparatus.

請求項1に対応する発明は、蒸気タービンプラントに設けられる空冷式蒸気復水装置の真空度を検出し、この真空度と予め設定された目標真空度とをもとに冷却風量制御値を演算し、その演算結果に基づいて複数の軸流送風機の中から優先順位の高い軸流送風機を起動または停止させることにより、冷却空気流量を制御して前記空冷式蒸気復水装置の真空度を制御する真空度制御方法において、複数の軸流送風機の中から所定数の軸流送風機を順次運転した後、前記空冷式蒸気復水装置で検出された実真空度が前記目標真空度に対して設定された上限値及び下限値のいずれかを超過すると、前記実真空度と前記上限値または下限値との差を積分し、その積分値を別途設定された稼動設定値と比較して該積分値が稼動設定値を上回ったときのみ次の軸流送風機を追加稼動または追加停止させる。   The invention corresponding to claim 1 detects the degree of vacuum of an air-cooled steam condensing device provided in a steam turbine plant, and calculates a cooling air volume control value based on this degree of vacuum and a preset target degree of vacuum. Then, based on the calculation result, the high-priority axial flow fan is started or stopped from among the plurality of axial flow fans, thereby controlling the cooling air flow rate and controlling the vacuum degree of the air-cooled steam condensing device. In the vacuum degree control method, after a predetermined number of axial flow fans are sequentially operated from among a plurality of axial flow fans, the actual vacuum degree detected by the air-cooled steam condensing device is set with respect to the target vacuum degree. When either the upper limit value or the lower limit value is exceeded, the difference between the actual vacuum degree and the upper limit value or the lower limit value is integrated, and the integrated value is compared with the separately set operation set value. Only when exceeds the operating set value To add up or add stop the axial-flow fan of.

請求項2に対応する発明は、請求項1に対応する発明の空冷式蒸気復水装置の制御方法において、積分値が別途設定された稼動設定値を上回ったときのみ、前記実真空度の変化の傾きを評価し、実真空度が前記目標真空度に対して近づこうとしているのか、遠のこうとしているのかを判定し、遠のこうとしている時のみ次の軸流送風機を追加稼動または追加停止させる。   The invention corresponding to claim 2 is the method for controlling an air-cooled steam condensing device of the invention corresponding to claim 1, wherein the change in the actual vacuum degree is performed only when the integral value exceeds the separately set operation set value. And evaluate whether the actual vacuum is approaching or far away from the target vacuum, and the next axial flow fan is additionally operated or added only when it is far away. Stop.

請求項3に対応する発明は、請求項1又は請求項2に対応する発明の空冷式蒸気復水装置の真空度制御方法において、積分値は、予め設定された時間経過毎に稼動設定値と比較し、該積分値が稼動設定値を超えないときは前記積分値の演算を継続して行う。   According to a third aspect of the present invention, in the vacuum degree control method for an air-cooled steam condensate device according to the first or second aspect of the present invention, the integral value is an operation set value for each preset time. If the integral value does not exceed the operation set value, the calculation of the integral value is continued.

請求項4に対応する発明は、請求項1又は請求項2に対応する発明の空冷式蒸気復水装置の真空度制御方法において、積分値は、予め設定された時間経過毎に稼動設定値と比較し、該積分値が稼動設定値を超えないときは前記演算により求められている積分値をクリアする。   According to a fourth aspect of the present invention, in the vacuum degree control method for an air-cooled steam condensate device according to the first or second aspect of the present invention, the integral value is an operating set value for each preset time. When the integrated value does not exceed the operation set value, the integrated value obtained by the calculation is cleared.

請求項5に対応する発明は、請求項1又は請求項2に対応する発明の空冷式蒸気復水装置の真空度制御方法において、前記目標真空度に対して設定された上限値及び下限値に加えて、さらに直接稼動上限値及び直接停止下限値を設定し、前記実真空度が前記直接停止上限値または直接稼動下限値を超過すると、直ちに優先順位の高い軸流送風機を停止又は起動させる。   The invention corresponding to claim 5 is the vacuum control method for the air-cooled steam condensing device of the invention corresponding to claim 1 or claim 2, wherein the upper limit value and the lower limit value set for the target vacuum degree are set. In addition, a direct operation upper limit value and a direct stop lower limit value are further set, and when the actual vacuum exceeds the direct stop upper limit value or the direct operation lower limit value, the axial flow fan having a higher priority is immediately stopped or started.

請求項6に対応する発明は、蒸気タービンプラントに設けられる空冷式蒸気復水装置の真空度を検出し、この真空度と予め設定された目標真空度とをもとに冷却風量制御値を演算し、その演算結果に基づいて複数の軸流送風機の中から優先順位の高い軸流送風機を起動または停止させることにより、冷却空気流量を制御して前記空冷式蒸気復水装置の真空度を制御する真空度制御装置において、前記空冷式蒸気復水装置で検出された実真空度が目標真空度に対して予め設定された上限値及び下限値の範囲内にあるかどうかを判定する第1の判定手段と、この第1の判定手段により実真空度が上、下限値の範囲内になければ、実真空度と上限値又は下限値との差分を積分する演算手段と、この演算手段で求められた積分値と別途に設定された軸流送風機稼動設定値とを比較し、軸流送風機の追加稼動又は追加停止の要否を判定する第2の判定手段と、この第2の判定手段により軸流送風機の追加稼動又は追加停止が必要と判定されると、優先順位の高い軸流送風機に対して追加稼動又は追加停止指令を送出する出力手段とを備える。 The invention corresponding to claim 6 detects the degree of vacuum of the air-cooled steam condensing device provided in the steam turbine plant, and calculates the cooling air flow rate control value based on this degree of vacuum and a preset target degree of vacuum. Then, based on the calculation result, the high-priority axial flow fan is started or stopped from among the plurality of axial flow fans, thereby controlling the cooling air flow rate and controlling the vacuum degree of the air-cooled steam condensing device. In the vacuum degree control device, the first degree is determined to determine whether or not the actual vacuum degree detected by the air-cooled steam condensing device is within a range between an upper limit value and a lower limit value set in advance with respect to the target vacuum degree. If the actual vacuum degree is not within the range between the upper limit value and the lower limit value by the determining means, and the first determining means, the calculating means for integrating the difference between the actual vacuum degree and the upper limit value or the lower limit value; was integral value and the axis that is set separately Comparing the blower operation setting value, a second determination means for determining the necessity of additional working or additional stop of axial-flow fan, and requires additional operational or additional stop of the axial flow fan by the second determination means When the determination is made, output means for sending an additional operation or additional stop command to the axial blower having a high priority is provided.

請求項7に対応する発明は、請求項6に対応する発明の空冷式蒸気復水装置の真空度制御装置において、前記演算手段は予め設定された時間稼動パルス信号を送出するタイマを有し、このタイマが起動されてから設定時間に達する毎に前記第2の判定手段により積分演算による積分値が軸流送風機稼動設定値を超えているか否かを判定する。 The invention corresponding to claim 7 is the vacuum control device for an air-cooled steam condensing device of the invention corresponding to claim 6, wherein the calculation means has a timer for sending a preset time operation pulse signal, this timer to determine whether the integration value by the integral calculated by the second determination means for each reach time settings from being started exceeds the axial flow fan operation setting value.

本発明によれば、制御要求値と検出値との差をPID演算する際に、比較的簡単な演算処理方法を適用することで、いかなる蒸気復水装置の要求熱負荷においてもこの軸流送風機の頻繁な稼動、停止の繰り返しを防止することができる。   According to the present invention, when a difference between the control required value and the detected value is PID-calculated, a relatively simple calculation processing method is applied, so that this axial blower can be used at any required heat load of any steam condensing device. Can be prevented from being repeatedly operated and stopped.

以下本発明の実施形態を図面を参照して説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1は本発明の空冷式蒸気復水装置全体の一例を示す構成図である。   FIG. 1 is a block diagram showing an example of the entire air-cooled steam condensing device of the present invention.

図1に示すように、蒸気発生装置1から主蒸気管2を通して蒸気タービン3に送られた蒸気は、発電機4を回転駆動する仕事を終えた後、排気連絡管5を通して上部ヘッダー6に流れ、複数の蒸気復水装置管束7に導かれる。   As shown in FIG. 1, the steam sent from the steam generator 1 to the steam turbine 3 through the main steam pipe 2 flows to the upper header 6 through the exhaust communication pipe 5 after completing the work of rotating the generator 4. , Led to a plurality of steam condenser pipe bundles 7.

これら蒸気復水装置管束7は、屋根型構造に組み込まれ、その下方に設置されている図示しない架台にそれぞれ取付けられた複数台の軸流送風機8により冷却媒体である空気が管束7へ向けて送り込まれるようになっている。   These steam condensing device tube bundles 7 are incorporated in a roof-type structure, and air as a cooling medium is directed toward the tube bundle 7 by a plurality of axial flow fans 8 respectively attached to a gantry (not shown) installed below the steam condensing device. It is supposed to be sent.

上記各管束7を流れる蒸気は、軸流送風機8から送り込まれた冷却空気によりその潜熱が奪われて凝縮し、水となって下部ヘッダー9に流れ込んだ後、集合管10を通って復水タンク11へ導かれる。この復水タンク11ヘ捕集された復水は、復水ポンプ12により再び蒸気発生装置1に送られる。   The steam flowing through each of the tube bundles 7 is condensed with the latent heat removed by the cooling air sent from the axial blower 8, flows into the lower header 9 as water, and then passes through the collecting pipe 10 to the condensate tank. 11 leads to. The condensate collected in the condensate tank 11 is sent again to the steam generator 1 by the condensate pump 12.

一方、排気連絡管5には真空度検出器13が設けられ、この真空度検出器13で検出された真空度検出信号は増幅器14を介して軸流送風機運転制御装置15に入力される。この軸流送風機運転制御装置15は、上記真空度検出信号と制御対象の真空度を設定する真空度設定器16の出力信号とをもとに冷却風量制御値を演算するもので、その演算結果に基づいて優先順位の高い軸流送風機8に起動または停止信号を与えることで、冷却空気流量を制御し、蒸気復水装置の真空度を制御する。   On the other hand, a vacuum degree detector 13 is provided in the exhaust communication pipe 5, and a vacuum degree detection signal detected by the vacuum degree detector 13 is input to the axial flow fan operation control device 15 via the amplifier 14. This axial flow fan operation control device 15 calculates the cooling air flow rate control value based on the vacuum level detection signal and the output signal of the vacuum level setter 16 that sets the vacuum level to be controlled. Based on the above, by giving a start or stop signal to the axial blower 8 having a high priority, the flow rate of the cooling air is controlled, and the degree of vacuum of the steam condensing device is controlled.

ここで、上記真空度設定器16は、目標真空度Pstの設定と、この設定値に対してある係数を設けて真空度の上限値PLと真空度の下限値PHを設定し、さらに軸流送風機稼動設定値SZを設定するものである。なお、真空度は1気圧から復水装置内の圧力を差し引いた値であるため、実際の復水装置内の圧力で考える場合、真空度が高いほど圧力が低く、逆に真空度が低いほど圧力が高くなることを示している。また、以下の説明においては、特に記さない限り単に真空度として述べる。   Here, the vacuum degree setting device 16 sets the target vacuum degree Pst, sets a certain coefficient for the set value, sets the upper limit value PL of the vacuum degree, and the lower limit value PH of the vacuum degree, and further the axial flow The blower operation set value SZ is set. In addition, since the degree of vacuum is a value obtained by subtracting the pressure in the condensing apparatus from 1 atm, when considering the actual pressure in the condensing apparatus, the higher the degree of vacuum, the lower the pressure, and conversely, the lower the degree of vacuum. It shows that the pressure increases. In the following description, the degree of vacuum is simply described unless otherwise specified.

また、上記軸流送風機運転制御装置15は、真空度検出器13で検出された実真空度P0が目標真空度Pstに対する上限値PL、下限値PHの範囲内にあるかどうかを判定する第1の判定手段と、この第1の判定手段により実真空度P0が上、下限値の範囲内でないと判定されると起動して稼動パルス信号を送出するタイマを有し且つこのタイマの起動により予め設定された時間毎に実真空度と上限値又は下限値との差分を積分する演算手段と、この演算手段で求められた積分値Sと軸流送風機稼動設定値SZとを比較し、軸流送風機の追加稼動又は追加停止の要否を判定する第2の判定手段と、この第2の判定手段により軸流送風機の追加稼動又は追加停止が必要と判定されると、優先順位の高い軸流送風機に対して追加稼動又は追加停止指令を送出する出力手段とを備えている。 The axial flow fan operation control device 15 determines whether the actual vacuum degree P0 detected by the vacuum degree detector 13 is within the range of the upper limit value PL and the lower limit value PH with respect to the target vacuum degree Pst. And a timer for starting and transmitting an operation pulse signal when the actual vacuum degree P0 is determined not to be within the range of the upper and lower limit values by the first determining means. Computation means for integrating the difference between the actual vacuum degree and the upper limit value or lower limit value for each set time, and the integral value S obtained by this computation means and the axial flow fan operation set value SZ are compared, and the axial flow The second determining means for determining whether or not the additional operation or additional stop of the blower is necessary, and if the second determination means determines that the additional operation or additional stop of the axial flow fan is necessary, the axial flow having a higher priority. Additional operation or additional stop for the blower And an output means for sending a command.

次にこのように構成された空冷式蒸気復水装置の真空度制御装置の作用を図2及び図3により説明する。   Next, the operation of the vacuum control device of the air-cooled steam condensing device configured as described above will be described with reference to FIGS.

図2は本発明による空冷式蒸気復水装置の真空度制御方法を説明するための第1の実施形態を示すグラフである。なお、図2のグラフにおいて縦軸は圧力であり、上方がより圧力の高い状態を示す。つまり真空度で考えると、下方がより真空度が高い状態を表している。   FIG. 2 is a graph showing a first embodiment for explaining a vacuum degree control method for an air-cooled steam condensing device according to the present invention. In the graph of FIG. 2, the vertical axis represents pressure, and the upper side indicates a higher pressure state. That is, when considering the degree of vacuum, the lower part represents a higher degree of vacuum.

図2に示すように目標真空度Pstを設定した場合、この設定値に対してある係数を設けることで真空度の上限値PL、真空度の下限値PHを設定する。ここでは、例として目標真空度Pstに相当する圧力の1.1倍の圧力を真空度の下限値PH、目標真空度Pstに相当する圧力の0.9倍の圧力を真空度の上限値PLとして設定するが、空冷式蒸気復水装置の設置地域、適用軸流送風機の仕様によって変更することも可能である。さらに、軸流送風機稼動設定値SZ(ここでは、例として1MPa・sとして設定)を設ける。   When the target vacuum degree Pst is set as shown in FIG. 2, the upper limit value PL of the vacuum degree and the lower limit value PH of the vacuum degree are set by providing a certain coefficient for the set value. Here, as an example, a pressure 1.1 times the pressure corresponding to the target vacuum degree Pst is a lower limit value PH of the vacuum degree, and a pressure 0.9 times the pressure corresponding to the target vacuum degree Pst is an upper limit value PL of the vacuum degree. However, it can be changed depending on the installation area of the air-cooled steam condensing device and the specifications of the applicable axial flow fan. Furthermore, an axial flow fan operation set value SZ (here, set as 1 MPa · s as an example) is provided.

また、前述したように極端な連続作動を回避するため、タイマに稼動指令パルス信号の出力時間(ここでは例として60秒)を設定する。   Further, as described above, in order to avoid an extreme continuous operation, an operation command pulse signal output time (60 seconds as an example here) is set in the timer.

まず、プラント負荷上昇時の処理を図3に示すフローチャートを参照しながら説明する。   First, the process at the time of plant load increase is demonstrated, referring the flowchart shown in FIG.

いま、真空度検出器13で検出された実真空度が増幅器14により信号処理に必要なレベルに変換され、その出力信号が軸流送風機運転制御装置15に入力されているものとする。このとき、実真空度P0が下限値PHと上限値PLの間にあれば、その時点で運転状態にある軸流送風機以外の軸流送風機が追加稼動又は追加停止することはない。   It is assumed that the actual vacuum level detected by the vacuum level detector 13 is converted to a level required for signal processing by the amplifier 14 and the output signal is input to the axial flow fan operation control device 15. At this time, if the actual vacuum degree P0 is between the lower limit PH and the upper limit PL, the axial flow fans other than the axial flow fan that is in operation at that time will not be additionally operated or stopped.

このような状態でプラント負荷が低下し、目標真空度Pstを保持しようとする場合、蒸気復水装置の熱負荷の低下により真空度が低下すると、積分演算手段により求められる積分値Sをリセット(ST1)した後、第1の判定手段により実真空度P0が上限値PLを上回ったことを判定する(ST2)。   In such a state, when the plant load is reduced and the target vacuum degree Pst is to be maintained, when the vacuum degree is lowered due to a reduction in the thermal load of the steam condensing device, the integral value S obtained by the integral calculation means is reset ( After ST1), it is determined by the first determination means that the actual vacuum degree P0 has exceeded the upper limit PL (ST2).

この判定と同時にタイマTが起動し(ST3)、実真空度P0が上限値PLを上回っていることを条件(ST4)に、演算手段により実真空度P0と上限設定値PLとの差分(P0−PL)の積分演算を開始する(ST5)。   Simultaneously with this determination, the timer T is started (ST3), and the difference (P0) between the actual vacuum degree P0 and the upper limit set value PL is calculated by the computing means on the condition that the actual vacuum degree P0 exceeds the upper limit value PL (ST4). -PL) is started (ST5).

そして、タイマが起動されてから設定時間、つまり起動指令パルス信号間隔(ここでは、60秒)の設定時間Tlimに達する(ST6)毎に、第2の判定手段により積分演算による積分値Sが軸流送風機稼動設定値SZ(1MPa・s)を超えているか否かを判定し(ST7)、S>SZであれば1台の軸流送風機が追加停止する(ST8)。   Then, every time the set time Tlim of the start command pulse signal interval (in this case, 60 seconds) is reached (ST6) after the timer is started (ST6), the integration value S by the integration calculation is changed to the axis by the second determination means. It is determined whether or not the flow blower operation set value SZ (1 MPa · s) is exceeded (ST7). If S> SZ, one axial flow blower is additionally stopped (ST8).

逆に、S>SZでなければ、再度ST4に戻って実真空度P0が上限値PLを上回っているか否かを判定し、ここでP0>PLであれば積分演算を継続し、P0>PLでなければST1に戻って積分値Sをリセットする。   On the other hand, if S> SZ is not satisfied, the process returns to ST4 again to determine whether or not the actual vacuum degree P0 exceeds the upper limit value PL. If P0> PL, the integration operation is continued, and P0> PL Otherwise, the process returns to ST1 to reset the integral value S.

即ち、積分演算により求められる積分値Sが起動指令パルス信号間隔(60秒)以内に軸流送風機稼動設定値SZに達しない場合は、次の軸流送風機は追加停止されず現行の稼動台数を保ったまま、継続して実真空度P0と上限設定値PLとの差を積分し続け、これ以降の起動指令パルス信号を受信する度に積分値Sと軸流送風機稼動設定値SZとを比較し、軸流送風機の追加停止の要否を判定する。 That is, if the integral value S obtained by the integral calculation does not reach the axial flow fan operation set value SZ within the start command pulse signal interval (60 seconds), the next axial flow fan is not additionally stopped and the current number of operating units is set. While continuing to integrate the difference between the actual vacuum degree P0 and the upper limit set value PL, the integrated value S is compared with the axial flow fan operating set value SZ every time a subsequent start command pulse signal is received. Then, it is determined whether or not the axial flow fan needs to be additionally stopped.

このように軸流送風機は実真空度が設定値Pstの上限値PLを下回るまで優先順位の高い順に停止し続け、蒸気復水装置の冷却能力が熱負荷を下回り、実真空度P0が上限設定値PLを下回った時点でこの積分値S及びタイマTはリセットされ、S=0,T=0となる。   In this way, the axial blower continues to stop in descending order of priority until the actual vacuum level falls below the upper limit value PL of the set value Pst, the cooling capacity of the steam condensing device falls below the thermal load, and the actual vacuum level P0 is set to the upper limit. When the value PL falls below the value PL, the integral value S and the timer T are reset, and S = 0 and T = 0.

以上はプラント負荷が低下し、実真空度が設定値Pstの上限値PLを上回っている場合の作用であるが、これとは逆に蒸気復水装置の熱負荷の上昇により実真空度が低下し、実真空度P0が設定値Pstの下限値PHを下回っている場合には図4に示すフローチャートのようになる。   The above is the operation when the plant load decreases and the actual vacuum level exceeds the upper limit PL of the set value Pst. On the contrary, the actual vacuum level decreases due to the increase in the thermal load of the steam condensing device. When the actual vacuum degree P0 is below the lower limit PH of the set value Pst, the flowchart shown in FIG. 4 is obtained.

蒸気復水装置の熱負荷の上昇により真空度が低下すると、積分演算手段により求められる積分値Sをリセット(ST11)した後、第1の判定手段により実真空度P0が下限値PHを下回ったことを判定する(ST12)。   When the degree of vacuum decreases due to an increase in the heat load of the steam condensing device, the integrated value S obtained by the integral calculating means is reset (ST11), and then the actual degree of vacuum P0 falls below the lower limit PH by the first determining means. (ST12).

この判定と同時にタイマTが起動し(ST13)、実真空度P0が下限値PHを下回っていることを条件(ST14)に、演算手段により実真空度P0と下限設定値PHとの差分(PH−P0)の積分演算を開始する(ST15)。   At the same time as this determination, the timer T is started (ST13), and the condition (ST14) is that the actual vacuum degree P0 is below the lower limit PH, and the difference between the actual vacuum degree P0 and the lower limit set value PH (PH -P0) is started (ST15).

そして、タイマが起動されてから設定時間、つまり起動指令パルス信号間隔(ここでは、60秒)の設定時間Tlimに達する(ST16)毎に、第2の判定手段により積分演算による積分値Sが軸流送風機稼動設定値SZ(1MPa・s)を超えているか否かを判定し(ST17)、S>SZであれば1台の軸流送風機が追加稼動する(ST18)。   Then, every time the set time Tlim of the start command pulse signal interval (here, 60 seconds) is reached (ST16) after the timer is started (ST16), the integral value S obtained by the integration calculation is converted to the axis by the second determination means. It is determined whether or not the flow blower operation set value SZ (1 MPa · s) is exceeded (ST17). If S> SZ, one axial flow blower is additionally operated (ST18).

逆に、S>SZでなければ、再度ST14に戻って実真空度P0が下限値PHを下回っているか否かを判定し、ここでP0<PHであれば積分演算を継続し、P0<PHでなければST11に戻って積分値Sをリセットする。   On the other hand, if S> SZ is not satisfied, the process returns to ST14 again to determine whether or not the actual vacuum degree P0 is lower than the lower limit value PH. If P0 <PH, the integration operation is continued, and P0 <PH Otherwise, the process returns to ST11 and the integral value S is reset.

即ち、積分演算により求められる積分値Sが起動指令パルス信号間隔(60秒)以内に軸流送風機稼動設定値SZに達しない場合は、次の軸流送風機は追加稼動されず現行の稼動台数を保ったまま、継続して実真空度P0と下限設定値PLとの差を積分し続け、これ以降の起動指令パルス信号を受信する度に積分値Sと軸流送風機稼動設定値SZとを比較し、軸流送風機の追加稼動の要否を判定する。 That is, if the integral value S obtained by the integral calculation does not reach the axial blower operation set value SZ within the start command pulse signal interval (60 seconds), the next axial flow fan is not additionally operated and the current number of operating units is set. While continuing to integrate the difference between the actual vacuum degree P0 and the lower limit set value PL, the integrated value S is compared with the axial flow fan operating set value SZ every time a subsequent start command pulse signal is received. The necessity of additional operation of the axial blower is then determined.

そして、積分値Sが起動指令パルス信号間隔(60秒)以内に軸流送風機稼動設定値SZを超えたと判定すると、この軸流送風機稼動設定値SZを超えた時点で優先順位の高い軸流送風機を起動する。また、この積分値が起動指令パルス信号間隔(60秒)以内で軸流送風機稼動設定値SZに達しない場合は、次の軸流送風機は起動されることなく、現行の稼動台数を保ったまま、演算手段で積分演算を継続してP0と下限値PHとの差を積分し続け、これ以降の起動指令パルス信号を受信する度に積分値Sと軸流送風機稼動設定値SZとを比較し、起動優先順位の高い軸流送風機の起動の要否を判定する。 When it is determined that the integral value S has exceeded the axial flow fan operation set value SZ within the start command pulse signal interval (60 seconds), the axial flow blower having a high priority is reached when the axial flow fan operation set value SZ is exceeded. Start up. If the integral value does not reach the axial flow fan operation set value SZ within the start command pulse signal interval (60 seconds), the next axial flow fan is not started and the current number of operating units is maintained. The integration means continues to integrate the difference between P0 and the lower limit PH, and the integral value S is compared with the axial flow fan operation set value SZ every time a subsequent start command pulse signal is received. Then, it is determined whether or not it is necessary to start an axial blower having a high start priority.

このように軸流送風機は実真空度P0が設定値Pstの下限値PHを上回るまで起動し続け、蒸気復水装置の冷却能力が熱負荷を上回り、実真空度P0が下限設定値PHを上回った時点でこの積分値SとタイマTはリセットされ、S=0,T=0となる。   Thus, the axial blower continues to start until the actual vacuum degree P0 exceeds the lower limit value PH of the set value Pst, the cooling capacity of the steam condensing device exceeds the heat load, and the actual vacuum degree P0 exceeds the lower limit set value PH. At this time, the integral value S and the timer T are reset, and S = 0 and T = 0.

本実施形態によれば、上述のように一つの真空度制御設定値に対して常に一定の幅を持った制御バンドを持たせることが可能となるため、軸流送風機に頻繁な稼動、停止の繰り返し負荷をかけることなく、かつ安定した要求真空度を得ることができる。   According to the present embodiment, as described above, since it is possible to have a control band having a constant width with respect to one vacuum degree control set value, the axial blower is frequently operated and stopped. A stable required degree of vacuum can be obtained without repeatedly applying a load.

また、タイマ起動後の積分値Sを設定時間Tlim毎に判定するようにしているので、軸流送風機の追加停止や追加起動を行うタイミングをTlimの設定値により調整することができ、運転環境(外気温、プラント出力など)の変動の時定数に合わせて運用することができる。 In addition, since the integral value S after the timer is started is determined every set time Tlim, the timing to perform additional stop or additional start of the axial fan can be adjusted by the set value of Tlim, and the operating environment ( It can be operated according to the time constant of fluctuations in outside air temperature, plant output, etc.

図5は本発明による空冷式蒸気復水装置の真空制御方法を説明するための第2の実施形態を示すグラフである。   FIG. 5 is a graph showing a second embodiment for explaining the vacuum control method of the air-cooled steam condensing device according to the present invention.

第2の実施形態では、第1の実施形態において積分値算出時点での真空度変化曲線の傾きを算出するものであり、第1の実施形態と同一の構成には同一の符号を付し、重複する説明は省略する。   In the second embodiment, the slope of the degree-of-vacuum change curve at the time of calculating the integral value in the first embodiment is calculated. The same components as those in the first embodiment are denoted by the same reference numerals, A duplicate description is omitted.

本実施形態の動作としては、稼動指令パルス信号を受信する度に積分値Sと軸流送風機稼動設定値SZとを比較するとともに、真空度変化曲線の傾きを算出し、実真空度P0が上限値PLを上回っていた場合、真空度変化曲線の傾きが正のとき(図5における右肩下がりのとき)には次の軸流送風機の追加停止を実施する。逆に真空度変化曲線の傾きが負のとき(図5における右肩上がりのとき)には追加停止を実施しない。 As an operation of this embodiment, every time an operation command pulse signal is received, the integral value S and the axial flow fan operation set value SZ are compared, the slope of the vacuum degree change curve is calculated, and the actual vacuum degree P0 is the upper limit. When the value PL is exceeded, when the slope of the degree-of-vacuum change curve is positive (when the slope changes to the right in FIG. 5), the next axial blower is additionally stopped. Conversely, when the slope of the vacuum degree change curve is negative (when it rises to the right in FIG. 5), no additional stop is performed.

図6はプラント負荷が低下し、実真空度が設定値Pstの上限値PLを上回っているか否かを処理するフローチャートで、図3と同一ステップには同一符号を付してその説明を省略し、ここでは異なる点について述べる。   FIG. 6 is a flowchart for processing whether or not the plant load is reduced and the actual vacuum level exceeds the upper limit value PL of the set value Pst. The same steps as those in FIG. Here are the differences.

図6において、積分演算による積分値Sが軸流送風機稼動設定値SZ(1MPa・s)を超えているか否かを判定し(ST7)、S>SZであればその真空度変化曲線の傾きdp0/dtを求めてその真空度変化曲線の傾きdp0/dtが正であるか否かを判定するステップ(ST9)を設け、dp0/dt>0のとき軸流送風機1台追加停止し、dp0/dt>0でなければST4に戻って実真空度P0が上限値PLを上回っているか否かを判定し、ここでP0>PLであれば積分演算を継続し、P0>PLでなければST1に戻って積分値Sをリセットする。   In FIG. 6, it is determined whether or not the integral value S obtained by the integral calculation exceeds the axial flow fan operation set value SZ (1 MPa · s) (ST7). If S> SZ, the slope dp0 of the vacuum degree change curve is determined. / dt is obtained to determine whether the slope dp0 / dt of the change curve of the degree of vacuum is positive (ST9). When dp0 / dt> 0, one additional axial fan is stopped and dp0 / If dt> 0, the process returns to ST4 to determine whether or not the actual degree of vacuum P0 exceeds the upper limit value PL. Here, if P0> PL, the integration operation is continued. Return to reset the integral value S.

これとは逆に蒸気復水装置の熱負荷の上昇により実真空度が低下し、実真空度P0が設定値Pstの下限値PHを下回っている場合には、真空度変化曲線の傾きが正のとき(図5における右肩下がりのとき)には次の軸流送風機の起動は実施せず、また真空度変化曲線の傾きが負のとき(図5における右肩上がりのとき)には軸流送風機の起動を実施する。 On the other hand, when the actual vacuum level decreases due to an increase in the heat load of the steam condensing device and the actual vacuum level P0 is below the lower limit PH of the set value Pst, the slope of the vacuum level change curve is positive. axis when the start of the next axial blower is not performed in (when the downward-sloping in FIG. 5), and when the slope degree of vacuum change curve is negative (when soaring in Figure 5) of to implement the start-up of the flow blower.

図7はこの場合のフローチャートで、図4と同一ステップには同一符号を付してその説明を省略し、ここでは異なる点について述べる。   FIG. 7 is a flowchart in this case. The same steps as those in FIG. 4 are denoted by the same reference numerals, and the description thereof will be omitted. Differences will be described here.

図7において、積分演算による積分値Sが軸流送風機稼動設定値SZ(1MPa・s)を超えているか否かを判定し(ST17)、S>SZであればその真空度変化曲線の傾きdp0/dtを求めてその真空度変化曲線の傾きdp0/dtが負あるか否かを判定するステップ(ST19)を設け、dp0/dt<0のとき軸流送風機1台追加稼動し、dp0/dt<0でなければST14に戻って実真空度P0が下限値PHを上回っているか否かを判定し、ここでP0<PHであれば積分演算を継続し、P0<PHでなければST11に戻って積分値Sをリセットする。   In FIG. 7, it is determined whether or not the integral value S obtained by the integral calculation exceeds the axial flow fan operating set value SZ (1 MPa · s) (ST17). If S> SZ, the slope dp0 of the vacuum degree change curve is determined. / dt is determined to determine whether the slope dp0 / dt of the curve for changing the degree of vacuum is negative (ST19). When dp0 / dt <0, one additional axial fan is operated, and dp0 / dt If <0, return to ST14 to determine whether or not the actual degree of vacuum P0 exceeds the lower limit PH. If P0 <PH, continue the integration operation. If P0 <PH, return to ST11. To reset the integral value S.

本実施形態によれば、実真空度P0が設定値Pstに対して近づこうとしているのか、遠のこうとしているのかを常に監視しているため、第1の実施形態よりもさらに安定した要求真空度をより早く得ることができる。   According to the present embodiment, since the actual vacuum degree P0 is constantly monitored as to whether it is approaching or far from the set value Pst, the required vacuum is more stable than that of the first embodiment. You can get the degree faster.

図8は本発明による空冷式蒸気復水装置の真空度制御方法を説明するための第3の実施形態を示すフローチャートである。   FIG. 8 is a flowchart showing a third embodiment for explaining the vacuum degree control method of the air-cooled steam condensing device according to the present invention.

上述した第1の実施形態及び第2の実施形態では、タイマ起動後の積分値Sが設定時間Tlim毎に軸流送風機稼動設定値SZを超えているかどうかを判定し、超えていないときは継続して積分演算を実施するようにしたが、第3の実施形態ではタイマ起動後の積分値Sが設定時間Tlim毎に軸流送風機稼動設定値SZを超えているかどうかを判定し、超えていないときは積分値をリセットして再度判定をし直すようにするものである。   In the first embodiment and the second embodiment described above, it is determined whether or not the integral value S after starting the timer exceeds the axial flow fan operation set value SZ every set time Tlim. However, in the third embodiment, it is determined whether or not the integral value S after starting the timer exceeds the axial blower operation set value SZ every set time Tlim. Sometimes the integral value is reset and the determination is made again.

図8はかかる判定処理をプラント負荷低下時に対応させて示すものであり、図3と異なる点は、ステップST6´において、T>Tlimと判定され、ステップST7でS>Szでないと判定されると、ステップST1に戻り、積分値Sをリセットして一連の処理を実行するようにしている。   FIG. 8 shows such a determination process in response to a decrease in plant load. The difference from FIG. 3 is that T> Tlim is determined in step ST6 ′, and S> Sz is not determined in step ST7. Returning to step ST1, the integration value S is reset and a series of processing is executed.

このような処理を行うことにより、排気連絡管の蒸気圧力が閾値近傍で安定している場合などでも追加停止を行われないため、軸流送風機の追加停止の回数がより少なくなり、軸流送風機の運転台数を安定にすることができる。   By performing such processing, additional stop is not performed even when the steam pressure of the exhaust communication pipe is stable in the vicinity of the threshold, so the number of additional stop of the axial blower is reduced, and the axial flow blower is reduced. The number of operating units can be stabilized.

図8に示すフローチャートは、実真空度P0と上限設定値PLとを比較して軸流送風機を追加停止するかどうかを判定する場合であるが、図4に示すように実真空度P0と下限設定値PHとを比較して軸流送風機を追加稼動するかどうかを判定する場合も図8と同様の判定処理を行うことができる。また、第2の実施形態で示した図6及び図7のフローチャートのように真空度変化曲線の傾きdp0/dtにより、実真空度P0が設定値Pstに対して近づこうとしているか遠のこうとしているのかを判定する場合にも図8と同様の判定処理を行うことができる。   The flow chart shown in FIG. 8 is a case where the actual vacuum degree P0 and the upper limit set value PL are compared to determine whether or not the axial blower is additionally stopped. As shown in FIG. Even when it is determined whether or not the axial flow fan is additionally operated by comparing with the set value PH, the same determination processing as in FIG. 8 can be performed. Further, as shown in the flowcharts of FIGS. 6 and 7 shown in the second embodiment, the actual vacuum degree P0 is approaching or far from the set value Pst depending on the slope dp0 / dt of the vacuum degree change curve. Even when it is determined whether or not there is a determination process, the same determination process as in FIG. 8 can be performed.

図9は本発明による空冷式蒸気復水装置の真空制御方法を説明するための第4の実施形態を示すグラフである。   FIG. 9 is a graph showing a fourth embodiment for explaining a vacuum control method of the air-cooled steam condensing device according to the present invention.

第4の実施形態では、第1の実施形態にさらに直接稼動下限値PHHおよび直接停止上限値PLLを設けたもの(ここでは、例としてとして目標値Pstの1.5倍の圧力に相当する真空度を直接稼動下限値PHH、目標値Pstに相当する圧力の0.5倍の圧力に相当する真空度を直接停止上限値PLLとして設定する)であり、第1の実施形態と同一部分には同一符号を付し、重複する説明は省略する。   In the fourth embodiment, a direct operation lower limit PHH and a direct stop upper limit PLL are further provided in the first embodiment (here, a vacuum corresponding to a pressure 1.5 times the target value Pst as an example) The vacuum degree corresponding to 0.5 times the pressure corresponding to the target operation value Pst and the direct operation lower limit value PHH is directly set as the stop upper limit value PLL. The same reference numerals are given, and duplicate descriptions are omitted.

この直接稼動下限値PHHおよび直接停止上限値PLLを設けることにより、タービンバイパス運転等のような急激に蒸気復水装置の熱負荷が上昇するような状況では、第1の実施形態による真空度制御では真空度制御設定値に対する一定の幅を持った制御バンドまでの回復を図ることが困難となるため、この直接稼動下限値PHHおよび直接停止上限値PLLを超過した場合は、直ちに優先順位の高い軸流送風機を起動または停止させることにより、目標真空度への早期回復を図ることができる。   By providing the direct operation lower limit PHH and the direct stop upper limit PLL, the vacuum degree control according to the first embodiment is performed in a situation where the thermal load of the steam condensing device suddenly increases, such as turbine bypass operation. Since it is difficult to achieve recovery to a control band having a certain width with respect to the vacuum degree control set value, if the direct operation lower limit PHH and the direct stop upper limit PLL are exceeded, the priority is immediately higher. By starting or stopping the axial blower, early recovery to the target vacuum level can be achieved.

本発明を適用した空冷式蒸気復水装置全体の一例を示す構成図。The block diagram which shows an example of the whole air-cooled steam condensate apparatus to which this invention is applied. 本発明による空冷式蒸気復水装置の真空制御方法を説明するための第1の実施形態を示すグラフ。The graph which shows 1st Embodiment for demonstrating the vacuum control method of the air-cooling type steam condensing apparatus by this invention. 同実施形態において、プラント負荷上昇時の処理を示すフローチャート。The flowchart which shows the process at the time of plant load rise in the same embodiment. 同実施形態において、熱負荷の減少により実真空度が上昇し、実真空度が設定値の上限値を上回っている場合の処理を示すフローチャート。In the same embodiment, the flowchart which shows a process in case an actual vacuum degree raises by the reduction | decrease of a thermal load, and the actual vacuum degree exceeds the upper limit of a setting value. 本発明による空冷式蒸気復水装置の真空制御方法を説明するための第2の実施形態を示すグラフ。The graph which shows 2nd Embodiment for demonstrating the vacuum control method of the air-cooling type steam condensing apparatus by this invention. 同実施形態において、プラント負荷上昇時に実真空度が目標設定値の下限値を下回っているか否かの判定処理を示すフローチャート。The flowchart which shows the determination processing whether the actual vacuum degree is less than the lower limit of a target setting value at the time of plant load rise in the same embodiment. 同実施形態において、プラント負荷減少時に実真空度が目標設定値の上限値を上回っているか否かの判定処理を示すフローチャート。The flowchart which shows the determination processing whether the actual vacuum degree is over the upper limit of a target setting value at the time of plant load reduction | decrease in the same embodiment. 本発明による空冷式蒸気復水装置の真空度制御方法を説明するための第3の実施形態を示すフローチャート。The flowchart which shows 3rd Embodiment for demonstrating the vacuum degree control method of the air-cooling type steam condensing apparatus by this invention. 本発明による空冷式蒸気復水装置の真空制御方法を説明するための第4の実施形態を示すグラフ。The graph which shows 4th Embodiment for demonstrating the vacuum control method of the air-cooling type steam condensing apparatus by this invention. 従来の空冷式蒸気復水装置全体の一例を示す構成図。The block diagram which shows an example of the whole conventional air-cooling type steam condensing apparatus.

符号の説明Explanation of symbols

1…蒸気発生装置、2…主蒸気管、3…蒸気タービン、4…発電機、5…排気連絡管、6…上部ヘッダー、7…蒸気復水装置管束、8…軸流送風機、9…下部ヘッダー、10…集合管、11…復水タンク、12…復水ポンプ、13…真空度検出器、14…増幅器、15…軸流送風機運転制御装置、16…真空度設定器。
DESCRIPTION OF SYMBOLS 1 ... Steam generator, 2 ... Main steam pipe, 3 ... Steam turbine, 4 ... Generator, 5 ... Exhaust communication pipe, 6 ... Upper header, 7 ... Steam condensing apparatus pipe bundle, 8 ... Axial flow fan, 9 ... Lower part Header 10, collecting pipe 11, condensate tank 12, condensate pump 13, vacuum detector 14, amplifier 15, axial blower operation controller, 16 vacuum setting device

Claims (7)

蒸気タービンプラントに設けられる空冷式蒸気復水装置の真空度を検出し、この真空度と予め設定された目標真空度とをもとに冷却風量制御値を演算し、その演算結果に基づいて複数の軸流送風機の中から優先順位の高い軸流送風機を起動または停止させることにより、冷却空気流量を制御して前記空冷式蒸気復水装置の真空度を制御する真空度制御方法において、
複数の軸流送風機の中から所定数の軸流送風機を順次運転した後、前記空冷式蒸気復水装置で検出された実真空度が前記目標真空度に対して設定された上限値及び下限値のいずれかを超過すると、前記実真空度と前記上限値または下限値との差を積分し、その積分値を別途設定された稼動設定値と比較して該積分値が稼動設定値を上回ったときのみ次の軸流送風機を追加稼動または追加停止させることを特徴とする空冷式蒸気復水装置の真空度制御方法。
The degree of vacuum of the air-cooled steam condensing device installed in the steam turbine plant is detected, the cooling air volume control value is calculated based on this degree of vacuum and a preset target degree of vacuum, and a plurality of values are calculated based on the calculation result. In the vacuum degree control method for controlling the vacuum degree of the air-cooled steam condensing device by controlling the flow rate of the cooling air by starting or stopping the axial flow fan having a high priority from the axial flow fans of
After sequentially operating a predetermined number of axial fans from among a plurality of axial fans, the actual vacuum detected by the air-cooled steam condensing device is an upper limit value and a lower limit value set for the target vacuum degree. If any of the above is exceeded, the difference between the actual vacuum degree and the upper limit value or the lower limit value is integrated, and the integral value is compared with an operation set value set separately, and the integrated value exceeds the operation set value. A vacuum degree control method for an air-cooled steam condensing device, characterized in that only when the next axial blower is additionally operated or additionally stopped.
請求項1記載の空冷式蒸気復水装置の真空度制御方法において、積分値が別途設定された稼動設定値を上回ったときのみ、前記実真空度の変化の傾きを評価し、実真空度が前記目標真空度に対して近づこうとしているのか、遠のこうとしているのかを判定し、遠のこうとしている時のみ次の軸流送風機を追加稼動または追加停止させることを特徴とする空冷式蒸気復水装置の真空度制御方法。   In the vacuum degree control method of the air-cooled steam condensate device according to claim 1, the inclination of the change in the actual vacuum degree is evaluated only when the integral value exceeds the separately set operation set value. An air-cooled steam characterized by determining whether the target vacuum degree is approaching or distant, and additionally operating or stopping the next axial blower only when the target vacuum is approaching Vacuum degree control method for condensing device. 請求項1又は請求項2記載の空冷式蒸気復水装置の真空度制御方法において、積分値は、予め設定された時間経過毎に稼動設定値と比較し、該積分値が稼動設定値を超えないときは前記積分値の演算を継続して行うことを特徴とする空冷式蒸気復水装置の真空度制御方法。   3. The method for controlling the degree of vacuum of an air-cooled steam condensing device according to claim 1 or 2, wherein the integrated value is compared with an operating set value every time a preset time elapses, and the integrated value exceeds the operating set value. A vacuum degree control method for an air-cooled steam condensing device, characterized in that the calculation of the integral value is continued when there is not. 請求項1又は請求項2記載の空冷式蒸気復水装置の真空度制御方法において、積分値は、予め設定された時間経過毎に稼動設定値と比較し、該積分値が稼動設定値を超えないときは前記演算により求められている積分値をクリアすることを特徴とする空冷式蒸気復水装置の真空度制御方法。   3. The method for controlling the degree of vacuum of an air-cooled steam condensing device according to claim 1 or 2, wherein the integrated value is compared with an operating set value every time a preset time elapses, and the integrated value exceeds the operating set value. When there is not, the integrated value calculated | required by the said calculation is cleared, The vacuum degree control method of the air-cooling type steam condensate apparatus characterized by the above-mentioned. 請求項1又は請求項2の空冷式蒸気復水装置の真空度制御方法において、前記目標真空度に対して設定された上限値及び下限値に加えて、さらに直接稼動上限値及び直接停止下限値を設定し、前記実真空度が前記直接停止上限値または直接稼動下限値を超過すると、直ちに優先順位の高い軸流送風機を停止又は起動させることを特徴とする空冷式蒸気復水装置の真空度制御方法。   The vacuum control method for an air-cooled steam condensing device according to claim 1 or 2, wherein, in addition to the upper limit and lower limit set for the target vacuum, a direct operation upper limit and a direct stop lower limit When the actual vacuum degree exceeds the direct stop upper limit value or the direct operation lower limit value, the high-priority axial flow blower is immediately stopped or started. Control method. 蒸気タービンプラントに設けられる空冷式蒸気復水装置の真空度を検出し、この真空度と予め設定された目標真空度とをもとに冷却風量制御値を演算し、その演算結果に基づいて複数の軸流送風機の中から優先順位の高い軸流送風機を起動または停止させることにより、冷却空気流量を制御して前記空冷式蒸気復水装置の真空度を制御する真空度制御装置において、
前記空冷式蒸気復水装置で検出された実真空度が目標真空度に対して予め設定された上限値及び下限値の範囲内にあるかどうかを判定する第1の判定手段と、この第1の判定手段により実真空度が上、下限値の範囲内になければ、実真空度と上限値又は下限値との差分を積分する演算手段と、この演算手段で求められた積分値と別途に設定された軸流送風機稼動設定値とを比較し、軸流送風機の追加稼動又は追加停止の要否を判定する第2の判定手段と、この第2の判定手段により軸流送風機の追加稼動又は追加停止が必要と判定されると、優先順位の高い軸流送風機に対して追加稼動又は追加停止指令を送出する出力手段とを備えたことを特徴とする空冷式蒸気復水装置の真空度制御装置。
The degree of vacuum of the air-cooled steam condensing device installed in the steam turbine plant is detected, the cooling air volume control value is calculated based on this degree of vacuum and a preset target degree of vacuum, and a plurality of values are calculated based on the calculation result. In the vacuum degree control device for controlling the degree of vacuum of the air-cooled steam condensing device by controlling the flow rate of the cooling air by starting or stopping the axial flow fan having a high priority among the axial flow fans of
First determination means for determining whether the actual vacuum detected by the air-cooled steam condensing device is within a range between an upper limit value and a lower limit value set in advance with respect to the target vacuum degree; If the actual vacuum degree is not within the range of the upper and lower limit values by the determining means, the calculating means for integrating the difference between the actual vacuum degree and the upper limit value or the lower limit value, and the integral value obtained by this calculating means separately Compared with the set axial flow fan operation set value, the second determination means for determining whether additional operation or additional stop of the axial flow fan is necessary, and additional operation of the axial flow fan by the second determination means or Vacuum degree control of an air-cooled steam condensing device, comprising an output means for sending an additional operation or additional stop command to an axial flow fan having a high priority when it is determined that an additional stop is necessary apparatus.
請求項6記載の空冷式蒸気復水装置の真空度制御装置において、前記演算手段は予め設定された時間稼動パルス信号を送出するタイマを有し、このタイマが起動されてから設定時間に達する毎に前記第2の判定手段により積分演算による積分値が軸流送風機稼動設定値を超えているか否かを判定することを特徴とする空冷式蒸気復水装置の真空度制御装置。 7. The vacuum control apparatus for an air-cooled steam condensing device according to claim 6, wherein the calculating means has a timer for sending a preset time operation pulse signal, and each time the set time is reached after the timer is started. A vacuum degree control device for an air-cooled steam condensing device , wherein the second determination means determines whether or not an integrated value by an integral calculation exceeds an axial flow fan operation set value .
JP2003375849A 2003-11-05 2003-11-05 Vacuum degree control method and apparatus for air-cooled steam condensing device Expired - Fee Related JP4216693B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003375849A JP4216693B2 (en) 2003-11-05 2003-11-05 Vacuum degree control method and apparatus for air-cooled steam condensing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003375849A JP4216693B2 (en) 2003-11-05 2003-11-05 Vacuum degree control method and apparatus for air-cooled steam condensing device

Publications (2)

Publication Number Publication Date
JP2005139963A JP2005139963A (en) 2005-06-02
JP4216693B2 true JP4216693B2 (en) 2009-01-28

Family

ID=34687103

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003375849A Expired - Fee Related JP4216693B2 (en) 2003-11-05 2003-11-05 Vacuum degree control method and apparatus for air-cooled steam condensing device

Country Status (1)

Country Link
JP (1) JP4216693B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4918404B2 (en) * 2007-05-14 2012-04-18 三菱重工業株式会社 Low pressure steam recovery turbine and installation method thereof
GB201408960D0 (en) * 2014-05-20 2014-07-02 Univ Ireland Dublin Steam cycle power module
CN105865219B (en) * 2016-04-19 2017-03-01 山西爱晟特环保科技有限公司 Multistage heat pressing type pumped vacuum systems
CN107062936B (en) * 2017-04-01 2019-07-19 廖原 The control method of direct air cooling system

Also Published As

Publication number Publication date
JP2005139963A (en) 2005-06-02

Similar Documents

Publication Publication Date Title
JP6925455B2 (en) Air conditioning system and air conditioning control method
US20130139529A1 (en) Fan Speed Control For Air-Cooled Condenser In Precision Cooling
JPH11501114A (en) Feedforward control of expansion valve
JPS60162170A (en) Cooling device and method of controlling flow rate of refrigerant for said device
CN105276654A (en) Hot water apparatus and failure notification method for hot water apparatus
US8776536B2 (en) Control process for an expansion valve
JP4216693B2 (en) Vacuum degree control method and apparatus for air-cooled steam condensing device
JP2010054094A (en) Air conditioning device
CN107429958B (en) Expansion valve control
JP6921039B2 (en) Unit control device and program
JP4937822B2 (en) Condenser vacuum degree control system and power plant including the system
JP6686512B2 (en) Boiler system
JP2007139235A (en) Control method for condenser
WO2019155976A1 (en) Binary power generation system
JP7201562B2 (en) GENERATING DEVICE AND CONTROL METHOD OF GENERATING DEVICE
JP7315438B2 (en) Heating system and its control method
JPS6332256A (en) Heat pump system
JP6315797B2 (en) Heat pump equipment
EP2597389A2 (en) Fan speed control for air-cooled condenser in precision cooling
JPH1183344A (en) Automatic vacuum controller for condenser
NL1004208C2 (en) Cooling system for large quantity of fruit esp. ripening bananas
JP2557930B2 (en) Circulating water pump blade opening control device for steam turbine exhaust cooling
JPS6045322B2 (en) Boiler feed water heater water level control device
JP2544050B2 (en) Drain tank water level control device
JPH04263743A (en) Operation controller for air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080715

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080805

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081104

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081106

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111114

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121114

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131114

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees