JP4215840B2 - Flying wing - Google Patents

Flying wing Download PDF

Info

Publication number
JP4215840B2
JP4215840B2 JP16304697A JP16304697A JP4215840B2 JP 4215840 B2 JP4215840 B2 JP 4215840B2 JP 16304697 A JP16304697 A JP 16304697A JP 16304697 A JP16304697 A JP 16304697A JP 4215840 B2 JP4215840 B2 JP 4215840B2
Authority
JP
Japan
Prior art keywords
wing
blade
recess
heat
filling member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP16304697A
Other languages
Japanese (ja)
Other versions
JPH1114299A (en
Inventor
昇 小野島
浦 高 広 三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Aerospace Co Ltd
Original Assignee
IHI Aerospace Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Aerospace Co Ltd filed Critical IHI Aerospace Co Ltd
Priority to JP16304697A priority Critical patent/JP4215840B2/en
Publication of JPH1114299A publication Critical patent/JPH1114299A/en
Application granted granted Critical
Publication of JP4215840B2 publication Critical patent/JP4215840B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する利用分野】
本発明は、例えばロケット等の飛翔体に設けられた翼に関し、特に、前縁部の構造に特徴を有した飛翔体用翼に関する。
【0002】
【従来の技術】
ロケット等の飛翔体1は、例えば図1に示すように、胴体部2、胴体部2の後端に配置されて推進力を発生する推進装置3、この推進装置3の外周近傍で胴体2の表面に十字状に設けられた尾翼4等により構成されている。
【0003】
この尾翼4は、飛翔の際の安定翼として、あるいは、飛翔方向をコントロールする操舵翼として機能するものであり、飛翔の際の空力加熱に耐え得る耐熱性、又、特に操舵翼として機能する場合に尾翼4の両側表面に生じる圧力差等に耐え得る強度,剛性等が要求される。特に尾翼4の前縁部5においては、空力加熱の影響が大きく、場合によっては2000℃近くまで達するところもある。このように、高温に加熱されると、翼の外板を形成する部材のヤング率が低下し、必要な剛性が得られなくなる。
【0004】
従って、従来の翼前縁部5においては、図2に示すように、前縁端部材6、桁部材7に対して、翼の両側表面を形成する比較的厚めの外板8a,8b,9a,9bを溶接Lw等により結合し、又、内部空間に補強部材等を充填した構造が採られていた。
【0005】
【発明が解決しようとする課題】
しかしながら、上記従来の前縁構造では、外板8,9が直接空力加熱を受けるため、剛性等を確保すべく厚めの外板が用いられており、結果的に翼の重量増加を招いていた。言い換えると、厚めの外板を用いない場合は、十分な剛性等が得られない構造となっていた。
【0006】
また、溶接等により各々の部材6,7,8,9を結合するため、溶接後の変形あるいは溶接誤差の累積等により、十分な製造精度を確保することが困難であった。
【0007】
上記従来技術の課題に鑑み、本発明の目的とするところは、軽量で、かつ耐熱性、強度等を十分確保でき、製造が容易で低コスト化が図れる飛翔体用翼を提供することにある。
【0008】
【課題を解決するための手段】
本発明の請求項1に係る飛翔体用翼は、少なくとも前縁部の輪郭を形成すると共に、前縁部の各々の側の表面にて開口するように位置付けられる凹部と各々の側の表面に位置付けられた前記凹部を仕切って分離する仕切り部とを形成する桁部材と、前記凹部に充填された耐熱性の充填部材と、を備え、前記仕切り部は、翼の各々の側の表面から略中央の位置にて平板状に延在している構成となっている。
【0009】
本発明の請求項2に係る飛翔体用翼は、前記凹部の側壁が、翼の表面から内部に向かって末広がりをなすテーパ形状に形成された構成となっている。
【0011】
本発明の請求項3に係る飛翔体用翼は、前記充填部材が樹脂材料からなる構成となっている。
【0012】
本発明の請求項4に係る飛翔体用翼は、前記仕切り部に貫通孔が設けられた構成となっている。
【0013】
【発明の効果】
本発明の請求項1に係る飛翔体用翼によれば、桁部材により、少なくとも前縁部の輪郭を形成すると共に両側表面において開口する凹部を形成し、この凹部に耐熱性の充填部材を充填して、翼の表面を形成することから、充填部材の部分では空力加熱による熱の進入あるいは空力加熱による剛性等の低下を抑制することができ、又、充填部材以外の桁部材の部分では、翼の厚さ方向における厚みを十分厚く、すなわち、十分な高さのリブを形成することができるため、十分な機械的強度および剛性を確保しつつ、桁部材に進入した熱を拡散させることができる。
【0014】
従って、翼の前縁部全体として、空力加熱に対する耐熱性、強度、及び剛性等を確保しつつ、軽量化を達成することができる。
【0015】
また、翼の一方の表面側に形成された凹部と他方の表面側に形成された凹部との間に、両凹部を仕切って分離する仕切り部を設けたことから、翼の両表面間に圧力差が生じても、その圧力差によって凹部に配設された充填部材が抜け落ちるようなことはなく、充填部材を凹部内に確実に保持することができる。加えて、仕切り部が平板状をなすと共に翼の両表面から対称的な位置にあるため、機械的強度,剛性等の面でも均一化が達成でき、又、充填部材を凹部内に保持する保持力も、翼の各々の表面側で均一にすることができる。
【0016】
さらに、翼前縁部の輪郭形状をなす部材に対して、翼の表面となる両側から機械加工等を施すことにより、凹部及び仕切り部を備えた桁部材を容易に形成することができる。従って、内部を肉抜きにするような構造のものに比べて、製造性の向上、さらには製造コストの低減等を達成することができる。
【0017】
本発明の請求項2に係る飛翔体用翼によれば、凹部の開口部が底部に比べ狭くなるように形成されていることから、上記の効果に併せて、翼の振動等によっても充填部材をより一層抜けにくくし、充填部材を凹部内により一層強固に保持することができる。
【0019】
本発明の請求項3に係る飛翔体用翼によれば、耐熱性の充填部材として樹脂材料を用いることから、軽量化が達成できるのはもちろんのこと、空力加熱による翼内部への進入を極力防止することができ、これにより、桁部材が熱によって受ける影響を極力抑制することができる。
【0020】
また、凹部内に充填した後硬化させるような樹脂材料を用いることで、製造性をより一層向上させることができる。
【0021】
本発明の請求項4に係る飛翔体用翼によれば、仕切り部に貫通孔を設けて肉抜きすることにより、仕切り部本来の機能を確保しつつ、翼全体としての軽量化を達成することができる。
【0022】
【発明の実施の形態】
以下、本発明の実施例を添付図面に基づいて説明する。
【0023】
図3は、本発明に係る飛翔体用翼前縁部の一実施例を示す一部外観斜視図である。図3に示すように、この翼前縁部10は、前縁部の輪郭を形成する桁部材11を基本フレームとし、この桁部材11には、両側の表面S,Sにおいて、複数の矩形状凹部12が翼の伸長方向に配列するように形成されている。すなわち、一方の表面側に形成された各々の凹部12は、その配列方向においてリブ13を介して離隔されており、又、両側の表面S,Sの各々に形成された凹部12は、仕切り部としての仕切り板14により離隔されている。
【0024】
また、前縁部10の後端側には、翼の本体に結合するための一対の結合用リブ15が、後方に突出しかつ翼の伸長方向に沿うように形成されている。さらに、この一対の結合用リブ15には、結合用のリーマボルト等を挿通するための孔15aが複数設けられている。
【0025】
上記桁部材11を構成する各部分は、空力加熱に耐え得るチタン合金、C/C材(炭素繊維強化炭素材料)等に機械加工あるいは成形加工等を施すことにより一体的に形成されている。また、機械的強度等を満足する限り、セラミックス等の焼結材により一体的に成形することも可能である。
【0026】
そして、上記のように形成された桁部材11の凹部12には、軽量で耐熱性の充填部材20が埋設されることになる。尚、図3では、一部の凹部12に充填部材20が埋設された状態を示す。
【0027】
図4は、本発明に係る飛翔体用翼前縁部の付け根側を示す平面図である。図4に示すように、凹部12は、前縁部の両側表面ほぼ全域に亘って形成されており、桁部材11としては、要求される機械的強度、剛性等を満たしつつ、軽量化が達成されるようなフレーム構造に仕上げられている。
【0028】
また、結合用リブ15に設けられた孔15aは、付け根端11a及び先端11b(図7参照)近傍に位置するものを除いて、全てリブ13の延長線上に位置するように形成されている。
【0029】
上記構成とすることで、リーマボルト等の締結手段を孔15aに挿通させて前縁部10を翼本体30(図8参照)に取り付けた状態での機械的強度,剛性等を高めることができる。
【0030】
次に、凹部12の形状について図5及び図6に基づいて説明する。尚、図5は図4中のA−A部における拡大断面図、図6は図4中のB−B部における拡大断面図をそれぞれ示すものである。
【0031】
図5及び図6に示すように、翼前縁部の骨格をなす桁部材11の両側の表面S,S各々に形成される凹部12は、略中央部に位置する仕切り板14により離隔されており、これら凹部12を画定する側壁12aは、凹部空間が表面S,Sから内部に向かって末広がりをなすテーパ形状となるように、仕切り板14に垂直な方向に対して所定角度θ傾斜させられている。
【0032】
この傾斜角度θは、充填部材20の脱落を防止する点では大きい方がよいが、外部から機械加工により凹部12を形成する場合の加工条件等を考慮して、又、挿着する充填部材20として、柔軟性の高いもの(挿着後硬化させるもの)を採用するか、あるいは、焼結材等の柔軟性の低いものを採用するか等を考慮して設定される。
【0033】
また、両側の表面S,Sに形成された凹部12を仕切って分離する仕切り板14は、両表面S,Sから略等しい距離、すなわち、線対称の中心線上にて延在するように形成されている。
【0034】
このように、略中央部に位置付けられることで、重心を中央部に近づけることができるのはもちろんのこと、両表面S,Sから受ける空力加熱あるいは圧力荷重等により生じる応力等の平滑化、すなわち、局部的な応力集中等を抑制することができる。
【0035】
また、仕切り板14は、充填部材20によって両側から覆われるようになっている為、従来の外板のように、空力加熱による熱の影響を直接受けることはない。従って、要求される機械的強度,剛性等を満たす範囲で、できるだけ板厚を薄くすることができ、これにより、翼全体の軽量化を行うことができる。
【0036】
尚、仕切り板14の本来的な機能は、凹部12に埋設された充填部材20の脱落を防止する点にあるため、必ずしも中央部に設ける必要はなく、いずれかの表面S又はS側に偏倚した位置に設けることも可能である。
【0037】
さらに、上述の桁部材11においては、図6に示すように、翼の前後方向(図6において、紙面に垂直な方向)に伸長する複数のリブ13を設け、かつ、これらのリブ13が翼の一方の表面Sから他方の表面Sまで伸びる一体的な厚肉のものとして形成されている。
【0038】
すなわち、空力加熱による熱の進入方向に十分な厚さが確保されているため、桁部材11に進入した熱を効率良く拡散させて、局部的な温度上昇を抑制することができる。また、リブ13の断面係数も大きく設定されるため、曲げ等に対して十分な機械的強度、剛性を確保することができる。
【0039】
次に、桁部材11の凹部12に埋設される充填部材20について説明する。
【0040】
この充填部材20は、図3,図4,及び図6に示すように、桁部材11の凹部12に埋設されて、翼表面S,Sの殆んどの領域を形成し、空力加熱により生じた熱が翼内部に伝わるのを遮断する役割をなすものである。
【0041】
従って、充填部材20として用いられる材料としては、軽量であるのはもちろんのこと、高い耐熱性をもつものでなければならない。この高耐熱性の材料では、一般に熱伝導率が非常に小さいため、空力加熱により空気と接触する表面近傍は高温に加熱されても、内部には熱が伝わらず、その分だけ桁部材11の熱に対する設計条件を緩かにする、すなわち、薄肉等にすることができる。
【0042】
具体的な材料としては、フェノール樹脂系、シリコーン樹脂系等の耐熱樹脂材料、あるいは、セラミックス等の焼結材料を用いることが可能である。
【0043】
上記充填部材20を凹部12に設ける手法としては、材料として樹脂材料を用いる場合は、流動状態あるいは柔軟性のある成形状態にある樹脂材料を凹部12に充填し、その後硬化させて所定の形状に仕上げることにより行うことができ、一方、材料としてセラミックス等の焼結材料を用いる場合は、予めタイル状に成形されたものを耐熱性接着剤を用いて凹部12に埋設して固着させることにより行うことができる。尚、後者のタイル状充填部材を用いる場合には、その埋設作業を容易にするために、凹部12を画定する側壁12aの傾斜角度θ、あるいは、タイル状充填部材と側壁12aとの隙間等を考慮して、タイル状充填部材の成形寸法等を決定する必要がある。
【0044】
ここで、上述の充填部材20は、図3,図4,及び図6に示すように、凹部12の開口部領域のみにおいて翼(前縁部)の表面を形成しており、その他の領域では、桁部材11の表面が露出して、翼(前縁部)全体の輪郭を形成している。
【0045】
このように、桁部材11の一部を露出させて翼表面の一部とすることで、充填部材20の表面をこの桁部材11の露出した表面に倣わせることができ、これにより、翼(前縁部)表面の平面度,平滑度を確保することができる。
【0046】
但し、上記の平面度,平滑度等が十分確保される限り、桁部材11の表面全体を充填部材20と同様の耐熱材料により、薄層状に被覆することも可能である。図7は、本発明に係る飛翔体用翼前縁部の先端側を示す平面図である。図7に示す翼前縁部の実施例では、両側の表面S,S各々に形成された凹部12を仕切る仕切り板14に対して、複数の貫通孔14aが形成されている以外は、図4〜図6に示す実施例と同様の構成となっている。
【0047】
上記構成とすることで、充填部材20の抜け落ち防止という機能を維持しつつ、機械的強度をそれ程低下させることなく、桁部材11の軽量化、さらには翼全体の軽量化を達成することができる。
【0048】
次に、上記のように構成された前縁部10を翼本体30に結合する手法について説明する。
【0049】
図8は、前縁部10を翼本体30に結合した状態を示す一部断面図である。組み付け手順としては、図8に示すように、先ず前縁部10の後端に設けられた一対の結合用リブ15間に、翼本体30の前縁部を挿着する。
【0050】
続いて、結合用リブ15に設けられた孔15aを翼本体30に設けられたリーマ孔31に合わせて、リーマボルト40及びリーマナット41を孔15a及びリーマ孔31に挿着し、両者を締結する。
【0051】
その後、リーマボルト40及びリーマナット41の頭部を覆うようにそれぞれ耐熱材50を塗布あるいは貼着する。
【0052】
尚、翼本体30の両表面には、耐熱材50と面一になるように断熱用コルク32等が設けられている。
【0053】
以上のようにして、前縁部10と翼本体30との組み付けを完了し、最終的な翼に仕上げることができる。
【0054】
ここで、翼表面の平滑度を高めて空気抵抗を減らすために、表面全体を耐熱性塗料を用いて塗装仕上げすることも可能である。
【0055】
以上述べた実施例は、本発明の一例に過ぎず、何んらこれに限定されるものではない。例えば、桁部材11の形状は、図3〜図7に示すものに限るものではなく、桁部材11の本来の機能である機械的強度,剛性等が得られるものであれば、凹部12の形状を円形あるいは多角形等にすることもでき、リブ13及び貫通孔14aの形状等も種々のタイプのものを適用することができる。
【0056】
また、凹部12に設けられる充填部材20は、本来の機能である空力加熱に対する耐熱性、断熱性等が確保されるものであれば、上述の材料及び形状等に限定されるものではない。
【図面の簡単な説明】
【図1】 従来における飛翔体の外観を示すものであり、図(a)は側面図、図1(b)は平面図である。
【図2】 従来の飛翔体用翼における前縁部の一部を示す外観斜視図である。
【図3】 本発明に係る飛翔体用翼の前縁部の一部を示す外観斜視図である。
【図4】 本発明に係る飛翔体用翼の前縁部の付け根側を示す平面図である。
【図5】 図4中のA−A部における拡大断面図である。
【図6】 図4中のB−B部における拡大断面図である。
【図7】 本発明に係る飛翔体用翼の前縁部の他の実施例を示す平面図である。
【図8】 本発明に係る飛翔体用翼の前縁部と翼本体とを結合した状態を示す断面図である。
【符号の説明】
1 飛翔体
4 尾翼
5 前縁部
10 前縁部
11 桁部材
12 凹部
12a 側壁
13 リブ
14 仕切り板(仕切り部)
14a 貫通孔
15 結合用リブ
15a 孔
20 充填部材
30 翼本体
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a wing provided on a flying object such as a rocket, and more particularly to a flying object wing characterized by the structure of a leading edge.
[0002]
[Prior art]
For example, as shown in FIG. 1, a flying body 1 such as a rocket includes a body portion 2, a propulsion device 3 that is disposed at the rear end of the body portion 2 and generates a propulsive force, and the body 2 near the outer periphery of the propulsion device 3. It is constituted by a tail 4 or the like provided in a cross shape on the surface.
[0003]
The tail wing 4 functions as a stable wing during flight or as a steering wing that controls the flight direction, and has heat resistance that can withstand aerodynamic heating during flight, and particularly when it functions as a steering wing. In addition, strength, rigidity, etc. that can withstand a pressure difference or the like generated on both surfaces of the tail blade 4 are required. In particular, the influence of aerodynamic heating is significant at the leading edge 5 of the tail 4, and in some cases, it reaches nearly 2000 ° C. As described above, when heated to a high temperature, the Young's modulus of the member forming the outer plate of the blade is lowered, and the required rigidity cannot be obtained.
[0004]
Therefore, in the conventional blade leading edge portion 5, as shown in FIG. 2, relatively thick outer plates 8a, 8b, and 9a that form both side surfaces of the blade with respect to the leading edge member 6 and the girder member 7. 9b are joined by welding Lw or the like, and the internal space is filled with a reinforcing member or the like.
[0005]
[Problems to be solved by the invention]
However, in the conventional leading edge structure, since the outer plates 8 and 9 are directly subjected to aerodynamic heating, a thick outer plate is used to ensure rigidity and the like, resulting in an increase in the weight of the blade. . In other words, when a thick outer plate is not used, sufficient rigidity or the like cannot be obtained.
[0006]
Further, since the members 6, 7, 8, and 9 are coupled by welding or the like, it is difficult to ensure sufficient manufacturing accuracy due to deformation after welding or accumulation of welding errors.
[0007]
In view of the above-described problems of the prior art, an object of the present invention is to provide a flying object wing that is lightweight, can sufficiently secure heat resistance, strength, and the like, can be easily manufactured, and can be manufactured at low cost. .
[0008]
[Means for Solving the Problems]
The flying object wing according to claim 1 of the present invention forms at least a contour of the front edge portion, and is provided with a concave portion positioned so as to open on the surface on each side of the front edge portion and the surface on each side. a beam member forming a partition portion for separating partitions the recess positioned, e Bei and a heat-resistant filler member filled in the recess, the partition portion from the surface side of each of the wings It is the structure extended in flat form in the substantially center position .
[0009]
The flying object wing according to claim 2 of the present invention has a configuration in which the side wall of the concave portion is formed in a tapered shape that widens toward the inside from the surface of the wing.
[0011]
In the flying object wing according to claim 3 of the present invention, the filling member is made of a resin material.
[0012]
The flying object wing according to claim 4 of the present invention has a configuration in which a through hole is provided in the partition part.
[0013]
【The invention's effect】
According to the flying object wing according to claim 1 of the present invention, the girder member forms at least the contour of the front edge portion and the recessed portion that opens on both surfaces, and the recessed portion is filled with a heat-resistant filling member. In addition, since the surface of the blade is formed, in the portion of the filling member, it is possible to suppress the entry of heat due to aerodynamic heating or the reduction in rigidity due to aerodynamic heating, and in the portion of the girder member other than the filling member, Since the thickness of the blade in the thickness direction is sufficiently thick, that is, a rib having a sufficiently high height can be formed, heat entering the girder member can be diffused while ensuring sufficient mechanical strength and rigidity. it can.
[0014]
Therefore, weight reduction can be achieved for the entire leading edge of the blade while ensuring heat resistance, strength, rigidity, and the like against aerodynamic heating.
[0015]
In addition, since a partition part is provided between the concave part formed on one surface side of the blade and the concave part formed on the other surface side to partition and separate both concave parts, Even if a difference occurs, the filling member disposed in the recess does not fall out due to the pressure difference, and the filling member can be reliably held in the recess . In addition, since the partition portion is flat and symmetrically positioned from both surfaces of the blade, it is possible to achieve uniformity in terms of mechanical strength, rigidity, etc., and to hold the filling member in the recess The force can also be made uniform on each surface side of the wing.
[0016]
Further, by applying machining or the like to the member having the contour shape of the blade leading edge portion from both sides which are the surface of the blade, it is possible to easily form a girder member having a recess and a partition portion. Therefore, improvement in manufacturability and reduction in manufacturing cost can be achieved as compared with a structure in which the inside is thinned.
[0017]
According to the flying object wing according to claim 2 of the present invention, since the opening of the recess is formed to be narrower than the bottom, in addition to the above effect, the filling member is also obtained by vibration of the wing, etc. Can be more difficult to remove, and the filling member can be held more firmly in the recess.
[0019]
According to the flying object wing according to claim 3 of the present invention, since the resin material is used as the heat-resistant filling member, it is possible to reduce the weight as well as to enter the wing by aerodynamic heating as much as possible. Thus, the influence of the girder member on heat can be suppressed as much as possible.
[0020]
Moreover, manufacturability can be further improved by using a resin material that is cured after filling in the recesses.
[0021]
According to the flying object wing according to claim 4 of the present invention, by providing a through-hole in the partition portion and removing the meat, the weight of the entire wing can be reduced while ensuring the original function of the partition portion. Can do.
[0022]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the accompanying drawings.
[0023]
FIG. 3 is a partial external perspective view showing an embodiment of a flying object wing leading edge according to the present invention. As shown in FIG. 3, the blade leading edge 10 has a spar member 11 forming a contour of the leading edge as a basic frame, and the spar member 11 has a plurality of surfaces S 1 and S 2 on both sides. The rectangular recesses 12 are formed so as to be arranged in the extending direction of the wing. That is, the respective recesses 12 formed on one surface side are separated by the ribs 13 in the arrangement direction, and the recesses 12 formed on each of the surfaces S 1 and S 2 on both sides are It is separated by a partition plate 14 as a partition portion.
[0024]
Further, a pair of coupling ribs 15 for coupling to the main body of the wing are formed on the rear end side of the leading edge portion 10 so as to protrude rearward and along the extending direction of the wing. Further, the pair of coupling ribs 15 are provided with a plurality of holes 15a for inserting coupling reamer bolts and the like.
[0025]
The parts constituting the girder member 11 are integrally formed by subjecting a titanium alloy, C / C material (carbon fiber reinforced carbon material) or the like that can withstand aerodynamic heating to machining or molding. Further, as long as the mechanical strength and the like are satisfied, it is also possible to integrally mold with a sintered material such as ceramics.
[0026]
And the lightweight and heat-resistant filling member 20 will be embed | buried in the recessed part 12 of the girder member 11 formed as mentioned above. FIG. 3 shows a state in which the filling member 20 is embedded in a part of the recesses 12.
[0027]
FIG. 4 is a plan view showing the base side of the flying object wing leading edge according to the present invention. As shown in FIG. 4, the recess 12 is formed over almost the entire area of both sides of the front edge, and the beam member 11 achieves weight reduction while satisfying required mechanical strength, rigidity, and the like. The frame structure is finished.
[0028]
Further, the holes 15a provided in the coupling rib 15 are all formed so as to be located on the extension line of the rib 13 except those located in the vicinity of the base end 11a and the tip 11b (see FIG. 7).
[0029]
With the above configuration, it is possible to increase mechanical strength, rigidity, and the like in a state where the fastening means such as a reamer bolt is inserted into the hole 15a and the leading edge portion 10 is attached to the wing body 30 (see FIG. 8).
[0030]
Next, the shape of the recessed part 12 is demonstrated based on FIG.5 and FIG.6. 5 is an enlarged sectional view taken along line AA in FIG. 4, and FIG. 6 is an enlarged sectional view taken along line BB in FIG.
[0031]
As shown in FIGS. 5 and 6, the recesses 12 formed on the surfaces S 1 and S 2 on both sides of the girder member 11 forming the skeleton of the blade leading edge are separated by a partition plate 14 positioned substantially at the center. The side walls 12a that define the recesses 12 have a predetermined angle with respect to the direction perpendicular to the partition plate 14 so that the recess spaces are tapered from the surfaces S 1 and S 2 toward the inside. It is inclined by θ.
[0032]
The inclination angle θ is preferably large in terms of preventing the filling member 20 from falling off, but considering the processing conditions when the recess 12 is formed by machining from the outside, the filling member 20 to be inserted is inserted. As described above, it is set in consideration of whether a highly flexible material (hardened after insertion) is employed, or a lowly flexible material such as a sintered material is employed.
[0033]
Further, the partition plate 14 that partitions and separates the recesses 12 formed on the surfaces S 1 and S 2 on both sides extends from the both surfaces S 1 and S 2 at a substantially equal distance, that is, on a line symmetry center line. It is formed as follows.
[0034]
As described above, the center of gravity can be brought close to the central portion by being positioned substantially at the central portion, and the stress generated by aerodynamic heating or pressure load received from both surfaces S 1 and S 2 can be smoothed. That is, local stress concentration or the like can be suppressed.
[0035]
Further, since the partition plate 14 is covered from both sides by the filling member 20, it is not directly affected by heat due to aerodynamic heating unlike the conventional outer plate. Therefore, the plate thickness can be made as thin as possible within a range that satisfies the required mechanical strength, rigidity, and the like, thereby reducing the weight of the entire blade.
[0036]
In addition, since the original function of the partition plate 14 is to prevent the filling member 20 embedded in the recess 12 from falling off, it is not always necessary to provide the central portion, and either the surface S 1 or S 2 side. It is also possible to provide it at a position deviated from the above.
[0037]
Further, as shown in FIG. 6, the above-mentioned girder member 11 is provided with a plurality of ribs 13 extending in the front-rear direction of the wing (in FIG. 6, the direction perpendicular to the paper surface), and these ribs 13 are wings. from one surface S 1 of which is formed as a integral thick extending to the other surface S 2.
[0038]
That is, since a sufficient thickness is secured in the heat entry direction by aerodynamic heating, the heat that has entered the girder member 11 can be efficiently diffused to suppress a local temperature rise. In addition, since the section modulus of the rib 13 is set to be large, sufficient mechanical strength and rigidity against bending and the like can be ensured.
[0039]
Next, the filling member 20 embedded in the recess 12 of the girder member 11 will be described.
[0040]
As shown in FIGS. 3, 4, and 6, the filling member 20 is embedded in the recess 12 of the girder member 11 to form most regions of the blade surfaces S 1 and S 2 , and by aerodynamic heating. It serves to block the heat generated from being transmitted to the inside of the wing.
[0041]
Accordingly, the material used as the filling member 20 must be light in weight and have high heat resistance. In general, this high heat-resistant material has a very low thermal conductivity. Therefore, even if the vicinity of the surface in contact with air is heated to a high temperature by aerodynamic heating, heat is not transmitted to the inside, and accordingly, the girder member 11 has a corresponding amount. The design conditions for heat can be relaxed, that is, the thickness can be reduced.
[0042]
As a specific material, it is possible to use a heat-resistant resin material such as phenol resin or silicone resin, or a sintered material such as ceramics.
[0043]
As a method of providing the filling member 20 in the recess 12, when a resin material is used as a material, the resin material in a fluidized state or a flexible molded state is filled in the recess 12, and then cured to a predetermined shape. On the other hand, when a sintered material such as ceramics is used as the material, a material previously formed in a tile shape is embedded and fixed in the recess 12 using a heat-resistant adhesive. be able to. When the latter tile-shaped filling member is used, in order to facilitate the embedding work, the inclination angle θ of the side wall 12a defining the recess 12 or the gap between the tile-shaped filling member and the side wall 12a is set. In consideration of this, it is necessary to determine the molding dimensions of the tile-shaped filling member.
[0044]
Here, as shown in FIGS. 3, 4, and 6, the filling member 20 described above forms the surface of the wing (front edge) only in the opening region of the recess 12, and in other regions. The surface of the spar member 11 is exposed to form the outline of the entire wing (front edge).
[0045]
Thus, by exposing a part of the spar member 11 to be a part of the blade surface, the surface of the filling member 20 can be made to follow the exposed surface of the spar member 11, thereby (Front edge) The flatness and smoothness of the surface can be ensured.
[0046]
However, as long as the flatness, smoothness and the like are sufficiently ensured, the entire surface of the beam member 11 can be covered with a heat resistant material similar to that of the filling member 20 in a thin layer. FIG. 7 is a plan view showing the tip side of the flying body wing leading edge according to the present invention. In the embodiment of the blade leading edge shown in FIG. 7, except that a plurality of through holes 14 a are formed on the partition plate 14 that partitions the recesses 12 formed on the surfaces S 1 and S 2 on both sides. The configuration is the same as that of the embodiment shown in FIGS.
[0047]
By adopting the above configuration, it is possible to reduce the weight of the girder member 11 and further reduce the weight of the entire wing without significantly reducing the mechanical strength while maintaining the function of preventing the filling member 20 from falling off. .
[0048]
Next, a method for coupling the leading edge portion 10 configured as described above to the blade body 30 will be described.
[0049]
FIG. 8 is a partial cross-sectional view showing a state in which the leading edge portion 10 is coupled to the wing body 30. As an assembling procedure, as shown in FIG. 8, first, the front edge portion of the blade body 30 is inserted between a pair of coupling ribs 15 provided at the rear end of the front edge portion 10.
[0050]
Subsequently, the reamer bolt 40 and the reamer nut 41 are inserted into the hole 15a and the reamer hole 31 with the hole 15a provided in the coupling rib 15 being aligned with the reamer hole 31 provided in the blade body 30, and both are fastened.
[0051]
Then, the heat-resistant material 50 is apply | coated or stuck so that the reamer bolt 40 and the reamer nut 41 may be covered.
[0052]
A heat insulating cork 32 and the like are provided on both surfaces of the blade main body 30 so as to be flush with the heat resistant material 50.
[0053]
As described above, the assembly of the leading edge portion 10 and the wing body 30 can be completed and finished into a final wing.
[0054]
Here, in order to increase the smoothness of the blade surface and reduce the air resistance, the entire surface can be painted with a heat-resistant paint.
[0055]
The embodiment described above is merely an example of the present invention, and the present invention is not limited to this. For example, the shape of the girder member 11 is not limited to that shown in FIGS. 3 to 7, and the shape of the recess 12 can be used as long as mechanical strength, rigidity, etc., which are the original functions of the girder member 11 can be obtained. The shape of the rib 13 and the through-hole 14a can be various types.
[0056]
Moreover, the filling member 20 provided in the recessed part 12 is not limited to the above-mentioned material, shape, etc., if the heat resistance with respect to the aerodynamic heating which is an original function, heat insulation, etc. are ensured.
[Brief description of the drawings]
FIG. 1 shows the appearance of a conventional flying object. FIG. 1 (a) is a side view and FIG. 1 (b) is a plan view.
FIG. 2 is an external perspective view showing a part of a leading edge portion of a conventional flying object wing.
FIG. 3 is an external perspective view showing a part of a front edge portion of a flying object wing according to the present invention.
FIG. 4 is a plan view showing the base side of the leading edge of the flying object wing according to the present invention.
5 is an enlarged cross-sectional view taken along a line AA in FIG.
6 is an enlarged cross-sectional view taken along a line BB in FIG.
FIG. 7 is a plan view showing another embodiment of the leading edge of the flying object wing according to the present invention.
FIG. 8 is a cross-sectional view showing a state in which the leading edge of the flying object wing and the wing body are coupled according to the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Flying object 4 Tail 5 Front edge part 10 Front edge part 11 Girder member 12 Recessed part 12a Side wall 13 Rib 14 Partition plate (partition part)
14a Through-hole 15 Connecting rib 15a Hole 20 Filling member 30 Blade body

Claims (4)

少なくとも前縁部の輪郭を形成すると共に、前縁部の各々の側の表面にて開口するように位置付けられる凹部と各々の側の表面に位置付けられた前記凹部を仕切って分離する仕切り部とを形成する桁部材と、前記凹部に充填された耐熱性の充填部材と、を備え、前記仕切り部は、翼の各々の側の表面から略中央の位置にて平板状に延在していることを特徴とする飛翔体用翼。Forming a contour of at least the front edge, and a recess positioned so as to open on the surface on each side of the front edge, and a partition for partitioning and separating the recess positioned on the surface on each side a beam member forming, e Bei and a heat-resistant filler member filled in the recess, the partition portion extends in a flat plate shape from the surface of each side of the blade in a substantially central position A flying wing characterized by this. 前記凹部の側壁は、翼の表面から内部に向かって末広がりをなすテーパ形状に形成されていることを特徴とする請求項1記載の飛翔体用翼。  2. The flying object wing according to claim 1, wherein a side wall of the concave portion is formed in a tapered shape that widens toward the inside from the surface of the wing. 記充填部材は樹脂材料からなることを特徴とする請求項1又は2記載の飛翔体用翼。Flying-body wing according to claim 1 or 2, wherein the pre-Symbol filling member, characterized in that it consists of a resin material. 記仕切り部には貫通孔が設けられていることを特徴とする請求項1ないし3いずれか1つに記載の飛翔体用翼。Flying-body blade according to 3 any one claims 1, characterized in that the through-hole before Symbol partitioning portion is provided.
JP16304697A 1997-06-19 1997-06-19 Flying wing Expired - Fee Related JP4215840B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16304697A JP4215840B2 (en) 1997-06-19 1997-06-19 Flying wing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16304697A JP4215840B2 (en) 1997-06-19 1997-06-19 Flying wing

Publications (2)

Publication Number Publication Date
JPH1114299A JPH1114299A (en) 1999-01-22
JP4215840B2 true JP4215840B2 (en) 2009-01-28

Family

ID=15766158

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16304697A Expired - Fee Related JP4215840B2 (en) 1997-06-19 1997-06-19 Flying wing

Country Status (1)

Country Link
JP (1) JP4215840B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4801564B2 (en) * 2006-11-17 2011-10-26 三菱重工業株式会社 Fastening device
CN106403729B (en) * 2016-11-24 2018-07-31 江西洪都航空工业集团有限责任公司 A kind of structure suction wave missile wing of high Stealth Fighter
JP6989321B2 (en) 2017-08-29 2022-01-05 三菱重工業株式会社 Flying object
CN110203421A (en) * 2019-05-21 2019-09-06 重庆零壹空间航天科技有限公司 Empennage and aircraft comprising the empennage
CN114833528B (en) * 2022-03-31 2023-05-23 山西汾西重工有限责任公司 Forming method and device for totally-enclosed cavity type special-shaped curved wing
CN114754632A (en) * 2022-04-12 2022-07-15 西北工业大学 Missile wing suitable for attack hard armor-breaking missile

Also Published As

Publication number Publication date
JPH1114299A (en) 1999-01-22

Similar Documents

Publication Publication Date Title
JP5298122B2 (en) Main structural joints without the need for fasteners for sandwich panels
ES2277716B1 (en) REINFORCED COVER FOR SLOTS IN AN AERODYNAMIC CONTOUR.
KR102312286B1 (en) One piece inlet lip skin design
JP2538424Y2 (en) Rotary wing aircraft blade
US9765634B2 (en) Composite turbine engine blade with structural reinforcement
JP4215840B2 (en) Flying wing
ES2277715B1 (en) REINFORCED COVER FOR SCOTS IN AN AERODYNAMIC CONTOUR.
EP1448369B1 (en) Method and system of thermal protection
JP2010508213A (en) Propeller blade retention
US2613893A (en) Airfoil construction
US20180155006A1 (en) Aircraft stabilizer leading edge integration with torsion box and fuselage
JP6093192B2 (en) Aircraft fuselage panel, aircraft wing
JP7378992B2 (en) Lockhole plugs for sealing holes in composite structures
US6464170B2 (en) Aircraft and aircraft manufacturing method
US20190367160A1 (en) Aerodynamic aircraft wall comprising at least one vortex generator, and aircraft comprising the said aerodynamic wall
US6869050B1 (en) Profiled wing unit of an aircraft
DK172126B1 (en) Windmill sail
FR3081831A1 (en) AIRCRAFT AIRCRAFT WALL COMPRISING AT LEAST ONE TOURBILLON GENERATOR AND AIRCRAFT COMPRISING SAID AIRCRAFT WALL
US20200324917A1 (en) Tool For Holding The Side Panels Of A Primary Structure Of An Aircraft Pylon During Assembly Thereof, And Method For Assembling A Primary Structure Of An Aircraft Pylon Using Said Holding Tool
JP2000062650A (en) Front side member extension
JP3301689B2 (en) Footboard fixing structure
GB2041861A (en) Composite Honeycomb Core Structures and Single Stage Hot Bonding Method of Producing Such Structures
US20230219631A1 (en) Hood for a motor vehicle
US20210179299A1 (en) High temperature layered tile insulation system for aerospace vehicles
KR200200669Y1 (en) Connecting Structures of Aircraft Parts

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040614

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060606

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060612

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060810

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061211

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071220

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081105

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111114

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121114

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131114

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees