JP4215221B2 - Hydraulic insulator - Google Patents

Hydraulic insulator Download PDF

Info

Publication number
JP4215221B2
JP4215221B2 JP07668198A JP7668198A JP4215221B2 JP 4215221 B2 JP4215221 B2 JP 4215221B2 JP 07668198 A JP07668198 A JP 07668198A JP 7668198 A JP7668198 A JP 7668198A JP 4215221 B2 JP4215221 B2 JP 4215221B2
Authority
JP
Japan
Prior art keywords
axis direction
side wall
axis
rigidity
inner cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP07668198A
Other languages
Japanese (ja)
Other versions
JPH11257415A (en
Inventor
守 田辺
道生 和気
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Marugo Rubber Industries Ltd
Original Assignee
Marugo Rubber Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Marugo Rubber Industries Ltd filed Critical Marugo Rubber Industries Ltd
Priority to JP07668198A priority Critical patent/JP4215221B2/en
Priority to KR1019990003768A priority patent/KR19990077402A/en
Publication of JPH11257415A publication Critical patent/JPH11257415A/en
Application granted granted Critical
Publication of JP4215221B2 publication Critical patent/JP4215221B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/02Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems
    • F16F15/023Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using fluid means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K5/00Arrangement or mounting of internal-combustion or jet-propulsion units
    • B60K5/12Arrangement of engine supports
    • B60K5/1208Resilient supports
    • B60K5/1216Resilient supports characterised by the location of the supports relative to the motor or to each other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F13/00Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs
    • F16F13/04Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper
    • F16F13/06Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper the damper being a fluid damper, e.g. the plastics spring not forming a part of the wall of the fluid chamber of the damper
    • F16F13/08Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper the damper being a fluid damper, e.g. the plastics spring not forming a part of the wall of the fluid chamber of the damper the plastics spring forming at least a part of the wall of the fluid chamber of the damper
    • F16F13/10Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper the damper being a fluid damper, e.g. the plastics spring not forming a part of the wall of the fluid chamber of the damper the plastics spring forming at least a part of the wall of the fluid chamber of the damper the wall being at least in part formed by a flexible membrane or the like
    • F16F13/102Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper the damper being a fluid damper, e.g. the plastics spring not forming a part of the wall of the fluid chamber of the damper the plastics spring forming at least a part of the wall of the fluid chamber of the damper the wall being at least in part formed by a flexible membrane or the like characterised by features of flexible walls of equilibration chambers; decoupling or self-tuning means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/02Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems
    • F16F15/04Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using elastic means
    • F16F15/08Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using elastic means with rubber springs ; with springs made of rubber and metal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F2228/00Functional characteristics, e.g. variability, frequency-dependence
    • F16F2228/06Stiffness
    • F16F2228/066Variable stiffness

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Combined Devices Of Dampers And Springs (AREA)
  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、エンジン等の振動体を車体に防振支持する自動車用のハイドロリックインシュレータに関するものである。
【0002】
【従来の技術】
エンジンを車体に支持する支持部材として、内外筒間に張装したゴム弾性体中にオリフィスで連絡する液封液室を隔成したブッシュタイプのハイドロリックインシュレータがある。エンジンを車体に取り付けるに際し、減衰しようとする振動の振動数に共振振動数を設定したハイドロリックインシュレータ(以下、単にインシュレータという)を使用すると、殊に低周波のシェイク振動が発生したときに液室間に大きな液の移動が起こり、車体に伝わる振動が減衰されて乗り心地が向上する。
【0003】
エンジンの振動は、インシュレータの筒軸であるZ軸と、Z軸に直交して互いに直交するX軸とY軸の三方向に発生するが、このうち、重量がかかるX軸方向の振動を主方向とし、この振動荷重に最大に反応すべく、この方向に液室を対向させ、且つ、一般的には、この方向の剛性(ばね強度)を最大に設定している。ところが、車種等によってはインシュレータの取付け方式が異なり、他の方向の剛性の方を高くしなければならないことがある。
【0004】
剛性に関与する最大の要因は、液室を構成する室壁の肉厚であるが、他の方向の剛性を上げるためには、X軸方向の剛性を相対的に下げなければならない。しかし、液室の室壁は液に接面しているものであるから、この肉厚を無闇に薄くすると、振動に基づく圧縮荷重がかかったときに室壁のみが外方へ変形してしまい、液移動を起こさず、減衰性能の低下につながる。
【0005】
このため、室壁を内側に湾曲させたりして、外方膨出を防ぐ試みもなされているが、耐久性を低下させずにX軸方向の剛性を下げて他の方向の剛性を相対的に上げるには、室壁を内外筒間に架橋する限り、限界がある。
本発明は、このような課題を解決するものであり、X軸方向の液室の室壁の外方膨出を防止しながら、剛性の低下も可能にしたものである。
【0006】
【課題を解決するための手段】
以上の課題の下、本発明は、平行配置された内筒と外筒との間に、筒軸であるZ軸と直角なY軸方向に内筒を含んで外筒間に架橋されるゴム弾性体の隔壁と、隔壁のZ軸方向両端に連続して内外筒間に架橋される同じくゴム弾性体の側壁とで、内筒を挟む対向位置でY軸とZ軸とに直角な、主荷重方向であって最大の剛性に設定されたX軸方向に、液が封入され、且つ、オリフィスで連絡された受圧室と平衡室を対設したハイドロリックインシュレータにおいて、受圧室の側壁を、内筒からX軸方向に延びる縦側壁と、縦側壁の終端から外筒にかけてZ軸方向に延びる横側壁とで構成するとともに、両横側壁の外面に、中央に支柱部を残してZ軸方向に凹ませた凹陥部を形成し、この凹陥部を縦側壁の内面から縦側壁の肉厚を超えてZ軸方向内側まで入り込ませ、X軸方向の剛性を下げてY軸方向の剛性を上げたことを特徴とするハイドロリックインシュレータを提供する。
【0007】
以上の手段をとることにより、即ち、受圧室の側壁を内筒からX軸方向に延びる縦側壁と、縦側壁の終端から外筒にかけてZ軸方向に延びる横側壁とで構成したものであるから、受圧室の縦側壁は、徒に長くならず、外方膨出を防止できて減衰性能を低下させない。加えて、横側壁に形成した凹陥部は、X軸方向の剛性を下げ、他の方向の剛性を相対的に上げることに寄与する。この点で、凹陥部は、X軸とY軸との剛性比を調整する調整要素ともなり得る。
【0008】
又、本発明は、以上の構成のインシュレータにおいて、内筒の外周に外套部材を嵌着した手段を提供する。これは、X軸方向の剛性を上げずに他の方向の剛性を上げるためのより優れた手段といえる。
【0009】
【発明の実施の形態】
以下、本発明の実施の形態を図面を参照して説明する。図1は本発明の一例を示すインシュレータの横断面図、図2は縦断面図、図3は正面図であるが、このインシュレータは、平行配置された内筒10と外筒12との間に、筒軸であるZ軸と直角なY軸方向に内筒10を含んで外筒12間に架橋されるゴム弾性体の隔壁14と、隔壁14のZ軸方向両端に連続して内外筒10、12間に架橋される同じくゴム弾性体の側壁16とで、内筒10を挟む対向位置でY軸とZ軸とに直角なX軸方向に二つの空室18、20を対設したものである。尚、主荷重はX軸方向にかかり、内筒10を外筒12に対して反荷重側に偏心させてある。
【0010】
この場合、内筒10を含む側壁16の外周に外筒12を嵌合し、外筒12のZ軸方向両端を抜けないように絞ってインシュレータに構成するが、この操作を液中で行うことで、空室18、20は液が封入されて液室18、20を構成する。このとき、隔壁14のY軸方向両端に溝22を形成しておけば、液室18、20間を連絡するオリフィス22となる。以上の液室18、20のうちの一方(図1等で下方側)を受圧室18、他方(図1等で上方側)を平衡室20と呼ぶ。
【0011】
加えて、本例のものは、隔壁14は平衡室20側に入り込んでおり、その端近くに、X軸を中心にY軸両方向に細長く展開してZ軸方向に貫通する貫通孔24を形成している。これにより、平衡室20に面する隔壁14は薄肉の第二隔壁26を形成し、耐久性が増すとともに、ダイヤフラム作用が期待できる。この他、内筒10の外周のZ軸方向中央部には外套部材28を嵌着している。X軸方向の剛性を上げずにY軸方向の剛性を上げるためである。尚、この外套部材28は、金属や樹脂によるものが一般的であり、内外周形状も円筒に限らず、種々の形状が考えられる。又、内筒14と一体的に成形してもよい。更に、側壁16の外周側には、受圧室18、平衡室20部分を窓状に切り欠いた補強リング30を埋設して強度を高めている。
【0012】
次に、本発明は、受圧室18の側壁16を、内筒10からX軸方向に延びる縦側壁32と、縦側壁32の終端から外筒12にかけてZ軸方向に延びる横側壁34とで構成するとともに、横側壁34の外面に、Z軸方向に凹ませた凹陥部36を形成する。従って、横側壁34のZ軸方向中央には支柱部37が残ることになる。更に、本例のものは、横側壁34の中央X軸線上には、受圧室18の容積を増すとともに、凹陥部36に面する肉厚を一定にするためのV字形の溝38を形成している。
【0013】
以上の内筒10と外筒12とを振動体と支持体との間に介在させると、振動体の振動に伴って受圧室18と平衡室20とが変形し、両室18、20に封入された液はオリフィス22を通って移動する。これにより、振動の減衰が図られるのであるが、このとき、受圧室18の縦側壁32は、受圧室18の範囲のみに設けられ、且つ、両縦側壁32は横側壁34によって互いが連結されているから、圧縮時における外方膨出が防がれる。従って、十分な容積変化を来して液を移動させ、大いなる減衰性能を発揮する。この点で、縦側壁32の肉厚はある程度厚い方が好ましい。
【0014】
一方、以上の凹陥部36は横側壁34の肉厚を薄くしてX軸方向の剛性を下げるのに貢献している。しかし、この凹陥部36を設けたとしても、Y軸方向の剛性はあまり下がらない。何故なら、横側壁34は、Y軸方向全長に亘って外筒12に連結しているから、X軸方向の剛性の低下の割合に比べてY軸方向の剛性の低下が緩やかであるからである。
【0015】
この場合、凹陥部36を縦側壁32の内面よりZ軸方向に深く入り込ませると、受圧室18のZ軸方向の両端に面する横側壁34は比較的薄い肉厚になり、X軸方向の剛性を一層引き下げる。しかし、この部分の両縦側壁32を連結する機能は変わらず、圧縮時の外方膨出は防止される。又、横側壁34を薄肉化することは、X軸方向の動ばね定数の引下げに貢献する。
【0016】
図1等に示すインシュレータは、X軸方向の剛性/Y軸方向の剛性を1:3に設定した場合であるが、今、外径がDで、受圧室18の最大丈(内筒10の外周から外筒12の内周までの最大長さ)をA、幅をWとした場合、隔壁14の丈Lは約0.51A、縦側壁32の丈aは約0.55A、肉厚bは約0.15D、横側壁34の凹陥部36の丈cは約0.40A、肉厚dは約0.30D程度に設定すれば、上記の割合になる。
【0017】
図4は本発明の他の例を示すインシュレータの横断面図、図5は縦断面図であるが、本例のものは、平衡室20を、X軸方向にゴム弾性体の仕切壁40で分割し、内筒10に近い側を第一平衡室42、遠い側を第二平衡室44としたものである。本例の仕切壁40は、オリフィス兼ねる仕切壁形成体46に形成されるもので、この仕切壁形成体46は、芯金48が封入されたゴム弾性体で構成され、Z軸方向視で半月状をしており、隔壁14の両端に被せられて平衡室20に装着される。
【0018】
図6は仕切壁形成体46の平面図であるが、表面(外筒12側)に第一平衡室42に通ずる第一オリフィス50と、第二平衡室44に通ずる第二オリフィス52が形成されたものである。このうち、第一オリフィス50は、仕切壁形成体46の一端の一側からオリフィス22に連続して他端側に延出し、他端で周回して再び他側に戻り、第一平衡室42に開口して形成された孔54に終結しているものである。これにより、受圧室18の液体は、第一オリフィス50から孔54を通って第一平衡室42に移動する(孔54より一端側には堰56が形成されて行き止まりとなっている)。
【0019】
第二オリフィス52は、仕切壁形成体46の一端の中央からオリフィス22に連続して他端側に延び、仕切壁40を有する第二平衡室44に通じている。これにより、受圧室18の液体は、第二オリフィス52を通って第二平衡室44に移動する(一端側には同じく堰58が形成されて行き止まりとなっている)。この場合、第一オリフィス50は断面積が小さくて経路が長いし、第二オリフィス52は断面積が大きくて経路が短い。シェイク振動時の減衰性を向上させ、アイドリング振動時における液移動を容易にするためである。
【0020】
そして、受圧室18、第一オリフィス50及び第一平衡室42からなる第一流体系の共振振動数を低周波のシェイク振動の振動数に、受圧室18、第二オリフィス52及び第二平衡室44からなる第二流体系の共振振動数を中高周波のアイドリング振動の振動数にそれぞれチューニングしておく。これにより、シェイク振動が発生すると、先ず、第一流体系に液の移動が起こって振動は減衰する。
【0021】
シェイク振動が過ぎると、第一流体系は目詰まりを起こすが、次に来るアイドリング振動では、第二流体系に液が流れ、動ばね定数の上昇を抑えて振動を吸収する。このとき、第一平衡室42の室壁を構成する第二隔壁26は、肉厚が薄くて貫通孔に面しているから、目詰まりを起こした後も更なる変形が可能であり、、振動吸収に一層貢献する。
【0022】
更に、仕切壁40を第二隔壁26とは別部材で構成すると、その剛性比の幅を広げることができるから、目詰まり解消の振動数チューニングの幅を広くとることができる。尚、本例では、仕切壁40を第二隔壁26と別部材にしたが、成形可能な構造にしてこれらを同部材としても、貫通孔24を存在させて第二隔壁26を薄肉にしてその形状を調整すれば、その効果は維持できる。
【0023】
【発明の効果】
以上、本発明によれば、受圧室の側壁を縦側壁と横側壁とで構成するとともに、横側壁の外面に、中央に支柱部を残してZ軸方向に凹ませた凹陥部を形成したものであるから、X軸方向の剛性を下げてY軸方向の剛性を相対的に上げられるとともに、併せて凹陥部の形状を換えることでX軸とY軸との剛性比を適宜に設定できる。この場合において、縦側壁は受圧室の液体が存在している部分のみの短い区間に存在しており、且つ、横側壁で互いが連結されているから、外方膨出も起こさない。
【図面の簡単な説明】
【図1】 本発明の一例を示すハイドロリックインシュレータの横断面図である。
【図2】 本発明の一例を示すハイドロリックインシュレータの縦断面図である。
【図3】 本発明の一例を示すハイドロリックインシュレータの正面図である。
【図4】 本発明の他の一例を示すハイドロリックインシュレータの横断面図である。
【図5】 本発明の他の一例を示すハイドロリックインシュレータの縦断面図である。
【図6】 本発明の他の一例を示す仕切体形成体の平面図である。
【符号の説明】
10 内筒
12 外筒
14 隔壁
16 側壁
18 受圧室
20 平衡室
28 外套部材
32 縦側壁
34 横側壁
36 凹陥部
40 仕切壁
42 第一平衡室
44 第二平衡室
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an automotive hydraulic insulator that supports a vibration body such as an engine in a vibration-proof manner on a vehicle body.
[0002]
[Prior art]
As a support member for supporting the engine on the vehicle body, there is a bush type hydraulic insulator in which a liquid sealing liquid chamber connected with an orifice is formed in a rubber elastic body stretched between inner and outer cylinders. When installing an engine to the vehicle body, if a hydraulic insulator (hereinafter simply referred to as an insulator) with a resonance frequency set to the frequency of the vibration to be damped is used, the liquid chamber is particularly affected when low-frequency shake vibration occurs. A large liquid movement occurs in the meantime, and the vibration transmitted to the vehicle body is attenuated to improve the ride comfort.
[0003]
Engine vibration occurs in three directions: the Z-axis, which is the cylinder axis of the insulator, and the X-axis and Y-axis, which are orthogonal to the Z-axis and orthogonal to each other. In order to respond to the vibration load to the maximum, the liquid chamber is opposed to this direction, and generally the rigidity (spring strength) in this direction is set to the maximum. However, the insulator mounting method differs depending on the vehicle type and the like, and the rigidity in other directions may have to be increased.
[0004]
The greatest factor related to the rigidity is the wall thickness of the chamber wall constituting the liquid chamber, but in order to increase the rigidity in the other direction, the rigidity in the X-axis direction must be relatively lowered. However, since the chamber wall of the liquid chamber is in contact with the liquid, if this wall thickness is reduced to darkness, only the chamber wall is deformed outward when a compressive load based on vibration is applied. Liquid movement does not occur, leading to a decrease in damping performance.
[0005]
For this reason, attempts have been made to prevent outward bulging by curving the chamber wall inward, but the rigidity in the other direction is relatively reduced by lowering the rigidity in the X-axis direction without reducing the durability. As long as the chamber wall is bridged between the inner and outer cylinders, there is a limit.
The present invention solves such a problem, and makes it possible to reduce rigidity while preventing outward expansion of the chamber wall of the liquid chamber in the X-axis direction.
[0006]
[Means for Solving the Problems]
Under the above problems, the present invention provides a rubber that includes an inner cylinder in the Y-axis direction perpendicular to the Z axis that is a cylinder axis and is bridged between the outer cylinders between the inner cylinder and the outer cylinder arranged in parallel. and the partition wall of the elastic body, in the same side wall of the rubber elastic body is bridged between the inner and outer tubes in succession in the Z-axis direction end of the partition wall, in facing position sandwiching the inner tube perpendicular to the Y axis and the Z-axis, the main In the hydraulic insulator in which the liquid is sealed in the load direction and the X-axis direction set to the maximum rigidity and the pressure receiving chamber and the equilibrium chamber are connected by an orifice, the side wall of the pressure receiving chamber is A vertical side wall extending in the X-axis direction from the cylinder and a horizontal side wall extending in the Z-axis direction from the end of the vertical side wall to the outer cylinder, and in the Z-axis direction leaving a column portion in the center on the outer surface of both horizontal side walls recessed allowed to form a recess, Z-axis direction beyond the thickness of the vertical side wall of the recess from the inner surface of the vertical side walls It intruded to the side, to provide a hydraulic insulator, characterized in that by lowering the rigidity in the X-axis direction to raise the rigidity of the Y-axis direction.
[0007]
By taking the above means, that is, the side wall of the pressure receiving chamber is constituted by the vertical side wall extending in the X axis direction from the inner cylinder and the horizontal side wall extending in the Z axis direction from the end of the vertical side wall to the outer cylinder. The vertical side wall of the pressure receiving chamber is not naturally long and can prevent outward bulge and does not deteriorate the damping performance. In addition, the recessed portion formed in the lateral side wall contributes to lowering the rigidity in the X-axis direction and relatively increasing the rigidity in other directions. In this respect, the recessed portion can also be an adjustment element that adjusts the rigidity ratio between the X axis and the Y axis.
[0008]
Further, the present invention is Te insulator smell of the above configuration, provides a means by fitting the mantle member on the outer periphery of the inner cylinder. This can be said to be a better means for increasing the rigidity in the other direction without increasing the rigidity in the X-axis direction.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings. 1 is a cross-sectional view of an insulator showing an example of the present invention, FIG. 2 is a longitudinal cross-sectional view, and FIG. 3 is a front view. The insulator is disposed between an inner cylinder 10 and an outer cylinder 12 arranged in parallel. A rubber elastic partition 14 including the inner cylinder 10 in the Y-axis direction perpendicular to the Z-axis that is the cylinder axis and bridged between the outer cylinders 12, and the inner and outer cylinders 10 are continuously connected to both ends of the partition 14 in the Z-axis direction. , 12 and a side wall 16 of the same rubber elastic body, in which two vacant chambers 18, 20 are arranged in the X-axis direction perpendicular to the Y-axis and the Z-axis at a position opposite to the inner cylinder 10 It is. The main load is applied in the X-axis direction, and the inner cylinder 10 is eccentric with respect to the outer cylinder 12 on the opposite load side.
[0010]
In this case, the outer cylinder 12 is fitted to the outer periphery of the side wall 16 including the inner cylinder 10, and the insulator is squeezed so as not to pass through both ends in the Z-axis direction of the outer cylinder 12, and this operation is performed in the liquid. Thus, the vacant chambers 18 and 20 are filled with liquid to form the liquid chambers 18 and 20. At this time, if grooves 22 are formed at both ends of the partition wall 14 in the Y-axis direction, the orifices 22 communicate with the liquid chambers 18 and 20. One of the liquid chambers 18 and 20 (the lower side in FIG. 1 and the like) is referred to as the pressure receiving chamber 18, and the other (the upper side in FIG. 1 and the like) is referred to as the equilibrium chamber 20.
[0011]
In addition, in this example, the partition wall 14 enters the equilibrium chamber 20 side, and a through hole 24 is formed near the end of the partition wall 14 so as to be elongated in both directions of the Y axis centering on the X axis and penetrating in the Z axis direction. is doing. As a result, the partition wall 14 facing the equilibrium chamber 20 forms a thin second partition wall 26, and durability can be increased and a diaphragm action can be expected. In addition, a mantle member 28 is fitted to the central portion of the outer periphery of the inner cylinder 10 in the Z-axis direction. This is because the rigidity in the Y-axis direction is increased without increasing the rigidity in the X-axis direction. The outer member 28 is generally made of metal or resin, and the inner and outer peripheral shapes are not limited to cylinders, and various shapes are conceivable. Further, it may be formed integrally with the inner cylinder 14. Further, a reinforcing ring 30 in which the pressure receiving chamber 18 and the equilibrium chamber 20 are cut out in a window shape is embedded on the outer peripheral side of the side wall 16 to increase the strength.
[0012]
Next, according to the present invention, the side wall 16 of the pressure receiving chamber 18 includes a vertical side wall 32 extending from the inner cylinder 10 in the X-axis direction and a horizontal side wall 34 extending from the end of the vertical side wall 32 to the outer cylinder 12 in the Z-axis direction. At the same time, a recessed portion 36 that is recessed in the Z-axis direction is formed on the outer surface of the lateral side wall 34. Accordingly, the column portion 37 remains in the center of the lateral side wall 34 in the Z-axis direction. Further, in this example, a V-shaped groove 38 is formed on the central X-axis line of the lateral side wall 34 to increase the volume of the pressure receiving chamber 18 and to make the wall thickness facing the recessed portion 36 constant. ing.
[0013]
When the inner cylinder 10 and the outer cylinder 12 are interposed between the vibrating body and the support body, the pressure receiving chamber 18 and the equilibrium chamber 20 are deformed along with the vibration of the vibrating body, and are enclosed in both the chambers 18 and 20. The liquid thus moved moves through the orifice 22. Thereby, the vibration is attenuated. At this time, the vertical side wall 32 of the pressure receiving chamber 18 is provided only in the range of the pressure receiving chamber 18, and both the vertical side walls 32 are connected to each other by the horizontal side wall 34. Therefore, outward bulge during compression is prevented. Therefore, a sufficient volume change is caused to move the liquid, and a great damping performance is exhibited. In this respect, it is preferable that the vertical side wall 32 is thick to some extent.
[0014]
On the other hand, the recessed portion 36 described above contributes to reducing the rigidity in the X-axis direction by reducing the thickness of the lateral side wall 34. However, even if this recess 36 is provided, the rigidity in the Y-axis direction does not decrease much. This is because the lateral side wall 34 is connected to the outer cylinder 12 over the entire length in the Y-axis direction, so that the decrease in rigidity in the Y-axis direction is moderate compared to the rate of decrease in rigidity in the X-axis direction. is there.
[0015]
In this case, when the recessed portion 36 is inserted deeper in the Z-axis direction than the inner surface of the vertical side wall 32, the lateral side walls 34 facing both ends in the Z-axis direction of the pressure receiving chamber 18 have a relatively thin wall thickness. The rigidity is further reduced. However, the function of connecting both the vertical side walls 32 of this part does not change, and outward bulging during compression is prevented. Further, reducing the thickness of the lateral side wall 34 contributes to lowering the dynamic spring constant in the X-axis direction.
[0016]
The insulator shown in FIG. 1 and the like is a case where the rigidity in the X-axis direction / the rigidity in the Y-axis direction is set to 1: 3, but now the outer diameter is D and the maximum length of the pressure receiving chamber 18 (the inner cylinder 10 When the maximum length from the outer periphery to the inner periphery of the outer cylinder 12 is A and the width is W, the height L of the partition wall 14 is about 0.51 A, the length a of the vertical side wall 32 is about 0.55 A, and the wall thickness b. If the height c of the recessed portion 36 of the lateral side wall 34 is set to about 0.40 A, and the thickness d is set to about 0.30 D, the above ratio is obtained.
[0017]
4 is a cross-sectional view of an insulator showing another example of the present invention, and FIG. 5 is a vertical cross-sectional view. In this example, the balance chamber 20 is divided by a rubber elastic partition wall 40 in the X-axis direction. The side closer to the inner cylinder 10 is divided into a first equilibrium chamber 42 and the far side is a second equilibrium chamber 44. The partition wall 40 of this example is formed in a partition wall forming body 46 that also serves as an orifice. The partition wall forming body 46 is composed of a rubber elastic body in which a core metal 48 is enclosed, and is half a moon as viewed in the Z-axis direction. It is attached to both ends of the partition wall 14 and attached to the equilibrium chamber 20.
[0018]
6 is a plan view of the partition wall forming body 46. On the surface (on the outer cylinder 12 side), a first orifice 50 communicating with the first equilibrium chamber 42 and a second orifice 52 communicating with the second equilibrium chamber 44 are formed. It is a thing. Of these, the first orifice 50 extends from one side of one end of the partition wall forming body 46 to the other end side continuously to the orifice 22, circulates at the other end and returns to the other side again. And ends with a hole 54 formed in the opening. As a result, the liquid in the pressure receiving chamber 18 moves from the first orifice 50 through the hole 54 to the first equilibrium chamber 42 (a weir 56 is formed on one end side from the hole 54 to make a dead end).
[0019]
The second orifice 52 extends from the center of one end of the partition wall forming body 46 to the other end side continuously to the orifice 22 and communicates with the second equilibrium chamber 44 having the partition wall 40. As a result, the liquid in the pressure receiving chamber 18 moves to the second equilibrium chamber 44 through the second orifice 52 (a weir 58 is also formed on one end side to make a dead end). In this case, the first orifice 50 has a small cross-sectional area and a long path, and the second orifice 52 has a large cross-sectional area and a short path. This is to improve the attenuation during shake vibration and facilitate liquid movement during idling vibration.
[0020]
Then, the resonance frequency of the first fluid system composed of the pressure receiving chamber 18, the first orifice 50, and the first equilibrium chamber 42 is changed to the frequency of the low-frequency shake vibration, and the pressure receiving chamber 18, the second orifice 52, and the second equilibrium chamber 44. The resonance frequency of the second fluid system consisting of the above is tuned to the frequency of the mid-high frequency idling vibration. As a result, when shake vibration occurs, first, liquid movement occurs in the first fluid system, and the vibration is attenuated.
[0021]
When the shake vibration is over, the first fluid system becomes clogged, but in the next idling vibration, the liquid flows into the second fluid system, suppressing the increase of the dynamic spring constant and absorbing the vibration. At this time, since the second partition wall 26 constituting the chamber wall of the first equilibrium chamber 42 is thin and faces the through hole, further deformation is possible even after clogging, Further contributes to vibration absorption.
[0022]
Furthermore, if the partition wall 40 is formed of a member different from the second partition wall 26, the width of the rigidity ratio can be widened, so that the frequency tuning width for eliminating clogging can be widened. In this example, the partition wall 40 is formed as a separate member from the second partition wall 26. However, even if these are formed as a moldable structure, the through-hole 24 is present to make the second partition wall 26 thinner. If the shape is adjusted, the effect can be maintained.
[0023]
【The invention's effect】
As described above, according to the present invention, the side wall of the pressure receiving chamber is composed of the vertical side wall and the side wall, and the outer surface of the side wall is formed with the recessed portion that is recessed in the Z-axis direction leaving the column portion in the center. Therefore, the rigidity in the X-axis direction can be lowered to relatively increase the rigidity in the Y-axis direction, and the rigidity ratio between the X-axis and the Y-axis can be appropriately set by changing the shape of the recessed portion. In this case, the vertical side wall exists in a short section of only the portion where the liquid in the pressure receiving chamber exists, and since the side walls are connected to each other, the outward bulge does not occur.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a hydraulic insulator showing an example of the present invention.
FIG. 2 is a longitudinal sectional view of a hydraulic insulator showing an example of the present invention.
FIG. 3 is a front view of a hydraulic insulator showing an example of the present invention.
FIG. 4 is a cross-sectional view of a hydraulic insulator showing another example of the present invention.
FIG. 5 is a longitudinal sectional view of a hydraulic insulator showing another example of the present invention.
FIG. 6 is a plan view of a partition body forming body showing another example of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Inner cylinder 12 Outer cylinder 14 Partition 16 Side wall 18 Pressure receiving chamber 20 Equilibrium chamber 28 Outer member 32 Vertical side wall 34 Horizontal side wall 36 Recessed part 40 Partition wall 42 First equilibrium chamber 44 Second equilibrium chamber

Claims (3)

平行配置された内筒と外筒との間に、筒軸であるZ軸と直角なY軸方向に内筒を含んで外筒間に架橋されるゴム弾性体の隔壁と、隔壁のZ軸方向両端に連続して内外筒間に架橋される同じくゴム弾性体の側壁とで、内筒を挟む対向位置でY軸とZ軸とに直角な、主荷重方向であって最大の剛性に設定されたX軸方向に、液が封入され、且つ、オリフィスで連絡された受圧室と平衡室を対設したハイドロリックインシュレータにおいて、受圧室の側壁を、内筒からX軸方向に延びる縦側壁と、縦側壁の終端から外筒にかけてZ軸方向に延びる横側壁とで構成するとともに、両横側壁の外面に、中央に支柱部を残してZ軸方向に凹ませた凹陥部を形成し、この凹陥部を縦側壁の内面から縦側壁の肉厚を超えてZ軸方向内側まで入り込ませ、X軸方向の剛性を下げてY軸方向の剛性を上げたことを特徴とするハイドロリックインシュレータ。Between the inner cylinder and the outer cylinder arranged in parallel, a partition wall of a rubber elastic body that includes the inner cylinder in the Y-axis direction perpendicular to the Z axis that is the cylinder axis and is bridged between the outer cylinders, and the Z axis of the partition wall Set to the maximum rigidity in the main load direction, perpendicular to the Y and Z axes, at opposite positions across the inner cylinder, with the rubber elastic body side wall continuously bridged between the inner and outer cylinders at both ends in the direction. In a hydraulic insulator in which liquid is sealed in the X-axis direction and the pressure-receiving chamber and the equilibrium chamber are connected to each other by an orifice, the side wall of the pressure-receiving chamber is a vertical side wall extending from the inner cylinder in the X-axis direction. , from the end of the vertical side wall toward the outer cylinder while constituted by a transverse side wall extending in the Z axis direction, the outer surface of both lateral side walls, leaving the pillar portion to form a recessed portion recessed in the Z-axis direction in the center, this The recessed part is inserted from the inner surface of the vertical side wall to the inner side in the Z axis direction beyond the thickness of the vertical side wall, and the X axis direction. Hydraulic insulator, characterized in that raised the rigidity of the Y-axis direction to lower the rigidity. 内筒の外周に外套部材を嵌着した請求項1に記載のハイドロリックインシュレータ。  The hydraulic insulator according to claim 1, wherein a mantle member is fitted to the outer periphery of the inner cylinder. 平衡室を、X軸方向にゴム弾性体の仕切壁で分割し、内筒に近い側を第一平衡室、遠い側を第二平衡室とした請求項1又は2に記載のハイドロリックインシュレータ。  The hydraulic insulator according to claim 1 or 2, wherein the equilibrium chamber is divided by a rubber elastic partition wall in the X-axis direction, and a side closer to the inner cylinder is a first equilibrium chamber and a far side is a second equilibrium chamber.
JP07668198A 1998-03-09 1998-03-09 Hydraulic insulator Expired - Fee Related JP4215221B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP07668198A JP4215221B2 (en) 1998-03-09 1998-03-09 Hydraulic insulator
KR1019990003768A KR19990077402A (en) 1998-03-09 1999-02-04 Hydraulic Insulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07668198A JP4215221B2 (en) 1998-03-09 1998-03-09 Hydraulic insulator

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP6420599A Division JPH11315879A (en) 1999-03-11 1999-03-11 Hydraulic insulator

Publications (2)

Publication Number Publication Date
JPH11257415A JPH11257415A (en) 1999-09-21
JP4215221B2 true JP4215221B2 (en) 2009-01-28

Family

ID=13612186

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07668198A Expired - Fee Related JP4215221B2 (en) 1998-03-09 1998-03-09 Hydraulic insulator

Country Status (2)

Country Link
JP (1) JP4215221B2 (en)
KR (1) KR19990077402A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2876429B1 (en) * 2004-10-11 2007-02-23 Hutchinson Sa HYDRAULIC ANTI-VIBRATION DEVICE FOR A VEHICLE AND METHOD OF MANUFACTURING SUCH A DEVICE
FR2876430B1 (en) * 2004-10-11 2008-10-10 Hutchinson Sa ANTI-VIBRATORY HYDRAULIC DEVICE AND METHOD OF MANUFACTURING THE SAME
JP2015105672A (en) * 2013-11-28 2015-06-08 トヨタ自動車株式会社 Liquid-sealed vibration control device

Also Published As

Publication number Publication date
KR19990077402A (en) 1999-10-25
JPH11257415A (en) 1999-09-21

Similar Documents

Publication Publication Date Title
JP3125290B2 (en) Inner / outer cylinder type fluid-filled power unit mount
JP5264272B2 (en) Vibration isolator
JP3537872B2 (en) Fluid-filled engine mount and method of manufacturing the same
JP3568652B2 (en) Hydraulic vibration-proof support
JP2583145B2 (en) Fluid filled type vibration damping device
US5082252A (en) Fluid-filled mount
JP3035222B2 (en) Liquid filled type vibration damping device
EP0178652B1 (en) Liquid-filled type vibration damping structure
JP4215221B2 (en) Hydraulic insulator
JP3009402B2 (en) Anti-vibration device
JP3631348B2 (en) Liquid filled anti-vibration mount
JPH0516629A (en) Bush
JP2603798B2 (en) Fluid-filled engine mount
JP3830259B2 (en) Liquid-filled engine mount
JPH11315879A (en) Hydraulic insulator
JPH10252812A (en) Liquid sealing type vibration control mount
JPH022498B2 (en)
JP2631590B2 (en) Fluid filled type vibration damping device
JP4169228B2 (en) Liquid filled vibration isolator
KR100192480B1 (en) Hydraulic engine mount
JP3771028B2 (en) Liquid-filled engine mount
JP2530624Y2 (en) Fluid-filled cylindrical engine mount
JP3071548B2 (en) Liquid filled type vibration damping device
JP3072407B2 (en) Cylindrical liquid-filled anti-vibration mount
JP3040840B2 (en) Anti-vibration device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080322

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081031

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081031

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111114

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111114

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121114

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131114

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees