JP4215092B2 - Engine starter for hybrid vehicle - Google Patents

Engine starter for hybrid vehicle Download PDF

Info

Publication number
JP4215092B2
JP4215092B2 JP2006288125A JP2006288125A JP4215092B2 JP 4215092 B2 JP4215092 B2 JP 4215092B2 JP 2006288125 A JP2006288125 A JP 2006288125A JP 2006288125 A JP2006288125 A JP 2006288125A JP 4215092 B2 JP4215092 B2 JP 4215092B2
Authority
JP
Japan
Prior art keywords
engine
electric motor
speed
differential
gear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006288125A
Other languages
Japanese (ja)
Other versions
JP2008105475A (en
Inventor
泰広 前田
俊成 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2006288125A priority Critical patent/JP4215092B2/en
Priority to US11/907,799 priority patent/US7559864B2/en
Publication of JP2008105475A publication Critical patent/JP2008105475A/en
Application granted granted Critical
Publication of JP4215092B2 publication Critical patent/JP4215092B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/36Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings
    • B60K6/365Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings with the gears having orbital motion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/40Controlling the engagement or disengagement of prime movers, e.g. for transition between prime movers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/40Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the assembly or relative disposition of components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/445Differential gearing distribution type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/54Transmission for changing ratio
    • B60K6/547Transmission for changing ratio the transmission being a stepped gearing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/02Conjoint control of vehicle sub-units of different type or different function including control of driveline clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/10Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
    • B60W10/11Stepped gearings
    • B60W10/115Stepped gearings with planetary gears
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H3/00Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
    • F16H3/44Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion
    • F16H3/72Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion with a secondary drive, e.g. regulating motor, in order to vary speed continuously
    • F16H3/727Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion with a secondary drive, e.g. regulating motor, in order to vary speed continuously with at least two dynamo electric machines for creating an electric power path inside the gearing, e.g. using generator and motor for a variable power torque path
    • F16H3/728Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion with a secondary drive, e.g. regulating motor, in order to vary speed continuously with at least two dynamo electric machines for creating an electric power path inside the gearing, e.g. using generator and motor for a variable power torque path with means to change ratio in the mechanical gearing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K1/02Arrangement or mounting of electrical propulsion units comprising more than one electric motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/26Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the motors or the generators
    • B60K2006/268Electric drive motor starts the engine, i.e. used as starter motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/24Energy storage means
    • B60W2510/242Energy storage means for electrical energy
    • B60W2510/244Charge state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/10Accelerator pedal position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H37/00Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00
    • F16H37/02Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings
    • F16H37/06Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts
    • F16H37/08Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing
    • F16H37/0833Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing with arrangements for dividing torque between two or more intermediate shafts, i.e. with two or more internal power paths
    • F16H37/084Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing with arrangements for dividing torque between two or more intermediate shafts, i.e. with two or more internal power paths at least one power path being a continuously variable transmission, i.e. CVT
    • F16H2037/0866Power split variators with distributing differentials, with the output of the CVT connected or connectable to the output shaft
    • F16H2037/0873Power split variators with distributing differentials, with the output of the CVT connected or connectable to the output shaft with switching, e.g. to change ranges
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2200/00Transmissions for multiple ratios
    • F16H2200/003Transmissions for multiple ratios characterised by the number of forward speeds
    • F16H2200/0043Transmissions for multiple ratios characterised by the number of forward speeds the gear ratios comprising four forward speeds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2200/00Transmissions for multiple ratios
    • F16H2200/20Transmissions using gears with orbital motion
    • F16H2200/2002Transmissions using gears with orbital motion characterised by the number of sets of orbital gears
    • F16H2200/201Transmissions using gears with orbital motion characterised by the number of sets of orbital gears with three sets of orbital gears
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2200/00Transmissions for multiple ratios
    • F16H2200/20Transmissions using gears with orbital motion
    • F16H2200/203Transmissions using gears with orbital motion characterised by the engaging friction means not of the freewheel type, e.g. friction clutches or brakes
    • F16H2200/2046Transmissions using gears with orbital motion characterised by the engaging friction means not of the freewheel type, e.g. friction clutches or brakes with six engaging means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S477/00Interrelated power delivery controls, including engine control
    • Y10S477/906Means detecting or ameliorating the effects of malfunction or potential malfunction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S903/00Hybrid electric vehicles, HEVS
    • Y10S903/902Prime movers comprising electrical and internal combustion motors
    • Y10S903/903Prime movers comprising electrical and internal combustion motors having energy storing means, e.g. battery, capacitor
    • Y10S903/904Component specially adapted for hev
    • Y10S903/912Drive line clutch
    • Y10S903/913One way

Abstract

A hybrid motor vehicle includes a differential having a differential mechanism equipped with a first rotating element that is connected to an engine, a second rotating element that is connected to a first electric motor and a third rotating element connected to both a second electric motor and a transfer member; and a transmission provided in a power transmission path, extending from the transfer member to driven wheels, that establishes a plurality of transmission ranges by selectively operating a plurality of coupling devices. An irreversible rotation member connected to a non-rotation member against reverse rotation through a one-way clutch is provided in the transmission. When the second electric motor is malfunctioning, an engine start control unit starts the engine by driving the first electric motor while selectively engaging the coupling devices to connect the transfer member to the irreversible rotation member.

Description

本発明は、差動作用が作動可能な差動機構と電動機とを有する電気的な差動部と、その差動部から駆動輪への動力伝達経路に設けられた変速部とを備えるハイブリッド車両のエンジン起動装置に係り、特に、電動機故障時のエンジン起動装置に関するものである。   The present invention relates to a hybrid vehicle including an electrical differential unit having a differential mechanism capable of operating a differential action and an electric motor, and a transmission unit provided in a power transmission path from the differential unit to a drive wheel. In particular, the present invention relates to an engine starting device when a motor fails.

エンジンに連結された第1回転要素と第1電動機に連結された第2回転要素と第2電動機および伝達部材に連結された第3回転要素とを有してエンジンの出力を第1電動機および伝達部材へ分配する差動機構を備える差動部と、伝達部材から駆動輪への動力伝達経路に設けられた変速部とを備えるハイブリッド車両の動力伝達装置において、エンジン起動時には、第1電動機や第2電動機を用いてエンジン回転速度をエンジン始動可能(エンジン点火可能)な回転速度以上に引き上げる制御装置が知られている。   A first rotating element connected to the engine, a second rotating element connected to the first electric motor, and a third rotating element connected to the second electric motor and the transmission member. In a power transmission device for a hybrid vehicle including a differential unit including a differential mechanism that distributes to members and a transmission unit provided in a power transmission path from the transmission member to the drive wheels, the first electric motor and the first motor 2. Description of the Related Art A control device is known that uses two electric motors to increase an engine rotational speed to a rotational speed at which the engine can be started (engine ignition is possible).

例えば、特許文献1に記載された車両用駆動装置の制御装置がそれである。この車両用駆動装置の制御装置では、差動機構が遊星歯車装置で構成される差動部と、油圧式摩擦係合装置の係合作動により動力伝達経路が動力伝達可能状態と動力伝達遮断状態とに選択的に切り換えられる有段式自動変速機で構成される変速部とを備える変速機構において、動力伝達部内の動力伝達経路を動力伝達遮断状態とするためのよく知られた駐車ポジション「P(パーキング)」や中立ポジション「N(ニュートラル)」が選択されているときのエンジン始動の際には、第1電動機および第2電動機を用いて第2回転要素および第3回転要素の回転速度を共に引き上げ、第1回転要素、第2回転要素、および第3回転要素の相互の相対回転速度の関係に基づいて第1回転要素すなわち第1回転要素に連結されたエンジンの回転速度を速やかにエンジン始動可能回転以上に上昇させている。   For example, this is the control device for a vehicle drive device described in Patent Document 1. In this control device for a vehicle drive device, the power transmission path is in a power transmission enable state and a power transmission cut-off state by the engagement of a differential portion whose differential mechanism is a planetary gear device and a hydraulic friction engagement device. A well-known parking position “P” for setting the power transmission path in the power transmission section to a power transmission cut-off state in a speed change mechanism including a speed change portion constituted by a stepped automatic transmission that is selectively switched to When the engine is started when the “parking” or neutral position “N (neutral)” is selected, the rotational speeds of the second and third rotating elements are set using the first and second motors. The rotation speed of the engine connected to the first rotation element, that is, the first rotation element based on the relationship between the relative rotation speeds of the first rotation element, the second rotation element, and the third rotation element. It is rapidly raised above engine starting rotatable.

特開2005−264762号公報JP 2005-264762 A

ところで、特許文献1のような車両用駆動装置において、第2電動機が故障すると、第3回転要素に連結された第2電動機によって発生させる反力が取れなくなり、第1電動機を駆動させても第2電動機に連結された第3回転要素が逆回転させられてエンジンを起動させることが不可能となる。例えば車両の信号待ちなどの状態、すなわちシフトポジションが「D(ドライブ)」に選択されているとともに車速がゼロの状態では、通常は燃費を抑制するためにエンジンは停止した状態となっている。このような故障状態で車両を発進させるためにエンジンを起動させる場合には、第2電動機に代わる反力発生方法として、伝達部材から駆動輪への動力伝達経路を動力伝達可能状態とすることで第3回転要素を変速部を介して駆動輪に連結することで反力を発生させることが考えられる。しかし、シフトポジションが「D」レンジに位置する状態では、シフトポジションが「P」レンジに位置する際に出力軸を機械的にロックさせる所謂Pレンジロックのようなロック機構が為されないため、第3回転要素が逆回転することで車両が逆走する可能性がある。   By the way, in the vehicle drive device as in Patent Document 1, when the second electric motor fails, the reaction force generated by the second electric motor connected to the third rotating element cannot be taken, and even if the first electric motor is driven, the first electric motor is driven. The third rotating element connected to the two electric motors is rotated in the reverse direction to make it impossible to start the engine. For example, when the vehicle is waiting for a signal, that is, when the shift position is selected as “D (drive)” and the vehicle speed is zero, the engine is normally stopped to suppress fuel consumption. When starting the engine in order to start the vehicle in such a failure state, as a reaction force generation method that replaces the second electric motor, the power transmission path from the transmission member to the drive wheels is made a power transmission enabled state. It is conceivable that the reaction force is generated by connecting the third rotating element to the driving wheel via the transmission unit. However, in the state where the shift position is in the “D” range, when the shift position is in the “P” range, a lock mechanism such as a so-called P range lock that mechanically locks the output shaft is not performed. There is a possibility that the vehicle will run backward due to the reverse rotation of the three-turn element.

本発明は、以上の事情を背景として為されたものであり、その目的とするところは、ハイブリッド車両のエンジン起動の際に反力を発生させる電動機が故障した場合でもエンジンの起動を安全に実施することができるハイブリッド車両のエンジン起動装置を提供することにある。   The present invention has been made against the background of the above circumstances, and the object of the present invention is to safely start the engine even when the motor that generates the reaction force breaks down when starting the engine of the hybrid vehicle. An object of the present invention is to provide an engine starting device for a hybrid vehicle.

上記目的を達成するための、請求項1にかかる発明の要旨とするところは、(a)エンジンに連結された第1回転要素と第1電動機に連結された第2回転要素と第2電動機および伝達部材に常時動力伝達可能に連結された出力軸である第3回転要素とを、有してそのエンジンの出力を第1電動機およびその伝達部材へ分配する差動機構を備え電気的な差動装置として作動する差動部と、その差動部の出力軸と駆動輪との間に直列的に設けられて複数の係合装置の選択的な作動に従って複数の変速段を成立させる変速部と、を備えるハイブリッド車両のエンジン起動装置であって、(b)前記変速部内に設けられた一方向クラッチを介して非回転部材に連結されることによって逆回転不能な回転部材が設けられており、(c)前記第2電動機が故障した際には、前記係合装置を係合させて前記差動部の出力軸を前記逆回転不能な回転部材に直接または間接的に連結させて逆転不能状態とし、前記第1電動機により前記エンジンを駆動させるエンジン起動制御手段を含むことを特徴とする。 To achieve the above object, and has as subject matter of the invention according to claim 1, a first rotary element connected to the (a) an engine, a second rotary element connected to the first electric motor, a second And a third rotating element that is an output shaft connected to the electric motor and the transmission member so as to be able to transmit power at all times, and includes a differential mechanism that distributes the engine output to the first electric motor and the transmission member. A differential unit that operates as a differential unit, and a shift that is provided in series between an output shaft of the differential unit and a drive wheel and that establishes a plurality of shift stages according to selective operation of a plurality of engagement devices. And (b) a rotating member that is non-rotatable by being connected to a non-rotating member via a one-way clutch provided in the transmission unit. (C) the second electric motor When but failed, the engagement of the coupling device to engage the reverse disabled state directly or indirectly by connecting the output shaft to the opposite non-rotatable rotary member of the differential portion, by said first electric motor Engine starting control means for driving the engine is included.

また、請求項2にかかる発明の要旨とするところは、請求項1のハイブリッド車両のエンジン起動装置において、前記エンジン起動制御手段は、前記係合装置を係合させて、前記差動部の出力軸を前記逆回転不能な回転部材に直接連結させて逆転不能状態とするものであることを特徴とする。 The gist of the invention according to claim 2 is that, in the engine starting device of the hybrid vehicle according to claim 1, the engine starting control means engages the engaging device to output the differential unit. the shaft is directly connected to the reverse rotation non rotating member characterized in that it is a to shall and reverse disabled state.

また、請求項3にかかる発明の要旨とするところは、請求項1のハイブリッド車両のエンジン起動装置において、前記係合装置は、所定の回転部材の回転を制御するブレーキを含み、前記エンジン起動制御手段は、前記ブレーキを係合することで逆回転不能となる他の回転部材を形成し、前記差動部の出力軸を該他の回転部材に連結させて逆転不能状態とするものであることを特徴とする。 According to a third aspect of the present invention, there is provided the engine starting device for a hybrid vehicle according to the first aspect, wherein the engagement device includes a brake for controlling rotation of a predetermined rotating member, and the engine starting control is performed. means the form of the other rotary member to be reversed unrotatable by engaging the brake, is reversed impossible state and be shall an output shaft of the differential portion by connecting to the another rotary member It is characterized by that.

また、請求項4にかかる発明の要旨とするところは、請求項1乃至3のハイブリッド車両のエンジン起動装置において、前記エンジン起動制御手段は、前記第2電動機の故障が判定され、車速が所定値以下であり、前記エンジンの起動が要求され、前記シフトレバーが走行位置にあることに基づいて前記係合装置を係合させて、前記第1電動機を駆動させるものであることを特徴とする。   According to a fourth aspect of the present invention, in the engine starter for a hybrid vehicle according to any one of the first to third aspects, the engine start control means determines that the second electric motor has failed, and the vehicle speed is a predetermined value. In the following, the start of the engine is requested, and the engagement device is engaged based on the fact that the shift lever is in the traveling position, thereby driving the first electric motor.

請求項1にかかる発明のハイブリッド車両のエンジン起動装置によれば、第1電動機を駆動させてエンジンを起動させる際に反力を発生させるべき第2電動機が故障しても、前記係合装置を好適に係合させることで、前記差動部の出力軸である前記第3回転要素を前記逆回転不能な回転部材に直接または間接的に連結させることで、第3回転要素を固定すなわち反力を発生させることができる。これにより、車両のシフト位置が「D」レンジであっても車両が逆走する危険もなく、エンジンを起動させることができる。

According to the engine starting device for a hybrid vehicle of the first aspect of the present invention, even if the second motor that should generate a reaction force when the first motor is driven to start the engine fails, the engaging device is By suitably engaging, the third rotating element, which is the output shaft of the differential portion, is directly or indirectly connected to the rotating member that cannot rotate in reverse, thereby fixing the third rotating element, that is, the reaction force Can be generated. Thereby, even if the shift position of the vehicle is in the “D” range, the engine can be started without the danger of the vehicle running backward.

また、請求項2にかかる発明のハイブリッド車両のエンジン起動装置によれば、前記係合装置を係合させて、前記伝達部材を前記逆回転不能な回転部材に直接連結させることで、他の回転要素の回転を制限するなどの必要なく、第3回転要素において反力を発生させることができ、エンジンを起動させることが可能となる。   According to the engine starting device for a hybrid vehicle of the invention according to claim 2, the engaging device is engaged, and the transmission member is directly connected to the rotating member that cannot be reversely rotated. The reaction force can be generated in the third rotating element without the necessity of limiting the rotation of the element, and the engine can be started.

また、請求項3にかかる発明のハイブリッド車両のエンジン起動装置によれば、前記ブレーキを係合することで逆回転不能となる他の回転部材を形成し、前記伝達部材をその他の回転部材に連結させることで、第3回転要素において反力を発生させることができ、エンジンを起動させることが可能となる。   According to the engine starter for a hybrid vehicle of the invention according to claim 3, another rotating member that cannot be reversely rotated by engaging the brake is formed, and the transmission member is connected to the other rotating member. By doing so, a reaction force can be generated in the third rotating element, and the engine can be started.

また、請求項4にかかる発明のハイブリッド車両のエンジン起動装置によれば、エンジン起動制御手段は、前記第2電動機の故障が判定され、車速が所定値以下であり、前記エンジンの起動が要求され、前記シフトレバーが走行位置にあることに基づいて前記係合装置を係合させて、前記第1電動機を駆動させるものであるため、第2電動機故障の際にはエンジンを安全に起動させることができる。   According to the engine starter for a hybrid vehicle of the invention according to claim 4, the engine start control means determines that the second electric motor has failed, the vehicle speed is equal to or lower than a predetermined value, and the engine start is requested. Since the engagement device is engaged based on the fact that the shift lever is in the traveling position and the first electric motor is driven, the engine can be started safely when the second electric motor fails. Can do.

以下、本発明の実施例を図面を参照しつつ詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図1は、本発明が適用されたハイブリッド車両の駆動装置の一部を構成する変速機構10を説明する骨子図である。図1において、変速機構10は車体に取り付けられる非回転部材としてのトランスミッションケース12(以下、ケース12という)内において共通の軸心上に配設された入力回転部材としての入力軸14と、この入力軸14に直接或いは図示しない脈動吸収ダンパー(振動減衰装置)などを介して間接的に連結された無段変速部としての差動部11と、その差動部11から駆動輪34(図6参照)への動力伝達経路で伝達部材18を介して直列に連結されている動力伝達部としての自動変速部20と、この自動変速部20に連結されている出力回転部材としての出力軸22とを直列に備えている。この変速機構10は、例えば車両において縦置きされるFR(フロントエンジン・リヤドライブ)型車両に好適に用いられるものであり、入力軸14に直接に或いは図示しない脈動吸収ダンパーを介して直接的に連結された走行用の駆動源として例えばガソリンエンジンやディーゼルエンジン等の内燃機関であるエンジン8と一対の駆動輪34(図6参照)との間に設けられて、エンジン8からの動力を動力伝達経路の一部を構成する差動歯車装置(終減速機)32(図6参照)および一対の車軸等を順次介して一対の駆動輪34へ伝達する。なお、本実施例のトランスミッションケース12(ケース12)が、本発明の非回転部材に対応しており、自動変速部20が、本発明の変速部に対応している。   FIG. 1 is a skeleton diagram illustrating a speed change mechanism 10 that constitutes a part of a drive device for a hybrid vehicle to which the present invention is applied. In FIG. 1, a transmission mechanism 10 includes an input shaft 14 as an input rotation member disposed on a common axis in a transmission case 12 (hereinafter referred to as case 12) as a non-rotation member attached to a vehicle body, A differential unit 11 as a continuously variable transmission unit directly connected to the input shaft 14 or indirectly through a pulsation absorbing damper (vibration damping device) (not shown), and the differential unit 11 to drive wheels 34 (FIG. 6). An automatic transmission unit 20 as a power transmission unit connected in series via a transmission member 18 in a power transmission path to a reference), and an output shaft 22 as an output rotation member connected to the automatic transmission unit 20 Are provided in series. The speed change mechanism 10 is preferably used in, for example, an FR (front engine / rear drive) type vehicle vertically installed in a vehicle, and directly to the input shaft 14 or directly via a pulsation absorbing damper (not shown). As a connected driving source for traveling, for example, an engine 8 which is an internal combustion engine such as a gasoline engine or a diesel engine is provided between a pair of driving wheels 34 (see FIG. 6), and power from the engine 8 is transmitted. The differential gear device (final reduction gear) 32 (see FIG. 6) and a pair of axles that constitute a part of the path are sequentially transmitted to the pair of drive wheels 34. The transmission case 12 (case 12) of this embodiment corresponds to the non-rotating member of the present invention, and the automatic transmission unit 20 corresponds to the transmission unit of the present invention.

このように、本実施例の変速機構10においては、エンジン8と差動部11とは直結されている。この直結にはトルクコンバータやフルードカップリング等の流体式伝動装置を介すことなく連結されているということであり、例えば上記脈動吸収ダンパーなどを介する連結はこの直結に含まれる。   Thus, in the transmission mechanism 10 of the present embodiment, the engine 8 and the differential unit 11 are directly connected. This direct connection means that the connection is made without passing through a hydraulic power transmission device such as a torque converter or a fluid coupling. For example, the connection via the pulsation absorbing damper is included in this direct connection.

差動部11は、第1電動機M1と、入力軸14に連結されたエンジン8の出力を機械的に分配する機械的機構であってエンジン8の出力を第1電動機M1および伝達部材18に分配する差動機構としての動力分配機構16と、伝達部材18と一体的に回転するように作動的に連結されている第2電動機M2とを備えている。本実施例の第1電動機M1および第2電動機M2は発電機能をも有する所謂モータジェネレータであるが、第1電動機M1は反力を発生させるためのジェネレータ(発電)機能を少なくとも備え、第2電動機M2は走行用の駆動源として駆動力を出力するためのモータ(電動機)機能を少なくとも備えている。なお、本実施例の動力分配機構16が、本発明の差動部に対応している。   The differential unit 11 is a mechanical mechanism that mechanically distributes the output of the engine 8 connected to the first electric motor M1 and the input shaft 14, and distributes the output of the engine 8 to the first electric motor M1 and the transmission member 18. A power distribution mechanism 16 serving as a differential mechanism, and a second electric motor M2 that is operatively connected to rotate integrally with the transmission member 18. The first electric motor M1 and the second electric motor M2 of the present embodiment are so-called motor generators that also have a power generation function, but the first electric motor M1 has at least a generator (power generation) function for generating a reaction force, and the second electric motor. M2 has at least a motor (electric motor) function for outputting driving force as a driving source for traveling. Note that the power distribution mechanism 16 of this embodiment corresponds to the differential section of the present invention.

動力分配機構16は、所定のギヤ比ρ1を有するシングルピニオン型の第1遊星歯車装置24を主体として構成されている。この第1遊星歯車装置24は、第1サンギヤS1、第1遊星歯車P1、その第1遊星歯車P1を自転および公転可能に支持する第1キャリヤCA1、第1遊星歯車P1を介して第1サンギヤS1と噛み合う第1リングギヤR1を回転要素として備えている。なお、第1サンギヤS1の歯数をZS1、第1リングギヤR1の歯数をZR1とすると、上記ギヤ比ρ1はZS1/ZR1である。   The power distribution mechanism 16 is mainly configured by a single pinion type first planetary gear device 24 having a predetermined gear ratio ρ1. The first planetary gear unit 24 includes a first sun gear S1, a first planetary gear P1, a first carrier CA1 that supports the first planetary gear P1 so as to rotate and revolve, and a first sun gear via the first planetary gear P1. A first ring gear R1 meshing with S1 is provided as a rotating element. When the number of teeth of the first sun gear S1 is ZS1 and the number of teeth of the first ring gear R1 is ZR1, the gear ratio ρ1 is ZS1 / ZR1.

この動力分配機構16においては、第1キャリヤCA1は入力軸14すなわちエンジン8に連結されて第1回転要素RE1を構成し、第1サンギヤS1は第1電動機M1に連結されて第2回転要素RE2を構成し、第1リングギヤR1は伝達部材18に連結されて第3回転要素RE3を構成している。このように構成された動力分配機構16は、第1遊星歯車装置24の3要素である第1サンギヤS1、第1キャリヤCA1、第1リングギヤR1がそれぞれ相互に相対回転可能とされて差動作用が作動可能すなわち差動作用が働く差動状態とされることから、エンジン8の出力が第1電動機M1と伝達部材18に分配されると共に、分配されたエンジン8の出力の一部で第1電動機M1から発生させられた電気エネルギで蓄電されたり第2電動機M2が回転駆動されるので、差動部11(動力分配機構16)は電気的な差動装置として機能させられて例えば差動部11は所謂無段変速状態とされて、エンジン8の所定回転に拘わらず伝達部材18の回転が連続的に変化させられる。すなわち、差動部11はその変速比γ0(入力軸14の回転速度NIN/伝達部材18の回転速度N18)が最小値γ0minから最大値γ0maxまで連続的に変化させられる電気的な無段変速機として機能する。 In this power distribution mechanism 16, the first carrier CA1 is connected to the input shaft 14, that is, the engine 8 to form the first rotating element RE1, and the first sun gear S1 is connected to the first electric motor M1 to be the second rotating element RE2. The first ring gear R1 is connected to the transmission member 18 to form a third rotating element RE3. In the power distribution mechanism 16 configured as described above, the first sun gear S1, the first carrier CA1, and the first ring gear R1, which are the three elements of the first planetary gear device 24, can be rotated relative to each other, so that a differential action is achieved. Therefore, the output of the engine 8 is distributed to the first electric motor M1 and the transmission member 18, and the first part of the distributed output of the engine 8 is the first. Since the electric energy generated from the electric motor M1 is stored or the second electric motor M2 is rotationally driven, the differential unit 11 (power distribution mechanism 16) is caused to function as an electrical differential device, for example, the differential unit. 11 is a so-called continuously variable transmission state, and the rotation of the transmission member 18 is continuously changed regardless of the predetermined rotation of the engine 8. That is, the differential unit 11 is an electrically stepless variable gear whose ratio γ0 (the rotational speed N IN of the input shaft 14 / the rotational speed N 18 of the transmission member 18 ) is continuously changed from the minimum value γ0min to the maximum value γ0max. It functions as a transmission.

自動変速部20は、伝達部材18から駆動輪34への動力伝達経路に設けられており、シングルピニオン型の第2遊星歯車装置26、シングルピニオン型の第3遊星歯車装置28を備え、有段式の自動変速機として機能する遊星歯車式の多段変速機である。第2遊星歯車装置26は、第2サンギヤS2、第2遊星歯車P2、その第2遊星歯車P2を自転および公転可能に支持する第2キャリヤCA2、第2遊星歯車P2を介して第2サンギヤS2と噛み合う第2リングギヤR2を備えており、所定のギヤ比ρ2を有している。第3遊星歯車装置28は、第3サンギヤS3、第3遊星歯車P3、その第3遊星歯車P3を自転および公転可能に支持する第3キャリヤCA3、第3遊星歯車P3を介して第3サンギヤS3と噛み合う第3リングギヤR3を備えており、所定のギヤ比ρ3を有している。第2サンギヤS2の歯数をZS2、第2リングギヤR2の歯数をZR2、第3サンギヤS3の歯数をZS3、第3リングギヤR3の歯数をZR3とすると、上記ギヤ比ρ2はZS2/ZR2、上記ギヤ比ρ3はZS3/ZR3である。   The automatic transmission unit 20 is provided in a power transmission path from the transmission member 18 to the drive wheel 34, and includes a single pinion type second planetary gear unit 26 and a single pinion type third planetary gear unit 28, and is stepped. It is a planetary gear type multi-stage transmission that functions as an automatic transmission of the type. The second planetary gear unit 26 includes a second sun gear S2 via a second sun gear S2, a second planetary gear P2, a second carrier CA2 that supports the second planetary gear P2 so as to rotate and revolve, and a second planetary gear P2. A second ring gear R2 that meshes with the second gear R2 and has a predetermined gear ratio ρ2. The third planetary gear device 28 includes a third sun gear S3, a third planetary gear P3, a third carrier CA3 that supports the third planetary gear P3 so as to rotate and revolve, and a third sun gear S3 via the third planetary gear P3. Is provided with a third ring gear R3 that meshes with the first gear ratio ρ3. When the number of teeth of the second sun gear S2 is ZS2, the number of teeth of the second ring gear R2 is ZR2, the number of teeth of the third sun gear S3 is ZS3, and the number of teeth of the third ring gear R3 is ZR3, the gear ratio ρ2 is ZS2 / ZR2. The gear ratio ρ3 is ZS3 / ZR3.

自動変速部20では、第2サンギヤS2は第3クラッチC3を介して伝達部材18に連結されると共に第1ブレーキB1を介してケース12に選択的に連結され、第2キャリヤCA2と第3リングギヤR3とが一体的に連結されて第2クラッチC2を介して伝達部材18に連結されると共に第2ブレーキB2を介してケース12に選択的に連結され、第2リングギヤR2と第3キャリヤCA3とが一体的に連結されて出力軸22に連結され、第3サンギヤS3が第1クラッチC1を介して伝達部材18に選択的に連結されている。さらに第2キャリヤCA2と第3リングギヤR3とは一方向クラッチFを介して非回転部材であるケース12に連結されてエンジン8と同方向の回転が許容され逆方向の回転が禁止されている。これにより、第2キャリヤCA2および第3リングギヤR3は、逆回転不能な回転部材として機能する。   In the automatic transmission 20, the second sun gear S2 is connected to the transmission member 18 via the third clutch C3 and is selectively connected to the case 12 via the first brake B1, and the second carrier CA2 and the third ring gear are connected. R3 is integrally connected to the transmission member 18 via the second clutch C2, and is selectively connected to the case 12 via the second brake B2, and the second ring gear R2, the third carrier CA3, Are integrally connected to the output shaft 22, and the third sun gear S3 is selectively connected to the transmission member 18 via the first clutch C1. Further, the second carrier CA2 and the third ring gear R3 are connected to a case 12 that is a non-rotating member via a one-way clutch F, and are allowed to rotate in the same direction as the engine 8 and are prohibited from rotating in the reverse direction. As a result, the second carrier CA2 and the third ring gear R3 function as rotating members that cannot rotate in reverse.

また、この自動変速部20は、解放側係合装置の解放と係合側係合装置の係合とによりクラッチツウクラッチ変速が実行されて複数のギヤ段(変速段)が選択的に成立させられることにより、略等比的に変化する変速比γ(=伝達部材18の回転速度N18/出力軸22の回転速度NOUT)が各ギヤ段毎に得られる。例えば、図2の係合作動表に示されるように、第1クラッチC1の係合および一方向クラッチFにより第1速ギヤ段が成立させられ、第1クラッチC1および第1ブレーキB1の係合により第2速ギヤ速段が成立させられ、第1クラッチC1および第2クラッチC2の係合により第3速ギヤ段が成立させられ、第2クラッチC2および第1ブレーキB1の係合により第4速ギヤ段が成立させられ、第3クラッチC3および第2ブレーキB2の係合により後進ギヤ段が成立させられる。また、第1クラッチC1、第2クラッチC2、第3クラッチC3、第1ブレーキB1、および第2ブレーキB2の解放によりニュートラル「N」状態とされる。また、第1速ギヤ段のエンジンブレーキの際には、第2ブレーキB2が係合させられる。 In addition, the automatic transmission unit 20 performs clutch-to-clutch shift by releasing the disengagement side engagement device and engaging the engagement side engagement device, and selectively establishes a plurality of gear stages (shift stages). As a result, a transmission gear ratio γ (= rotational speed N 18 of the transmission member 18 / rotational speed N OUT of the output shaft 22) that changes substantially in a ratio is obtained for each gear stage. For example, as shown in the engagement operation table of FIG. 2, the first gear is established by the engagement of the first clutch C1 and the one-way clutch F, and the engagement of the first clutch C1 and the first brake B1. To establish the second gear stage, the third gear stage is established by the engagement of the first clutch C1 and the second clutch C2, and the fourth speed stage is established by the engagement of the second clutch C2 and the first brake B1. The speed gear stage is established, and the reverse gear stage is established by engagement of the third clutch C3 and the second brake B2. Further, the neutral "N" state is established by releasing the first clutch C1, the second clutch C2, the third clutch C3, the first brake B1, and the second brake B2. In addition, the second brake B2 is engaged during the engine braking of the first gear.

このように、自動変速部20内の動力伝達経路は、第1クラッチC1、第2クラッチC2、第3クラッチC3、第1ブレーキB1、および第2ブレーキB2の係合と解放との作動の組合せにより、その動力伝達経路の動力伝達を可能とする動力伝達可能状態と、動力伝達を遮断する動力伝達遮断状態との間で切り換えられる。つまり、第1速ギヤ段乃至第4速ギヤ段および後進ギヤ段の何れかが成立させられることで上記動力伝達経路が動力伝達可能状態とされ、何れのギヤ段も成立させられないことで例えばニュートラル「N」状態が成立させられることで上記動力伝達経路が動力伝達遮断状態とされる。   As described above, the power transmission path in the automatic transmission unit 20 is the combination of the engagement and release of the first clutch C1, the second clutch C2, the third clutch C3, the first brake B1, and the second brake B2. Thus, the state is switched between a power transmission enabling state that enables power transmission through the power transmission path and a power transmission cutoff state that interrupts power transmission. That is, when any one of the first to fourth gears and the reverse gear is established, the power transmission path is in a state capable of transmitting power, and none of the gears is established. When the neutral “N” state is established, the power transmission path is brought into a power transmission cutoff state.

前記第1クラッチC1、第2クラッチC2、第3クラッチC3、第1ブレーキB1、および第2ブレーキB2(以下、特に区別しない場合はクラッチC、ブレーキBと表す)は、従来の車両用自動変速機においてよく用いられている係合要素としての油圧式摩擦係合装置であって、互いに重ねられた複数枚の摩擦板が油圧アクチュエータにより押圧される湿式多板型や、回転するドラムの外周面に巻き付けられた1本または2本のバンドの一端が油圧アクチュエータによって引き締められるバンドブレーキなどにより構成され、それが介挿されている両側の部材を選択的に連結するためのものである。なお、本実施例のクラッチCおよびブレーキBが、本発明の係合装置に対応している。   The first clutch C1, the second clutch C2, the third clutch C3, the first brake B1, and the second brake B2 (hereinafter referred to as the clutch C and the brake B unless otherwise specified) are conventional automatic transmissions for vehicles. A hydraulic friction engagement device as an engagement element often used in a machine, and a wet multi-plate type in which a plurality of friction plates stacked on each other are pressed by a hydraulic actuator, or an outer peripheral surface of a rotating drum One end of one or two bands wound around is composed of a band brake or the like that is tightened by a hydraulic actuator, and is for selectively connecting the members on both sides of the band brake. Note that the clutch C and the brake B of this embodiment correspond to the engagement device of the present invention.

以上のように構成された変速機構10において、無段変速機として機能する差動部11と自動変速部20とで無段変速機が構成される。また、差動部11の変速比を一定となるように制御することにより、差動部11と自動変速部20とで有段変速機と同等の状態を構成することが可能とされる。   In the transmission mechanism 10 configured as described above, the differential unit 11 that functions as a continuously variable transmission and the automatic transmission unit 20 constitute a continuously variable transmission. Further, by controlling the gear ratio of the differential unit 11 to be constant, the differential unit 11 and the automatic transmission unit 20 can configure a state equivalent to a stepped transmission.

具体的には、差動部11が無段変速機として機能し、且つ差動部11に直列の自動変速部20が有段変速機として機能することにより、自動変速部20の少なくとも1つの変速段Mに対して自動変速部20に入力される回転速度(以下、自動変速部20の入力回転速度)すなわち伝達部材18の回転速度(以下、伝達部材回転速度N18)が無段的に変化させられてその変速段Mにおいて無段的な変速比幅が得られる。したがって、変速機構10の総合変速比γT(=入力軸14の回転速度NIN/出力軸22の回転速度NOUT)が無段階に得られ、変速機構10において無段変速機が構成される。この変速機構10の総合変速比γTは、差動部11の変速比γ0と自動変速部20の変速比γとに基づいて形成される変速機構10全体としてのトータル変速比γTである。 Specifically, the differential unit 11 functions as a continuously variable transmission, and the automatic transmission unit 20 in series with the differential unit 11 functions as a stepped transmission, whereby at least one shift of the automatic transmission unit 20 is performed. The rotational speed input to the automatic transmission unit 20 with respect to the stage M (hereinafter referred to as the input rotational speed of the automatic transmission unit 20), that is, the rotational speed of the transmission member 18 (hereinafter referred to as the transmission member rotational speed N 18 ) changes steplessly. As a result, a continuously variable gear ratio width is obtained at the gear stage M. Therefore, the overall speed ratio γT of the transmission mechanism 10 (= the rotational speed N IN of the input shaft 14 / the rotational speed N OUT of the output shaft 22) is obtained continuously, and the transmission mechanism 10 constitutes a continuously variable transmission. The overall speed ratio γT of the speed change mechanism 10 is a total speed ratio γT of the speed change mechanism 10 as a whole formed based on the speed ratio γ0 of the differential portion 11 and the speed ratio γ of the automatic speed change portion 20.

例えば、図2の係合作動表に示される自動変速部20の第1速ギヤ段乃至第4速ギヤ段や後進ギヤ段の各ギヤ段に対し伝達部材回転速度N18が無段的に変化させられて各ギヤ段は無段的な変速比幅が得られる。したがって、その各ギヤ段の間が無段的に連続変化可能な変速比となって、変速機構10全体としてのトータル変速比γTが無段階に得られる。 For example, first gear or transmission member rotational speed N 18 is continuously variable varying for each gear of the fourth gear and the reverse gear position of the automatic transmission portion 20 indicated in the table of FIG. 2 As a result, each gear stage has a continuously variable transmission ratio width. Therefore, the gear ratio between the gear stages can be continuously changed continuously, and the total gear ratio γT of the transmission mechanism 10 as a whole can be obtained continuously.

また、差動部11の変速比が一定となるように制御され、且つクラッチCおよびブレーキBが選択的に係合作動させられて第1速ギヤ段乃至第4速ギヤ段のいずれか或いは後進ギヤ段(後進変速段)が選択的に成立させられることにより、略等比的に変化する変速機構10のトータル変速比γTが各ギヤ段毎に得られる。したがって、変速機構10において有段変速機と同等の状態が構成される。   Further, the gear ratio of the differential unit 11 is controlled to be constant, and the clutch C and the brake B are selectively engaged and operated, so that one of the first gear to the fourth gear or the reverse drive By selectively establishing the gear stage (reverse gear stage), a total gear ratio γT of the transmission mechanism 10 that changes approximately in a ratio is obtained for each gear stage. Therefore, a state equivalent to the stepped transmission is configured in the transmission mechanism 10.

図3は、差動部11と自動変速部20とから構成される変速機構10において、ギヤ段毎に連結状態が異なる各回転要素の回転速度の相対関係を直線上で表すことができる共線図を示している。この図3の共線図は、各遊星歯車装置24、26、28のギヤ比ρの関係を示す横軸と、相対的回転速度を示す縦軸とから成る二次元座標であり、3本の横線のうちの下側の横線X1が回転速度零を示し、上側の横線X2が回転速度「1.0」すなわち入力軸14に連結されたエンジン8の回転速度Nを示し、X3が差動部11から自動変速部20に入力される後述する第3回転要素RE3の回転速度を示している。 FIG. 3 is a collinear diagram that can represent, on a straight line, the relative relationship between the rotational speeds of the rotating elements having different connection states for each gear stage in the speed change mechanism 10 including the differential portion 11 and the automatic speed change portion 20. The figure is shown. The collinear diagram of FIG. 3 is a two-dimensional coordinate composed of a horizontal axis indicating the relationship of the gear ratio ρ of each planetary gear unit 24, 26, and 28 and a vertical axis indicating the relative rotational speed. indicates horizontal line X1 rotation speed zero lower of horizontal lines, represents the rotational speed N E of the engine 8 upper horizontal line X2 is linked to the rotational speed of "1.0", that is the input shaft 14, X3 differential The rotational speed of the 3rd rotation element RE3 mentioned later inputted into the automatic transmission part 20 from the part 11 is shown.

また、差動部11を構成する動力分配機構16の3つの要素に対応する3本の縦線Y1、Y2、Y3は、左側から順に第2回転要素RE2に対応する第1サンギヤS1、第1回転要素RE1に対応する第1キャリヤCA1、第3回転要素RE3に対応する第1リングギヤR1の相対回転速度を示すものであり、それらの間隔は第1遊星歯車装置24のギヤ比ρ1に応じて定められている。さらに、自動変速部20の4本の縦線Y4、Y5、Y6、Y7は、左から順に、第4回転要素RE4に対応する第3サンギヤS3を、第5回転要素RE5に対応する相互に連結された第2リングギヤR2および第3キャリヤCA3を、第6回転要素RE6に対応する相互に連結された第2キャリヤCA2および第3リングギヤR3を、第7回転要素RE7に対応する第2サンギヤS2をそれぞれ表し、それらの間隔は第2、第3遊星歯車装置26、28のギヤ比ρ2、ρ3に応じてそれぞれ定められている。共線図の縦軸間の関係においてサンギヤとキャリヤとの間が「1」に対応する間隔とされるとキャリヤとリングギヤとの間が遊星歯車装置のギヤ比ρに対応する間隔とされる。すなわち、差動部11では縦線Y1とY2との縦線間が「1」に対応する間隔に設定され、縦線Y2とY3との間隔はギヤ比ρ1に対応する間隔に設定される。また、自動変速部20では各第2、第3遊星歯車装置26、28毎にそのサンギヤとキャリヤとの間が「1」に対応する間隔に設定され、キャリヤとリングギヤとの間がρに対応する間隔に設定される。   In addition, three vertical lines Y1, Y2, Y3 corresponding to the three elements of the power distribution mechanism 16 constituting the differential unit 11 are the first sun gear S1, the first corresponding to the second rotating element RE2 in order from the left side. The relative rotational speeds of the first carrier CA1 corresponding to the rotating element RE1 and the first ring gear R1 corresponding to the third rotating element RE3 are shown, and the distance between them corresponds to the gear ratio ρ1 of the first planetary gear unit 24. It has been established. Further, the four vertical lines Y4, Y5, Y6, and Y7 of the automatic transmission unit 20 connect the third sun gear S3 corresponding to the fourth rotation element RE4 to each other corresponding to the fifth rotation element RE5 in order from the left. The second ring gear R2 and the third carrier CA3 that are connected to each other, the second carrier CA2 and the third ring gear R3 that are connected to each other corresponding to the sixth rotation element RE6, and the second sun gear S2 that corresponds to the seventh rotation element RE7. The distance between them is determined according to the gear ratios ρ2 and ρ3 of the second and third planetary gear devices 26 and 28, respectively. In the relationship between the vertical axes of the nomogram, when the distance between the sun gear and the carrier is set to an interval corresponding to “1”, the interval between the carrier and the ring gear is set to an interval corresponding to the gear ratio ρ of the planetary gear device. That is, in the differential unit 11, the interval between the vertical lines Y1 and Y2 is set to an interval corresponding to “1”, and the interval between the vertical lines Y2 and Y3 is set to an interval corresponding to the gear ratio ρ1. In the automatic transmission unit 20, the interval between the sun gear and the carrier is set to correspond to “1” for each of the second and third planetary gear devices 26 and 28, and the interval between the carrier and the ring gear corresponds to ρ. Set to the interval to be

上記図3の共線図を用いて表現すれば、本実施例の変速機構10は、動力分配機構16(差動部11)において、第1遊星歯車装置24の第1回転要素RE1(第1キャリヤCA1)が入力軸14すなわちエンジン8に連結され、第2回転要素RE2が第1電動機M1に連結され、第3回転要素(第1リングギヤR1)RE3が伝達部材18および第2電動機M2に連結されて、入力軸14の回転を伝達部材18を介して自動変速部20へ伝達する(入力させる)ように構成されている。このとき、Y2とX2の交点を通る斜めの直線L0により第1サンギヤS1の回転速度と第1リングギヤR1の回転速度との関係が示される。   If expressed using the collinear diagram of FIG. 3 described above, the speed change mechanism 10 of the present embodiment is configured such that the first rotating element RE1 (the first rotating element RE1) of the first planetary gear device 24 in the power distribution mechanism 16 (the differential unit 11). The carrier CA1) is connected to the input shaft 14, that is, the engine 8, the second rotating element RE2 is connected to the first electric motor M1, and the third rotating element (first ring gear R1) RE3 is connected to the transmission member 18 and the second electric motor M2. Thus, the rotation of the input shaft 14 is transmitted (inputted) to the automatic transmission unit 20 via the transmission member 18. At this time, the relationship between the rotational speed of the first sun gear S1 and the rotational speed of the first ring gear R1 is indicated by an oblique straight line L0 passing through the intersection of Y2 and X2.

例えば、差動部11においては、第1回転要素RE1乃至第3回転要素RE3が相互に相対回転可能とされる差動状態とされており、直線L0と縦線Y3との交点で示される第1リングギヤR1の回転速度が車速Vに拘束されて略一定である場合には、第1電動機M1の回転速度を制御することによって直線L0と縦線Y1との交点で示される第1サンギヤS1の回転が上昇或いは下降させられると、直線L0と縦線Y2との交点で示される第1キャリヤCA1の回転速度すなわちエンジン回転速度Nが上昇或いは下降させられる。 For example, in the differential section 11, the first rotation element RE1 to the third rotation element RE3 are in a differential state in which they can rotate relative to each other, and are indicated by the intersections of the straight line L0 and the vertical line Y3. When the rotational speed of the one ring gear R1 is constrained by the vehicle speed V, the rotational speed of the first electric motor M1 is controlled to control the rotational speed of the first sun gear S1 indicated by the intersection of the straight line L0 and the vertical line Y1. When the rotation is increased or decreased, the rotation speed of the first carrier CA1 indicated by the intersection of the straight line L0 and the vertical line Y2, that is, the engine rotation speed NE is increased or decreased.

また、差動部11の変速比γ0が「1」に固定されるように第1電動機M1の回転速度を制御することによって第1サンギヤS1の回転がエンジン回転速度Nと同じ回転とされると、直線L0は横線X2と一致させられ、エンジン回転速度Nと同じ回転で第1リングギヤR1の回転速度すなわち伝達部材18が回転させられる。或いは、差動部11の変速比γ0が「1」より小さい値例えば0.7程度に固定されるように第1電動機M1の回転速度を制御することによって第1サンギヤS1の回転が零とされると、直線L0は図3に示す状態とされ、エンジン回転速度Nよりも増速されて伝達部材18が回転させられる。 Further, rotation of the first sun gear S1 is the same speed as the engine speed N E by controlling the rotational speed of the first electric motor M1 such speed ratio γ0 of the differential portion 11 is fixed to "1" When the straight line L0 is aligned with the horizontal line X2, the rotational speed, i.e., the power transmitting member 18 of the first ring gear R1 is rotated at the same rotation to the engine speed N E. Alternatively, the rotation of the first sun gear S1 is made zero by controlling the rotation speed of the first electric motor M1 so that the speed ratio γ0 of the differential unit 11 is fixed to a value smaller than “1”, for example, about 0.7. that the straight line L0 is the state shown in FIG. 3, it is higher than the engine speed N E and the power transmitting member 18 is rotated.

また、自動変速部20において第4回転要素RE4は第1クラッチC1を介して伝達部材18に選択的に連結され、第5回転要素RE5は出力軸22に連結され、第6回転要素RE6は第2クラッチC2を介して伝達部材18に選択的に連結されると共に第2ブレーキB2を介してケース12に選択的に連結され、第7回転要素RE7は第3クラッチC3を介して伝達部材18に選択的に連結されると共に第1ブレーキB1を介してケース12に選択的に連結されている。   Further, in the automatic transmission unit 20, the fourth rotation element RE4 is selectively connected to the transmission member 18 via the first clutch C1, the fifth rotation element RE5 is connected to the output shaft 22, and the sixth rotation element RE6 is the sixth rotation element RE6. It is selectively connected to the transmission member 18 via the second clutch C2 and selectively connected to the case 12 via the second brake B2, and the seventh rotating element RE7 is connected to the transmission member 18 via the third clutch C3. It is selectively connected to the case 12 via the first brake B1.

自動変速部20では、例えば差動部11において第1電動機M1の回転速度を制御することによって第1サンギヤS1の回転速度を略零とすると、直線L0は図3に示す状態とされ、エンジン回転速度Nよりも増速されて第3回転要素RE3に出力される。そして図3に示すように、第1クラッチC1と第2ブレーキB2とが係合させられることにより、第4回転要素RE4の回転速度を示す縦線Y4と横線X3との交点と第6回転要素RE6の回転速度を示す縦線Y6と横線X1との交点とを通る斜めの直線L1と、出力軸22と連結された第5回転要素RE5の回転速度を示す縦線Y5との交点で第1速の出力軸22の回転速度が示される。同様に、第1クラッチC1と第1ブレーキB1とが係合させられることにより決まる斜めの直線L2と出力軸22と連結された第5回転要素RE5の回転速度を示す縦線Y5との交点で第2速の出力軸22の回転速度が示され、第1クラッチC1と第2クラッチC2とが係合させられることにより決まる水平な直線L3と出力軸22と連結された第5回転要素RE5の回転速度を示す縦線Y5との交点で第3速の出力軸22の回転速度が示され、第2クラッチC2と第1ブレーキB1とが係合させられることにより決まる斜めの直線L4と出力軸22と連結された第5回転要素RE5の回転速度を示す縦線Y5との交点で第4速の出力軸22の回転速度が示される。 In the automatic transmission unit 20, for example, when the rotational speed of the first sun gear S1 is made substantially zero by controlling the rotational speed of the first electric motor M1 in the differential unit 11, the straight line L0 is brought into the state shown in FIG. is output to the third rotating element RE3 are speed higher than the speed N E. Then, as shown in FIG. 3, when the first clutch C1 and the second brake B2 are engaged, the intersection of the vertical line Y4 indicating the rotational speed of the fourth rotating element RE4 and the horizontal line X3 and the sixth rotating element A first intersection at an oblique line L1 passing through the intersection of the vertical line Y6 indicating the rotational speed of RE6 and the horizontal line X1 and a vertical line Y5 indicating the rotational speed of the fifth rotational element RE5 connected to the output shaft 22 is the first. The rotational speed of the high-speed output shaft 22 is shown. Similarly, at an intersection of an oblique straight line L2 determined by engaging the first clutch C1 and the first brake B1, and a vertical line Y5 indicating the rotational speed of the fifth rotating element RE5 connected to the output shaft 22. The rotational speed of the output shaft 22 of the second speed is shown, and the horizontal straight line L3 determined by engaging the first clutch C1 and the second clutch C2 and the fifth rotational element RE5 connected to the output shaft 22 The rotation speed of the output shaft 22 at the third speed is indicated by the intersection with the vertical line Y5 indicating the rotation speed, and the oblique straight line L4 and the output shaft determined by engaging the second clutch C2 and the first brake B1. The rotation speed of the output shaft 22 of the fourth speed is indicated by the intersection with the vertical line Y5 indicating the rotation speed of the fifth rotation element RE5 connected to the motor 22.

図4は、本実施例の変速機構10を制御するための電子制御装置100に入力される信号及びその電子制御装置100から出力される信号を例示している。この電子制御装置100は、CPU、ROM、RAM、及び入出力インターフェースなどから成る所謂マイクロコンピュータを含んで構成されており、RAMの一時記憶機能を利用しつつROMに予め記憶されたプログラムに従って信号処理を行うことによりエンジン8、第1、第2電動機M1、M2に関するハイブリッド駆動制御、自動変速部20の変速制御等の駆動制御を実行するものである。   FIG. 4 illustrates a signal input to the electronic control device 100 for controlling the speed change mechanism 10 of this embodiment and a signal output from the electronic control device 100. The electronic control device 100 includes a so-called microcomputer including a CPU, a ROM, a RAM, an input / output interface, and the like, and performs signal processing according to a program stored in the ROM in advance while using a temporary storage function of the RAM. By performing the above, drive control such as hybrid drive control for the engine 8, the first and second electric motors M1, M2 and the shift control of the automatic transmission unit 20 is executed.

電子制御装置100には、図4に示すような各センサやスイッチなどから、エンジン水温TEMPを表す信号、シフトレバー52(図5参照)のシフトポジションPSHや「M」ポジションにおける操作回数等を表す信号、エンジン8の回転速度であるエンジン回転速度Nを表す信号、ギヤ比列設定値を表す信号、Mモード(手動変速走行モード)を指令する信号、エアコンの作動状態A/Cを表す信号、出力軸22の回転速度(以下、出力軸回転速度)NOUTに対応する車速Vを表す信号、自動変速部20の作動油温TOILを表す信号、サイドブレーキ操作を表す信号、フットブレーキ操作を表す信号、触媒温度を表す信号、運転者の出力要求量に対応するアクセルペダルの操作量であるアクセル開度Accを表す信号、カム角を表す信号、スノーモード設定を表す信号、車両の前後加速度Gを表す信号、オートクルーズ走行を表す信号、車両の重量(車重)を表す信号、各車輪の車輪速を表す信号、第1電動機M1の回転速度NM1(以下、第1電動機回転速度NM1という)を表す信号、第2電動機M2の回転速度NM2(以下、第2電動機回転速度NM2という)を表す信号、蓄電装置56(図6参照)の充電容量(充電状態)SOCを表す信号などが、それぞれ供給される。 The electronic control device 100 includes a signal indicating the engine water temperature TEMP W , a shift position P SH of the shift lever 52 (see FIG. 5), the number of operations at the “M” position, etc. from each sensor and switch as shown in FIG. signal representing the signal indicative of engine rotational speed N E is the rotational speed of the engine 8, a signal representative of the gear ratio sequence set value, a signal for commanding the M mode (manual shift running mode), the operation state a / C air conditioner A signal representing a rotational speed of the output shaft 22 (hereinafter, output shaft rotational speed) N OUT , a signal representing the hydraulic oil temperature T OIL of the automatic transmission unit 20, a signal representing a side brake operation, a foot A signal representing the brake operation, a signal representing the catalyst temperature, a signal representing the accelerator opening Acc which is the operation amount of the accelerator pedal corresponding to the driver's required output amount, and the cam angle Signal, snow mode setting signal, vehicle longitudinal acceleration G signal, auto cruise traveling signal, vehicle weight (vehicle weight) signal, wheel speed of each wheel, first motor M1 A signal representing a rotation speed N M1 (hereinafter referred to as a first motor rotation speed N M1 ), a signal representing a rotation speed N M2 (hereinafter referred to as a second motor rotation speed N M2 ) of the second motor M2 , and a power storage device 56 (FIG. 6), a signal indicating the charging capacity (charging state) SOC is supplied.

また、上記電子制御装置100からは、エンジン出力を制御するエンジン出力制御装置58(図6参照)への制御信号例えばエンジン8の吸気管60に備えられた電子スロットル弁62のスロットル弁開度θTHを操作するスロットルアクチュエータ64への駆動信号や燃料噴射装置66による吸気管60或いはエンジン8の筒内への燃料供給量を制御する燃料供給量信号や点火装置68によるエンジン8の点火時期を指令する点火信号、過給圧を調整するための過給圧調整信号、電動エアコンを作動させるための電動エアコン駆動信号、電動機M1およびM2の作動を指令する指令信号、シフトインジケータを作動させるためのシフトポジション(操作位置)表示信号、ギヤ比を表示させるためのギヤ比表示信号、スノーモードであることを表示させるためのスノーモード表示信号、制動時の車輪のスリップを防止するABSアクチュエータを作動させるためのABS作動信号、Mモードが選択されていることを表示させるMモード表示信号、差動部11や自動変速部20の油圧式摩擦係合装置の油圧アクチュエータを制御するために油圧制御回路70(図6参照)に含まれる電磁弁(リニアソレノイドバルブ)を作動させるバルブ指令信号、この油圧制御回路70に設けられたレギュレータバルブ(調圧弁)によりライン油圧Pを調圧するための信号、そのライン油圧Pが調圧されるための元圧の油圧源である電動油圧ポンプを作動させるための駆動指令信号、電動ヒータを駆動するための信号、クルーズコントロール制御用コンピュータへの信号、パーキングロック駆動モータを駆動するための信号等が、それぞれ出力される。 Further, a control signal from the electronic control device 100 to an engine output control device 58 (see FIG. 6) for controlling the engine output, for example, a throttle valve opening θ of an electronic throttle valve 62 provided in the intake pipe 60 of the engine 8. Commands a drive signal to the throttle actuator 64 for operating TH , a fuel supply amount signal for controlling the fuel supply amount to the intake pipe 60 or the cylinder of the engine 8 by the fuel injection device 66, and an ignition timing of the engine 8 by the ignition device 68 Ignition signal for adjusting, supercharging pressure adjusting signal for adjusting supercharging pressure, electric air conditioner driving signal for operating electric air conditioner, command signal for instructing operation of electric motors M1 and M2, shift for operating shift indicator Position (operation position) display signal, gear ratio display signal to display gear ratio, snow mode A snow mode display signal for display, an ABS operation signal for operating an ABS actuator that prevents slipping of the wheel during braking, an M mode display signal for displaying that the M mode is selected, a differential unit 11 A valve command signal for operating an electromagnetic valve (linear solenoid valve) included in the hydraulic control circuit 70 (see FIG. 6) in order to control the hydraulic actuator of the hydraulic friction engagement device of the automatic transmission unit 20, the hydraulic control circuit 70 signal for applying regulates the line pressure P L by a regulator valve (pressure regulating valve) provided in the drive for operating an electric hydraulic pump serving as a hydraulic pressure source of the original pressure for the line pressure P L is pressure adjusted Command signal, signal to drive electric heater, signal to cruise control computer, parking lock drive A signal for driving the motor is output.

図5は複数種類のシフトポジションPSHを人為的操作により切り換える切換装置としてのシフト操作装置50の一例を示す図である。このシフト操作装置50は、例えば運転席の横に配設され、複数種類のシフトポジションPSHを選択するために操作されるシフトレバー52を備えている。 FIG. 5 is a diagram showing an example of a shift operation device 50 as a switching device for switching a plurality of types of shift positions PSH by an artificial operation. The shift operation device 50 includes, for example, a shift lever 52 that is disposed beside the driver's seat and is operated to select a plurality of types of shift positions PSH .

そのシフトレバー52は、変速機構10内つまり自動変速部20内の動力伝達経路が遮断されたニュートラル状態すなわち中立状態とし且つ自動変速部20の出力軸22を回転不能に固定する(すなわちロックする)ための駐車ポジション「P(パーキング)」、後進走行のための後進走行ポジション「R(リバース)」、変速機構10内の動力伝達経路が遮断された中立状態とするための中立ポジション「N(ニュートラル)」、自動変速モードを成立させて差動部11の無段的な変速比幅と自動変速部20の第1速ギヤ段乃至第4速ギヤ段の範囲で自動変速制御される各ギヤ段とで得られる変速機構10の変速可能なトータル変速比γTの変化範囲内で自動変速制御を実行させる前進自動変速走行ポジション「D(ドライブ)」、または手動変速走行モード(手動モード)を成立させて自動変速部20における高速側の変速段を制限する所謂変速レンジを設定するための前進手動変速走行ポジション「M(マニュアル)」へ手動操作されるように設けられている。また、この「M」ポジションにおいては、変速レンジを切り換えることにより減速度を設定することが可能であることから、このシフト操作装置50は減速度操作装置として機能させられる。   The shift lever 52 is in a neutral state, that is, a neutral state in which the power transmission path in the transmission mechanism 10, that is, the automatic transmission unit 20 is interrupted, and fixes (that is, locks) the output shaft 22 of the automatic transmission unit 20 so as not to rotate. The parking position “P (parking)” for the reverse travel, the reverse travel position “R (reverse)” for the reverse travel, and the neutral position “N (neutral) for the neutral state where the power transmission path in the transmission mechanism 10 is interrupted. ) ”, Each gear stage in which the automatic transmission mode is established and automatic transmission control is performed within the range of the continuously variable transmission ratio width of the differential unit 11 and the first to fourth gear stages of the automatic transmission unit 20 The forward automatic shift travel position “D (drive)” for executing the automatic shift control within the change range of the shiftable total speed ratio γT of the speed change mechanism 10 obtained by It is manually operated to a forward manual shift travel position “M (manual)” for setting a so-called shift range that establishes a dynamic shift travel mode (manual mode) and restricts a high-speed shift stage in the automatic transmission unit 20. Is provided. Further, at this “M” position, since it is possible to set the deceleration by switching the shift range, the shift operating device 50 is caused to function as a deceleration operating device.

上記シフトレバー52の各シフトポジションPSHへの手動操作に連動して図2の係合作動表に示す後進ギヤ段「R」、ニュートラル「N」、前進ギヤ段「D」における各変速段等が成立するように、例えば電気制御により変速機構10の動力伝達状態を切り替える所謂シフトバイワイヤシステムによって油圧制御回路が電気的に切り換えられる。 The reverse gear "R" shown in the engagement operation table of FIG 2 in conjunction with the manual operation of the various shift positions P SH of the shift lever 52, the neutral "N", the shift speed in forward gear "D" etc. For example, the hydraulic control circuit is electrically switched by a so-called shift-by-wire system that switches the power transmission state of the speed change mechanism 10 by electrical control, for example.

上記「P」乃至「M」ポジションに示す各シフトポジションPSHにおいて、「P」ポジションおよび「N」ポジションは、車両を走行させないときに選択される非走行ポジションであって、自動変速部20内の動力伝達経路が遮断された車両を駆動不能とする動力伝達経路の動力伝達遮断状態へ切換えを選択するための非駆動ポジションである。また、「R」ポジション、「D」ポジションおよび「M」ポジションは、車両を走行させるときに選択される走行ポジションであって、自動変速部20内の動力伝達経路が連結された車両を駆動可能とする動力伝達経路の動力伝達可能状態への切換えを選択するための駆動ポジションでもある。 In the shift positions P SH shown in the “P” to “M” positions, the “P” position and the “N” position are non-travel positions selected when the vehicle is not traveled, This is a non-drive position for selecting switching to a power transmission cut-off state of the power transmission path that disables driving of the vehicle whose power transmission path is cut off. Further, the “R” position, the “D” position, and the “M” position are travel positions selected when the vehicle travels, and can drive a vehicle to which a power transmission path in the automatic transmission unit 20 is connected. It is also a drive position for selecting switching to the power transmission possible state of the power transmission path.

具体的には、シフトレバー52が「P」ポジションへ手動操作されることでクラッチCおよびブレーキBのいずれもが解放されて自動変速部20内の動力伝達経路が動力伝達遮断状態とされると共に自動変速部20の出力軸22がロックされ、「N」ポジションへ手動操作されることでクラッチCおよびブレーキBのいずれもが解放されて自動変速部20内の動力伝達経路が動力伝達遮断状態とされ、「R」、「D」、および「M」ポジションのいずれかへ手動操作されることで各ポジションに対応したいずれかのギヤ段が成立させられて自動変速部20内の動力伝達経路が動力伝達可能状態とされる。   Specifically, when the shift lever 52 is manually operated to the “P” position, both the clutch C and the brake B are released, and the power transmission path in the automatic transmission unit 20 is set to a power transmission cutoff state. When the output shaft 22 of the automatic transmission unit 20 is locked and is manually operated to the “N” position, both the clutch C and the brake B are released, and the power transmission path in the automatic transmission unit 20 is in the power transmission cutoff state. Then, by manually operating to any of the “R”, “D”, and “M” positions, any gear stage corresponding to each position is established, and the power transmission path in the automatic transmission unit 20 is established. Power transmission is possible.

図6は、電子制御装置100による制御機能の一部であるエンジン起動装置の制御機能を説明する機能ブロック線図である。図6において、有段変速制御手段102は、図7に示すような車速Vと自動変速部20の出力トルクTOUTとを変数として予め記憶されたアップシフト線(実線)およびダウンシフト線(一点鎖線)を有する関係(変速線図、変速マップ)から実際の車速Vおよび自動変速部20の要求出力トルクTOUTで示される車両状態に基づいて、自動変速部20の変速を実行すべきか否かを判断しすなわち自動変速部20の変速すべき変速段を判断し、その判断した変速段が得られるように自動変速部20の自動変速制御を実行する。 FIG. 6 is a functional block diagram illustrating a control function of the engine starting device that is a part of the control function of the electronic control device 100. In FIG. 6, the stepped shift control means 102 includes an upshift line (solid line) and a downshift line (one point) stored in advance with the vehicle speed V and the output torque T OUT of the automatic transmission unit 20 as shown in FIG. Whether or not the shift of the automatic transmission unit 20 should be executed based on the vehicle state indicated by the actual vehicle speed V and the required output torque T OUT of the automatic transmission unit 20 from the relationship (chain diagram, shift map) having a chain line) That is, that is, the shift stage to be shifted by the automatic transmission unit 20 is determined, and the automatic shift control of the automatic transmission unit 20 is executed so that the determined shift stage is obtained.

このとき、有段変速制御手段102は、例えば図2に示す係合作動表に従って変速段が達成されるように、自動変速部20の変速に関与する油圧式摩擦係合装置を係合および/または解放させる司令(変速出力指令、油圧指令)を、すなわち自動変速部20の変速に関与する解放側係合装置を解放すると共に係合側係合装置を係合して自動変速部20の変速が実行されるように、油圧式制御装置70内のリニアソレノイドバルブを作動させてその変速に関与する油圧式摩擦係合装置の油圧アクチュエータを作動させる。   At this time, the stepped shift control means 102 engages and / or engages the hydraulic friction engagement device involved in the shift of the automatic transmission unit 20 so that the shift stage is achieved in accordance with, for example, the engagement operation table shown in FIG. Alternatively, a command (release output command, hydraulic pressure command) to be released, that is, a release-side engagement device involved in a shift of the automatic transmission unit 20 is released and an engagement-side engagement device is engaged to change the speed of the automatic transmission unit 20. The linear solenoid valve in the hydraulic control device 70 is operated so that the hydraulic actuator of the hydraulic friction engagement device involved in the shift is operated.

ハイブリッド制御装置104は、エンジン8を効率のよい作動域で作動させる一方で、エンジン8と第2電動機M2との駆動力の配分や第1電動機M1の発電による反力を最適になるように変化させて差動部11の電気的な無段変速機としての変速比γ0を制御する。例えば、そのときの走行車速Vにおいて、運転者の出力要求量としてのアクセル開度Accや車速Vから車両の目標出力を算出し、その車両の目標出力と充電要求量から必要なトータル目標出力を算出し、そのトータル目標出力が得られるように伝達損失、第2電動機M2のアシストトルク等を考慮して目標エンジン出力を算出し、その目標エンジン出力が得られるエンジン回転速度NとエンジントルクTとなるようにエンジン8を制御するとともに第1電動機M1の発電量を制御する。 The hybrid control device 104 operates the engine 8 in an efficient operating range, and changes so as to optimize the distribution of the driving force between the engine 8 and the second electric motor M2 and the reaction force generated by the first electric motor M1. Thus, the gear ratio γ0 of the differential unit 11 as an electric continuously variable transmission is controlled. For example, at the current traveling vehicle speed V, the target output of the vehicle is calculated from the accelerator opening Acc and the vehicle speed V as the driver's required output amount, and the required total target output is calculated from the target output of the vehicle and the required charge amount. The target engine output is calculated in consideration of the transmission loss and the assist torque of the second electric motor M2 so that the total target output is obtained, and the engine rotational speed NE and the engine torque T at which the target engine output can be obtained. The engine 8 is controlled so as to be E, and the power generation amount of the first electric motor M1 is controlled.

例えば、ハイブリッド制御手段104は、その制御を動力性能や燃費向上などのために自動変速部20の変速段を考慮して実行する。このようなハイブリッド制御では、エンジン8を効率のよい作動域で作動させるために定まるエンジン回転速度Nと車速Vおよび自動変速部20の変速段で定まる伝達部材18の回転速度とを整合させるために、差動部11が電気的な無段変速機として機能させられる。すなわち、ハイブリッド制御手段104は、エンジン回転速度Nとエンジン8の出力トルク(エンジントルク)Tとで構成される二次元座標内において無段変速走行の時に運転性と燃費性とを両立するように予め実験的に求められて記憶された図8の破線に示すようなエンジン8の最適燃費率曲線に沿ってエンジン8が作動させられるように、例えば目標出力を充足するために必要なエンジン出力を発生するためのエンジントルクTとエンジン回転速度Nとなるように、変速機構10のトータル変速比γTの目標値を定め、その目標値が得られるように自動変速部20の変速段を考慮して差動部11の変速比γ0を制御し、トータル変速比γ0をその変速可能な変化範囲内で制御する。 For example, the hybrid control unit 104 executes the control in consideration of the gear position of the automatic transmission unit 20 for improving power performance and fuel consumption. In such a hybrid control for matching the rotational speed of the power transmitting member 18 determined by the gear position of the engine rotational speed N E and the vehicle speed V and the automatic transmission portion 20 determined to operate the engine 8 in an operating region at efficient Further, the differential unit 11 is caused to function as an electric continuously variable transmission. That is, the hybrid control means 104 both the drivability and the fuel consumption when the continuously-variable shifting control in a two-dimensional coordinate composed of the output torque (engine torque) T E of the engine rotational speed N E and the engine 8 For example, an engine required to satisfy the target output so that the engine 8 can be operated along the optimum fuel consumption rate curve of the engine 8 as shown by the broken line in FIG. so that the engine torque T E and the engine rotational speed N E for generating an output, determines the target value of the overall speed ratio γT of the transmission mechanism 10, the gear position of the automatic transmission portion 20 so as to obtain the target value In consideration of the above, the gear ratio γ0 of the differential unit 11 is controlled, and the total gear ratio γ0 is controlled within the changeable range.

このとき、ハイブリッド制御手段104は、第1電動機M1により発電された電気エネルギをインバータ54を通して蓄電装置54や第2電動機M2に供給するので、エンジン8の動力の主要部は機械的に伝達部材18へ伝達されるが、エンジン8の動力の一部は第1電動機M1の発電のために消費されてそこで電気エネルギに変換され、インバータ54を通して電気エネルギが第2電動機M2へ供給され、その第2電動機M2が駆動されて第2電動機M2から伝達部材18へ伝達される。この電気エネルギの発生から第2電動機M2で消費されるまでに関連する機器により、エンジン8の動力の一部を電気エネルギに変換し、その電気エネルギを機械的エネルギに変換するまでの電気パスが構成される。   At this time, since the hybrid control means 104 supplies the electric energy generated by the first electric motor M1 to the power storage device 54 and the second electric motor M2 through the inverter 54, the main part of the power of the engine 8 is mechanically transmitted to the transmission member 18. However, part of the motive power of the engine 8 is consumed for power generation of the first electric motor M1 and converted there to electric energy, and electric energy is supplied to the second electric motor M2 through the inverter 54, and the second The electric motor M2 is driven and transmitted from the second electric motor M2 to the transmission member 18. An electric path from conversion of a part of the power of the engine 8 into electric energy and conversion of the electric energy into mechanical energy by a device related from the generation of the electric energy to consumption by the second electric motor M2 Composed.

また、ハイブリッド制御手段104は、車両の停止中または走行中に拘わらず、差動部11の電気的CVT機能によって第1電動機回転速度NM1および/または第2電動機回転速度NM2を制御してエンジン回転速度Nを略一定に維持したり任意の回転速度に回転制御させられる。言い換えれば、ハイブリッド制御手段104は、エンジン回転速度Nを略一定に維持したり任意の回転速度に制御しつつ第1電動機回転速度NM1および/または第2電動機回転速度NM2を任意の回転速度に回転制御することができる。 Further, the hybrid control means 104 controls the first motor rotation speed N M1 and / or the second motor rotation speed N M2 by the electric CVT function of the differential section 11 regardless of whether the vehicle is stopped or traveling. The engine speed NE can be maintained substantially constant or can be controlled to rotate at an arbitrary speed. In other words, the hybrid control means 104 rotates the first electric motor speed N M1 and / or the second electric motor rotation speed N M2 while controlling any rotational speed or to maintain the engine speed N E substantially constant for any The rotation can be controlled to the speed.

例えば、図3の共線図からもわかるようにハイブリッド制御手段104は車両走行中にエンジン回転速度Nを引き上げる場合には、車速V(駆動輪34)に拘束される第2電動機回転速度NM2を略一定に維持しつつ第1電動機回転速度NM1の引き上げを実行する。また、ハイブリッド制御手段104は、自動変速部20の変速中にエンジン回転速度Nを略一定に維持する場合には、エンジン回転速度Nを略一定に維持しつつ自動変速部20の変速に伴う第2電動機回転速度NM2の変化とは反対方向に第1電動機回転速度NM1を変化させる。 For example, the hybrid control means 104 as can be seen from the diagram of FIG. 3 when raising the engine rotation speed N E during running of the vehicle, the vehicle speed V the second electric motor rotation speed N which is bound to the (drive wheels 34) The first motor rotation speed N M1 is increased while maintaining M2 substantially constant. The hybrid control means 104, when maintaining the engine speed N E at the nearly fixed level during the shifting of the automatic shifting portion 20, the shift of the automatic transmission portion 20 while maintaining the engine speed N E substantially constant The first motor rotation speed N M1 is changed in the opposite direction to the change in the accompanying second motor rotation speed N M2 .

また、ハイブリッド制御手段104は、スロットル制御のためにスロットルアクチュエータ64により電子スロットル弁62を開閉制御させる他、燃料噴射制御のために燃料噴射装置66による燃料噴射量や噴射時期を制御させ、点火時期制御のためにイグナイタ等の点火装置68による点火時期を制御させる指令を単独で或いは組み合わせてエンジン出力制御装置58に出力して、必要なエンジン出力を発生させるようにエンジン8の出力制御を実行するエンジン出力制御手段を機能的に備えている。   Further, the hybrid control means 104 controls the fuel injection amount and the injection timing by the fuel injection device 66 for the fuel injection control in addition to controlling the opening and closing of the electronic throttle valve 62 by the throttle actuator 64 for the throttle control. A command for controlling the ignition timing of the ignition device 68 such as an igniter for control is output to the engine output control device 58 alone or in combination, and the output control of the engine 8 is executed so as to generate the necessary engine output. An engine output control means is functionally provided.

例えば、ハイブリッド制御手段104は、基本的には図示しない予め記憶された関係からアクセル開度Accに基づいてスロットルアクチュエータ64を駆動し、アクセル開度Accが増加するほどスロットル弁開度θTHを増加させるようにスロットル制御を実行する。また、このエンジン出力制御装置58は、ハイブリッド制御手段104による指令に従って、スロットル制御のためにスロットルアクチュエータ64により電子スロットル弁62を開閉制御する他、燃料噴射制御のために燃料噴射装置66による燃料噴射を制御し、点火時期制御のためにイグナイタ等の点火装置68による点火時期を制御するなどしてエンジントルク制御を実行する。 For example, the hybrid controller 104 basically drives the throttle actuator 64 based on the accelerator opening Acc from a pre-stored relationship (not shown), and increases the throttle valve opening θ TH as the accelerator opening Acc increases. Throttle control is executed so that The engine output control device 58 controls the opening and closing of the electronic throttle valve 62 by the throttle actuator 64 for throttle control in accordance with the command from the hybrid control means 104, and the fuel injection by the fuel injection device 66 for fuel injection control. The engine torque control is executed by controlling the ignition timing by an ignition device 68 such as an igniter for controlling the ignition timing.

また、ハイブリッド制御手段104は、エンジン8の停止またはアイドル状態に拘わらず、差動装置11の電気的CVT機能(差動作用)によってモータ走行させることができる。例えば、ハイブリッド制御手段104は、一般的にエンジン効率が高トルク域に比較して悪いとされる比較的低出力トルクTOUT域すなわち低エンジントルクT域、或いは車速Vの比較的低車速域すなわち低負荷域において、モータ走行を実行する。また、ハイブリッド制御手段104は、このモータ走行時には、停止しているエンジン8の引き摺りを抑制して燃費を向上させるために、差動部11の電気的CVT機能(差動作用)によって、第1電動機回転速度NM1を負の回転速度で制御例えば空転させて、差動部11の差動作用により必要に応じてエンジン回転速度Nを零乃至略零に維持する。 Further, the hybrid control means 104 can drive the motor by the electric CVT function (differential action) of the differential device 11 regardless of whether the engine 8 is stopped or in an idle state. For example, the hybrid control means 104 is generally used in a relatively low output torque T OUT region, that is, a low engine torque TE region, or a vehicle speed region in which the vehicle speed V is relatively low. That is, the motor travel is executed in the low load region. In addition, the hybrid control means 104 uses the electrical CVT function (differential action) of the differential section 11 to suppress dragging of the stopped engine 8 and improve fuel efficiency during the motor travel. the motor rotation speed N M1 controlled for example by idling a negative rotational speed, to maintain the engine speed N E at zero or substantially zero as needed by the differential action of the differential portion 11.

また、ハイブリッド制御手段104は、エンジン走行領域であっても、上述した電気パスによる第1電動機M1からの電気エネルギおよび/または蓄電装置56からの電気エネルギを第2電動機M2へ供給し、その第2電動機M2を駆動して駆動輪にトルクを付与することにより、エンジン8の動力を補助するための所謂トルクアシストが可能である。   Further, even in the engine travel region, the hybrid control means 104 supplies the second motor M2 with the electric energy from the first electric motor M1 and / or the electric energy from the power storage device 56 by the electric path described above. 2 So-called torque assist for assisting the power of the engine 8 is possible by driving the electric motor M2 and applying torque to the drive wheels.

また、ハイブリッド制御手段104は、蓄電装置56からインバータ54を介して供給される第1電動機M1への駆動電流を遮断して第1電動機M1を無負荷状態とする。第1電動機M1は無負荷状態とされると自由回転することすなわち空転することが許容され、差動部11はトルクの伝達が不能な状態すなわち差動部11内の動力伝達経路が遮断された状態と同等の状態であって、且つ差動部11からの出力が発生されない状態とされる。すなわち、ハイブリッド制御手段104は、第1電動機M1を無負荷状態とすることにより差動部11をその動力伝達経路が電気的に遮断される中立状態(ニュートラル状態)とする。   Moreover, the hybrid control means 104 interrupts the drive current to the 1st electric motor M1 supplied from the electrical storage apparatus 56 via the inverter 54, and makes the 1st electric motor M1 a no-load state. When the first electric motor M1 is in a no-load state, the first electric motor M1 is allowed to freely rotate, that is, idle, and the differential unit 11 is in a state in which torque cannot be transmitted, that is, the power transmission path in the differential unit 11 is interrupted. In this state, the output from the differential unit 11 is not generated. That is, the hybrid control means 104 sets the differential unit 11 in a neutral state (neutral state) in which the power transmission path is electrically cut off by setting the first electric motor M1 to a no-load state.

エンジン起動制御手段106は、例えば蓄電装置56の充電容量が蓄電装置56の劣化を防ぐために設定されている所定充電容量以下である場合、エンジン水温TEMPや触媒温度が各々所定温度以下である場合、車両加速時など高出力が要求された場合、或いはエアコンが作動状態A/Cにある場合等において、回転停止中のエンジン8を起動させるためのものである。 Engine start control means 106, for example, when the charge capacity of the power storage device 56 is equal to or less than the predetermined charge capacity is set to prevent deterioration of the battery 56 when the engine coolant temperature TEMP W and the catalyst temperature is respectively below a predetermined temperature This is for starting the engine 8 whose rotation is stopped when a high output is required such as when the vehicle is accelerated, or when the air conditioner is in the operating state A / C.

ここで、例えば信号待ち状態などシフトレバー52が「D」ポジションにあるときの車両停止状態において、車両を発進させるには、通常、エンジン8は回転停止しており第2電動機M2の駆動力によって発進させる。しかし、このような状態であっても、上述したようなエンジン8の駆動が必要な場合には、エンジン起動制御手段106によって、エンジン起動指令が出力される。   Here, for example, in order to start the vehicle when the shift lever 52 is in the “D” position, such as in a signal waiting state, the engine 8 is normally stopped and driven by the driving force of the second electric motor M2. Start off. However, even in such a state, when it is necessary to drive the engine 8 as described above, the engine start control means 106 outputs an engine start command.

図9は、エンジン8の起動の際における、差動部11の各回転要素の回転速度を示す共線図である。エンジン8の起動には、実線に示すように、第1電動機M1を駆動させて第1サンギヤS1に対応する第1回転要素RE1を回転させると共に、第1リングギヤR1に対応する第3回転要素RE3の回転速度を例えば略零に固定するすなわち反力を発生させることで、エンジン8の回転速度Nをエンジン始動可能な回転速度(以下、始動可能回転速度という)NES以上に引き上げている。このように、例えば第2電動機M2を好適に制御することで、この第3回転要素RE3を略零或いは所定の回転速度に固定させて反力を発生させることができる。 FIG. 9 is a collinear diagram showing the rotational speeds of the rotating elements of the differential section 11 when the engine 8 is started. To start the engine 8, as shown by a solid line, the first electric motor M1 is driven to rotate the first rotating element RE1 corresponding to the first sun gear S1, and the third rotating element RE3 corresponding to the first ring gear R1. the rotational speed is, for example, to generate a fixed to i.e. reaction force substantially zero, the rotational speed N E enabling engine starting rotational speed of the engine 8 (hereinafter, startable called rotational speed) is increased to N ES more. Thus, for example, by suitably controlling the second electric motor M2, the third rotating element RE3 can be fixed at substantially zero or a predetermined rotational speed to generate a reaction force.

ところで、第2電動機M2が故障した際には、エンジン8を起動させることで、車両を発進させることが考えられる。しかしながら、第2電動機M2が故障していると、第3回転要素RE3に反力を発生させることができないため、図9の破線に示すように、第3回転要素RE3が逆回転してしまい、エンジン8の回転速度を引き上げることが不可能となる。これに対して、第3回転要素RE3に反力を発生させるため、自動変速部20を例えば第1速ギヤ段を成立させて動力伝達可能状態とする、すなわち第3回転要素RE3を自動変速部20を介して出力軸22すなわち駆動輪34と連結させることで反力を発生させることが考えられる。ところが、シフトレバー52が「D」ポジションに位置されている状態では、シフトレバー52が「P」ポジションに位置される場合のように出力軸22が機械的に固定されていないため、前述した図9の破線に示す第3回転要素RE3の逆回転によって車両が逆走することが考えられる。なお、本実施例では、図示しない電動油圧ポンプが備えられており、エンジン8が停止中であっても、クラッチCおよびブレーキBが係合可能な油圧を発生させている。   By the way, when the second electric motor M2 breaks down, it is conceivable to start the vehicle by starting the engine 8. However, if the second electric motor M2 is out of order, no reaction force can be generated in the third rotating element RE3, so that the third rotating element RE3 rotates in the reverse direction as shown by the broken line in FIG. It becomes impossible to increase the rotational speed of the engine 8. On the other hand, in order to generate a reaction force in the third rotating element RE3, the automatic transmission unit 20 is brought into a power transmission enabled state by establishing the first speed gear, for example, that is, the third rotating element RE3 is set in the automatic transmission unit. It is conceivable that a reaction force is generated by being connected to the output shaft 22, that is, the drive wheel 34 via 20. However, when the shift lever 52 is in the “D” position, the output shaft 22 is not mechanically fixed as in the case where the shift lever 52 is in the “P” position. It is conceivable that the vehicle runs backward due to the reverse rotation of the third rotation element RE3 indicated by the broken line 9. In this embodiment, an electric hydraulic pump (not shown) is provided, and the hydraulic pressure that can be engaged with the clutch C and the brake B is generated even when the engine 8 is stopped.

そこで、エンジン起動制御手段106は、第2電動機M2が故障した際に安全にエンジン8を起動させる機能を備えている。エンジン起動制御手段106は、第2電動機M2の故障したか否かを判定する電動機故障判定手段108、車両の車速Vが略零すなわち所定値以下かを判定するための車速判定手段110、エンジンの起動が要求されたか否かを判定するエンジン起動要求判定手段112、シフトレバー52のシフト位置が走行位置である「D」レンジか否かを判定するシフトポジション判定手段114に基づいて、クラッチCおよびブレーキBを係合させて、第1電動機M1を駆動させる。   Therefore, the engine start control means 106 has a function of starting the engine 8 safely when the second electric motor M2 fails. The engine activation control means 106 includes an electric motor failure determination means 108 for determining whether or not the second electric motor M2 has failed, a vehicle speed determination means 110 for determining whether the vehicle speed V of the vehicle is substantially zero, that is, a predetermined value or less, Based on engine start request determination means 112 that determines whether or not start is requested, and shift position determination means 114 that determines whether or not the shift position of the shift lever 52 is in the “D” range, which is the travel position, the clutch C and The brake B is engaged to drive the first electric motor M1.

電動機故障判定手段108では、例えばM2回転速度センサによって検出される第2電動機回転速度NM2と電子制御装置100から命令される要求回転速度とを比較するなどによって第2電動機M2が故障したか否かを判定する。 In motor failure determination means 108, for example, or the second electric motor M2 has failed, such as by comparing the M2 required rotational speed and the second electric motor rotation speed N M2 detected by the rotation speed sensor is commanded from the electronic control device 100 judges Determine whether.

車速判定手段110では、出力軸22に設けられている回転速度センサによって検出される回転速度に基づいて車速Vを算出し、車速Vが略零であるか否かを判定する。エンジン起動要求判定手段112では、例えばアクセルペダルの操作量であるアクセル開度Accを表す信号や充電装置56の充電容量などによってエンジン起動要求が為されたか否かを判定する。シフトポジション判定手段114は、シフトポジションPSHに基づいてシフトレバー52が「D」ポジションであるか否かを判定する。 The vehicle speed determination means 110 calculates the vehicle speed V based on the rotation speed detected by the rotation speed sensor provided on the output shaft 22 and determines whether or not the vehicle speed V is substantially zero. The engine activation request determination means 112 determines whether or not an engine activation request has been made based on, for example, a signal representing an accelerator opening Acc that is an operation amount of an accelerator pedal, a charging capacity of the charging device 56, or the like. Shift position determining means 114 determines the shift lever 52 is whether a "D" position based on the shift position P SH.

上述した各々の判定手段によって、第2電動機M2の故障が判定され、車速Vが略零すなわち所定値以下であり、エンジン8の起動が要求され、シフトレバー52が走行位置である「D」レンジにあると判定されてエンジン8の起動が必要と判断されると、エンジン起動制御手段106によってエンジン8を起動させる。第2電動機M2故障時のエンジン8の起動は、例えば自動変速部20において、第3速ギヤ段または第4速ギヤ段を成立させることで動力伝達可能状態とする。第3速ギヤ段および第4速ギヤ段はそれぞれ図2に示すように、第2クラッチC2を係合させることで成立させられるものである。第2クラッチC2が係合させられると、図1および図3に示されるように、第2キャリヤCA2および第3リングギヤR3が連結されることで構成されている第6回転要素RE6が、伝達部材18を介して差動部11の第3回転要素RE3(第1リングギヤR1)に直接連結される。ここで、第6回転要素RE6は、図1に示すように、一方向クラッチFを介してケース12に連結されているため、エンジン8の回転方向に対して逆転方向(以後、逆転方向とはエンジン8の回転方向とは逆方向の回転のことをいう)の回転が阻止されている。これにより、第6回転要素RE6に連結される第3回転要素RE3は、図10の差動部11の共線図に示すように、第3回転要素RE3である第1リングギヤR1の逆転方向の回転が一方向クラッチFによって阻止される。これより、図10に示すように、第3回転要素RE3の回転速度を略零または零に固定、すなわち反力を発生させることができ、第1電動機M1を駆動させることでエンジン8の回転速度を始動可能回転速度NESまで安全に引き上げることができる。このように、エンジン起動制御手段106は、第2クラッチC2を係合させることで、伝達部材18を逆回転不能な第6回転要素RE6に直接連結させて、第1電動機M1を駆動させ、エンジン8を起動させる。なお、本実施例においては、車速Vが略零の領域で為されるため、第6回転要素RE6の回転速度は略零となっており、図10の共線図に示すように、第3回転速度RE3の回転速度も同様に略零となる。また、本実施例の第6回転要素RE6が、本発明の逆回転不能な回転部材に対応している。 By each of the determination means described above, the failure of the second electric motor M2 is determined, the vehicle speed V is substantially zero, that is, a predetermined value or less, the engine 8 is requested to be started, and the shift lever 52 is the travel position. If it is determined that the engine 8 needs to be started, the engine start control means 106 starts the engine 8. The engine 8 is started when the second electric motor M2 fails, for example, in the automatic transmission unit 20, the third speed gear stage or the fourth speed gear stage is established so that the power can be transmitted. As shown in FIG. 2, the third speed gear stage and the fourth speed gear stage are established by engaging the second clutch C2. When the second clutch C2 is engaged, as shown in FIGS. 1 and 3, the sixth rotating element RE6 configured by connecting the second carrier CA2 and the third ring gear R3 is connected to the transmission member. 18 is directly connected to the third rotating element RE3 (first ring gear R1) of the differential section 11 via 18. Here, as shown in FIG. 1, the sixth rotation element RE6 is connected to the case 12 via the one-way clutch F, so that the reverse direction with respect to the rotational direction of the engine 8 (hereinafter referred to as the reverse direction). The rotation in the direction opposite to the rotation direction of the engine 8 is prevented. As a result, the third rotating element RE3 coupled to the sixth rotating element RE6 is arranged in the reverse direction of the first ring gear R1, which is the third rotating element RE3, as shown in the collinear diagram of the differential section 11 in FIG. Rotation is blocked by the one-way clutch F. Thus, as shown in FIG. 10, the rotation speed of the third rotation element RE3 can be fixed to substantially zero or zero, that is, the reaction force can be generated, and the rotation speed of the engine 8 is driven by driving the first electric motor M1. Can be safely increased to the startable rotation speed NES . In this way, the engine start control means 106 engages the second clutch C2 to directly connect the transmission member 18 to the sixth rotation element RE6 that cannot be reversely rotated, thereby driving the first electric motor M1, and the engine. 8 is activated. In the present embodiment, since the vehicle speed V is in a substantially zero region, the rotational speed of the sixth rotating element RE6 is substantially zero. As shown in the collinear diagram of FIG. Similarly, the rotational speed of the rotational speed RE3 is substantially zero. Further, the sixth rotating element RE6 of this embodiment corresponds to the rotating member of the present invention that cannot be rotated in the reverse direction.

また、自動変速部20において、第2速ギヤ段を成立させることでも第2電動機M2故障の際に、エンジン8を安全に起動させることができる。第2速ギヤ段は図2の示すように第1クラッチC1および第1ブレーキB1を係合させることで成立させられる。ここで、図1の第2遊星歯車装置28において、第1ブレーキB1が係合されることで第2サンギヤS2が回転停止させられると共に、第2キャリヤCA2が一方向クラッチFによって逆転方向の回転が阻止されているため、第2リングギヤR2は、第2遊星歯車装置26の差動作用によって、第2キャリヤCA2よりも増速した正方向(エンジン8と同回転方向)の回転が得られ、逆転方向の回転が阻止される。また、第3遊星歯車装置28では、第3リングギヤR3は一方向クラッチFによって逆転方向の回転が阻止されていると共に、第3キャリヤCA3は、第2リングギヤR2に連結されているため、第2リングギヤR2と同様に逆転方向の回転が阻止されている。また、第3リングギヤR3および第3キャリヤCA3が共に逆転方向の回転が阻止され、且つ、第3キャリヤCA3の回転速度の方が、第2リングギヤR2に連結されることで、第3リングギヤR3の回転速度よりも速くなるため、第4回転要素RE4に対応する第3サンギヤS3は、第3遊星歯車装置28の差動作用によって、逆転方向の回転が阻止される。なお、本実施例の第4回転要素RE4が、本発明の逆回転不能な他の回転部材に対応している。   Further, in the automatic transmission unit 20, the engine 8 can be safely started in the event of a failure of the second electric motor M2 by establishing the second gear. The second speed gear stage is established by engaging the first clutch C1 and the first brake B1 as shown in FIG. Here, in the second planetary gear device 28 of FIG. 1, the second sun gear S2 is stopped by the engagement of the first brake B1, and the second carrier CA2 is rotated in the reverse direction by the one-way clutch F. Therefore, the second ring gear R2 is rotated in the positive direction (same rotational direction as the engine 8) faster than the second carrier CA2 by the differential action of the second planetary gear device 26, The rotation in the reverse direction is prevented. In the third planetary gear device 28, the third ring gear R3 is prevented from rotating in the reverse rotation direction by the one-way clutch F, and the third carrier CA3 is connected to the second ring gear R2. Similar to the ring gear R2, rotation in the reverse direction is prevented. Further, the third ring gear R3 and the third carrier CA3 are both prevented from rotating in the reverse direction, and the rotational speed of the third carrier CA3 is coupled to the second ring gear R2, so that the third ring gear R3 Since the rotation speed is higher than the rotation speed, the third sun gear S3 corresponding to the fourth rotation element RE4 is prevented from rotating in the reverse rotation direction by the differential action of the third planetary gear device 28. Note that the fourth rotating element RE4 of this embodiment corresponds to another rotating member of the present invention that is not reversely rotatable.

図3の共線図を用いて表現すると、第2速ギヤ段は、第1クラッチC1および第1ブレーキB1が共に係合されることで結ばれる斜めの直線L2で表現され、直線L2と各回転要素との交点が相対的な各回転要素の回転速度を示している。ここで、直線L2は、第1ブレーキB1が係合されることで第7回転要素RE7の回転速度は零に固定され、また、第6回転要素RE6において、一方向クラッチFによって逆転方向の回転が阻止されるため、直線L2は、第4回転要素RE4および第5回転要素RE5においても常に回転速度零を示すX1以上の領域に位置することとなる。これにより、第4回転要素RE4および第5回転要素RE5は共に逆転方向の回転が阻止されることとなる。ここで、第2速ギヤ段では、第1クラッチC1が係合されることで、第3回転要素RE3が伝達部材18を介して第3サンギヤS3に対応する第4回転要素RE4に連結されるが、第4回転要素RE4は、前述したように逆転方向の回転が阻止されており、反力発生部材として機能させることができる。これにより、第1電動機M1を駆動させることで、エンジン8の回転速度を始動可能回転速度NESまで安全に引き上げることができる。このように、エンジン起動制御手段106は、第1ブレーキB1を係合することで逆回転不能な第4回転要素RE4を形成させ、伝達部材18をこの第4回転要素に連結、すなわち伝達部材18を逆回転不能な第6回転要素RE6に間接的に連結させて、第1電動機M1を駆動させ、エンジン8を起動させる。なお、本実施例においては、車速Vが略零の領域で為されるため、第4回転要素RE4の回転速度は略零となっており、図10の共線図に示すように、第3回転速度RE3の回転速度も同様に略零となる。 When expressed using the nomograph of FIG. 3, the second speed gear stage is expressed by an oblique straight line L2 connected by engaging the first clutch C1 and the first brake B1 together. The intersection with the rotation element indicates the relative rotation speed of each rotation element. Here, the rotation speed of the seventh rotation element RE7 is fixed to zero by engaging the first brake B1, and the straight line L2 is rotated in the reverse direction by the one-way clutch F in the sixth rotation element RE6. Therefore, the straight line L2 is always located in the region of X1 or more indicating the rotational speed of zero in the fourth rotating element RE4 and the fifth rotating element RE5. As a result, the fourth rotation element RE4 and the fifth rotation element RE5 are both prevented from rotating in the reverse direction. Here, in the second gear, the first clutch C1 is engaged, so that the third rotating element RE3 is connected to the fourth rotating element RE4 corresponding to the third sun gear S3 via the transmission member 18. However, as described above, the fourth rotating element RE4 is prevented from rotating in the reverse direction, and can function as a reaction force generating member. Thus, by driving the first electric motor M1, it is possible to raise the safety rotational speed of the engine 8 to startable speed N ES. In this way, the engine start control means 106 forms the fourth rotation element RE4 that cannot reversely rotate by engaging the first brake B1, and connects the transmission member 18 to the fourth rotation element, that is, the transmission member 18. Is indirectly connected to the sixth rotating element RE6 that cannot rotate in reverse, the first electric motor M1 is driven, and the engine 8 is started. In the present embodiment, since the vehicle speed V is in the region of substantially zero, the rotational speed of the fourth rotating element RE4 is substantially zero. As shown in the collinear diagram of FIG. Similarly, the rotational speed of the rotational speed RE3 is substantially zero.

図11は、電子制御装置100の制御作動の要部すなわち第2電動機M2故障時のエンジン起動装置の制御作動を説明するフローチャートであり、例えば数msec乃至数十msec程度の極めて短いサイクルタイムで繰り返し実行されるものである。図11において、先ず、電動機故障判定手段108、車速判定手段110、エンジン起動要求判定手段112、およびシフトポジション判定手段114に対応するステップS1(以下、ステップを省略)では、エンジン8の始動が必要か否かを判定する。   FIG. 11 is a flowchart for explaining the main part of the control operation of the electronic control device 100, that is, the control operation of the engine starting device when the second motor M2 fails, and is repeatedly performed with an extremely short cycle time of, for example, about several milliseconds to several tens of milliseconds. Is to be executed. In FIG. 11, first, in step S1 (hereinafter, step is omitted) corresponding to the motor failure determination means 108, the vehicle speed determination means 110, the engine start request determination means 112, and the shift position determination means 114, the engine 8 needs to be started. It is determined whether or not.

具体的には、電動機故障判定手段108によって、第2電動機M2が故障状態か否かを判定する。第2電動機M2が故障と判定されると、車速判定手段110によって車速Vが略零が否かを判定する。車速Vが略零と判定されると、エンジン起動要求判定手段112によって、エンジン8の起動が要求されたか否かを判定する。そして、エンジン8の起動が要求されたと判定されると、シフトポジション判定手段114によって、シフトポジションが走行位置である「D」レンジか否かを判定する。これらの判定手段の何れか1つでも否定されると本ルーチンは終了させられる。   Specifically, the motor failure determination means 108 determines whether or not the second motor M2 is in a failure state. If it is determined that the second electric motor M2 is out of order, the vehicle speed determination means 110 determines whether or not the vehicle speed V is substantially zero. When it is determined that the vehicle speed V is substantially zero, the engine activation request determination unit 112 determines whether activation of the engine 8 is requested. When it is determined that the engine 8 has been requested to start, the shift position determination unit 114 determines whether or not the shift position is in the “D” range, which is the travel position. If any one of these determination means is negative, this routine is terminated.

一方、これらの判定手段の全てが肯定されると、S2において第3速ギヤ段または第4速ギヤ段を成立させることで、第2クラッチC2を係合させる、或いは、第2速ギヤ段を成立させる。これにより、伝達部材18を介して第3回転要素RE3である第1リングギヤR1の回転を略零に固定させる、すなわち第1リングギヤR1において反力を発生させる。そしてS3において、第1電動機M1を駆動させることで、エンジン8の回転速度を始動可能回転速度NESまで引き上げる。最後にS4では、電子スロットル弁62の開閉制御や燃料噴射制御や点火時期制御のための指令をエンジン出力制御装置58に出力してエンジン8を始動させる。なお、S1乃至S4が、本発明のエンジン起動制御手段に対応している。 On the other hand, if all of these determination means are affirmed, the second clutch C2 is engaged by establishing the third gear or the fourth gear in S2, or the second gear is changed. Establish. As a result, the rotation of the first ring gear R1, which is the third rotation element RE3, is fixed to substantially zero via the transmission member 18, that is, a reaction force is generated in the first ring gear R1. And in S3, by driving the first electric motor M1, raise the rotation speed of the engine 8 to startable speed N ES. Finally, in S4, commands for opening / closing control of the electronic throttle valve 62, fuel injection control, and ignition timing control are output to the engine output control device 58 to start the engine 8. S1 to S4 correspond to the engine start control means of the present invention.

上述のように、本実施例のエンジン起動装置によれば、第1電動機M1を駆動させてエンジン8を起動させる際に反力を発生させるべき第2電動機M2が故障しても、第3回転要素RE3に反力を発生させるようにクラッチCおよびブレーキBを好適に係合させることで、第3回転要素RE3を逆回転不能な第6回転要素RE6に直接または間接的に連結させて第3回転要素RE3を固定させることで、反力を発生させることができる。これにより、車両のシフト位置が「D」レンジであっても車両が逆走する危険もなく、エンジン8を起動させることができる。   As described above, according to the engine starting device of the present embodiment, even if the second electric motor M2 that should generate a reaction force when starting the engine 8 by driving the first electric motor M1 fails, the third rotation By suitably engaging the clutch C and the brake B so as to generate a reaction force on the element RE3, the third rotating element RE3 is directly or indirectly connected to the sixth rotating element RE6 that cannot reversely rotate. A reaction force can be generated by fixing the rotating element RE3. Thereby, even if the shift position of the vehicle is in the “D” range, the engine 8 can be started without the danger of the vehicle running backward.

また、前述の実施例のエンジン起動装置によれば、第2クラッチC2を係合させて、伝達部材18を逆回転不能な第6回転要素RE6に直接連結させることで、他の回転要素の回転を制限するなどの必要なく、第3回転要素RE3において反力を発生させることができ、エンジン8を起動させることが可能となる。   Further, according to the engine starting device of the above-described embodiment, the second clutch C2 is engaged, and the transmission member 18 is directly connected to the sixth rotation element RE6 that cannot be reversely rotated. The reaction force can be generated in the third rotating element RE3 without the need to limit the engine 8 and the engine 8 can be started.

また、前述の実施例のエンジン起動装置によれば、ブレーキB1を係合することで逆回転不能となる第4回転要素RE4を形成し、伝達部材18をその第4回転要素RE4に連結させることで、第3回転要素RE3において反力を発生させることができ、エンジン8を起動させることが可能となる。   Further, according to the engine starting device of the above-described embodiment, the fourth rotation element RE4 that cannot reversely rotate by engaging the brake B1 is formed, and the transmission member 18 is connected to the fourth rotation element RE4. Thus, a reaction force can be generated in the third rotating element RE3, and the engine 8 can be started.

また、前述の実施例のエンジン起動装置によれば、エンジン起動制御手段106は、電動機故障判定手段108、車速判定手段110、エンジン起動要求判定手段112、およびシフトポジション判定手段114に基づいてエンジン8を起動させることで、第2電動機M2故障時であっても安全にエンジン8を起動させることができる。   Further, according to the engine starter of the above-described embodiment, the engine start control unit 106 is based on the motor failure determination unit 108, the vehicle speed determination unit 110, the engine start request determination unit 112, and the shift position determination unit 114. By starting the engine 8, the engine 8 can be started safely even when the second electric motor M2 fails.

以上、本発明の実施例を図面に基づいて詳細に説明したが、本発明はその他の態様においても適用される。   As mentioned above, although the Example of this invention was described in detail based on drawing, this invention is applied also in another aspect.

例えば、前述の実施例の自動変速機20は、前進4段後進1速の変速機であったが、変速機の変速段および連結関係は、特に限定されるものではない。例えば前進3速後進1速などの自動変速機であっても、その変速機内に一方向クラッチが備えられていれば本発明を適用することができる。すなわち、一方向クラッチを有する変速機であれば、その一方向クラッチによって逆回転が阻止される回転部材に伝達部材18を直接或いは間接的に連結させることで、本発明は成立する。   For example, the automatic transmission 20 according to the above-described embodiment is a four-speed forward / reverse / first-speed transmission. However, the transmission speed and connection relationship of the transmission are not particularly limited. For example, the present invention can be applied to an automatic transmission such as a forward third speed and a reverse first speed as long as a one-way clutch is provided in the transmission. That is, in the case of a transmission having a one-way clutch, the present invention is established by connecting the transmission member 18 directly or indirectly to a rotating member that is prevented from reverse rotation by the one-way clutch.

また、前述の実施例の動力分配機構16では、第1キャリヤCA1がエンジン8に連結され、第1サンギヤS1が第1電動機M1に連結され、第1リングギヤR1が伝達部材18に連結されていたが、それらの連結関係は、必ずしもそれに限定されるものではなく、エンジン8、第1電動機M1、伝達部材18は、第1遊星歯車装置24の3回転要素CA1、S1、R1のうちの何れと連結されていても差し支えない。   In the power distribution mechanism 16 of the above-described embodiment, the first carrier CA1 is connected to the engine 8, the first sun gear S1 is connected to the first electric motor M1, and the first ring gear R1 is connected to the transmission member 18. However, the connection relationship is not necessarily limited thereto, and the engine 8, the first electric motor M1, and the transmission member 18 are connected to any of the three rotation elements CA1, S1, and R1 of the first planetary gear device 24. They can be connected.

また、前述の実施例では、エンジン8は入力軸14と直結されていたが、例えばギヤ、ベルト等を介して作動的に連結されておればよく、共通の軸心上に配置される必要もない。   In the above-described embodiment, the engine 8 is directly connected to the input shaft 14. However, the engine 8 only needs to be operatively connected via, for example, a gear, a belt, or the like, and needs to be disposed on a common shaft center. Absent.

また、前述の実施例では、第1電動機M1および第2電動機M2は、入力軸14に同心に配置されて第1電動機M1は第1サンギヤS1に連結され第2電動機M2は伝達部材18に連結されていたが、必ずしもそのように配置される必要はなく、例えばギヤ、ベルト、減速機等を介して作動的に第1電動機M1は第1サンギヤS1に連結され、第2電動機M2は伝達部材18に連結されてもよい。   In the above-described embodiment, the first motor M1 and the second motor M2 are arranged concentrically with the input shaft 14, the first motor M1 is connected to the first sun gear S1, and the second motor M2 is connected to the transmission member 18. However, the first motor M1 is operatively connected to the first sun gear S1 through, for example, a gear, a belt, a speed reducer, etc., and the second motor M2 is a transmission member. 18 may be connected.

また、前述の実施例では、第1クラッチC1や第2クラッチC2などの油圧式摩擦係合装置は、パウダー(磁粉)クラッチ、電磁クラッチ、噛み合い型のドグクラッチなどの磁粉式、電磁式、機械式係合装置から構成されていてもよい。例えば電磁クラッチであるような場合には、油圧制御回路70は油路を切り換える弁装置ではなく電磁クラッチへの電気的な指令信号回路を切り換えるスイッチング装置や電磁切換装置等により構成される。   Further, in the above-described embodiment, the hydraulic friction engagement devices such as the first clutch C1 and the second clutch C2 are magnetic powder type, electromagnetic type, mechanical type such as powder (magnetic powder) clutch, electromagnetic clutch, and meshing type dog clutch. You may be comprised from the engaging apparatus. For example, in the case of an electromagnetic clutch, the hydraulic control circuit 70 is constituted by a switching device, an electromagnetic switching device, or the like that switches an electrical command signal circuit to the electromagnetic clutch, not a valve device that switches an oil passage.

また、前述の実施例では、自動変速部20は伝達部材18を介して差動部11と直列に連結されていたが、入力軸14と平行にカウンタ軸が設けられそのカウンタ軸上に同心に自動変速部20が配設されてもよい。この場合には、差動部11と自動変速部20とは、例えば伝達部材18としてのカウンタギヤ対、スプロケットおよびチェーンで構成される1組の伝達部材などを介して動力伝達可能に連結される。   In the above-described embodiment, the automatic transmission unit 20 is connected in series with the differential unit 11 via the transmission member 18, but a counter shaft is provided in parallel with the input shaft 14, and is concentrically on the counter shaft. An automatic transmission unit 20 may be provided. In this case, the differential unit 11 and the automatic transmission unit 20 are coupled so as to be able to transmit power via, for example, a pair of transmission members composed of a counter gear pair as a transmission member 18, a sprocket and a chain, and the like. .

また、前述の実施例の差動機構としての動力分配機構16は、例えばエンジン8によって回転駆動されるピニオンと、そのピニオンに噛み合う一対のかさ歯車が第1電動機M1および第2電動機M2に作動的に連結された差動歯車装置であってもよい。   Further, in the power distribution mechanism 16 as the differential mechanism of the above-described embodiment, for example, a pinion that is rotationally driven by the engine 8 and a pair of bevel gears that mesh with the pinion are operative to the first electric motor M1 and the second electric motor M2. It may be a differential gear device connected to the.

また、前述の実施例の動力分配機構16は、1組の遊星歯車装置から構成されていたが、2以上の遊星歯車装置から構成されて、非差動状態(定変速状態)では3段以上の変速機として機能するものであってもよい。また、その遊星歯車装置はシングルピニオン型に限られたものではなくダブルピニオン型の遊星歯車装置であってもよい。   In addition, the power distribution mechanism 16 of the above-described embodiment is composed of one set of planetary gear devices, but is composed of two or more planetary gear devices, and has three or more stages in the non-differential state (constant speed change state). It may function as a transmission. The planetary gear device is not limited to a single pinion type, and may be a double pinion type planetary gear device.

また、前述の実施例では、シフト位置が「D」においてエンジン8を起動させるものであったが、シフト位置が「R」レンジであっても、エンジン8を起動させる限りは前進、後進は関係ないため、本発明を適用することができる。   In the above-described embodiment, the engine 8 is started when the shift position is “D”. However, even if the shift position is in the “R” range, as long as the engine 8 is started, the forward and reverse movements are related. Therefore, the present invention can be applied.

なお、上述したのはあくまでも一実施形態であり、本発明は当業者の知識に基づいて種々の変更、改良を加えた態様で実施することができる。   The above description is only an embodiment, and the present invention can be implemented in variously modified and improved forms based on the knowledge of those skilled in the art.

本発明の一実施例であるハイブリッド車両の駆動装置の一部を構成する変速機構を説明する骨子図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a skeleton diagram illustrating a speed change mechanism that constitutes a part of a drive device for a hybrid vehicle that is an embodiment of the present invention. 図1の駆動装置の変速作動に用いられる油圧式摩擦係合装置の作動の組合せを説明する作動図表である。FIG. 2 is an operation chart for explaining a combination of operations of a hydraulic friction engagement device used for a speed change operation of the drive device of FIG. 1. FIG. 図1の駆動装置における各ギヤ段の相対的回転速度を説明する共線図である。FIG. 2 is a collinear diagram illustrating a relative rotational speed of each gear stage in the drive device of FIG. 1. 図1の駆動装置に設けられた電子制御装置の入出力信号を説明する図である。It is a figure explaining the input-output signal of the electronic controller provided in the drive device of FIG. シフトレバーを備えた複数種類のシフトポジションを選択するために操作されるシフト操作装置の一例である。It is an example of the shift operation apparatus operated in order to select multiple types of shift positions provided with the shift lever. 図4の電子制御装置の制御作動の要部を説明する機能ブロック線図である。It is a functional block diagram explaining the principal part of the control action of the electronic controller of FIG. 駆動装置の変速制御において用いられる変速線図の一例を示す図である。It is a figure which shows an example of the shift map used in the shift control of a drive device. 破線はエンジンの最適燃費率曲線であって燃費マップの一例である。A broken line is an optimal fuel consumption rate curve of the engine and is an example of a fuel consumption map. エンジンの起動の際における、差動部の各回転要素の回転速度を示す共線図である。It is a collinear diagram which shows the rotational speed of each rotation element of a differential part at the time of engine starting. 第2電動機故障時のエンジン起動の際における、差動部の各回転要素の回転速度を示す共線図である。It is a collinear diagram which shows the rotational speed of each rotation element of a differential part at the time of engine starting at the time of a 2nd motor failure. 電子制御装置の制御作動の要部すなわち第2電動機故障時のエンジン起動の制御作動を説明するフローチャートである。It is a flowchart explaining the control operation | movement of the engine starting at the time of the main part of the control action of an electronic controller, ie, a 2nd motor failure.

符号の説明Explanation of symbols

8:エンジン 12:トランスミッションケース(非回転部材) 16:動力分配機構(差動部) 18:伝達部材 20:自動変速部(変速部) 34:駆動輪 106:エンジン起動制御手段 108:電動機故障判定手段 110:車速判定手段 112:エンジン起動要求判定手段 114:シフトポジション判定手段 B:ブレーキ(係合装置) C:クラッチ(係合装置) F:一方向クラッチ M1:第1電動機 M2:第2電動機 RE1:第1回転要素 RE2:第2回転要素 RE3:第3回転要素 RE4:逆回転不能な他の回転部材(第4回転要素) RE6:逆回転不能な回転部材(第6回転要素)   8: Engine 12: Transmission case (non-rotating member) 16: Power distribution mechanism (differential part) 18: Transmission member 20: Automatic transmission part (transmission part) 34: Drive wheel 106: Engine start control means 108: Motor failure determination Means 110: Vehicle speed judgment means 112: Engine start request judgment means 114: Shift position judgment means B: Brake (engagement device) C: Clutch (engagement device) F: One-way clutch M1: First motor M2: Second motor RE1: First rotating element RE2: Second rotating element RE3: Third rotating element RE4: Other rotating member that cannot reversely rotate (fourth rotating element) RE6: Rotary member that cannot reversely rotate (sixth rotating element)

Claims (4)

エンジンに連結された第1回転要素と第1電動機に連結された第2回転要素と第2電動機および伝達部材に常時動力伝達可能に連結された出力軸である第3回転要素とを、有して該エンジンの出力を第1電動機および該伝達部材へ分配する差動機構を備え電気的な差動装置として作動する差動部と、該差動部の出力軸と駆動輪との間に直列的に設けられて複数の係合装置の選択的な作動に従って複数の変速段を成立させる変速部と、を備えるハイブリッド車両のエンジン起動装置であって、
前記変速部内に設けられた一方向クラッチを介して非回転部材に連結されることによって逆回転不能な回転部材が設けられており、
前記第2電動機が故障した際には、前記係合装置を係合させて前記差動部の出力軸を前記逆回転不能な回転部材に直接または間接的に連結させて逆転不能状態とし、前記第1電動機により前記エンジンを駆動させるエンジン起動制御手段を含むことを特徴とするハイブリッド車両のエンジン起動装置。
A first rotary element connected to the engine, a second rotary element connected to the first electric motor, and a third rotary element is always power transmission coupled to an output shaft to the second electric motor and transmission members, A differential part that has a differential mechanism for distributing the engine output to the first electric motor and the transmission member and operates as an electrical differential unit; and between the output shaft of the differential part and the drive wheel An engine starter for a hybrid vehicle comprising: a shift unit that is provided in series with each other and that establishes a plurality of shift stages according to a selective operation of the plurality of engagement devices;
A rotating member that is not reversely rotated by being connected to a non-rotating member via a one-way clutch provided in the transmission unit is provided,
When the second electric motor fails, the engaging device is engaged to directly or indirectly connect the output shaft of the differential unit to the non-reversely rotatable rotating member to make the reverse rotation impossible , An engine starter for a hybrid vehicle, comprising engine start control means for driving the engine by a first electric motor.
前記エンジン起動制御手段は、前記係合装置を係合させて、前記差動部の出力軸を前記逆回転不能な回転部材に直接連結させて逆転不能状態とするものであることを特徴とする請求項1のハイブリッド車両のエンジン起動装置。 The engine start control means, the engagement by the engagement device is engaged, and wherein is the output shaft of the differential portion is to shall and reverse disabled state by connecting directly to the reverse rotation non rotating member The engine starting device for a hybrid vehicle according to claim 1. 前記係合装置は、所定の回転部材の回転を制御するブレーキを含み、
前記エンジン起動制御手段は、前記ブレーキを係合することで逆回転不能となる他の回転部材を形成し、前記差動部の出力軸を該他の回転部材に連結させて逆転不能状態とするものであることを特徴とする請求項1のハイブリッド車両のエンジン起動装置。
The engaging device includes a brake that controls rotation of a predetermined rotating member;
The engine start control means forms another rotating member that cannot be reversely rotated by engaging the brake, and connects the output shaft of the differential unit to the other rotating member to make the reverse rotation impossible state. 2. The engine starting device for a hybrid vehicle according to claim 1, wherein the engine starting device is a hybrid vehicle.
前記エンジン起動制御手段は、前記第2電動機の故障が判定され、車速が所定値以下であり、前記エンジンの起動が要求され、前記シフトレバーが走行位置にあることに基づいて前記係合装置を係合させて、前記第1電動機を駆動させるものであることを特徴とする請求項1乃至3のハイブリッド車両のエンジン起動装置。   The engine start control means determines the failure of the second electric motor, the vehicle speed is equal to or lower than a predetermined value, the start of the engine is requested, and the engagement device is operated based on the fact that the shift lever is in the travel position. The engine starting device for a hybrid vehicle according to any one of claims 1 to 3, wherein the first electric motor is driven by being engaged.
JP2006288125A 2006-10-23 2006-10-23 Engine starter for hybrid vehicle Expired - Fee Related JP4215092B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006288125A JP4215092B2 (en) 2006-10-23 2006-10-23 Engine starter for hybrid vehicle
US11/907,799 US7559864B2 (en) 2006-10-23 2007-10-17 Engine starting device and engine starting method for hybrid motor vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006288125A JP4215092B2 (en) 2006-10-23 2006-10-23 Engine starter for hybrid vehicle

Publications (2)

Publication Number Publication Date
JP2008105475A JP2008105475A (en) 2008-05-08
JP4215092B2 true JP4215092B2 (en) 2009-01-28

Family

ID=39316851

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006288125A Expired - Fee Related JP4215092B2 (en) 2006-10-23 2006-10-23 Engine starter for hybrid vehicle

Country Status (2)

Country Link
US (1) US7559864B2 (en)
JP (1) JP4215092B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9434370B2 (en) 2014-05-07 2016-09-06 Toyota Jidosha Kabushiki Kaisha Control apparatus for a hybrid vehicle drive system

Families Citing this family (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2516273C (en) * 2003-02-17 2011-10-25 Drivetec (Uk) Limited Automotive air blowers
JP4349400B2 (en) * 2006-02-28 2009-10-21 トヨタ自動車株式会社 Vehicle and control method thereof
JP4007403B1 (en) * 2006-09-01 2007-11-14 トヨタ自動車株式会社 Power output device and hybrid vehicle
JP4229156B2 (en) * 2006-09-06 2009-02-25 トヨタ自動車株式会社 Power output device and hybrid vehicle
JP4222414B2 (en) * 2006-12-04 2009-02-12 トヨタ自動車株式会社 POWER OUTPUT DEVICE, HYBRID VEHICLE HAVING THE SAME, AND METHOD FOR CONTROLLING POWER OUTPUT DEVICE
JP4169081B1 (en) * 2007-05-25 2008-10-22 トヨタ自動車株式会社 POWER OUTPUT DEVICE, HYBRID VEHICLE HAVING THE SAME, AND METHOD FOR CONTROLLING POWER OUTPUT DEVICE
JP4293268B2 (en) * 2007-06-14 2009-07-08 トヨタ自動車株式会社 Power output apparatus and hybrid vehicle equipped with the same
US8292012B2 (en) * 2008-06-30 2012-10-23 GM Global Technology Operations LLC Apparatus and method for a quick start engine and hybrid system
JP4858501B2 (en) * 2008-07-14 2012-01-18 トヨタ自動車株式会社 Control device for automatic transmission for vehicle
US9545839B2 (en) * 2008-09-05 2017-01-17 Ford Global Technologies, Llc Hybrid electric vehicle powertrain with enhanced reverse drive performance
CN101549643B (en) * 2009-05-14 2012-05-23 上海交通大学 Electrically driven speed change system of vehicle
US8241161B2 (en) * 2009-06-12 2012-08-14 GM Global Technology Operations LLC Hybrid module for interconnecting an engine and a transmission
US8056663B2 (en) * 2009-06-12 2011-11-15 GM Global Technology Operations LLC Hybrid module for interconnecting an engine and a dual-clutch transmission
US7836986B1 (en) * 2009-07-07 2010-11-23 Marsaili Gillecriosd Throttle-free transmissionless hybrid vehicle
CN102216136B (en) * 2010-01-29 2014-01-22 丰田自动车株式会社 Power transmission device
US8733481B2 (en) * 2010-03-23 2014-05-27 GM Global Technology Operations LLC Method for starting an engine of a hybrid powertrain
US8894525B2 (en) * 2010-05-07 2014-11-25 Honda Motor Co., Ltd Hybrid vehicle driving system
KR101189300B1 (en) 2010-06-07 2012-10-09 현대자동차주식회사 Transmission for Hybrid Electric Vehicle
KR101189332B1 (en) 2010-06-18 2012-10-09 현대자동차주식회사 Transmission for Hybrid Electric Vehicle
KR101189410B1 (en) 2010-06-18 2012-10-10 현대자동차주식회사 Transmission for Hybrid Electric Vehicle
KR101189347B1 (en) * 2010-06-18 2012-10-09 현대자동차주식회사 Transmission for Hybrid Electric Vehicle
KR101251724B1 (en) 2010-06-18 2013-04-05 현대자동차주식회사 Transmission for Hybrid Electric Vehicle
US8373375B2 (en) 2010-10-01 2013-02-12 Deere & Company Electro-mechanical drive with extended constant power speed range
CN103221242B (en) * 2010-12-03 2015-12-02 本田技研工业株式会社 Hybrid drive
US8740739B2 (en) * 2011-08-04 2014-06-03 Ford Global Technologies, Llc Reconfigurable powersplit powertrain for an electric vehicle
JP5796637B2 (en) * 2011-12-20 2015-10-21 トヨタ自動車株式会社 Vehicle drive device
EP2829449A1 (en) * 2012-03-21 2015-01-28 Toyota Jidosha Kabushiki Kaisha Drive control device for hybrid vehicle
CN104203684B (en) * 2012-03-21 2017-06-16 丰田自动车株式会社 The drive dynamic control device of motor vehicle driven by mixed power
JP2014113999A (en) * 2012-04-05 2014-06-26 Fine Mec:Kk Automotive running gear, and control method thereof
KR101795377B1 (en) * 2012-04-19 2017-11-10 현대자동차 주식회사 Hybrid vehicle transmission and method for start controlling of hybrid vehicle
JP5962633B2 (en) * 2013-11-26 2016-08-03 トヨタ自動車株式会社 vehicle
JP6603168B2 (en) * 2016-04-14 2019-11-06 トヨタ自動車株式会社 Vehicle drive device
US9963029B1 (en) 2016-10-21 2018-05-08 Guangzhou Sunmile Dynamic Technologies Corp., Ltd Hybrid transmission device
CN106560336B (en) * 2016-12-06 2018-04-10 广州市新域动力技术有限公司 Bi-motor multi-mode composite forerunner's plug-in hybrid system
EP3604014A4 (en) * 2017-03-31 2021-01-20 BYD Company Limited Hybrid electric vehicle and power system thereof
CN107310366B (en) * 2017-07-25 2023-08-29 广州市新域动力技术有限公司 Double-motor high-low speed area composite double-speed driving assembly
KR102347763B1 (en) * 2017-10-25 2022-01-05 현대자동차주식회사 Fail safe control method of hybrid electric vehicle
JP6626906B2 (en) * 2018-01-09 2019-12-25 本田技研工業株式会社 Vehicle drive system
CN110722972B (en) * 2018-07-17 2023-12-26 苏州亚太精睿传动科技股份有限公司 Hybrid power system and driving method thereof
KR102585753B1 (en) * 2018-10-01 2023-10-10 현대자동차주식회사 Driving system for electric vehicle and control method thereof
DE102018130498A1 (en) * 2018-11-30 2020-06-04 Schaeffler Technologies AG & Co. KG Hybrid transmission unit with two planetary gear sets and several switching devices; as well as motor vehicle
CN111717018A (en) * 2019-03-19 2020-09-29 上海汽车集团股份有限公司 Transmission, indulge and put power assembly and vehicle
DE102019112402A1 (en) * 2019-05-13 2020-11-19 Schaeffler Technologies AG & Co. KG Hybrid gear unit with planetary gear sets for converting two serial and four parallel modes; as well as motor vehicle
KR102566922B1 (en) * 2021-04-29 2023-08-16 현대모비스 주식회사 Power transmission device and automobile including the same

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3852321B2 (en) 2001-10-22 2006-11-29 トヨタ自動車株式会社 HV drive structure and method with cranking support torque increasing means
JP3585916B1 (en) 2003-06-12 2004-11-10 本田技研工業株式会社 Power transmission device of hybrid vehicle
JP4040541B2 (en) 2003-06-20 2008-01-30 トヨタ自動車株式会社 Hybrid vehicle drive system
JP4192814B2 (en) 2004-03-16 2008-12-10 トヨタ自動車株式会社 Control device for vehicle drive device
JP3884743B2 (en) 2004-04-06 2007-02-21 ジヤトコ株式会社 Drive device for hybrid vehicle
JP4069901B2 (en) * 2004-05-20 2008-04-02 トヨタ自動車株式会社 Hybrid vehicle drivetrain
JP4774975B2 (en) * 2005-12-15 2011-09-21 トヨタ自動車株式会社 Electric motor control device
US7544140B2 (en) * 2006-01-03 2009-06-09 Toyota Jidosha Kabushiki Kaisha Control device for vehicular drive system
JP4349400B2 (en) 2006-02-28 2009-10-21 トヨタ自動車株式会社 Vehicle and control method thereof
JP2008049825A (en) 2006-08-24 2008-03-06 Toyota Motor Corp Vehicle, driving device, and control method for the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9434370B2 (en) 2014-05-07 2016-09-06 Toyota Jidosha Kabushiki Kaisha Control apparatus for a hybrid vehicle drive system

Also Published As

Publication number Publication date
US7559864B2 (en) 2009-07-14
JP2008105475A (en) 2008-05-08
US20080093137A1 (en) 2008-04-24

Similar Documents

Publication Publication Date Title
JP4215092B2 (en) Engine starter for hybrid vehicle
JP4840135B2 (en) Control device for vehicle drive device
JP5267656B2 (en) Control device for vehicle power transmission device
JP4983453B2 (en) Control device for vehicle drive device
JP4973165B2 (en) Control device for vehicle drive device
JP5066905B2 (en) Control device for vehicle drive device
JP4238927B1 (en) Control device for automatic transmission for vehicle
JP4447027B2 (en) Control device for vehicle power transmission device
JP4462259B2 (en) Control device for vehicle drive device
JP4501925B2 (en) Control device for vehicle drive device
JP4930261B2 (en) Control device for vehicle power transmission device
JP4858310B2 (en) Control device for vehicle power transmission device
JP4683137B2 (en) Power transmission control device
JP4470938B2 (en) Control device for vehicle drive device
JP2010070008A (en) Apparatus for controllng vehicle driving device
JP2008254673A (en) Control device for vehicle driving device
JP2008290555A (en) Control device for vehicular drive unit
JP2008296610A (en) Control device of transmission system for vehicle
JP2008302802A (en) Controller for power transmission device of vehicle
JP4941194B2 (en) Hydraulic control device for vehicle
JP4998072B2 (en) Control device for vehicle power transmission device
JP4483879B2 (en) Control device for vehicle drive device
JP2009280177A (en) Controller for vehicular power transmission device
JP5195376B2 (en) Control device for vehicle drive device
JP2007290630A (en) Controller for drive unit for vehicle

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080805

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080925

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081014

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081027

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111114

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111114

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121114

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121114

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131114

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees