JP4214955B2 - Control device for internal combustion engine - Google Patents

Control device for internal combustion engine Download PDF

Info

Publication number
JP4214955B2
JP4214955B2 JP2004161564A JP2004161564A JP4214955B2 JP 4214955 B2 JP4214955 B2 JP 4214955B2 JP 2004161564 A JP2004161564 A JP 2004161564A JP 2004161564 A JP2004161564 A JP 2004161564A JP 4214955 B2 JP4214955 B2 JP 4214955B2
Authority
JP
Japan
Prior art keywords
intake
pressure
combustion engine
internal combustion
cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004161564A
Other languages
Japanese (ja)
Other versions
JP2005344513A (en
Inventor
壽美子 小平
寛 原口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2004161564A priority Critical patent/JP4214955B2/en
Publication of JP2005344513A publication Critical patent/JP2005344513A/en
Application granted granted Critical
Publication of JP4214955B2 publication Critical patent/JP4214955B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Combined Controls Of Internal Combustion Engines (AREA)

Description

本発明は、内燃機関の筒内圧を検出する筒内圧センサを備え、この筒内圧センサの出力特性に対するゲイン誤差を算出して、筒内圧センサの出力特性を補正する内燃機関の制御装置に関する。   The present invention relates to a control apparatus for an internal combustion engine that includes an in-cylinder pressure sensor that detects an in-cylinder pressure of the internal combustion engine, calculates a gain error with respect to the output characteristic of the in-cylinder pressure sensor, and corrects the output characteristic of the in-cylinder pressure sensor.

従来、特許文献1に記載される様に、内燃機関の筒内圧を検出する筒内圧センサの検出値を基に、内燃機関の運転状態を制御する方法が知られている。
但し、図2に示す様に、筒内圧センサの出力特性にゲイン誤差があると、図6に示す様に、その筒内圧センサによって検出される筒内圧(グラフa)と、真の筒内圧(グラフb)との間にずれが生じる。
Conventionally, as described in Patent Document 1, a method of controlling the operating state of an internal combustion engine based on a detection value of an in-cylinder pressure sensor that detects an in-cylinder pressure of the internal combustion engine is known.
However, as shown in FIG. 2, if there is a gain error in the output characteristics of the in-cylinder pressure sensor, as shown in FIG. 6, the in-cylinder pressure (graph a) detected by the in-cylinder pressure sensor and the true in-cylinder pressure ( Deviation occurs from graph b).

これに対し、特許文献1には、筒内圧センサのゲイン誤差を求めて出力特性を補正する方法が開示されている。これは、先の図6に示す様に、圧縮行程の少なくとも一点のクランク角(図中ta)において、非燃焼時の筒内圧(標準筒内圧と呼ぶ)を筒内圧センサにより検出し、その検出値を、真の筒内圧の標準値と比較して、筒内圧センサのゲイン誤差ΔGaを求め、このゲイン誤差ΔGaの分だけ、筒内圧センサの出力特性を補正する方法である。
特開2000−240497号公報
On the other hand, Patent Document 1 discloses a method of correcting output characteristics by obtaining a gain error of an in-cylinder pressure sensor. As shown in FIG. 6, the in-cylinder pressure during non-combustion (referred to as standard in-cylinder pressure) is detected by the in-cylinder pressure sensor at the crank angle (ta in the figure) at least one point in the compression stroke. In this method, the value is compared with the standard value of the true in-cylinder pressure to obtain a gain error ΔGa of the in-cylinder pressure sensor, and the output characteristic of the in-cylinder pressure sensor is corrected by this gain error ΔGa.
Japanese Unexamined Patent Publication No. 2000-240497

ところが、上記の公知技術では、真の筒内圧の標準値がサイクル毎に変化するため、筒内圧センサのゲイン誤差ΔGaを精度良く算出することが困難である。つまり、特許文献1には、標準値を求める手段として、予め設計データに基づいて設定したり、あるいは、初期状態(劣化前)の筒内圧センサで検出した標準筒内圧を用いることが記載されている。しかし、この方法では、サイクル毎に変化する真の筒内圧を精度良く求めることができないので、筒内圧センサの検出値と標準値とを比較してゲイン誤差ΔGaを算出しても、ゲイン誤差ΔGaの算出精度が低下する。
本発明は、上記事情に基づいて成されたもので、その目的は、筒内圧センサの出力特性に対するゲイン誤差を精度良く算出できる内燃機関の制御装置を提供することにある。
However, in the above known technique, since the standard value of the true in-cylinder pressure changes with each cycle, it is difficult to accurately calculate the gain error ΔGa of the in-cylinder pressure sensor. That is, Patent Document 1 describes that as a means for obtaining a standard value, a standard in-cylinder pressure that is set in advance based on design data or detected by an in-cylinder pressure sensor in an initial state (before deterioration) is used. Yes. However, with this method, since the true in-cylinder pressure that changes with each cycle cannot be obtained with high accuracy, even if the gain error ΔGa is calculated by comparing the detected value of the in-cylinder pressure sensor with the standard value, the gain error ΔGa The calculation accuracy of is reduced.
The present invention has been made based on the above circumstances, and an object thereof is to provide a control device for an internal combustion engine that can accurately calculate a gain error with respect to an output characteristic of an in-cylinder pressure sensor.

(請求項1の発明)
本発明は、内燃機関のシリンダ内圧力(筒内圧と呼ぶ)を検出する筒内圧センサと、内燃機関の吸気管内の圧力(吸気圧と呼ぶ)を検出する吸気圧センサと、筒内圧センサの出力特性に対するゲイン誤差を算出するゲイン誤差算出手段とを備える内燃機関の制御装置であって、ゲイン誤差算出手段は、内燃機関の圧縮開始時の筒内圧に相当する吸気圧を吸気圧センサから取り込み、その吸気圧を基に、内燃機関の筒内燃焼による圧力上昇を除いた非燃焼状態に相当する筒内圧(標準筒内圧と呼ぶ)を算出する標準筒内圧算出手段を有し、算出された標準筒内圧と筒内圧センサの検出値とを比較して、筒内圧センサのゲイン誤差を算出することを特徴とする。
(Invention of Claim 1)
The present invention relates to an in-cylinder pressure sensor that detects an in-cylinder pressure (referred to as in-cylinder pressure) of an internal combustion engine, an intake pressure sensor that detects a pressure (referred to as intake pressure) in an intake pipe of the internal combustion engine, and an output of the in-cylinder pressure sensor. A control apparatus for an internal combustion engine comprising a gain error calculation means for calculating a gain error with respect to the characteristic, wherein the gain error calculation means takes in an intake pressure corresponding to an in-cylinder pressure at the start of compression of the internal combustion engine from an intake pressure sensor, Standard in-cylinder pressure calculating means for calculating in-cylinder pressure (referred to as standard in-cylinder pressure) corresponding to the non-combustion state excluding the pressure increase due to in-cylinder combustion of the internal combustion engine based on the intake pressure, and the calculated standard Comparing the in-cylinder pressure and the detected value of the in-cylinder pressure sensor, the gain error of the in-cylinder pressure sensor is calculated.

内燃機関の筒内圧は、圧縮開始時の圧力により大きく変化することが分かっている。そこで、内燃機関の圧縮開始時の筒内圧に相当する吸気圧を吸気圧センサより取り込み、その吸気圧を基に筒内圧を算出することにより、内燃機関の筒内燃焼による圧力上昇を除いた非燃焼状態に相当する筒内圧(標準筒内圧)を精度良く算出できる。その結果、算出された標準筒内圧と筒内圧センサの検出値とを比較してゲイン誤差を算出することにより、ゲイン誤差の算出精度を向上できる。
また、本発明によれば、標準筒内圧算出手段は、吸気圧センサの検出時期(吸気圧センサから吸気圧を取り込む時期)を、内燃機関の回転速度に応じて補正することを特徴とする。
吸気圧センサの取付け位置がシリンダから離れている場合は、吸気管内に生じる圧力変動により、吸気弁の閉弁直前における筒内圧力(圧縮開始時の圧力)と吸気圧センサの検出値とが異なる場合がある。吸気管内に生じる圧力変動の周期は、少なくとも内燃機関の回転速度(機関回転数と呼ぶ)に依存することが分かっているので、吸気圧センサの検出時期を機関回転数によって補正することで、圧縮開始時の筒内圧を精度良く検出(推定)できる。
(請求項2の発明)
本発明によれば、標準筒内圧算出手段は、吸気圧センサの検出時期(吸気圧センサから吸気圧を取り込む時期)を、内燃機関のシリンダ位置から吸気圧センサの取付け位置までの吸気管長さ、または吸気管の断面積、または内燃機関のシリンダ容積の少なくとも1つに応じて補正することを特徴とする。
請求項1の発明に記載した様に、吸気管内に生じる圧力変動の周期は、機関回転数に依存するが、機関回転数以外にも、吸気圧センサの取付け位置、吸気管の断面積、シリンダ容積等にも依存する。そこで、吸気圧センサの検出時期を、吸気圧センサの取付け位置、吸気管の断面積、シリンダ容積等の少なくとも1つによって補正することで、圧縮開始時の筒内圧を精度良く検出(推定)できる。
It has been found that the in-cylinder pressure of an internal combustion engine varies greatly depending on the pressure at the start of compression. Therefore, the intake pressure corresponding to the in-cylinder pressure at the start of compression of the internal combustion engine is taken in from the intake pressure sensor, and the in-cylinder pressure is calculated based on the intake pressure, thereby eliminating the pressure increase due to the in-cylinder combustion of the internal combustion engine. The in-cylinder pressure corresponding to the combustion state (standard in-cylinder pressure) can be calculated with high accuracy. As a result, the gain error calculation accuracy can be improved by calculating the gain error by comparing the calculated standard in-cylinder pressure and the detected value of the in-cylinder pressure sensor.
Further, according to the present invention, the standard in-cylinder pressure calculating means corrects the detection time of the intake pressure sensor (the time when intake pressure is taken from the intake pressure sensor) according to the rotational speed of the internal combustion engine.
When the installation position of the intake pressure sensor is far from the cylinder, the in-cylinder pressure (pressure at the start of compression) immediately before the intake valve closes and the detected value of the intake pressure sensor differ due to pressure fluctuations that occur in the intake pipe. There is a case. Since it is known that the cycle of the pressure fluctuation that occurs in the intake pipe depends at least on the rotational speed of the internal combustion engine (referred to as engine speed), compression is achieved by correcting the detection timing of the intake pressure sensor with the engine speed. The in-cylinder pressure at the start can be detected (estimated) with high accuracy.
(Invention of Claim 2)
According to the present invention, the standard in-cylinder pressure calculating means sets the detection time of the intake pressure sensor (the time when intake pressure is taken from the intake pressure sensor) to the intake pipe length from the cylinder position of the internal combustion engine to the installation position of the intake pressure sensor. Or it correct | amends according to at least 1 of the cross-sectional area of an intake pipe, or the cylinder volume of an internal combustion engine, It is characterized by the above-mentioned.
As described in the first aspect of the invention, the cycle of the pressure fluctuation generated in the intake pipe depends on the engine speed, but besides the engine speed, the mounting position of the intake pressure sensor, the cross-sectional area of the intake pipe, the cylinder It also depends on the volume. Therefore, the in-cylinder pressure at the start of compression can be accurately detected (estimated) by correcting the detection timing of the intake pressure sensor by at least one of the installation position of the intake pressure sensor, the cross-sectional area of the intake pipe, the cylinder volume, and the like. .

(請求項の発明)
請求項1または2に記載した内燃機関の制御装置において、標準筒内圧算出手段は、内燃機関の吸気弁が吸気ポートを閉じる直前に検出された吸気圧を吸気圧センサから取り込み、その吸気圧を基に標準筒内圧を算出することを特徴とする。
吸気弁が吸気ポートを閉じる直前に検出された吸気圧(吸気圧センサの検出値)を用いることで、内燃機関の圧縮開始時の筒内圧に相当する吸気圧を求めることができる。
(Invention of Claim 3 )
3. The control apparatus for an internal combustion engine according to claim 1, wherein the standard in-cylinder pressure calculating means takes in the intake pressure detected immediately before the intake valve of the internal combustion engine closes the intake port from the intake pressure sensor, and calculates the intake pressure. Based on this, the standard in-cylinder pressure is calculated.
By using the intake pressure (detected value of the intake pressure sensor) detected immediately before the intake valve closes the intake port, the intake pressure corresponding to the in-cylinder pressure at the start of compression of the internal combustion engine can be obtained.

(請求項の発明)
請求項1または2に記載した内燃機関の制御装置において、標準筒内圧算出手段は、内燃機関の吸気弁が吸気ポートを閉じる直前の一定期間中に検出された複数の吸気圧を吸気圧センサから取り込み、その複数の吸気圧の平均値を基に、標準筒内圧を算出することを特徴とする。複数の吸気圧の平均値を採用することで、ノイズによる誤差や吸気脈動の影響を排除できるので、圧縮開始時の筒内圧を精度良く検出(推定)できる。
(Invention of Claim 4 )
3. The control apparatus for an internal combustion engine according to claim 1 or 2 , wherein the standard in-cylinder pressure calculating means obtains a plurality of intake pressures detected during a certain period immediately before the intake valve of the internal combustion engine closes the intake port from the intake pressure sensor. The standard in-cylinder pressure is calculated based on the intake and the average value of the plurality of intake pressures. By adopting the average value of a plurality of intake pressures, it is possible to eliminate the error due to noise and the influence of intake pulsation, so that the cylinder pressure at the start of compression can be detected (estimated) with high accuracy.

(請求項の発明)
請求項1〜に記載した何れかの内燃機関の制御装置において、ゲイン誤差算出手段は、筒内への燃料噴射がカットされる非燃焼状態の時に、ゲイン誤差の算出処理を実施することを特徴とする。
例えば、車両減速時などの燃料噴射がカットされる時には、当然、燃料の燃焼による燃焼圧力が発生しないので、筒内燃焼による圧力上昇を除いた非燃焼状態に相当する標準筒内圧を精度良く算出できる。
(Invention of Claim 5 )
The control system of any internal combustion engine according to claim 1-4, the gain error calculation means, when a non-combustion state in which the fuel injection into the cylinder is cut, to implement the process of calculating the gain error Features.
For example, when fuel injection is cut, such as when the vehicle is decelerating, naturally, no combustion pressure is generated due to fuel combustion, so the standard in-cylinder pressure corresponding to the non-combustion state excluding pressure rise due to in-cylinder combustion is accurately calculated. it can.

(請求項の発明)
請求項1〜に記載した何れかの内燃機関の制御装置において、標準筒内圧算出手段は、内燃機関の吸気弁が吸気ポートを閉じて以降、燃料の燃焼による燃焼圧力が発生する以前の少なくとも一点のクランク角で標準筒内圧を算出することを特徴とする。
この場合、ゲイン誤差の算出処理を実施する場合に、燃料噴射がカットされる非燃焼状態の時に限定する必要がなく、通常の燃焼サイクル時にも実施できる。すなわち、通常の車両走行時であっても、燃料の燃焼による燃焼圧力が発生する以前(例えば圧縮行程)であれば、筒内燃焼による圧力上昇を除いた非燃焼状態に相当する標準筒内圧を精度良く算出できる。
(Invention of Claim 6 )
The control system of any internal combustion engine according to claim 1 to 5, the standard cylinder pressure calculation means, after closing the intake port an intake valve of an internal combustion engine, before at least the combustion pressure from the combustion of the fuel occurs The standard in-cylinder pressure is calculated from one crank angle.
In this case, the gain error calculation process need not be limited to the non-combustion state in which the fuel injection is cut, and can be performed even during a normal combustion cycle. That is, even during normal vehicle travel, if the combustion pressure due to fuel combustion is not generated (for example, the compression stroke), the standard in-cylinder pressure corresponding to the non-combustion state excluding the pressure increase due to in-cylinder combustion is set. It can be calculated with high accuracy.

(請求項の発明)
請求項1〜に記載した何れかの内燃機関の制御装置において、標準筒内圧算出手段は、吸気圧センサより取り込んだ吸気圧を基に、ポリトロープ式を用いて標準筒内圧を算出することを特徴とする。
本発明によれば、内燃機関の圧縮開始時の筒内圧に相当する吸気圧を検出するので、その吸気圧を基に、周知のポリトロープ式を用いて標準筒内圧を算出することができる。
(Invention of Claim 7 )
The control system of any internal combustion engine according to claim 1 to 6, the standard cylinder pressure calculation means, based on the intake pressure taken from the intake pressure sensor, calculating a standard cylinder pressure using the polytropic equation Features.
According to the present invention, since the intake pressure corresponding to the in-cylinder pressure at the start of compression of the internal combustion engine is detected, the standard in-cylinder pressure can be calculated using a known polytropic equation based on the intake pressure.

(請求項の発明)
請求項1〜に記載した何れかの内燃機関の制御装置において、吸気圧センサにより検出される吸気圧に相関する代替値として、内燃機関の吸入空気量(新気量)を検出する吸気量センサを有し、標準筒内圧算出手段は、吸気量センサで検出された吸入空気量を圧力換算して吸気圧を算出し、この吸気圧を基に標準筒内圧を算出することを特徴とする。
吸気圧センサの検出値、つまり吸気管内の吸気圧は、内燃機関に吸入される吸入空気量との相関がある。そこで、吸気圧センサを使用する代わりに、吸入空気量を検出する吸気量センサ(例えばエアフロメータ)を使用し、この吸気量センサの検出値(吸入空気量)を取り込んだ後、圧力換算して吸気圧を算出することができる。なお、新気量とは、内燃機関が吸入する外気の量、つまり、EGRガスを含まない空気量である。
(Invention of Claim 8 )
The control system of any internal combustion engine according to claim 1 to 7, as an alternative value correlating with the intake air pressure detected by the intake pressure sensor, intake air quantity detecting an intake air amount of the internal combustion engine (fresh air amount) The standard in-cylinder pressure calculating means has a sensor, calculates the intake pressure by converting the intake air amount detected by the intake air amount sensor into pressure, and calculates the standard in-cylinder pressure based on the intake pressure. .
The detected value of the intake pressure sensor, that is, the intake pressure in the intake pipe has a correlation with the amount of intake air taken into the internal combustion engine. Therefore, instead of using an intake air pressure sensor, an intake air amount sensor (for example, an air flow meter) that detects the intake air amount is used, and after taking the detected value (intake air amount) of the intake air amount sensor, the pressure is converted. The intake pressure can be calculated. The fresh air amount is the amount of outside air taken in by the internal combustion engine, that is, the amount of air that does not contain EGR gas.

本発明を実施するための最良の形態を以下の実施例により詳細に説明する。   The best mode for carrying out the present invention will be described in detail with reference to the following examples.

図1はディーゼル機関の筒内圧波形図、図3はディーゼル機関の制御系統を示す構成図である。
本実施例の内燃機関は、例えば、図3に示す様に、蓄圧式燃料噴射システムを採用するディーゼル機関1である。
このディーゼル機関1は、シリンダブロック2に形成されたシリンダ3内にピストン4が収容され、シリンダ3内を往復動するピストン4の運動が、コンロッド5を介してディーゼル機関1のクランク軸(図示せず)に回転運動として伝達される。
FIG. 1 is an in-cylinder pressure waveform diagram of a diesel engine, and FIG. 3 is a configuration diagram showing a control system of the diesel engine.
The internal combustion engine of the present embodiment is, for example, a diesel engine 1 that employs an accumulator fuel injection system as shown in FIG.
In the diesel engine 1, a piston 4 is accommodated in a cylinder 3 formed in a cylinder block 2, and the movement of the piston 4 reciprocating in the cylinder 3 is caused by a crankshaft (not shown) of the diesel engine 1 through a connecting rod 5. To be transmitted as a rotational motion.

シリンダブロック2の上端面には、ピストン4の上部に燃焼室6を形成するシリンダヘッド7が固定されている。そのシリンダヘッド7には、燃焼室6に開口する吸気ポート8と排気ポート9とが形成されている。
吸気ポート8と排気ポート9は、それぞれカム(図示せず)によって駆動される吸気弁10と排気弁11とで開閉される。
A cylinder head 7 that forms a combustion chamber 6 in the upper part of the piston 4 is fixed to the upper end surface of the cylinder block 2. The cylinder head 7 is formed with an intake port 8 and an exhaust port 9 that open to the combustion chamber 6.
The intake port 8 and the exhaust port 9 are opened and closed by an intake valve 10 and an exhaust valve 11 driven by cams (not shown), respectively.

吸気ポート8には、外気を吸入するための吸気管12が接続され、吸気弁10が吸気ポート8を開く吸入行程の際に、ピストン4がシリンダ3内を降下して筒内負圧が生じると、吸気管12より吸入された外気が吸気ポート8を通って筒内へ流入する。
また、排気ポート9には、燃焼ガスを排出するための排気管13が接続され、排気弁11が排気ポート9を開く排気行程の際に、ピストン4の上昇により燃焼室6(筒内)から押し出された燃焼ガスが、排気ポート9を通って排気管13へ排出される。
An intake pipe 12 for sucking outside air is connected to the intake port 8, and during the intake stroke in which the intake valve 10 opens the intake port 8, the piston 4 descends in the cylinder 3 to generate an in-cylinder negative pressure. Then, the outside air sucked from the intake pipe 12 flows into the cylinder through the intake port 8.
Further, an exhaust pipe 13 for discharging combustion gas is connected to the exhaust port 9, and the exhaust valve 11 rises from the combustion chamber 6 (inside the cylinder) due to the piston 4 rising during the exhaust stroke in which the exhaust valve 11 opens the exhaust port 9. The extruded combustion gas is discharged to the exhaust pipe 13 through the exhaust port 9.

蓄圧式燃料噴射システムは、噴射圧力に相当する高圧燃料を蓄圧するコモンレール14と、このコモンレール14に高圧燃料を圧送する燃料供給ポンプ(図示せず)と、コモンレール14に蓄圧された高圧燃料をディーゼル機関1の筒内(燃焼室6)に噴射するインジェクタ15等を有し、電子制御ユニット(ECU16と呼ぶ)により制御される。
コモンレール14は、燃料供給ポンプより供給された高圧燃料を目標レール圧まで蓄圧すると共に、その蓄圧された高圧燃料が、燃料配管17を介してインジェクタ15に供給される。コモンレール14の目標レール圧は、ECU16により設定される。具体的には、アクセル開度(機関負荷)と機関回転数等からディーゼル機関1の運転状態を検出し、その運転状態に適した目標レール圧が設定される。
The accumulator fuel injection system includes a common rail 14 that accumulates high-pressure fuel corresponding to the injection pressure, a fuel supply pump (not shown) that pumps high-pressure fuel to the common rail 14, and high-pressure fuel accumulated on the common rail 14 as diesel. It has an injector 15 or the like that injects into the cylinder (combustion chamber 6) of the engine 1, and is controlled by an electronic control unit (referred to as ECU 16).
The common rail 14 accumulates the high-pressure fuel supplied from the fuel supply pump up to the target rail pressure, and the accumulated high-pressure fuel is supplied to the injector 15 via the fuel pipe 17. The target rail pressure of the common rail 14 is set by the ECU 16. Specifically, the operating state of the diesel engine 1 is detected from the accelerator opening (engine load) and the engine speed, and a target rail pressure suitable for the operating state is set.

インジェクタ15は、ECU16によって電子制御される電磁弁と、この電磁弁の開弁動作によって燃料を噴射するノズルとを有し、このノズルの先端部が燃焼室6に突き出た状態で、シリンダヘッド7に取り付けられている。
ECU16は、図3に示す各種センサ類(NEセンサ18、アクセル開度センサ19、燃圧センサ20、筒内圧センサ21、吸気圧センサ22等)で検出されたセンサ情報を入力し、これらのセンサ情報を基に、ディーゼル機関1の運転状態を制御する。
The injector 15 has an electromagnetic valve that is electronically controlled by the ECU 16 and a nozzle that injects fuel by the opening operation of the electromagnetic valve. With the tip of the nozzle protruding into the combustion chamber 6, the cylinder head 7 Is attached.
The ECU 16 inputs sensor information detected by various sensors (NE sensor 18, accelerator opening sensor 19, fuel pressure sensor 20, in-cylinder pressure sensor 21, intake pressure sensor 22, etc.) shown in FIG. Based on this, the operation state of the diesel engine 1 is controlled.

NEセンサ18は、ディーゼル機関1のクランク軸と同期して回転するパルサ23の近傍に配置され、クランク軸と共にパルサ23が1回転する間に、パルサ23の外周部に設けられた歯部の数に相当する複数のパルス信号を出力する。ECU16では、NEセンサ18より出力されたパルス信号の時間間隔を計測することで機関回転数NEを検出する。 アクセル開度センサ19は、運転者が操作するアクセルペダル(図示せず)の操作量(踏込み量)よりアクセル開度を検出して、ECU16に出力する。   The NE sensor 18 is disposed in the vicinity of the pulsar 23 that rotates in synchronization with the crankshaft of the diesel engine 1, and the number of teeth provided on the outer peripheral portion of the pulsar 23 while the pulsar 23 rotates once with the crankshaft. A plurality of pulse signals corresponding to are output. The ECU 16 detects the engine speed NE by measuring the time interval of the pulse signal output from the NE sensor 18. The accelerator opening sensor 19 detects the accelerator opening from an operation amount (depression amount) of an accelerator pedal (not shown) operated by the driver, and outputs the detected accelerator opening to the ECU 16.

燃圧センサ20は、コモンレール14に取り付けられ、そのコモンレール14に蓄圧された燃料圧力(実レール圧)を検出して、ECU16に出力する。
筒内圧センサ21は、シリンダヘッド7に取り付けられ、ディーゼル機関1の筒内圧を検出して、ECU16に出力する。
吸気圧センサ22は、吸気管12に取り付けられ、吸気管12内の吸気圧を検出して、ECU16に出力する。
The fuel pressure sensor 20 is attached to the common rail 14, detects the fuel pressure (actual rail pressure) accumulated in the common rail 14, and outputs it to the ECU 16.
The in-cylinder pressure sensor 21 is attached to the cylinder head 7, detects the in-cylinder pressure of the diesel engine 1, and outputs it to the ECU 16.
The intake pressure sensor 22 is attached to the intake pipe 12, detects the intake pressure in the intake pipe 12, and outputs it to the ECU 16.

ECU16は、上記のセンサ情報を基に、噴射圧制御および噴射量制御を実施する。
噴射圧制御は、コモンレール14に蓄圧される燃料圧力を制御するもので、燃圧センサ20によって検出される実レール圧が目標レール圧と一致する様に、燃料供給ポンプの吐出量(ポンプ吐出量)をフィードバック制御する。
噴射量制御は、インジェクタ15より噴射される噴射量および噴射時期を制御するもので、ディーゼル機関1の運転状態に応じた最適な噴射量および噴射時期を演算し、その演算結果に従ってインジェクタ15の電磁弁を駆動する。
The ECU 16 performs injection pressure control and injection amount control based on the sensor information.
The injection pressure control is to control the fuel pressure accumulated in the common rail 14, and the discharge amount (pump discharge amount) of the fuel supply pump so that the actual rail pressure detected by the fuel pressure sensor 20 matches the target rail pressure. Feedback control.
The injection amount control controls the injection amount and the injection timing injected from the injector 15, calculates the optimal injection amount and the injection timing according to the operating state of the diesel engine 1, and according to the calculation result, the electromagnetic amount of the injector 15 is calculated. Drive the valve.

また、ECU16は、例えば、燃料の噴射時期を最適に制御するために、筒内圧センサ21の検出値(筒内圧)を基に、燃料の着火時期(燃焼開始時期)を検出している。
ところで、筒内圧センサ21は、温度等の使用条件および経時変化等により、図2に示す様に、出力特性にゲイン誤差を生じる(出力感度が変化する)と、燃焼開始時期の検出精度が低下する恐れがある。
そこで、ECU16は、筒内圧センサ21のゲイン誤差を算出して、出力特性を補正するためのゲイン誤差算出手段の機能を備えている。
Further, the ECU 16 detects the fuel ignition timing (combustion start timing) based on the detection value (cylinder pressure) of the in-cylinder pressure sensor 21 in order to optimally control the fuel injection timing, for example.
By the way, as shown in FIG. 2, the cylinder pressure sensor 21 has a gain error in output characteristics (changes in output sensitivity) due to use conditions such as temperature and changes with time, and the detection accuracy of the combustion start timing decreases. There is a fear.
Therefore, the ECU 16 has a function of gain error calculation means for calculating the gain error of the in-cylinder pressure sensor 21 and correcting the output characteristics.

以下に、筒内圧センサ21のゲイン誤差を算出するための処理手順を図4に示すフローチャートを基に説明する。
なお、図4に示す処理は、ディーゼル機関1の筒内が非燃焼状態の時、例えば、車両減速時等の燃料噴射カット時に実施される。
ステップ10…吸気弁10が吸気ポート8を閉じる吸気弁閉弁時期を入力する。
ステップ20…吸気圧センサ22より検出値(センサ値Pmと呼ぶ)を取り込む時期を決定する。ここでは、吸気弁10の閉弁時期の直前、例えば、吸気弁10の閉弁時期より5°CA(クランク角)前とする。
Hereinafter, a processing procedure for calculating the gain error of the in-cylinder pressure sensor 21 will be described with reference to a flowchart shown in FIG.
Note that the processing shown in FIG. 4 is performed when the cylinder of the diesel engine 1 is in a non-combustion state, for example, when fuel injection is cut, such as during vehicle deceleration.
Step 10 ... The intake valve closing timing at which the intake valve 10 closes the intake port 8 is input.
Step 20: The timing for taking in the detected value (referred to as sensor value Pm) from the intake pressure sensor 22 is determined. Here, it is set immediately before the closing timing of the intake valve 10, for example, 5 ° CA (crank angle) before the closing timing of the intake valve 10.

ステップ30…吸気圧センサ22からセンサ値Pmを取り込む時のクランク角に対応したシリンダ容積V1を、ECU16に内蔵されたメモリから読み出す。このシリンダ容積V1は、吸気弁10が吸気ポート8を閉じた時のシリンダ容積と略同等である。なお、ECU16のメモリには、クランク角とシリンダ容積との相関を示すデータが記憶されている。
ステップ40…ステップ20で決定した取り込み時期(図1に示す時刻t1)において、吸気圧センサ22よりセンサ値Pmを取り込む。この吸気圧センサ22より取り込んだセンサ値Pmは、ディーゼル機関1の圧縮開始時の筒内圧に相当する。
Step 30: The cylinder volume V1 corresponding to the crank angle when the sensor value Pm is taken from the intake pressure sensor 22 is read from the memory built in the ECU 16. The cylinder volume V1 is substantially equal to the cylinder volume when the intake valve 10 closes the intake port 8. Note that data indicating the correlation between the crank angle and the cylinder volume is stored in the memory of the ECU 16.
Step 40... The sensor value Pm is captured from the intake pressure sensor 22 at the capture time determined at Step 20 (time t1 shown in FIG. 1). The sensor value Pm acquired from the intake pressure sensor 22 corresponds to the in-cylinder pressure at the start of compression of the diesel engine 1.

ステップ50…ポリトロープ指数nをメモリから読み出す。このポリトロープ指数nは、例えば、吸気圧と機関回転数とから求めることができ、その吸気圧と機関回転数を座標軸とするマップ上に記憶されている。従って、ステップ40で取り込んだセンサ値Pm(吸気圧)と、その時点の機関回転数NEとを用いて、マップ検索によりポリトロープ指数nを求める。   Step 50: The polytropic index n is read from the memory. The polytropic index n can be obtained from, for example, the intake pressure and the engine speed, and is stored on a map having the intake pressure and the engine speed as coordinate axes. Accordingly, the polytropic index n is obtained by map search using the sensor value Pm (intake pressure) acquired in step 40 and the engine speed NE at that time.

ステップ60(本発明の標準筒内圧算出手段)…吸気弁10が吸気ポート8を閉じてから、排気弁11が排気ポート9を開くまでの期間(吸気弁10と排気弁11が共に閉弁状態にある期間)において、ある一点のクランク角を標準点と呼ぶ時に、その標準点(図1に示す時刻t2)での筒内圧(標準筒内圧Pbと呼ぶ)を算出する。この標準筒内圧Pbは、下記のポリトロープ式(1)を用いて算出する。
Pb=Pm×(V1/V2)n ………………(1)
V1:吸気弁閉弁時のシリンダ容積
V2:標準点でのシリンダ容積
Step 60 (standard in-cylinder pressure calculating means of the present invention): A period from when the intake valve 10 closes the intake port 8 to when the exhaust valve 11 opens the exhaust port 9 (both the intake valve 10 and the exhaust valve 11 are closed) In a certain period), when a crank angle at a certain point is called a standard point, an in-cylinder pressure (referred to as a standard in-cylinder pressure Pb) at the standard point (time t2 shown in FIG. 1) is calculated. This standard in-cylinder pressure Pb is calculated using the following polytropic equation (1).
Pb = Pm × (V1 / V2) n (1)
V1: Cylinder volume when intake valve is closed V2: Cylinder volume at standard point

ステップ70…上記の標準点(図1の時刻t2)にて検出された筒内圧センサ21の検出値Psを取り込む。
ステップ80…ステップ60で求めた標準筒内圧Pbと、ステップ70で取り込んだ筒内圧センサ21の検出値Psとを比較して、下記の式(2)より、筒内圧センサ21のゲイン誤差ΔGaを算出する。
ΔGa=Ps/Pb………………………………(2)
Step 70: The detection value Ps of the in-cylinder pressure sensor 21 detected at the standard point (time t2 in FIG. 1) is taken in.
Step 80: The standard in-cylinder pressure Pb obtained in step 60 is compared with the detected value Ps of the in-cylinder pressure sensor 21 taken in step 70, and the gain error ΔGa of the in-cylinder pressure sensor 21 is calculated from the following equation (2). calculate.
ΔGa = Ps / Pb ………………………… (2)

(実施例1の効果)
ディーゼル機関1の圧縮時の筒内圧は、圧縮開始時の圧力により大きく変化することが分かっている。これに対し、上記の実施例1では、圧縮開始時の筒内圧に相当する吸気圧、つまり、吸気弁10が吸気ポート8を閉じる直前の吸気圧を吸気圧センサ22により検出してECU16に取り込むことにより、圧縮開始時の圧力を検出(推定)している。その結果、標準点(時刻t2)における真の筒内圧(標準筒内圧Pb)を精度良く算出できるため、その標準筒内圧Pbと、同時刻t2に取り込まれた筒内圧センサ21の検出値Psとを比較することで、ゲイン誤差ΔGaの算出精度が向上し、筒内圧センサ21の出力特性をゲイン誤差ΔGaに応じて精度良く補正できる。
(Effect of Example 1)
It has been found that the in-cylinder pressure at the time of compression of the diesel engine 1 varies greatly depending on the pressure at the start of compression. On the other hand, in the first embodiment, the intake pressure corresponding to the in-cylinder pressure at the start of compression, that is, the intake pressure immediately before the intake valve 10 closes the intake port 8 is detected by the intake pressure sensor 22 and is taken into the ECU 16. Thus, the pressure at the start of compression is detected (estimated). As a result, since the true in-cylinder pressure (standard in-cylinder pressure Pb) at the standard point (time t2) can be calculated with high accuracy, the standard in-cylinder pressure Pb and the detected value Ps of the in-cylinder pressure sensor 21 taken in at the same time t2 , The calculation accuracy of the gain error ΔGa is improved, and the output characteristics of the in-cylinder pressure sensor 21 can be accurately corrected according to the gain error ΔGa.

なお、この実施例1では、燃料の着火時期を検出するために筒内圧センサ21を使用する一例を記載したが、これ以外にも、筒内圧センサ21の使用例として、例えば、噴射量や燃焼温度を推定する方法等があり、これらの場合でも、実施例1に記載した筒内圧センサ21のゲイン誤差を算出して、出力特性を補正する方法を適用できることは言うまでもない。   In the first embodiment, an example in which the in-cylinder pressure sensor 21 is used to detect the ignition timing of the fuel has been described, but other examples of use of the in-cylinder pressure sensor 21 include, for example, an injection amount and a combustion There are methods for estimating the temperature, etc., and even in these cases, it goes without saying that the method of calculating the gain error of the in-cylinder pressure sensor 21 described in the first embodiment and correcting the output characteristics can be applied.

実施例1のステップ20では、吸気圧センサ22よりセンサ値Pmを取り込む時期を、吸気弁10の閉弁時期の直前、例えば、吸気弁10の閉弁時期より5°CA(クランク角)前とする一例を記載したが、その他にも、例えば、吸気弁10が吸気ポート8を閉じる直前の一定期間中に検出される複数の吸気圧を吸気圧センサ22から取り込み、その複数の吸気圧の平均値を基に標準筒内圧を算出することもできる。
この方法によれば、取り込んだ複数の吸気圧の平均値を求めることで、ノイズによる検出誤差や吸気脈動の影響を排除できるので、信頼性が向上し、圧縮開始時の筒内圧に相当する吸気圧をより精度良く検出できる。
In step 20 of the first embodiment, the timing at which the sensor value Pm is captured from the intake pressure sensor 22 is set immediately before the closing timing of the intake valve 10, for example, 5 ° CA (crank angle) before the closing timing of the intake valve 10. In addition to this, for example, a plurality of intake pressures detected during a certain period immediately before the intake valve 10 closes the intake port 8 is taken in from the intake pressure sensor 22, and an average of the plurality of intake pressures is taken. The standard in-cylinder pressure can also be calculated based on the value.
According to this method, by obtaining the average value of a plurality of intake air pressures that have been taken in, it is possible to eliminate the effects of detection errors due to noise and the effects of intake air pulsation, so that reliability is improved and the intake pressure corresponding to the in-cylinder pressure at the start of compression is improved. The atmospheric pressure can be detected with higher accuracy.

また、図5に示す様に、吸気管12に取り付けられる吸気圧センサ22の取付け位置がシリンダ3から離れている場合は、吸気管12内に生じる圧力変動により、吸気弁10が閉弁する直前での筒内圧(圧縮開始時の圧力)と、吸気圧センサ22の検出値とが異なる場合が生じる。
ここで、吸気管12内に生じる圧力変動の周期は、少なくとも機関回転数に依存することが分かっている。そこで、吸気圧センサ22の検出時期(ECU16が吸気圧センサ22からセンサ値Pmを取り込む時期)を機関回転数によって補正することで、圧縮開始時の筒内圧を精度良く検出(推定)できる。
Further, as shown in FIG. 5, when the attachment position of the intake pressure sensor 22 attached to the intake pipe 12 is away from the cylinder 3, immediately before the intake valve 10 is closed due to the pressure fluctuation generated in the intake pipe 12. In-cylinder pressure (pressure at the time of starting compression) at the time and the detected value of the intake pressure sensor 22 may be different.
Here, it is known that the period of the pressure fluctuation generated in the intake pipe 12 depends at least on the engine speed. Therefore, the in-cylinder pressure at the start of compression can be accurately detected (estimated) by correcting the detection timing of the intake pressure sensor 22 (the timing at which the ECU 16 takes in the sensor value Pm from the intake pressure sensor 22) with the engine speed.

さらに、吸気管12内に生じる圧力変動の周期は、機関回転数以外にも、例えば、シリンダ位置から吸気圧センサ22の取付け位置までの吸気管12の長さ、吸気管12の断面積、シリンダ容積等にも依存する。従って、吸気圧センサ22の検出時期を、機関回転数による補正に加えて、更に上記の吸気圧センサ22の取付け位置、吸気管12の断面積、シリンダ容積等の少なくとも1つによって補正することで、さらに圧縮開始時の筒内圧を精度良く検出(推定)できる。   Further, the cycle of the pressure fluctuation generated in the intake pipe 12 includes, for example, the length of the intake pipe 12 from the cylinder position to the installation position of the intake pressure sensor 22, the cross-sectional area of the intake pipe 12, the cylinder other than the engine speed. It also depends on the volume. Therefore, the detection timing of the intake pressure sensor 22 is corrected by at least one of the mounting position of the intake pressure sensor 22, the cross-sectional area of the intake pipe 12, the cylinder volume, etc. in addition to the correction based on the engine speed. Furthermore, the in-cylinder pressure at the start of compression can be detected (estimated) with high accuracy.

ECU16によるゲイン誤差の算出処理は、燃料噴射がカットされる非燃焼状態の時に限定して実施する必要はなく、通常の燃焼サイクル時にも実施できる。すなわち、通常の車両走行時(燃料噴射が実施されている時)であっても、燃料の燃焼による燃焼圧力が発生する以前(例えば圧縮行程)であれば、筒内燃焼による圧力上昇を除いた非燃焼状態に相当する標準筒内圧を算出できる。従って、実施例1に記載した標準点(標準筒内圧を算出する時のクランク角)を、吸気弁10が吸気ポート8を閉じてから燃焼圧力が発生する以前に設定すれば、燃焼圧力の影響を受けることなく、実施例1と同様の方法で標準筒内圧を算出できる。   The calculation process of the gain error by the ECU 16 does not need to be performed only when the fuel injection is cut and is in a non-combustion state, and can also be performed during a normal combustion cycle. That is, even when the vehicle is running normally (when fuel injection is being performed), the pressure increase due to in-cylinder combustion is excluded before the combustion pressure due to fuel combustion occurs (for example, the compression stroke) The standard in-cylinder pressure corresponding to the non-combustion state can be calculated. Therefore, if the standard point (crank angle when calculating the standard in-cylinder pressure) described in the first embodiment is set before the combustion pressure is generated after the intake valve 10 closes the intake port 8, the influence of the combustion pressure is affected. The standard in-cylinder pressure can be calculated by the same method as in the first embodiment without receiving the above.

実施例1では、吸気圧センサ22のセンサ値Pmを基に標準筒内圧を算出する一例を記載したが、吸気圧に相関する代替値として、図3に示す吸気量センサ24(例えばエアフロメータ)で検出される吸入空気量Ma(EGRガスを含まない新気量)を用いることもできる。この場合、ECU16では、吸気量センサ24から取り込んだ吸入空気量Maを圧力換算して吸気圧を算出し、その吸気圧を基に、実施例1に記載した方法により標準筒内圧を算出することもできる。   In the first embodiment, an example in which the standard in-cylinder pressure is calculated based on the sensor value Pm of the intake pressure sensor 22 is described. However, as an alternative value correlated with the intake pressure, an intake air amount sensor 24 (for example, an air flow meter) shown in FIG. It is also possible to use the intake air amount Ma (the amount of fresh air that does not contain EGR gas) that is detected in step (1). In this case, the ECU 16 calculates the intake pressure by converting the intake air amount Ma taken in from the intake amount sensor 24, and calculates the standard in-cylinder pressure by the method described in the first embodiment based on the intake pressure. You can also.

ディーゼル機関の筒内圧波形図である(実施例1)。It is a cylinder pressure waveform figure of a diesel engine (Example 1). 筒内圧センサの出力特性図である。It is an output characteristic figure of a cylinder pressure sensor. ディーゼル機関の制御系統を示す構成図である。It is a block diagram which shows the control system of a diesel engine. ゲイン誤差を算出するための処理手順を示すフローチャートである。It is a flowchart which shows the process sequence for calculating a gain error. 吸気圧センサの取付け位置に係わる圧縮開始圧力の算出(推定)誤差を示す吸気系の説明図である。It is explanatory drawing of the intake system which shows the calculation (estimation) error of the compression start pressure concerning the attachment position of an intake pressure sensor. 内燃機関の筒内圧波形図である(従来技術)。It is a cylinder pressure waveform figure of an internal combustion engine (prior art).

符号の説明Explanation of symbols

1 ディーゼル機関(内燃機関)
3 シリンダ
8 吸気ポート
10 吸気弁
12 吸気管
16 ECU(制御装置/ゲイン誤差算出手段)
21 筒内圧センサ
22 吸気圧センサ
24 吸気量センサ
1 Diesel engine (internal combustion engine)
3 Cylinder 8 Intake Port 10 Intake Valve 12 Intake Pipe 16 ECU (Control Device / Gain Error Calculation Means)
21 In-cylinder pressure sensor 22 Intake pressure sensor 24 Intake air amount sensor

Claims (8)

内燃機関のシリンダ内圧力(筒内圧と呼ぶ)を検出する筒内圧センサと、
前記内燃機関の吸気管内の圧力(吸気圧と呼ぶ)を検出する吸気圧センサと、
この吸気圧センサから得られる情報を基に、前記筒内圧センサの出力特性に対するゲイン誤差を算出するゲイン誤差算出手段とを備え、
前記ゲイン誤差算出手段は、
前記内燃機関の圧縮開始時の筒内圧に相当する吸気圧を前記吸気圧センサから取り込み、その吸気圧を基に、前記内燃機関の筒内燃焼による圧力上昇を除いた非燃焼状態に相当する筒内圧(標準筒内圧と呼ぶ)を算出する標準筒内圧算出手段を有し、
算出された前記標準筒内圧と前記筒内圧センサの検出値とを比較して、前記筒内圧センサのゲイン誤差を算出する内燃機関の制御装置であって、
前記標準筒内圧算出手段は、前記吸気圧センサの検出時期を、前記内燃機関の回転速度に応じて補正することを特徴とする内燃機関の制御装置。
An in-cylinder pressure sensor for detecting an in-cylinder pressure of an internal combustion engine (referred to as in-cylinder pressure);
An intake pressure sensor for detecting a pressure in an intake pipe of the internal combustion engine (referred to as intake pressure);
Based on the information obtained from the intake pressure sensor, Bei example a gain error calculation means for calculating a gain error for the output characteristics of the cylinder pressure sensor,
The gain error calculating means includes
A cylinder corresponding to a non-combustion state in which an intake pressure corresponding to the in-cylinder pressure at the start of compression of the internal combustion engine is taken from the intake pressure sensor and a pressure increase due to in-cylinder combustion of the internal combustion engine is excluded based on the intake pressure. A standard in-cylinder pressure calculating means for calculating an internal pressure (referred to as a standard in-cylinder pressure);
Calculated the by comparison with a standard cylinder pressure and the detection value of the cylinder pressure sensor, a control apparatus for an internal combustion engine that to calculate the gain error of the cylinder pressure sensor,
The control apparatus for an internal combustion engine, wherein the standard in-cylinder pressure calculating means corrects the detection timing of the intake pressure sensor in accordance with a rotation speed of the internal combustion engine.
内燃機関のシリンダ内圧力(筒内圧と呼ぶ)を検出する筒内圧センサと、
前記内燃機関の吸気管内の圧力(吸気圧と呼ぶ)を検出する吸気圧センサと、
この吸気圧センサから得られる情報を基に、前記筒内圧センサの出力特性に対するゲイン誤差を算出するゲイン誤差算出手段とを備え、
前記ゲイン誤差算出手段は、
前記内燃機関の圧縮開始時の筒内圧に相当する吸気圧を前記吸気圧センサから取り込み、その吸気圧を基に、前記内燃機関の筒内燃焼による圧力上昇を除いた非燃焼状態に相当する筒内圧(標準筒内圧と呼ぶ)を算出する標準筒内圧算出手段を有し、
算出された前記標準筒内圧と前記筒内圧センサの検出値とを比較して、前記筒内圧センサのゲイン誤差を算出する内燃機関の制御装置であって、
前記標準筒内圧算出手段は、前記吸気圧センサの検出時期を、前記内燃機関のシリンダ位置から前記吸気圧センサの取付け位置までの吸気管長さ、または前記吸気管の断面積、または前記内燃機関のシリンダ容積の少なくとも1つに応じて補正することを特徴とする内燃機関の制御装置。
An in-cylinder pressure sensor for detecting an in-cylinder pressure of an internal combustion engine (referred to as in-cylinder pressure);
An intake pressure sensor for detecting a pressure in an intake pipe of the internal combustion engine (referred to as intake pressure);
Based on information obtained from the intake pressure sensor, a gain error calculation means for calculating a gain error with respect to the output characteristic of the in-cylinder pressure sensor,
The gain error calculating means includes
A cylinder corresponding to a non-combustion state in which an intake pressure corresponding to the in-cylinder pressure at the start of compression of the internal combustion engine is taken from the intake pressure sensor and a pressure increase due to in-cylinder combustion of the internal combustion engine is excluded based on the intake pressure. A standard in-cylinder pressure calculating means for calculating an internal pressure (referred to as a standard in-cylinder pressure);
A control device for an internal combustion engine that calculates a gain error of the in-cylinder pressure sensor by comparing the calculated standard in-cylinder pressure and a detection value of the in-cylinder pressure sensor,
The standard in-cylinder pressure calculating means determines the detection timing of the intake pressure sensor, the intake pipe length from the cylinder position of the internal combustion engine to the installation position of the intake pressure sensor, the cross-sectional area of the intake pipe, or the internal combustion engine A control apparatus for an internal combustion engine, wherein the correction is made according to at least one of the cylinder volumes .
請求項1または2に記載した内燃機関の制御装置において、
前記標準筒内圧算出手段は、前記内燃機関の吸気弁が吸気ポートを閉じる直前に検出された吸気圧を前記吸気圧センサから取り込み、その吸気圧を基に前記標準筒内圧を算出することを特徴とする内燃機関の制御装置。
The control apparatus for an internal combustion engine according to claim 1 or 2 ,
The standard in-cylinder pressure calculating means takes in the intake pressure detected immediately before the intake valve of the internal combustion engine closes the intake port from the intake pressure sensor, and calculates the standard in-cylinder pressure based on the intake pressure. A control device for an internal combustion engine.
請求項1または2に記載した内燃機関の制御装置において、
前記標準筒内圧算出手段は、前記内燃機関の吸気弁が吸気ポートを閉じる直前の一定期間中に検出された複数の吸気圧を前記吸気圧センサから取り込み、その複数の吸気圧の平均値を基に、前記標準筒内圧を算出することを特徴とする内燃機関の制御装置。
The control apparatus for combustion engine among according to claim 1 or 2,
The standard in-cylinder pressure calculating means takes in a plurality of intake pressures detected during a predetermined period immediately before the intake valve of the internal combustion engine closes the intake port from the intake pressure sensor, and based on an average value of the plurality of intake pressures. And a control device for an internal combustion engine , wherein the standard in-cylinder pressure is calculated .
請求項1〜4に記載した何れかの内燃機関の制御装置において、
前記ゲイン誤差算出手段は、筒内への燃料噴射がカットされる非燃焼状態の時に、前記ゲイン誤差の算出処理を実施することを特徴とする内燃機関の制御装置。
In the control device for an internal combustion engine according to any one of claims 1 to 4,
The control apparatus for an internal combustion engine, wherein the gain error calculation means performs the gain error calculation process in a non-combustion state in which fuel injection into a cylinder is cut off .
請求項1〜5に記載した何れかの内燃機関の制御装置において、
前記標準筒内圧算出手段は、前記内燃機関の吸気弁が吸気ポートを閉じて以降、燃料の燃焼による燃焼圧力が発生する以前の少なくとも一点のクランク角で前記標準筒内圧を算出することを特徴とする内燃機関の制御装置。
In the control device for an internal combustion engine according to any one of claims 1 to 5,
The standard in-cylinder pressure calculating means calculates the standard in-cylinder pressure at at least one crank angle before the combustion pressure due to fuel combustion occurs after the intake valve of the internal combustion engine closes the intake port. A control device for an internal combustion engine.
請求項1〜6に記載した何れかの内燃機関の制御装置において、
前記標準筒内圧算出手段は、前記吸気圧センサより取り込んだ吸気圧を基に、ポリトロープ式を用いて前記標準筒内圧を算出することを特徴とする内燃機関の制御装置。
The control device for an internal combustion engine according to any one of claims 1 to 6,
The control apparatus for an internal combustion engine, wherein the standard in-cylinder pressure calculating means calculates the standard in-cylinder pressure using a polytropic formula based on the intake pressure taken in from the intake pressure sensor.
請求項1〜に記載した何れかの内燃機関の制御装置において、
前記吸気圧センサにより検出される吸気圧に相関する代替値として、前記内燃機関の吸入空気量(新気量)を検出する吸気量センサを有し、
前記標準筒内圧算出手段は、前記吸気量センサで検出された吸入空気量を圧力換算して吸気圧を算出し、この吸気圧を基に前記標準筒内圧を算出することを特徴とする内燃機関の制御装置
The control device for an internal combustion engine according to any one of claims 1 to 7 ,
As an alternative value correlated with the intake pressure detected by the intake pressure sensor, an intake air amount sensor that detects an intake air amount (fresh air amount) of the internal combustion engine,
The internal cylinder engine is characterized in that the standard in-cylinder pressure calculating means calculates an intake air pressure by converting an intake air amount detected by the intake air amount sensor, and calculates the standard in-cylinder pressure based on the intake air pressure. Control device .
JP2004161564A 2004-05-31 2004-05-31 Control device for internal combustion engine Expired - Fee Related JP4214955B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004161564A JP4214955B2 (en) 2004-05-31 2004-05-31 Control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004161564A JP4214955B2 (en) 2004-05-31 2004-05-31 Control device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2005344513A JP2005344513A (en) 2005-12-15
JP4214955B2 true JP4214955B2 (en) 2009-01-28

Family

ID=35497145

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004161564A Expired - Fee Related JP4214955B2 (en) 2004-05-31 2004-05-31 Control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP4214955B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4630842B2 (en) * 2006-05-09 2011-02-09 本田技研工業株式会社 In-cylinder pressure detection device for internal combustion engine
JP4552898B2 (en) 2006-05-30 2010-09-29 株式会社デンソー In-cylinder pressure sensor abnormality determination device
KR100809581B1 (en) 2006-08-24 2008-03-04 한양대학교 산학협력단 Cylinder pressure pegging method based on the least squares method with a varying polytropic coefficient
JP5218913B2 (en) * 2009-01-29 2013-06-26 トヨタ自動車株式会社 In-cylinder pressure sensor deterioration determination device
EP2538063B1 (en) 2010-02-16 2014-11-05 Toyota Jidosha Kabushiki Kaisha In-cylinder pressure estimation device for internal combustion engine
JP6365158B2 (en) * 2014-09-12 2018-08-01 株式会社デンソー In-cylinder pressure detector
CN114876660B (en) * 2022-05-20 2023-04-18 潍柴动力股份有限公司 Correction method and device for fuel injection advance angle and electronic equipment

Also Published As

Publication number Publication date
JP2005344513A (en) 2005-12-15

Similar Documents

Publication Publication Date Title
US7117082B2 (en) Controller for internal combustion engine
JP4333709B2 (en) In-cylinder injection internal combustion engine control device
JP4428427B2 (en) Fuel injection characteristic detecting device and fuel injection command correcting device
US7272486B2 (en) Method of controlling an internal combustion engine with a common rail fuel injection system
JP5023039B2 (en) In-cylinder pressure measuring device
US8370050B2 (en) Instantaneous interruption detection apparatus and internal combustion engine control apparatus including the same
JP2005307747A (en) Fuel supply device for internal combustion engine
JP2009057908A (en) Fuel injection control device and fuel injection system using the device
JP2007032540A (en) Internal combustion engine control device
JP4214955B2 (en) Control device for internal combustion engine
US7921699B2 (en) Apparatus for detecting rotational position of internal combustion engine
JP5229394B2 (en) Control device for internal combustion engine
JP2009174322A (en) Cetane number detection device of internal combustion engine
KR102330460B1 (en) Method and device for providing a filtered air system state variable in a control unit of an internal combustion engine
US6997167B2 (en) Fuel injection control system for engine
JP2005048659A (en) Fuel temperature estimation device
EP2584182B1 (en) Fuel injection amount calculation method and fuel injection controlling apparatus
JP2013068130A (en) Restart control system of internal combustion engine
EP1541847A1 (en) Throttle opening estimation method and ecu (electronic control unit)
JP4277280B2 (en) Crank angle measuring device and measuring method
US20160290274A1 (en) Method, computer program, electronic storage medium and electronic control device for controlling an internal combustion engine
JP5267441B2 (en) Fuel injection device for internal combustion engine
JP4788700B2 (en) Fuel injection control device and fuel injection system using the same
JP2009092075A (en) Control device of cylinder injection internal combustion engine
JP6365158B2 (en) In-cylinder pressure detector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060713

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080710

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080722

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080911

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081014

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081027

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111114

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111114

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121114

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131114

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees