JP4214392B2 - Arsenic wastewater treatment equipment - Google Patents

Arsenic wastewater treatment equipment Download PDF

Info

Publication number
JP4214392B2
JP4214392B2 JP2003270407A JP2003270407A JP4214392B2 JP 4214392 B2 JP4214392 B2 JP 4214392B2 JP 2003270407 A JP2003270407 A JP 2003270407A JP 2003270407 A JP2003270407 A JP 2003270407A JP 4214392 B2 JP4214392 B2 JP 4214392B2
Authority
JP
Japan
Prior art keywords
arsenic
gas
water
arsine
containing wastewater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003270407A
Other languages
Japanese (ja)
Other versions
JP2005021858A (en
Inventor
一樹 林
勝信 北見
知洋 関本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2003270407A priority Critical patent/JP4214392B2/en
Publication of JP2005021858A publication Critical patent/JP2005021858A/en
Application granted granted Critical
Publication of JP4214392B2 publication Critical patent/JP4214392B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Water Treatment By Sorption (AREA)
  • Treating Waste Gases (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Degasification And Air Bubble Elimination (AREA)
  • Physical Water Treatments (AREA)

Description

本発明は、ヒ素含有排水の処理装置に関する。さらに詳しくは、本発明は、化合物半導体のデバイス製造工場などから排出されるヒ素含有排水と、該排水中に含まれるアルシンガスを処理することができるヒ素含有排水の処理装置に関する。   The present invention relates to an apparatus for treating arsenic-containing wastewater. More particularly, the present invention relates to an arsenic-containing wastewater discharged from a compound semiconductor device manufacturing plant and the like, and an arsenic-containing wastewater treatment apparatus capable of treating arsine gas contained in the wastewater.

III−V族化合物半導体は、周期表のアルミニウム、ガリウム、インジウムなどのIII族の元素と、リン、ヒ素、アンチモンなどのV族の元素を組み合わせたもので、GaAs、GaAsP、GaP、GaN、GaAlAs、InGaAs、InGaP、InPなどが化合物半導体として知られている。これらの化合物半導体を用いると、レーザー発光や、シリコン基板より高速で動く電子を発生させることが可能となり、半導体レーザー、受光素子、マイクロ波半導体、高速デジタルICなどの製造が可能となる。しかし、これらの金属のうち、ガリウムはシリコンに比べて地球上にごくわずかしか存在せず、希少かつ高価な金属であり、原料の入手過程や、結晶精製過程のコストを考えると、シリコンに比べて割高である。
したがって、ウェーハ製造メーカーやデバイス製造メーカーでは、ガリウムを回収することが行われている。ガリウムは、ウェーハ製造メーカーであれば、インゴットからウェーハを切り出すスライシング工程や、ウェーハ表面の研磨を行うラッピング工程、ポリッシング工程から研削屑として排出されたり、あるいは、ウェーハの硝酸、塩酸、硫酸、リン酸などの酸又はアンモニア水などのアルカリによる洗浄に際して、洗浄後の濃厚排液や、水洗後の希薄排液中にイオン状で含有されて排出される。また、デバイス製造メーカーにおいても、ウェーハの裏面を研削するバックグラインディング工程や、ウェーハ上のチップを切り出すダイシング工程から研削屑として排出されたり、あるいは、酸アルカリ洗浄後の濃厚排液、希薄排液中にイオン状で含有されて排出される。ヒ化ガリウム系化合物の場合は、ガリウムと同時にヒ素が排出されるために、排水に含有される毒性の強いヒ素も除去しなければならない。ヒ化ガリウムの場合、研磨当初はヒ素がGaAsとしてそのまま排出されるが、徐々にイオン状に酸化され、亜ヒ酸、ヒ酸となって水に溶解する。本発明者らは、化合物半導体のウェーハ製造工場、デバイス製造工場などから排出されるガリウム及びヒ素を含有する排水を処理して、希少かつ有価金属であるガリウムを効率的に回収するとともに、ヒ素の凝集沈殿汚泥が発生しない処理装置として、ガリウム及びヒ素を含有する排水中のガリウムを吸着するガリウム吸着手段と、ガリウム吸着手段の処理水中のヒ素を濃縮する膜分離手段と、膜分離手段の透過水中のヒ素を除去するヒ素除去手段とを有する図1に示すガリウム及びヒ素を含有する排水の処理装置を提案した(特許文献1)。
ヒ素は、半導体製造工場排水のみならず、殺虫剤、殺菌剤、顔料製造などの化学工場、非鉄金属製造工場、木材処理工場などの排水にも含まれ、特定地域の飲料水や温泉排水にも多量に含まれる場合がある。ヒ素は、生物処理による終末処理場で処理することができないばかりでなく、微生物の活動を阻害し、処理機能を低下させ、さらに活性汚泥中に蓄積される。従来より、排水中のヒ素は、鉄塩を用いて固体のヒ化ガリウムや、イオン状の亜ヒ酸、ヒ酸を共沈処理する方法や、膜により固液分離して固体のヒ化ガリウムを濃縮処理し、吸着剤を使用して、処理水に含まれる亜ヒ酸、ヒ酸を処理する方法が行われていた。本発明者らは、化合物半導体のウェーハ製造工場、デバイス製造工場などから排出されるヒ素含有排水を処理して、鉄塩による凝集汚泥の発生量を大幅に低減し、又は、凝集汚泥が発生しないヒ素含有排水の処理装置として、ヒ素含有排水中のヒ素を濃縮する膜分離手段と、膜分離手段の透過水が導入され透過水中のヒ素を除去するヒ素除去手段とを有する図2に示すヒ素含有排水の処理装置を提案した(特許文献2)。
本発明者らの提案により、ヒ素含有排水中に存在する固体状のヒ素及び溶解しているヒ素を大量の凝集汚泥を発生することなく、効率的に除去することが可能となった。デバイス製造工程などでは、熱、酸などの影響により発生した微量のアルシンガスがヒ素含有排水中に含まれる場合がある。半導体素子の製造に使用されるイオン注入機の排気システムにおいては、排気中に含まれるアルシンガスをスクラバで除去し、五酸化二ヒ素による排気ライン内壁の汚染を防止する試みがなされている(特許文献3)。従来は、ヒ素含有排水中に含まれるアルシンガスは、ごく微量でもあり、また、反応性が高く、自然酸化されるために、特に問題視されることはなかった。しかし、アルシンガスは強い毒性を有し、アルシンガスの大気中への散逸は環境汚染を招くので、たとえ微量ではあっても、ヒ素含有排水中に含まれるアルシンガスの除去は重要である。
特開2003−154376号公報(第2頁、図1) 特開2003−164869号公報(第2頁、図1) 特開平10−154482号公報(第2−3頁)
A III-V compound semiconductor is a combination of Group III elements such as aluminum, gallium, and indium in the periodic table and Group V elements such as phosphorus, arsenic, and antimony. GaAs, GaAsP, GaP, GaN, GaAlAs InGaAs, InGaP, InP, and the like are known as compound semiconductors. When these compound semiconductors are used, it is possible to generate laser light emission and electrons that move at a higher speed than a silicon substrate, and it is possible to manufacture semiconductor lasers, light receiving elements, microwave semiconductors, high-speed digital ICs, and the like. However, among these metals, gallium is rare on the earth compared to silicon, and is a rare and expensive metal. Considering the cost of raw material acquisition and crystal refining processes, gallium is less expensive than silicon. It is expensive.
Therefore, gallium is collected in wafer manufacturers and device manufacturers. Gallium is discharged as grinding waste from a slicing process for cutting a wafer from an ingot, a lapping process for polishing the wafer surface, a polishing process, or nitric acid, hydrochloric acid, sulfuric acid, phosphoric acid on a wafer. When washing with an acid such as acid or alkali such as aqueous ammonia, it is contained and discharged in ionic form in a concentrated drainage solution after washing or in a diluted drainage solution after washing with water. Also in device manufacturers, it is discharged as grinding waste from the back grinding process for grinding the backside of the wafer and the dicing process for cutting out the chips on the wafer, or the concentrated and diluted drainage after acid-alkali cleaning. It is contained in ionic form and discharged. In the case of a gallium arsenide compound, since arsenic is discharged simultaneously with gallium, toxic arsenic contained in the waste water must also be removed. In the case of gallium arsenide, arsenic is discharged as GaAs as it is at the beginning of polishing, but it is gradually oxidized into an ionic form and dissolved in water as arsenous acid and arsenic acid. The inventors of the present invention treat wastewater containing gallium and arsenic discharged from compound semiconductor wafer manufacturing plants, device manufacturing plants, etc., and efficiently recover gallium, which is a rare and valuable metal, As a treatment apparatus that does not generate coagulated sediment sludge, gallium adsorption means for adsorbing gallium in waste water containing gallium and arsenic, membrane separation means for concentrating arsenic in the treated water of the gallium adsorption means, and permeated water of the membrane separation means Proposed a wastewater treatment apparatus containing gallium and arsenic shown in FIG. 1 having an arsenic removing means for removing arsenic (Patent Document 1).
Arsenic is not only contained in wastewater from semiconductor manufacturing plants, but also from chemical plants such as insecticides, fungicides, and pigment manufacturing, non-ferrous metal manufacturing plants, and wood processing plants. May be included in large amounts. Arsenic can not only be treated at the final treatment plant by biological treatment, but also inhibits the activity of microorganisms, lowers the treatment function, and further accumulates in activated sludge. Conventionally, arsenic in wastewater is obtained by coprecipitation of solid gallium arsenide, ionic arsenous acid, and arsenic acid using iron salt, or by solid-liquid separation using a membrane. A method for treating arsenous acid and arsenic acid contained in the treated water using an adsorbent was conducted. The present inventors treat arsenic-containing wastewater discharged from compound semiconductor wafer manufacturing factories, device manufacturing factories, etc., to greatly reduce the amount of aggregated sludge generated by iron salt, or no aggregated sludge is generated. The arsenic-containing wastewater treatment apparatus shown in FIG. 2 has a membrane separation means for concentrating arsenic in the arsenic-containing wastewater, and an arsenic removal means for introducing the permeated water of the membrane separation means to remove arsenic in the permeated water A wastewater treatment device was proposed (Patent Document 2).
The inventors' proposal has made it possible to efficiently remove solid arsenic present in the arsenic-containing wastewater and dissolved arsenic without generating a large amount of coagulated sludge. In a device manufacturing process or the like, a trace amount of arsine gas generated by the influence of heat, acid, or the like may be contained in the arsenic-containing wastewater. In an exhaust system of an ion implanter used for manufacturing a semiconductor device, an attempt is made to remove arsine gas contained in the exhaust gas with a scrubber and prevent contamination of the inner wall of the exhaust line by diarsenic pentoxide (Patent Document). 3). Conventionally, the arsine gas contained in the arsenic-containing wastewater is very small, has high reactivity, and is naturally oxidized. However, since arsine gas is highly toxic and the dissipation of arsine gas into the atmosphere causes environmental pollution, it is important to remove arsine gas contained in the arsenic-containing wastewater even if it is a trace amount.
JP 2003-154376 A (2nd page, FIG. 1) Japanese Patent Laid-Open No. 2003-164869 (second page, FIG. 1) JP-A-10-154482 (page 2-3)

本発明は、化合物半導体のデバイス製造工場などから排出されるヒ素含有排水と、該排水中に含まれるアルシンガスを処理することができるヒ素含有排水の処理装置を提供することを目的としてなされたものである。   The present invention was made for the purpose of providing an arsenic-containing wastewater discharged from a compound semiconductor device manufacturing factory and the like, and an apparatus for treating arsenic-containing wastewater capable of treating arsine gas contained in the wastewater. is there.

本発明者らは、上記の課題を解決すべく鋭意研究を重ねた結果、気液分離手段によりヒ素含有排水中に含まれるアルシンガスを分離し、分離されたアルシンガスを含有する気体からアルシンガスを除去し、アルシンガスが除去されたヒ素含有水からヒ素を除去することにより、アルシンガスと水中に存在するヒ素とを完全に除去し得ることを見いだし、この知見に基づいて本発明を完成するに至った。
すなわち本発明は、
(1)ヒ素含有排水を受入れ、ヒ素含有水とアルシンガスとを分離する気液分離部と、分離されたアルシンガスを含有する気体からアルシンガスを除去するガス処理部と、分離されたヒ素含有水からヒ素を除去する水処理部とを有することを特徴とするヒ素含有排水の処理装置、及び、
(2)水処理部が、固液分離手段及びヒ素除去手段を有する第1項記載のヒ素含有排水の処理装置、
を提供するものである。
さらに、本発明の好ましい態様として、
(3)ガス処理部が、アルシンガス吸着塔である第1項記載のヒ素含有排水の処理装置、
(4)ガス処理部が、スクラバである第1項記載のヒ素含有排水の処理装置、
(5)固液分離手段が、中空糸膜である第2項記載のヒ素含有排水の処理装置、及び、
(6)固液分離手段における濃縮水を、さらに濃縮する手段を有する第2項又は第5項記載のヒ素含有排水の処理装置、
を挙げることができる。
As a result of intensive research to solve the above problems, the present inventors have separated the arsine gas contained in the arsenic-containing wastewater by the gas-liquid separation means, and removed the arsine gas from the gas containing the separated arsine gas. The inventors have found that arsine gas and arsenic present in water can be completely removed by removing arsenic from the arsenic-containing water from which arsine gas has been removed, and the present invention has been completed based on this finding.
That is, the present invention
(1) A gas-liquid separation unit that receives arsenic-containing wastewater and separates arsenic-containing water and arsine gas, a gas treatment unit that removes arsine gas from the separated gas containing arsine gas, and arsenic from the separated arsenic-containing water An arsenic-containing wastewater treatment apparatus, characterized by having a water treatment section for removing water, and
(2) The arsenic-containing wastewater treatment apparatus according to item 1, wherein the water treatment unit has solid-liquid separation means and arsenic removal means,
Is to provide.
Furthermore, as a preferred embodiment of the present invention,
(3) The arsenic-containing wastewater treatment apparatus according to item 1, wherein the gas treatment unit is an arsine gas adsorption tower,
(4) The arsenic-containing wastewater treatment apparatus according to item 1, wherein the gas treatment unit is a scrubber,
(5) The arsenic-containing wastewater treatment apparatus according to item 2, wherein the solid-liquid separation means is a hollow fiber membrane, and
(6) The arsenic-containing wastewater treatment apparatus according to item 2 or 5, further comprising means for concentrating the concentrated water in the solid-liquid separation means,
Can be mentioned.

本発明のヒ素含有排水の処理装置によれば、化合物半導体のデバイス製造工場などから排出されるヒ素含有排水と、該排水中に含まれるアルシンガスを処理することができるので、作業環境の悪化や、自然環境の汚染を引き起こすおそれがない。   According to the arsenic-containing wastewater treatment apparatus of the present invention, it is possible to treat arsenic-containing wastewater discharged from device manufacturing factories of compound semiconductors, and arsine gas contained in the wastewater. There is no risk of pollution of the natural environment.

本発明のヒ素含有排水の処理装置は、ヒ素含有排水を受入れ、ヒ素含有水とアルシンガスとを分離する気液分離部と、分離されたアルシンガスを含有する気体からアルシンガスを除去するガス処理部と、分離されたヒ素含有水からヒ素を除去する水処理部とを有する処理装置である。本発明装置により除去し得るアルシンガスとしては、例えば、アルシン(AsH)、ジアルサン(As)、メチルアルシン(CHAsH)、ジメチルアルシン((CH)AsH)、エチルアルシン(CHCHAsH)などを挙げることができる。
図3は、本発明のヒ素含有排水の処理装置の一態様の系統図である。本態様の装置においては、ヒ素含有排水が気液分離部1に送り込まれ、ヒ素含有水とアルシンガスに分離される。分離されたアルシンガスを含有する気体は、ガス処理部2へ送られ、アルシンガスが除去され、無害化された気体は排気として大気中に放出される。本態様の装置においては、水処理部は、膜分離装置3、ヒ素吸着塔4及び濃縮装置5を有する。気液分離部においてアルシンガスが除去されたヒ素含有水は、膜分離装置に送られ、透過水と濃縮水に分離される。水溶性のヒ素を含む透過水は、ヒ素吸着塔に送られ、水中のヒ素が吸着除去されて、無害化された処理水となる。濃縮水は、さらに濃縮装置で高濃度に濃縮され、有価物が回収される。
The arsenic-containing wastewater treatment apparatus of the present invention receives an arsenic-containing wastewater, separates the arsenic-containing water and arsine gas, a gas-liquid separation unit, a gas treatment unit that removes arsine gas from the separated gas containing arsine gas, And a water treatment unit that removes arsenic from the separated arsenic-containing water. Examples of the arsine gas that can be removed by the apparatus of the present invention include arsine (AsH 3 ), dialsane (As 2 H 4 ), methylarsine (CH 3 AsH 2 ), dimethylarsine ((CH 3 ) 2 AsH), ethylarsine ( CH 3 CH 2 AsH 2 ) and the like.
FIG. 3 is a system diagram of one embodiment of the arsenic-containing wastewater treatment apparatus of the present invention. In the apparatus of this aspect, the arsenic-containing wastewater is fed into the gas-liquid separator 1 and separated into arsenic-containing water and arsine gas. The gas containing the separated arsine gas is sent to the gas processing unit 2, the arsine gas is removed, and the harmless gas is discharged into the atmosphere as exhaust gas. In the apparatus of this aspect, the water treatment unit includes a membrane separation device 3, an arsenic adsorption tower 4, and a concentration device 5. The arsenic-containing water from which the arsine gas has been removed in the gas-liquid separation unit is sent to a membrane separation device and separated into permeated water and concentrated water. The permeated water containing water-soluble arsenic is sent to the arsenic adsorption tower, and the arsenic in the water is adsorbed and removed to become detoxified treated water. The concentrated water is further concentrated to a high concentration by a concentrator, and valuables are recovered.

本発明装置において、気液分離部の構造に特に制限はなく、例えば、気相部の気体をコンプレッサでガス処理部に送るヒ素含有排水の受槽、塔内にラシヒリングなどの充填物を詰めた充填塔、円管の内壁又は外壁に沿って液を膜状に落下させる濡れ壁塔、泡鐘トレイなどの棚段を備えた段塔、ヒ素含有排水を微細な液滴として噴霧するスプレー塔やスクラバー、塔型容器の底部から圧縮空気や窒素ガスなどをヒ素含有排水中に吹き込み、気泡群として分散させる気泡塔、圧縮空気や窒素ガスなどを細分化してヒ素含有排水中に分散させる気泡攪拌槽、気体透過膜を通してアルシンガスを分離する膜脱気装置などを挙げることができる。ヒ素含有排水の受槽は、若干減圧にすることにより、水中のアルシンガスを気相に移行させることができ、あるいは、ヒ素含有排水を落差をもって受槽に供給し、排水を空気と接触させることにより、アルシンガスを気相に移行させることもできる。
本発明装置において、分離されたアルシンガスを含有する気体からアルシンガスを除去するガス処理部に特に制限はなく、例えば、アルシンガス吸着塔、気液接触装置などを挙げることができる。アルシンガス吸着塔としては、例えば、酸化マンガン、酸化鉄、酸化銅、酸化銀などの金属酸化物を充填した充填塔、フッ化ニッケル、フッ化マンガン、フッ化クロム、フッ化鉄、フッ化コバルトなどの金属フッ化物を充填した充填塔などを挙げることができる。
気液接触装置としては、例えば、充填塔、濡れ壁塔、段塔、スプレー塔、スクラバー、気泡塔、気泡攪拌槽などを挙げることができる。これらの中で、スクラバーを好適に用いることができる。アルシンガスは還元性で高い反応性を有するために、アルシンガスを含有する気体を酸素が溶解した水と接触させると、酸化されて亜ヒ酸又はヒ酸となって水に吸収される。アルシンガスを含有する気体と接触させる水に、次亜塩素酸、過酸化水素、オゾンなどの酸化性物質を溶解させておくと、酸化反応を促進することができる。
In the apparatus of the present invention, the structure of the gas-liquid separation unit is not particularly limited. For example, the arsenic-containing drainage tank that sends the gas in the gas phase part to the gas processing part with a compressor, the packing in which a packing such as Raschig ring is packed in the tower Towers, wet wall towers that drop liquid into a film along the inner or outer wall of a circular tube, stage towers equipped with shelves such as bubble bell trays, spray towers and scrubbers that spray arsenic-containing wastewater as fine droplets , A bubble tower in which compressed air or nitrogen gas is blown into the arsenic-containing wastewater from the bottom of the tower-type container and dispersed as a group of bubbles, a bubble stirring tank in which compressed air or nitrogen gas is subdivided and dispersed in the arsenic-containing wastewater, Examples thereof include a membrane deaerator that separates arsine gas through a gas permeable membrane. The arsenic-containing wastewater receiving tank can transfer arsine gas in water to the gas phase by slightly reducing the pressure, or by supplying the arsenic-containing wastewater to the receiving tank with a drop and contacting the wastewater with air, the arsine gas Can also be transferred to the gas phase.
In the apparatus of the present invention, there is no particular limitation on the gas treatment unit for removing arsine gas from the separated arsine gas-containing gas, and examples thereof include an arsine gas adsorption tower and a gas-liquid contact device. Examples of the arsine gas adsorption tower include packed towers filled with metal oxides such as manganese oxide, iron oxide, copper oxide, and silver oxide, nickel fluoride, manganese fluoride, chromium fluoride, iron fluoride, and cobalt fluoride. And a packed tower filled with the above metal fluoride.
Examples of the gas-liquid contact apparatus include a packed tower, a wet wall tower, a plate tower, a spray tower, a scrubber, a bubble tower, and a bubble stirring tank. Among these, scrubbers can be preferably used. Since arsine gas is reducible and highly reactive, when a gas containing arsine gas is brought into contact with water in which oxygen is dissolved, it is oxidized to arsenous acid or arsenic acid and absorbed in water. If an oxidizing substance such as hypochlorous acid, hydrogen peroxide, or ozone is dissolved in water that is brought into contact with a gas containing arsine gas, the oxidation reaction can be promoted.

本発明装置において、固液分離手段に特に制限はなく、例えば、膜分離装置、沈殿槽などを挙げることができる。これらの中で、膜分離装置は、固体成分を含む濃縮水を高濃度で得ることができるので好適に用いることができる。図3に示す態様においては、気液分離部と膜分離装置が直結しているが、気液分離部と膜分離装置の中間に貯留槽を設けることもできる。膜分離装置に用いる膜に特に制限はないが、中空糸膜を好適に用いることができる。中空糸膜としては、例えば、ポリスルホン膜などを挙げることができる。中空糸膜の孔径は、ヒ素含有排水中に含まれる懸濁物質の粒径に合わせて選択することができるが、通常は孔径が0.02〜0.5μmの限外ろ過膜又は精密ろ過膜を使用することが好ましい。膜分離装置による濃縮の程度に特に制限はないが、濃縮水中の懸濁物質の濃度が0.5〜10重量%となるように濃縮することが好ましい。
本発明装置において、ヒ素除去手段に特に制限はなく、例えば、ヒ素吸着塔、鉄凝集沈殿槽などを挙げることができる。これらの中で、ヒ素吸着塔は、ヒ素を確実に処理することができ、凝集汚泥が発生しないので、好適に用いることができる。ヒ素吸着塔に用いる吸着剤に特に制限はなく、例えば、イオン交換樹脂、キレート樹脂、ヒ素選択性吸着樹脂などを挙げることができる。これらの中で、ジルコニウムを母体とするヒ素選択性吸着樹脂や、含水酸化セリウムの粉体を高分子化合物に担持させたヒ素選択性吸着樹脂などを好適に使用することができる。ヒ素選択性吸着樹脂を充填したヒ素吸着塔への通水は、pH5〜8、空間速度5〜20h−1で行うことが好ましい。
本発明装置は、固液分離手段で発生する濃縮水をさらに濃縮する手段を有することが好ましい。液の濃縮手段に特に制限はなく、遠心脱水機、スクリュープレス、デカンタなどの脱水機、傾斜板沈降槽などの沈殿濃縮槽、蒸発缶、乾燥器などを挙げることができる。これらの中で、遠心脱水機などの脱水機を好適に使用することができる。ヒ素含有排水がヒ化ガリウムの懸濁粒子を含む場合、濃縮物にはガリウムが多く含まれるために、有価物として回収し、リサイクルすることができる。
本発明装置において、ヒ素除去手段から流出する処理水は、中和処理設備、水回収設備などを設けて、さらに適切な処理を施すことが好ましい。
In the apparatus of the present invention, the solid-liquid separation means is not particularly limited, and examples thereof include a membrane separation apparatus and a precipitation tank. Among these, the membrane separation device can be suitably used because concentrated water containing a solid component can be obtained at a high concentration. In the embodiment shown in FIG. 3, the gas-liquid separator and the membrane separator are directly connected, but a storage tank can be provided between the gas-liquid separator and the membrane separator. Although there is no restriction | limiting in particular in the membrane used for a membrane separator, A hollow fiber membrane can be used suitably. Examples of the hollow fiber membrane include a polysulfone membrane. The pore diameter of the hollow fiber membrane can be selected in accordance with the particle size of the suspended substance contained in the arsenic-containing wastewater, but is usually an ultrafiltration membrane or a microfiltration membrane having a pore diameter of 0.02 to 0.5 μm. Is preferably used. Although there is no restriction | limiting in particular in the grade of the concentration by a membrane separator, It is preferable to concentrate so that the density | concentration of the suspended substance in concentrated water may be 0.5-10 weight%.
In the apparatus of the present invention, the arsenic removing means is not particularly limited, and examples thereof include an arsenic adsorption tower and an iron coagulating sedimentation tank. Among these, the arsenic adsorption tower can be preferably used because it can reliably process arsenic and no coagulated sludge is generated. There is no restriction | limiting in particular in the adsorption agent used for an arsenic adsorption tower, For example, an ion exchange resin, a chelate resin, an arsenic selective adsorption resin etc. can be mentioned. Among these, an arsenic selective adsorption resin based on zirconium or an arsenic selective adsorption resin in which a powder of hydrated cerium hydroxide is supported on a polymer compound can be preferably used. It is preferable that the water flow to the arsenic adsorption tower filled with the arsenic selective adsorption resin is performed at a pH of 5 to 8 and a space velocity of 5 to 20 h- 1 .
The apparatus of the present invention preferably has means for further concentrating the concentrated water generated by the solid-liquid separation means. There are no particular limitations on the means for concentrating the liquid, and examples include a dehydrator such as a centrifugal dehydrator, a screw press, and a decanter, a precipitation concentration tank such as an inclined plate settling tank, an evaporator, and a dryer. Among these, a dehydrator such as a centrifugal dehydrator can be preferably used. When the arsenic-containing wastewater contains suspended particles of gallium arsenide, the concentrate contains a large amount of gallium, so that it can be recovered as a valuable resource and recycled.
In the apparatus of the present invention, it is preferable that the treated water flowing out from the arsenic removing means is further appropriately treated by providing a neutralization treatment facility, a water recovery facility, and the like.

以下に、実施例を挙げて本発明をさらに詳細に説明するが、本発明はこれらの実施例によりなんら限定されるものではない。
なお、実施例において、水中のアルシン濃度は、JIS K 0102 61.2に準じて試料の前処理を行うことなく測定し、水中の全ヒ素濃度は、JIS K 0102 61.1にしたがって測定し、気体中のヒ素濃度は、JIS K 0221にしたがって測定した。
実施例1
GaAs半導体素子のダイシング工程から発生するヒ素含有排水の処理を行った。このヒ素含有排水は、pH5.8であり、懸濁物質100mg/L、溶解ヒ素2.7mg/L、アルシン0.02mg/Lを含有していた。
容量5Lの三口丸底フラスコの主首に直径40mmのろ過板付きガス噴射管、側管の一つにガス逃がし管を取り付け、他の側管からヒ素含有排水3,000gを入れて密栓した。
一方、内径50mm、長さ700mmのアクリル樹脂製カラムに、酸化マンガン(III)40重量部と酸化鉄(III)60重量部を混合してペレット状に成形したアルシン吸着剤300gを充填し、アルシン吸着塔を作製した。
5L三口フラスコのガス逃がし管を、ガスサンプリング用の三方コックを経由してアルシン吸着塔に接続した。
5L三口フラスコのガス噴射管に毎分1Lの空気を送り込み、5L三口フラスコのガス逃がし管から流出する気体を、アルシン吸着塔に導いた。送気開始5分後に、5L三口フラスコのガス逃がし管から流出する気体中のヒ素濃度は3.5mg/mNであり、アルシン吸着塔のガス流出口から流出する気体中に、ヒ素は検出されなかった。5L三口フラスコのガス逃がし管から流出する気体中のヒ素濃度は、送気開始10分後0.40mg/mN、20分後0.030mg/mN、30分後0.017mg/mN、1時間後0.004mg/mNであった。この間も、アルシン吸着塔のガス流出口から流出する気体中に、ヒ素は検出されなかった。
送気開始1時間後の5L三口フラスコ中のヒ素含有水は、pH5.2であり、懸濁物質95mg/L、溶解ヒ素4.9mg/L、アルシン0.001mg/L以下であった。
このヒ素含有水2,800gを、限外ろ過膜中空糸モジュール[PVAコーティングポリスルホン製、膜面積0.056m]を用い、圧力0.1MPaで1時間処理し、透過水2,300gと濃縮水435gを得た。透過水のpHは5.4であり、ヒ素濃度は5.2mg/Lであった。透過水2,300gを、含水酸化セリウムを担持したヒ素選択性吸着樹脂100mLを充填したカラムに、空間速度10h−1で通水し、処理水2,050gを得た。処理水のヒ素濃度は、0.003mg/Lであった。
限外ろ過膜中空糸モジュールの濃縮水をロータリーエバポレーターを用いてさらに濃縮したのち、105℃で5時間乾燥し、粉末0.25gを得た。この粉末の成分は、ガリウム46.9重量%、ヒ素50.2重量%であり、ほぼ純粋なGaAsであった。
Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
In the examples, the arsine concentration in water was measured without pretreatment of the sample according to JIS K 0102 61.2, and the total arsenic concentration in water was measured according to JIS K 0102 61.1. The arsenic concentration in the gas was measured according to JIS K 0221.
Example 1
Arsenic-containing wastewater generated from the dicing process of the GaAs semiconductor element was treated. This arsenic-containing wastewater had a pH of 5.8, and contained suspended solids 100 mg / L, dissolved arsenic 2.7 mg / L, and arsine 0.02 mg / L.
A gas injection tube with a filter plate having a diameter of 40 mm was attached to the main neck of a 5 L three-necked round bottom flask, a gas escape tube was attached to one of the side tubes, and 3,000 g of arsenic-containing wastewater was added from the other side tube and sealed.
On the other hand, an acrylic resin column having an inner diameter of 50 mm and a length of 700 mm was filled with 300 g of arsine adsorbent formed by mixing 40 parts by weight of manganese (III) oxide and 60 parts by weight of iron (III) oxide into a pellet. An adsorption tower was prepared.
The gas escape pipe of the 5 L three-neck flask was connected to the arsine adsorption tower via a three-way cock for gas sampling.
1 L of air was fed into the gas injection tube of the 5 L three-necked flask per minute, and the gas flowing out from the gas escape tube of the 5 L three-necked flask was led to the arsine adsorption tower. 5 minutes after the start of air supply, the arsenic concentration in the gas flowing out from the gas escape tube of the 5 L three-neck flask is 3.5 mg / m 3 N, and arsenic is detected in the gas flowing out from the gas outlet of the arsine adsorption tower Was not. Arsenic concentrations in the gas flowing out of the gas release pipes 5L three-necked flask, air starts 10 minutes after 0.40 mg / m 3 N, after 20 minutes 0.030mg / m 3 N, 30 minutes after 0.017 mg / m 3 N, 1 hour later, 0.004 mg / m 3 N. During this time, arsenic was not detected in the gas flowing out from the gas outlet of the arsine adsorption tower.
The arsenic-containing water in the 5 L three-necked flask 1 hour after the start of air supply was pH 5.2, suspended matter 95 mg / L, dissolved arsenic 4.9 mg / L, and arsine 0.001 mg / L or less.
2,800 g of this arsenic-containing water was treated for 1 hour at a pressure of 0.1 MPa using an ultrafiltration membrane hollow fiber module [manufactured by PVA-coated polysulfone, membrane area 0.056 m 2 ], and 2,300 g of permeated water and concentrated water were treated. 435 g was obtained. The pH of the permeate was 5.4, and the arsenic concentration was 5.2 mg / L. 2,300 g of permeated water was passed through a column packed with 100 mL of an arsenic-selective adsorption resin carrying hydrated cerium hydroxide at a space velocity of 10 h −1 to obtain 2,050 g of treated water. The arsenic concentration of treated water was 0.003 mg / L.
The concentrated water of the ultrafiltration membrane hollow fiber module was further concentrated using a rotary evaporator and then dried at 105 ° C. for 5 hours to obtain 0.25 g of powder. The components of this powder were 46.9% by weight of gallium and 50.2% by weight of arsenic, which was almost pure GaAs.

従来のガリウム及びヒ素を含有する排水の処理装置の一例の系統図である。It is a systematic diagram of an example of the processing apparatus of the waste_water | drain containing the conventional gallium and arsenic. 従来のヒ素含有排水の処理装置の一例の系統図である。It is a systematic diagram of an example of the processing apparatus of the conventional arsenic containing waste_water | drain. 本発明のヒ素含有排水の処理装置の一態様の系統図である。It is a systematic diagram of one mode of a processing device of arsenic content drainage of the present invention.

符号の説明Explanation of symbols

1 気液分離部
2 ガス処理部
3 膜分離装置
4 ヒ素吸着塔
5 濃縮装置
DESCRIPTION OF SYMBOLS 1 Gas-liquid separation part 2 Gas processing part 3 Membrane separation apparatus 4 Arsenic adsorption tower 5 Concentration apparatus

Claims (2)

ヒ素含有排水を受入れ、ヒ素含有水とアルシンガスとを分離する気液分離部と、分離されたアルシンガスを含有する気体からアルシンガスを除去するガス処理部と、分離されたヒ素含有水からヒ素を除去する水処理部とを有することを特徴とするヒ素含有排水の処理装置。   Arsenic-containing wastewater is received, a gas-liquid separation unit that separates arsenic-containing water and arsine gas, a gas treatment unit that removes arsine gas from the separated gas containing arsine gas, and arsenic is removed from the separated arsenic-containing water An arsenic-containing wastewater treatment apparatus comprising a water treatment unit. 水処理部が、固液分離手段及びヒ素除去手段を有する請求項1記載のヒ素含有排水の処理装置。
The arsenic-containing wastewater treatment apparatus according to claim 1, wherein the water treatment unit has solid-liquid separation means and arsenic removal means.
JP2003270407A 2003-07-02 2003-07-02 Arsenic wastewater treatment equipment Expired - Fee Related JP4214392B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003270407A JP4214392B2 (en) 2003-07-02 2003-07-02 Arsenic wastewater treatment equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003270407A JP4214392B2 (en) 2003-07-02 2003-07-02 Arsenic wastewater treatment equipment

Publications (2)

Publication Number Publication Date
JP2005021858A JP2005021858A (en) 2005-01-27
JP4214392B2 true JP4214392B2 (en) 2009-01-28

Family

ID=34190362

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003270407A Expired - Fee Related JP4214392B2 (en) 2003-07-02 2003-07-02 Arsenic wastewater treatment equipment

Country Status (1)

Country Link
JP (1) JP4214392B2 (en)

Also Published As

Publication number Publication date
JP2005021858A (en) 2005-01-27

Similar Documents

Publication Publication Date Title
JP2677468B2 (en) Method and apparatus for producing pure water
EP1188473A1 (en) Apparatus for producing water containing dissolved ozone
JP4214392B2 (en) Arsenic wastewater treatment equipment
JP2007244930A (en) Treatment method and treatment apparatus for organic substance-containing waste water
JP5845478B2 (en) Method and apparatus for treating radioactive material-containing wastewater
JP3529806B2 (en) Wastewater treatment method
JP3928484B2 (en) Functional water recovery method
JP3912086B2 (en) Arsenic-containing wastewater treatment equipment
JP3690107B2 (en) Treatment apparatus for ammonia-hydrogen peroxide mixed waste liquid and treatment method using the same
CN108311160B (en) Iron reduction catalyst, water treatment apparatus, and water treatment method
TW201738185A (en) Method for treating boron-containing wastewater using fluidized-bed homogeneous granulation technique
JP4379147B2 (en) Water treatment apparatus and water treatment method
JP4973902B2 (en) Method for treating gallium-containing wastewater and apparatus used in the method
JP2006299105A (en) Method for concentrating methane gas and carbon dioxide gas and concentrator
JP3937135B2 (en) Gallium polishing wastewater treatment equipment
JP3861283B2 (en) Method for treating gallium-containing wastewater
JP4973901B2 (en) Method for treating gallium-containing wastewater
JP4900635B2 (en) Gallium-containing wastewater treatment apparatus and gallium-containing wastewater treatment method
JP2004033998A (en) Method for treating organic chemical-containing waste water and apparatus for the same
JPH09285787A (en) Manufacturing device for extrapure water
JP2018140384A (en) Iron reduction catalyst, water treatment apparatus, and water treatment method
CN115845620A (en) Ammonia recovery method and system
JP2003001275A (en) Equipment for treatment of waste water containing gallium-arsenic
JP2000246246A (en) Method for recovering ammonia water
JP2003001268A (en) Equipment for treatment of waste water containing gallium

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060622

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080930

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081008

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081021

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111114

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111114

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121114

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121114

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131114

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees