JP4208785B2 - toner - Google Patents

toner Download PDF

Info

Publication number
JP4208785B2
JP4208785B2 JP2004219710A JP2004219710A JP4208785B2 JP 4208785 B2 JP4208785 B2 JP 4208785B2 JP 2004219710 A JP2004219710 A JP 2004219710A JP 2004219710 A JP2004219710 A JP 2004219710A JP 4208785 B2 JP4208785 B2 JP 4208785B2
Authority
JP
Japan
Prior art keywords
toner
less
toner particles
particles
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004219710A
Other languages
Japanese (ja)
Other versions
JP2005070760A (en
JP2005070760A5 (en
Inventor
浩司 西川
信之 大久保
努 小沼
英人 飯田
修平 森部
貴重 粕谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2004219710A priority Critical patent/JP4208785B2/en
Publication of JP2005070760A publication Critical patent/JP2005070760A/en
Publication of JP2005070760A5 publication Critical patent/JP2005070760A5/ja
Application granted granted Critical
Publication of JP4208785B2 publication Critical patent/JP4208785B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Developing Agents For Electrophotography (AREA)

Description

本発明は、電子写真,静電荷像を顕像化するための画像形成方法に使用されるトナー及びトナージェットに使用されるトナーに関する。   The present invention relates to a toner used for electrophotography, an image forming method for developing an electrostatic image, and a toner used for a toner jet.

近年、電子写真法を用いた機器は、オリジナル原稿を複写するための複写機以外にも、コンピューターの出力用のプリンター、ファクシミリなどにも使われ始めた。そのため、より小型、より軽量、より高速、より高信頼性が厳しく追及されており、機械は様々な点でよりシンプルな要素で構成されるようになってきている。その結果、トナーに要求される性能はより高度になり、トナーの性能向上が達成できなければより優れた機械が成り立たなくなってきている。   In recent years, devices using electrophotography have begun to be used in printers for output of computers, facsimiles, etc., in addition to copying machines for copying original documents. As a result, smaller, lighter, faster, and more reliable are being sought, and machines are becoming simpler in various ways. As a result, the performance required for the toner becomes higher, and if the improvement in the performance of the toner cannot be achieved, a better machine cannot be realized.

特に、省エネルギー、オフィスの省スペース化といった点において、プリンターなどの機械はより小型化が求められている。その時に、トナーを収納する容器も必然的に小型化が求められており、少量で多数枚のプリントアウトが可能な、すなわち同じ画像のプリントアウトをより少量のトナーで賄えるような、低消費量のトナーが求められている。   In particular, printers and other machines are required to be smaller in terms of energy saving and space saving in offices. At that time, the container for storing the toner is inevitably required to be small, and it is possible to print out a large number of sheets with a small amount, that is, low consumption that can cover the same image with a smaller amount of toner. Toner is needed.

特許文献1〜4に、噴霧造粒法、溶液溶解法、重合法といった製造方法によってトナーの形状を球形に近づける技術が開示されている。しかし、これらの技術はいずれもトナー製造に大掛かりな設備が必要となり、生産効率の点において好ましくないばかりでなく、トナーの消費量を十分に低減させるには至っていない。   Patent Documents 1 to 4 disclose techniques for bringing the shape of a toner closer to a sphere by a manufacturing method such as a spray granulation method, a solution dissolution method, or a polymerization method. However, both of these techniques require large-scale equipment for toner production, which is not preferable in terms of production efficiency and has not yet sufficiently reduced toner consumption.

特許文献5〜8に、粉砕法で製造されたトナーを熱的あるいは機械的衝撃により粒子の形状及び表面性を改質する技術が開示されている。しかし、これらの方法でトナーの形状を改質しても、トナーの消費量を低減するには十分とは言えず、また、現像性の低下などの弊害をもたらす場合があった。   Patent Documents 5 to 8 disclose techniques for modifying the shape and surface properties of toner produced by a pulverization method by thermal or mechanical impact. However, even if the shape of the toner is modified by these methods, it cannot be said that it is sufficient to reduce the amount of toner consumption, and there are cases in which a problem such as a decrease in developability is caused.

特開平3−84558号公報Japanese Patent Laid-Open No. 3-84558 特開平3−229268号公報JP-A-3-229268 特開平4−1766号公報Japanese Patent Laid-Open No. 4-1766 特開平4−102862号公報JP-A-4-102862 特開平2−87157号公報JP-A-2-87157 特開平10−97095号公報JP-A-10-97095 特開平11−149176号公報JP-A-11-149176 特開平11−202557号公報JP-A-11-202557

本発明の目的は、上記の従来技術の問題点を解決したトナーを提供することにある。   An object of the present invention is to provide a toner that solves the above-mentioned problems of the prior art.

本発明の目的は、画像一枚あたりのトナー消費量が少なく、少量のトナーで高寿命を達成できるトナーを提供することにある。   An object of the present invention is to provide a toner that consumes less toner per image and can achieve a long life with a small amount of toner.

本発明の目的は、どのような環境においても優れた現像性を有するトナーを提供することにある。   An object of the present invention is to provide a toner having excellent developability in any environment.

本発明の目的は、スリーブネガゴースト、飛び散りを発生しないトナーを提供することにある。   An object of the present invention is to provide a toner that does not generate sleeve negative ghosting and scattering.

本発明の目的は、ブロッチを発生しないトナーを提供することにある。   An object of the present invention is to provide a toner that does not generate blotches.

本発明の目的は、優れた転写効率、定着性能、耐オフセット性を有するトナーを提供することにある。   An object of the present invention is to provide a toner having excellent transfer efficiency, fixing performance, and offset resistance.

本発明は、結着樹脂、着色剤を少なくとも含有するトナー粒子と無機微粒子からなるトナーにおいて、
該トナー粒子のフロー式粒子像測定装置で計測される円相当径3μm以上400μm以下のトナー粒子における平均円形度が0.935以上0.970未満であり、該トナー粒子の走査型プローブ顕微鏡で測定される平均面粗さが5.0nm以上35.0nm未満であり、
さらに、トナーにおけるテトラヒドロフラン可溶分のゲルパーミエーションクロマトグラフィによって得られるクロマトグラムにおいて、分子量3.0×103以上3.0×104未満の領域にメインピークを有し、かつ分子量5.0×104以上1.0×108以下の領域に少なくとも一つのサブピークまたはショルダーを有することを特徴とするトナーに関する。
The present invention relates to a toner composed of toner particles containing at least a binder resin and a colorant and inorganic fine particles.
The toner particles having an equivalent circle diameter of 3 μm or more and 400 μm or less measured by the flow type particle image measuring apparatus of the toner particles have an average circularity of 0.935 or more and less than 0.970, and the toner particles are measured by a scanning probe microscope. The average surface roughness is 5.0 nm or more and less than 35.0 nm,
Further, in the chromatogram obtained by gel permeation chromatography of the tetrahydrofuran-soluble matter in the toner, it has a main peak in a region having a molecular weight of 3.0 × 10 3 or more and less than 3.0 × 10 4 and a molecular weight of 5.0 ×. The present invention relates to a toner having at least one sub-peak or shoulder in a region of 10 4 to 1.0 × 10 8 .

トナーの消費量を低減し、且つ高温高湿、低温低湿のような厳しい環境下における高速現像においても長期の使用において高い現像性、転写効率を維持し、且つスリーブゴーストや飛び散りを起こさないトナーを提供することができる。   A toner that reduces toner consumption, maintains high developability and transfer efficiency even in high-speed development under severe conditions such as high temperature, high humidity, and low temperature and low humidity, and does not cause sleeve ghosting or scattering. Can be provided.

本発明者らは鋭意検討の結果、トナー粒子の円形度を制御し、且つ、トナー粒子の表面粗さを制御することで、トナーの現像特性をコントロールできることを見出した。   As a result of intensive studies, the present inventors have found that the developing characteristics of the toner can be controlled by controlling the circularity of the toner particles and controlling the surface roughness of the toner particles.

本発明のトナー粒子は、粒径3μm以上400μm以下のトナー粒子において、平均円形度が0.935以上0.970未満、好ましく0.935以上0.965未満、より好ましくは0.935以上0.960未満、より好ましくは0.940以上0.955未満であることにより、画像面積あたりのトナーの消費量を低減することができる。トナー粒子の円形度が高くなると、トナーの流動性が増すので個々のトナーが自由に動きやすくなる。紙などの転写材上に現像されたトナーは、円形度が高いトナーほど一つ一つのトナー単位で現像される確率が高くなるため、転写材上での画像高さが低くなり、トナーの消費量を低減することができる。この時に、トナー粒子の円形度が十分に高くないと、トナーは凝集体としての挙動を示しやすくなり、凝集体として転写材上に現像されやすくなる。そのような画像は転写材からの画像高さが高くなり、同じ面積を現像する場合において流動性の優れたトナーよりも多くのトナーが現像されてしまい、トナーの消費量が増加する。また、円形度の高いトナー粒子からなるトナーは現像された画像においてより密な状態をとりやすい。その結果、転写材に対するトナーの隠蔽率が高くなり、少ないトナー量でも十分な画像濃度を得ることができる。平均円形度が0.935未満だと、現像された画像の高さが高くなり、トナーの消費量が増加する。また、トナー間の空隙が増え、現像された画像上においても十分な隠蔽率が得られないため、必要な画像濃度を得るためにはより多くのトナー量を必要とし、結果的にトナー消費量を増加させてしまう。平均円形度が0.970以上だと、現像スリーブ上にトナーが過剰に供給されることによってスリーブ上に不均一にトナーがコートされてしまい、結果としてブロッチが発生する。   The toner particles of the present invention have an average circularity of 0.935 or more and less than 0.970, preferably 0.935 or more and less than 0.965, more preferably 0.935 or more and 0.000 or less in toner particles having a particle size of 3 μm or more and 400 μm or less. The toner consumption per image area can be reduced by being less than 960, more preferably 0.940 or more and less than 0.955. When the circularity of the toner particles increases, the fluidity of the toner increases, so that the individual toners can move freely. The toner developed on a transfer material such as paper has a higher probability of being developed in units of toner as the toner has a higher degree of circularity, so the image height on the transfer material is lower and the toner consumption is reduced. The amount can be reduced. At this time, if the circularity of the toner particles is not sufficiently high, the toner tends to behave as an aggregate and is easily developed on the transfer material as an aggregate. In such an image, the height of the image from the transfer material becomes high, and when the same area is developed, more toner is developed than toner having excellent fluidity, and the amount of toner consumption increases. In addition, toner composed of toner particles having a high degree of circularity tends to be in a denser state in the developed image. As a result, the toner concealment ratio with respect to the transfer material is increased, and a sufficient image density can be obtained even with a small amount of toner. If the average circularity is less than 0.935, the height of the developed image becomes high and the toner consumption increases. In addition, since voids between toners increase and a sufficient concealment rate cannot be obtained even in a developed image, a larger amount of toner is required to obtain a required image density, resulting in toner consumption. Will increase. When the average circularity is 0.970 or more, the toner is coated on the sleeve non-uniformly due to excessive supply of toner on the developing sleeve, resulting in blotch.

一方、本発明のトナーは、粒径3μm以上400μm以下のトナーにおいて、平均円形度が0.935以上0.970未満、好ましく0.935以上0.965未満、より好ましくは0.935以上0.960未満、より好ましくは0.940以上0.955未満であることにより、画像面積あたりのトナーの消費量を低減することができる。これは、円形度の高いトナーは現像された画像においてより密な状態をとりやすくなるために、転写材に対するトナーの隠蔽率が高くなり、少ないトナー量でも十分な画像濃度を得られることによる。平均円形度が0.935未満だとトナー消費量が増加し、平均円形度が0.970以上だとブロッチが発生しやすくなる。   On the other hand, the toner of the present invention has an average circularity of 0.935 or more and less than 0.970, preferably 0.935 or more and less than 0.965, more preferably 0.935 or more and 0.000 in a toner having a particle diameter of 3 μm or more and 400 μm or less. The toner consumption per image area can be reduced by being less than 960, more preferably 0.940 or more and less than 0.955. This is because toner with a high degree of circularity is more likely to be in a dense state in the developed image, so that the concealment ratio of the toner with respect to the transfer material is high, and a sufficient image density can be obtained even with a small amount of toner. When the average circularity is less than 0.935, the toner consumption increases, and when the average circularity is 0.970 or more, blotch tends to occur.

本発明における平均円形度は、粒子の形状を定量的に表現する簡便な方法として用いたものであり、本発明ではシスメックス社製フロー式粒子像分析装置FPIA−2100を用いて23℃、60%RHの環境下で測定を行い、円相当径0.60μm〜400μmの範囲内の粒子を測定し、そこで測定された粒子の円形度を下式(1)により求め、更に円相当径3μm以上400μm以下の粒子において、円形度の総和を全粒子数で除した値を平均円形度と定義する。
円形度a=L0/L (1)
〔式中、L0は粒子像と同じ投影面積を持つ円の周囲長を示し、Lは512×512の画像処理解像度(0.3μm×0.3μmの画素)で画像処理した時の粒子投影像の周囲長を示す。〕
The average circularity in the present invention is used as a simple method for quantitatively expressing the particle shape. In the present invention, the flow type particle image analyzer FPIA-2100 manufactured by Sysmex Corporation is used at 23 ° C. and 60%. Measurement is performed under the environment of RH, and particles within a circle equivalent diameter of 0.60 μm to 400 μm are measured. The circularity of the measured particle is obtained by the following equation (1), and further, the circle equivalent diameter is 3 μm to 400 μm. In the following particles, the value obtained by dividing the total circularity by the total number of particles is defined as the average circularity.
Circularity a = L 0 / L (1)
[In the formula, L 0 represents the perimeter of a circle having the same projection area as the particle image, and L represents the particle projection when image processing is performed at an image processing resolution of 512 × 512 (pixels of 0.3 μm × 0.3 μm). Indicates the perimeter of the image. ]

本発明に用いている円形度はトナー粒子及びトナーの凹凸の度合いの指標であり、トナー粒子及びトナーが完全な球形の場合1.00を示し、表面形状が複雑になるほど円形度は小さな値となる。なお、本発明で用いている測定装置である「FPIA−2100」は、各粒子の円形度を算出後、平均円形度の算出にあたって、得られた円形度によって、粒子を円形度0.4〜1.0を61分割したクラスに分け、分割点の中心値と頻度を用いて平均円形度の算出を行う算出法を用いている。しかしながら、この算出法で算出される平均円形度の値と、各粒子の円形度の総和を用いる算出式によって算出される平均円形度の誤差は、非常に少なく、実質的には無視できる程度であり、本発明においては、算出時間の短縮化や算出演算式の簡略化の如きデータの取り扱い上の理由で、各粒子の円形度の総和を用いる算出式の概念を利用し、一部変更したこのような算出法を用いても良い。さらに本発明で用いている測定装置である「FPIA−2100」は、従来よりトナー粒子及びトナーの形状を算出するために用いられていた「FPIA1000」と比較して、処理粒子画像の倍率の向上、さらに取り込んだ画像の処理解像度を向上(256×256→512×512)することによりトナー粒子及びトナーの形状測定の精度が上がっており、それにより微粒子のより確実な捕捉を達成している装置である。従って、本発明のように、より正確に形状及び粒度分布を測定する必要がある場合には、より正確に形状及び粒度分布に関する情報が得られるFPIA2100の方が有用である。   The circularity used in the present invention is an index of the degree of unevenness of the toner particles and the toner, and indicates 1.00 when the toner particles and the toner are perfectly spherical, and the circularity becomes smaller as the surface shape becomes more complicated. Become. In addition, “FPIA-2100”, which is a measuring apparatus used in the present invention, calculates the circularity of each particle, and then calculates the average circularity by calculating the circularity of each particle. A calculation method is used in which 1.0 is divided into 61 classes and the average circularity is calculated using the center value and frequency of the division points. However, the error of the average circularity calculated by the calculation formula using the average circularity value calculated by this calculation method and the total circularity of each particle is very small and can be substantially ignored. In the present invention, for the reason of handling data such as shortening the calculation time and simplifying the calculation operation formula, the concept of the calculation formula using the sum of the circularity of each particle is used and partly changed. Such a calculation method may be used. Furthermore, the measurement device used in the present invention, “FPIA-2100”, improves the magnification of the processed particle image as compared with “FPIA1000”, which has been used to calculate the toner particles and the shape of the toner. Further, by improving the processing resolution of the captured image (256 × 256 → 512 × 512), the accuracy of toner particle and toner shape measurement is improved, thereby achieving more reliable capture of fine particles. It is. Therefore, when it is necessary to measure the shape and particle size distribution more accurately as in the present invention, the FPIA 2100 that can obtain information on the shape and particle size distribution more accurately is more useful.

具体的な測定方法としては、予め容器中の不純物を除去した水200〜300ml中に分散剤として界面活性剤、好ましくはアルキルベンゼンスルフォン酸塩を0.1〜0.5ml加え、更に測定試料を0.1〜0.5g程度加える。試料を分散した懸濁液は超音波発振器で2分間分散し、分散液濃度を0.2〜1.0万個/μlとして粒子の円形度分布を測定する。超音波発振器としては、例えば以下の装置を使用し、以下の分散条件を用いる。
UH−150(株式会社エス・エム・テー社製)
OUTPUT レベル:5
コンスタントモード
As a specific measuring method, 0.1 to 0.5 ml of a surfactant, preferably alkylbenzene sulfonate, is added as a dispersing agent to 200 to 300 ml of water from which impurities in the container have been removed in advance, and a measurement sample is 0. Add about 1-0.5g. The suspension in which the sample is dispersed is dispersed with an ultrasonic oscillator for 2 minutes, and the circularity distribution of the particles is measured at a dispersion concentration of 0.2 to 1 million particles / μl. As the ultrasonic oscillator, for example, the following apparatus is used, and the following dispersion conditions are used.
UH-150 (manufactured by SMT Corporation)
OUTPUT level: 5
Constant mode

測定の概略は、以下の通りである。   The outline of the measurement is as follows.

試料分散液は、フラットで扁平なフローセル(厚み約200μm)の流路(流れ方向に沿って広がっている)を通過させる。フローセルの厚みに対して交差して通過する光路を形成するように、ストロボとCCDカメラが、フローセルに対して、相互に反対側に位置するように装着される。試料分散液が流れている間に、ストロボ光がフローセルを流れている粒子の画像を得るために1/30秒間隔で照射され、その結果、それぞれの粒子は、フローセルに平行な一定範囲を有する2次元画像として撮影される。それぞれの粒子の2次元画像の面積から、同一の面積を有する円の直径を円相当径として算出する。それぞれの粒子の2次元画像の投影面積及び投影像の周囲長から上記の円形度算出式を用いて各粒子の円形度を算出する。   The sample dispersion is passed through a flow path (expanded along the flow direction) of a flat and flat flow cell (thickness: about 200 μm). The strobe and the CCD camera are mounted on the flow cell so as to be opposite to each other so as to form an optical path that passes through the thickness of the flow cell. While the sample dispersion is flowing, strobe light is irradiated at 1/30 second intervals to obtain an image of the particles flowing through the flow cell, so that each particle has a certain range parallel to the flow cell. Photographed as a two-dimensional image. From the area of the two-dimensional image of each particle, the diameter of a circle having the same area is calculated as the equivalent circle diameter. The circularity of each particle is calculated from the projected area of the two-dimensional image of each particle and the perimeter of the projected image using the above circularity calculation formula.

また、本発明においては、フロー式粒子像測定装置で計測される円相当径0.6μm以上400μm以下のトナー粒子における個数基準の粒径分布において0.6μm以上3μm未満のトナー粒子比率が0個数%以上20個数%未満、好ましくは0個数%以上17個数%未満、より好ましくは1個数%以上15個数%未満であることが好ましい。0.6μm以上3μm未満のトナー粒子は、トナーの現像性、特にカブリ特性に大きな影響を与える。このような微粒子トナーは過度に高い帯電性を有しており、トナーの現像時に過剰に現像されやすく、画像上にカブリとして現れる。しかし本発明においてはこのような微粒子トナーの比率が少ないことによってカブリを低減することができる。   In the present invention, the toner particle ratio of 0.6 to 3 μm is zero in the number-based particle size distribution of toner particles having an equivalent circle diameter of 0.6 to 400 μm measured by a flow type particle image measuring device. % Or more and less than 20%, preferably 0% or more and less than 17%, more preferably 1% or more and less than 15%. Toner particles having a size of 0.6 μm or more and less than 3 μm have a great influence on the developability of the toner, particularly the fog characteristics. Such a fine particle toner has an excessively high chargeability, is easily developed excessively at the time of developing the toner, and appears as fog on the image. However, in the present invention, the fog can be reduced by the small proportion of the fine particle toner.

また、本発明のトナーは前述したとおり平均円形度が高いためにトナーがより密に詰まった状態を取りやすいために現像スリーブ上により厚くトナーがコートされ、結果的にスリーブ上のトナー層の上層と下層で帯電量が異なり、連続して広い面積の画像を現像した時に先端の画像濃度よりもスリーブ2周目以降の画像の方が画像濃度が低下してしまう、所謂スリーブネガゴーストを発生する場合がある。この時にトナー粒子中に超微粉が多く存在すると、超微粉は他のトナー粒子よりも高い帯電量を有しているために画像濃度差を発生させやすく、スリーブネガゴーストを悪化させるが本発明においては超微粉量が少ないのでスリーブネガゴーストの悪化を抑制することができる。0.6μm以上3μm未満の粒子比率が20%以上だと、画像上のカブリが増加し、更にスリーブネガゴーストが悪化する場合がある。また、本発明のトナー粒子は円形度0.960未満のトナー粒子の個数累積値が20%以上70%未満、好ましくは25%以上65%未満、より好ましくは30%以上65%未満、より好ましくは35%以上65%未満であることが好ましい。トナー粒子の円形度は、個々のトナー粒子によって異なる。円形度が異なるとトナー粒子としての特性も異なるため、適度な円形度のトナー粒子比率が適正な値であることが、トナー粒子の現像性を高める上で好ましい。本発明のトナー粒子は適度な円形度を有しており、且つ適度な円形度分布を有しているため、トナー粒子の帯電分布が均一になり、カブリを低減することができる。円形度0.960未満のトナー粒子の個数累積値が20%未満だと、トナー粒子が耐久時に劣化する場合がある。円形度0.960未満のトナー粒子の個数累積値が70%以上だと、カブリが悪化したり、高温高湿環境下での画像濃度が低下する場合がある。   Further, since the toner of the present invention has a high average circularity as described above, it is easy to take a more densely packed state, so that the toner is coated thicker on the developing sleeve, and as a result, the upper layer of the toner layer on the sleeve. The charge amount is different between the lower layer and the lower layer, and when a large area image is continuously developed, a so-called sleeve negative ghost is generated, in which the image density in the second and subsequent sleeves is lower than the image density at the leading edge. There is a case. If a large amount of ultrafine powder is present in the toner particles at this time, the ultrafine powder has a higher charge amount than the other toner particles, so that an image density difference is liable to occur and the sleeve negative ghost is deteriorated. Since the amount of ultrafine powder is small, deterioration of sleeve negative ghost can be suppressed. If the particle ratio of 0.6 μm or more and less than 3 μm is 20% or more, the fog on the image increases and the sleeve negative ghost may be further deteriorated. In the toner particles of the present invention, the cumulative number of toner particles having a circularity of less than 0.960 is 20% or more and less than 70%, preferably 25% or more and less than 65%, more preferably 30% or more and less than 65%, more preferably. Is preferably 35% or more and less than 65%. The circularity of the toner particles varies depending on the individual toner particles. When the degree of circularity is different, the characteristics as toner particles are also different. Therefore, it is preferable that the ratio of toner particles having an appropriate degree of circularity is an appropriate value in order to improve the developability of the toner particles. Since the toner particles of the present invention have an appropriate degree of circularity and an appropriate degree of circularity distribution, the charge distribution of the toner particles becomes uniform and fogging can be reduced. If the cumulative number of toner particles having a circularity of less than 0.960 is less than 20%, the toner particles may deteriorate during durability. If the cumulative value of the number of toner particles having a circularity of less than 0.960 is 70% or more, the fog may be deteriorated or the image density in a high temperature and high humidity environment may be lowered.

また、本発明においては、トナー粒子の平均面粗さが5.0nm以上35.0nm未満、好ましくは8.0nm以上30.0nm未満、より好ましくは10.0nm以上25.0nm未満であることを特徴とする。トナー粒子が適度な表面粗さを有していることにより、トナー間に適度な空隙が生まれ、トナーの流動性を向上させることができ、より良好な現像性をもたらすことができる。特に本発明の特徴とする円形度を有するトナー粒子において、前記平均面粗さを有していることにより優れた流動性をトナー粒子に付与することができる。また、本発明のトナー粒子において、3μm未満の超微粒子が少ない場合により良好な流動性をトナーに付与することができる。即ち、トナー粒子中に超微粒子が多く存在すると、トナー表面の凹部分に超微粒子が入り込み、見かけ上のトナー平均面粗さを小さくしてしまい、トナー粒子間の空隙が減り、トナーにより好ましい流動性を付与することを妨げてしまう場合がある。トナー粒子の平均面粗さが5.0nm未満だと、トナーに十分な流動性が付与できず、フェーディングを生じて画像濃度が低下する。トナー粒子の平均面粗さが35.0nm以上だと、トナー粒子間の空隙が多くなりすぎることでトナーの飛び散りを生じる。   In the present invention, the average surface roughness of the toner particles is from 5.0 nm to less than 35.0 nm, preferably from 8.0 nm to less than 30.0 nm, and more preferably from 10.0 nm to less than 25.0 nm. Features. When the toner particles have an appropriate surface roughness, an appropriate gap is created between the toners, the fluidity of the toner can be improved, and better developability can be brought about. In particular, in the toner particles having the circularity, which is a feature of the present invention, excellent fluidity can be imparted to the toner particles by having the average surface roughness. In the toner particles of the present invention, better fluidity can be imparted to the toner when there are few ultrafine particles of less than 3 μm. That is, if there are many ultrafine particles in the toner particles, the ultrafine particles enter the concave portions of the toner surface, reducing the apparent average surface roughness of the toner, reducing the voids between the toner particles, and reducing the flow of toner more favorably. In some cases, it may interfere with imparting sex. If the average surface roughness of the toner particles is less than 5.0 nm, sufficient fluidity cannot be imparted to the toner, fading occurs and the image density decreases. When the average surface roughness of the toner particles is 35.0 nm or more, the gap between the toner particles becomes too large, and the toner scatters.

また本発明のトナーは、外添剤が添加されたトナーに関しても、粒径3μm以上400μm以下のトナーにおいて平均円形度が0.935以上0.970未満であって、平均面粗さが10.0nm以上26.0nm未満、好ましくは12.0nm以上24.0nm未満であることを特徴とする。トナーの平均面粗さが10.0nm未満だと、トナー凹部に多数の外添剤粒子が埋め込まれている状態となり、十分な流動性が付与できず、フェーディングを生じて良好な画像が得られない。トナーの平均面粗さが26.0nm以上だと、トナー表面の外添剤粒子が均一にコートされていない状態となり、帯電不良により飛び散りが悪化する。このようにトナーにおいても、適度な表面粗さと円形度を有することで、本発明の効果を得られやすくなる。   The toner of the present invention also has an average circularity of 0.935 or more and less than 0.970 and a mean surface roughness of 10.3 in a toner having a particle diameter of 3 μm or more and 400 μm or less. It is 0 nm or more and less than 26.0 nm, preferably 12.0 nm or more and less than 24.0 nm. When the average surface roughness of the toner is less than 10.0 nm, a large number of external additive particles are embedded in the toner recesses, and sufficient fluidity cannot be imparted, fading occurs and a good image is obtained. I can't. When the average surface roughness of the toner is 26.0 nm or more, the external additive particles on the toner surface are not uniformly coated, and scattering is deteriorated due to poor charging. As described above, the toner also has an appropriate surface roughness and circularity, so that the effects of the present invention can be easily obtained.

また、トナー粒子の最大高低差が50nm以上250nm未満、好ましくは80nm以上220nm未満、より好ましくは100nm以上200nm未満であることが好ましく、より良好な流動性をトナーに付与することができる。トナー粒子の最大高低差が50nm未満だと、トナーに十分な流動性を付与できず、フェーディングを生じて画像濃度が低下する場合がある。トナー粒子の最大高低差が250nm以上だと、トナーの飛び散りを生じる場合がある。   Further, the maximum height difference of the toner particles is 50 nm or more and less than 250 nm, preferably 80 nm or more and less than 220 nm, more preferably 100 nm or more and less than 200 nm, and better fluidity can be imparted to the toner. If the maximum height difference of the toner particles is less than 50 nm, sufficient fluidity cannot be imparted to the toner, fading may occur and the image density may decrease. If the maximum height difference of the toner particles is 250 nm or more, toner scattering may occur.

また、走査型プローブ顕微鏡で測定されるトナー粒子の表面の1μm四方のエリアを測定した時の表面積が1.03μm2以上1.33μm2未満、好ましくは1.05μm2以上1.30μm2未満、より好ましくは1.07μm2以上1.28μm2未満であることが好ましく、より良好な流動性をトナー粒子に付与することができる。トナー粒子の表面積が1.03μm2未満だと、トナーに十分な流動性を付与できず、フェーディングを生じて画像濃度が低下する場合がある。トナー粒子の表面積が1.33μm2以上だと、飛び散りを生じる場合がある。 The scanning probe surface area when measured 1μm square area of the surface of the toner particles as measured by microscope 1.03 .mu.m 2 or 1.33μm less than 2, preferably 1.05 .mu.m 2 or 1.30μm less than 2, More preferably, it is 1.07 μm 2 or more and less than 1.28 μm 2 , and better fluidity can be imparted to the toner particles. If the surface area of the toner particles is less than 1.03 μm 2 , sufficient fluidity cannot be imparted to the toner, fading may occur, and the image density may decrease. When the surface area of the toner particles is 1.33 μm 2 or more, scattering may occur.

本発明において、トナー粒子及びトナーの平均面粗さ、トナー粒子の最大高低差、表面積は、走査型プローブ顕微鏡を用いて測定される。以下に、測定方法の例を示す。
プローブステーション:SPI3800N(セイコーインスツルメンツ(株)製)
測定ユニット:SPA400
測定モード:DFM(共振モード)形状像
カンチレバー:SI−DF40P
解像度:Xデータ数 256
Yデータ数 128
In the present invention, the average surface roughness of the toner particles and the toner, the maximum height difference of the toner particles, and the surface area are measured using a scanning probe microscope. Below, the example of a measuring method is shown.
Probe station: SPI3800N (manufactured by Seiko Instruments Inc.)
Measuring unit: SPA400
Measurement mode: DFM (resonance mode) shape image Cantilever: SI-DF40P
Resolution: Number of X data 256
Number of Y data 128

本発明においては、トナー粒子及びトナーの表面の1μm四方のエリアを測定する。測定するエリアは、走査型プローブ顕微鏡で測定されるトナー粒子及びトナー表面の、中央部の1μm四方のエリアとする。測定するトナー粒子及びトナーは、コールターカウンター法で測定される重量平均粒径(D4)に等しいトナー粒子及びトナーをランダムに選択して、そのトナー粒子及びトナーを測定する。測定されたデータは、2次補正を行う。異なるトナー粒子及びトナーを5個以上測定し、得られたデータの平均値を算出して、そのトナー粒子及びトナーの平均面粗さ、トナー粒子の最大高低差、表面積とする。 In the present invention, the area of 1 μm square of the toner particles and the toner surface is measured. The area to be measured is a 1 μm square area at the center of the toner particles and the toner surface measured with a scanning probe microscope. As the toner particles and toner to be measured, toner particles and toner equal to the weight average particle diameter (D 4 ) measured by the Coulter counter method are selected at random, and the toner particles and toner are measured. The measured data is subjected to secondary correction. Five or more different toner particles and toners are measured, the average value of the obtained data is calculated, and the average surface roughness of the toner particles and toner, the maximum height difference of the toner particles, and the surface area are obtained.

トナー粒子に外添剤が外添されているトナーにおいて、トナー粒子の表面を走査型プローブ顕微鏡を用いて測定する場合は外添剤を取り除く必要があり、具体的な方法としては、例えば以下の方法が挙げられる。
1)トナー45mgをサンプル瓶に入れ、メタノールを10ml加える。
2)超音波洗浄機で1分間試料を分散させて外添剤を分離させる。
3)吸引ろ過(10μmメンブランフィルター)してトナー粒子と外添剤を分離する。磁性体を含むトナーの場合は、磁石をサンプル瓶の底にあててトナー粒子を固定して上澄み液だけ分離させても構わない。
4)上記2)、3)を計3回行い、得られたトナー粒子を真空乾燥機で室温で十分に乾燥させる。
In a toner in which an external additive is externally added to the toner particles, when the surface of the toner particles is measured using a scanning probe microscope, it is necessary to remove the external additive. A method is mentioned.
1) Put 45 mg of toner into a sample bottle and add 10 ml of methanol.
2) Disperse the sample for 1 minute with an ultrasonic cleaner to separate the external additive.
3) The toner particles and the external additive are separated by suction filtration (10 μm membrane filter). In the case of a toner containing a magnetic material, only the supernatant liquid may be separated by fixing the toner particles by applying a magnet to the bottom of the sample bottle.
4) The above 2) and 3) are performed three times in total, and the obtained toner particles are sufficiently dried at room temperature in a vacuum dryer.

外添剤を取り除いたトナー粒子を走査型電子顕微鏡で観察し、外添剤がなくなっているのを確認した後、走査型プローブ顕微鏡でトナー粒子の表面観察をすることができる。外添剤が十分に取り除ききれていない場合には、外添剤が十分に取り除かれるまで2)、3)を繰り返し行った後に走査型プローブ顕微鏡でのトナー粒子の表面観察を行う。   The toner particles from which the external additive has been removed are observed with a scanning electron microscope, and after confirming that the external additive has disappeared, the surface of the toner particles can be observed with a scanning probe microscope. If the external additive is not sufficiently removed, the surface of the toner particles is observed with a scanning probe microscope after repeating 2) and 3) until the external additive is sufficiently removed.

2)、3)に代わる外添剤を取り除く他の方法としては、アルカリで外添剤を溶解させる方法が挙げられる。アルカリとしては水酸化ナトリウム水溶液が好ましい。   2) As another method for removing the external additive in place of 3), there is a method of dissolving the external additive with an alkali. As the alkali, an aqueous sodium hydroxide solution is preferred.

以下に各用語を説明する。   Each term is explained below.

・平均面粗さ(Ra)
JIS B0601で定義されている中心線平均粗さRaを、測定面に対して適用できるよう三次元に拡張したもの。基準面から指定面までの偏差の絶対値を平均した値で次式で表される。
・ Average surface roughness (Ra)
The centerline average roughness Ra defined in JIS B0601 is expanded to three dimensions so that it can be applied to the measurement surface. The absolute value of the deviation from the reference plane to the specified plane is averaged and expressed by the following formula.

Figure 0004208785
F(X,Y):全測定データの示す面
0:指定面が理想的にフラットであると仮定したときの面積
0:指定面内のZデータ(指定面に対して垂直方向のデータ)の平均値
Figure 0004208785
F (X, Y): Surface S 0 indicated by all measurement data: Area Z 0 when the designated surface is assumed to be ideally flat Z 0 : Z data in the designated surface (data perpendicular to the designated surface) ) Average value

指定面とは、本発明においては1μm四方の測定エリアを意味する。   In the present invention, the designated surface means a measurement area of 1 μm square.

・最大高低差(P−V)
指定面内におけるZデータの最大値と最小値の差。
・ Maximum height difference (P-V)
The difference between the maximum and minimum values of Z data within the specified plane.

・表面積(S)
指定面の表面積。
・ Surface area (S)
The surface area of the specified surface.

次に、本発明の特徴とするトナー粒子を得るための好ましい方法として、表面改質工程を用いたトナー粒子製造方法について説明する。以下に、表面改質工程で使用される表面改質装置及び表面改質装置を利用したトナー粒子の製造方法について、図面を参照しながら具体的に説明する。   Next, a toner particle manufacturing method using a surface modification step will be described as a preferred method for obtaining toner particles characterized by the present invention. Hereinafter, a surface modifying device used in the surface modifying step and a toner particle manufacturing method using the surface modifying device will be specifically described with reference to the drawings.

尚、本発明において表面改質とは、トナー粒子の表面を平滑化することを意味する。   In the present invention, the surface modification means smoothing the surface of the toner particles.

図1は、本発明に使用する表面改質装置の一例を示し、図2は図1において高速回転する回転子の上面図の一例を示す。   FIG. 1 shows an example of a surface modification apparatus used in the present invention, and FIG. 2 shows an example of a top view of a rotor that rotates at a high speed in FIG.

図1に示す表面改質装置では、ケーシング、冷却水或いは不凍液を通水できるジャケット(図示しない)、表面改質手段である、ケーシング内にあって中心回転軸に取り付けられた、上面に角型のディスク或いは円筒型のピン40を複数個有し、高速で回転する円盤上の回転体である分散ローター36、分散ローター36の外周に一定間隔を保持して配置されている表面に多数の溝が設けられているライナー34(尚、ライナー表面上の溝はなくても構わない)、更に、表面改質された原料を所定粒径に分級するための手段である分級ローター31、更に、冷風を導入するための冷風導入口35、被処理原料を導入するための原料供給口33、更に、表面改質時間を自在に調整可能となるように、開閉可能なように設置された排出弁38、処理後の粉体を排出するための粉体排出口37、更に、分級手段である分級ローター31と表面改質手段である分散ローター36−ライナー34との間の空間を、分級手段へ導入される前の第一の空間41と、分級手段により微粉を分級除去された粒子を表面改質手段へ導入するための第二の空間42に仕切る案内手段である円筒形のガイドリング39とから構成されている。分散ローター36とライナー34との間隙部分が表面改質ゾーンであり、分級ローター31及びローター周辺部分が分級ゾーンである。   In the surface modification apparatus shown in FIG. 1, a casing, a jacket (not shown) through which cooling water or antifreeze liquid can be passed, and a surface modification means, which is in the casing and attached to the central rotating shaft, has a square shape on the upper surface. A plurality of discs or cylindrical pins 40, and a distributed rotor 36 which is a rotating body on a disk rotating at high speed, and a plurality of grooves on the surface arranged at regular intervals on the outer periphery of the distributed rotor 36 Is provided with a liner 34 (there is no need to have a groove on the liner surface), a classification rotor 31 that is a means for classifying the surface-modified raw material into a predetermined particle size, and a cold air A cold air introduction port 35 for introducing the raw material, a raw material supply port 33 for introducing the raw material to be treated, and a discharge valve 38 installed so as to be openable and closable so that the surface modification time can be freely adjusted. ,place A powder discharge port 37 for discharging the subsequent powder, and a space between the classification rotor 31 as the classification means and the dispersion rotor 36 and the liner 34 as the surface modification means are introduced into the classification means. It is composed of a front first space 41 and a cylindrical guide ring 39 which is a guide means for partitioning the particles, from which fine powder has been classified and removed by the classification means, into a second space 42 for introducing the particles into the surface modification means. ing. A gap portion between the dispersion rotor 36 and the liner 34 is a surface modification zone, and a classification rotor 31 and a rotor peripheral portion are classification zones.

尚、分級ローター31の設置方向は図1に示したように縦型でも構わないし、横型でも構わない。また、分級ローター31の個数は図1に示したように単体でも構わないし、複数でも構わない。   As shown in FIG. 1, the classifying rotor 31 may be installed vertically or horizontally. Further, the number of classification rotors 31 may be single as shown in FIG. 1 or plural.

以上のように構成してなる表面改質装置では、排出弁38を閉とした状態で原料供給口33から原料トナー粒子を投入すると、投入された原料トナー粒子は、まずブロワー(図示しない)により吸引され、分級ローター31で分級される。その際、分級された所定粒径以下の微粉は装置外へ連続的に排出除去され、所定粒径以上の粗粉は遠心力によりガイドリング39の内周(第二の空間42)に沿いながら分散ローター36により発生する循環流にのり表面改質ゾーンへ導かれる。表面改質ゾーンに導かれた原料は分散ローター36とライナー34間で機械式衝撃力を受け、表面改質処理される。表面改質された表面改質粒子は、機内を通過する冷風にのって、ガイドリング39の外周(第一の空間41)に沿いながら分級ゾーンに導かれ、分級ローター31により、再度微粉は機外へ排出され、粗粉は、循環流にのり、再度表面改質ゾーンに戻され、繰り返し表面改質作用を受ける。一定時間経過後、排出弁38を開とし、排出口37より表面改質粒子を回収する。   In the surface reforming apparatus configured as described above, when the raw material toner particles are introduced from the raw material supply port 33 with the discharge valve 38 closed, the introduced raw material toner particles are first drawn by a blower (not shown). Suctioned and classified by the classification rotor 31. At that time, the classified fine powder having a predetermined particle diameter or less is continuously discharged and removed out of the apparatus, and the coarse powder having a predetermined particle diameter or more passes along the inner periphery (second space 42) of the guide ring 39 by centrifugal force. The circulating flow generated by the dispersion rotor 36 is guided to the surface modification zone. The raw material guided to the surface modification zone is subjected to a surface modification treatment by receiving a mechanical impact force between the dispersion rotor 36 and the liner 34. The surface-modified particles having undergone surface modification are guided to the classification zone along the outer periphery (first space 41) of the guide ring 39 on the cold air passing through the inside of the machine. The coarse powder discharged to the outside of the machine is put into a circulating flow, returned to the surface modification zone again, and repeatedly subjected to the surface modification action. After a certain period of time, the discharge valve 38 is opened and the surface modified particles are recovered from the discharge port 37.

本発明表面改質工程においては、トナー粒子の表面改質と同時に微粉成分を除去できる。それにより、トナー粒子中に存在する超微粒子がトナー粒子表面に固着することがなく、所望の円形度、平均面粗さ及び超微粒子量を有するトナー粒子を効果的に得ることができる。表面改質と同時に微粉を除去することができない場合、表面改質後のトナー粒子中の超微粒子量が多く存在してしまう上に、トナー粒子表面改質工程において、機械的、熱的な影響により、適正な粒径を有するトナー粒子の表面に超微粒子成分が固着してしまう。その結果、トナー粒子の表面に、固着した微粉成分による突起が生成し、所望の円形度及び平均面粗さを有するトナー粒子が得られない。   In the surface modification step of the present invention, the fine powder component can be removed simultaneously with the surface modification of the toner particles. As a result, the ultrafine particles present in the toner particles do not adhere to the surface of the toner particles, and toner particles having a desired circularity, average surface roughness, and ultrafine particle amount can be obtained effectively. If fine powder cannot be removed at the same time as surface modification, there will be a large amount of ultrafine particles in the toner particles after surface modification, and mechanical and thermal effects will occur in the toner particle surface modification process. As a result, the ultrafine particle component adheres to the surface of the toner particles having an appropriate particle size. As a result, protrusions due to the adhering fine powder component are generated on the surface of the toner particles, and toner particles having a desired circularity and average surface roughness cannot be obtained.

尚、本発明において、「表面改質と同時に微粉成分を除去する」とは、トナー粒子の表面改質及び微粉除去を繰り返し行うことを意味し、それは前記のような単一装置内でそれぞれの工程を有する装置を用いても良く、また、表面改質と微粉除去を異なる装置によって行い、それぞれの工程を繰り返し行うことによっても良い。   In the present invention, “removing the fine powder component simultaneously with the surface modification” means that the surface modification of the toner particles and the removal of the fine powder are repeatedly performed. An apparatus having processes may be used, or surface modification and fine powder removal may be performed by different apparatuses, and each process may be repeated.

本発明者が検討した結果、表面改質装置における表面改質時間(=サイクルタイム、原料供給が終了してから排出弁が開くまでの時間)としては、5秒以上180秒以下、更に好ましくは、15秒以上120秒以下であることが好ましい。表面改質時間が5秒未満の場合、改質時間が短時間過ぎるため、表面改質トナー粒子が十分に得られない場合がある。また、改質時間が180秒を超えると、改質時間が長時間過ぎるため、表面改質時に発生する熱による機内融着の発生、及び処理能力の低下を招く場合がある。   As a result of investigation by the present inventors, the surface modification time in the surface modification apparatus (= cycle time, the time from the end of the raw material supply to the opening of the discharge valve) is 5 seconds or more and 180 seconds or less, more preferably It is preferably 15 seconds or longer and 120 seconds or shorter. When the surface modification time is less than 5 seconds, the modification time is too short, and thus the surface modified toner particles may not be sufficiently obtained. Further, if the reforming time exceeds 180 seconds, the reforming time is too long, which may cause in-machine fusion due to heat generated during surface reforming and decrease in processing capacity.

更に、本発明に係るトナー粒子の製造方法においては、該表面改質装置内に導入する冷風温度T1を5℃以下とすることが好ましい。該表面改質装置内に導入する冷風温度T1を5℃以下、より好ましくは、0℃以下、更に好ましくは、−5℃以下、特に好ましくは、−10℃以下、最も好ましくは、−15℃以下とすることにより、表面改質時に発生する熱による機内融着を防止することができる。該表面改質装置内に導入する冷風温度T1が5℃を超えると、表面改質時に発生する熱による機内融着を起こす場合がある。   Furthermore, in the method for producing toner particles according to the present invention, it is preferable that the cold air temperature T1 introduced into the surface modifying apparatus is 5 ° C. or less. The cold air temperature T1 introduced into the surface modifying apparatus is 5 ° C. or less, more preferably 0 ° C. or less, still more preferably −5 ° C. or less, particularly preferably −10 ° C. or less, and most preferably −15 ° C. By making the following, in-machine fusion due to heat generated during surface modification can be prevented. When the cold air temperature T1 introduced into the surface reforming apparatus exceeds 5 ° C., in-machine fusion may occur due to heat generated during the surface modification.

尚、該表面改質装置内に導入する冷風は、装置内の結露防止という面から、除湿したものであることが好ましい。除湿装置としては公知のものが使用できる。給気露点温度としては、−15℃以下が好ましく、更には−20℃以下が好ましい。   In addition, it is preferable that the cold air introduce | transduced in this surface modification apparatus is dehumidified from the surface of the dew condensation prevention in an apparatus. A well-known thing can be used as a dehumidifier. The supply air dew point temperature is preferably −15 ° C. or lower, and more preferably −20 ° C. or lower.

更に、本発明のトナー粒子の製造方法においては、該表面改質装置内は、機内冷却用のジャケットを具備しており、該ジャケットに冷媒(好ましくは冷却水、更に好ましくはエチレングリコール等の不凍液)を通しながら表面改質処理することが好ましい。該ジャケットによる機内冷却により、トナー粒子表面改質時における熱による機内融着を防止することができる。   Furthermore, in the method for producing toner particles of the present invention, the inside of the surface modifying device is provided with a jacket for cooling the inside of the apparatus, and a refrigerant (preferably cooling water, more preferably an antifreeze liquid such as ethylene glycol) is provided in the jacket. It is preferable to carry out surface modification treatment while passing through. In-machine cooling by the jacket can prevent in-machine fusion due to heat during the toner particle surface modification.

尚、表面改質装置の該ジャケット内に通す冷媒の温度は5℃以下とすることが好ましい。表面改質装置内の該ジャケット内に通す冷媒の温度を5℃以下、より好ましくは、0℃以下、更に好ましくは、−5℃以下とすることにより、表面改質時に発生する熱による機内融着を防止することができる。該ジャケット内に導入する冷媒の温度が5℃を超えると、表面改質時に発生する熱による機内融着を起こす場合がある。   In addition, it is preferable that the temperature of the refrigerant | coolant passed through this jacket of a surface modification apparatus shall be 5 degrees C or less. By setting the temperature of the refrigerant passed through the jacket in the surface reforming apparatus to 5 ° C. or less, more preferably 0 ° C. or less, and even more preferably −5 ° C. or less, in-machine melting due to heat generated during surface reforming is performed. Wearing can be prevented. When the temperature of the refrigerant introduced into the jacket exceeds 5 ° C., in-machine fusion may occur due to heat generated during surface modification.

更に、本発明のトナー粒子の製造方法においては、該表面改質装置内の分級ローター後方の温度T2を60℃以下とすることが好ましい。該表面改質装置内の分級ローター後方の温度T2を60℃以下、好ましくは50℃以下とすることにより、表面改質時に発生する熱による機内融着を防止することができる。該表面改質装置内の分級ローター後方の温度T2が60℃を超えると、表面改質ゾーンにおいては、それ以上の温度が影響するため、表面改質時に発生する熱による機内融着を起こす場合がある。   Furthermore, in the method for producing toner particles of the present invention, it is preferable that the temperature T2 behind the classification rotor in the surface modifying apparatus is 60 ° C. or less. By setting the temperature T2 behind the classification rotor in the surface reforming apparatus to 60 ° C. or less, preferably 50 ° C. or less, in-machine fusion due to heat generated during the surface modification can be prevented. When the temperature T2 behind the classification rotor in the surface reformer exceeds 60 ° C., the temperature is further affected in the surface reforming zone. Therefore, in-machine fusion is caused by heat generated during the surface reforming. There is.

更に、本発明のトナー粒子の製造方法においては、表面改質装置内の該分散ローターとライナーとの間の最小間隔が0.5mm乃至15.0mmとすることが好ましく、更には、1.0mm乃至10.0mmとすることが好ましい。また、該分散ローターの回転周速は75m/sec乃至200m/secとすることが好ましく、更には、85m/sec乃至180m/secとすることが好ましい。更に、表面改質装置内の該分散ローター上面に設置されている角型のディスク或いは円筒形のピンの上部と、該円筒型のガイドリングの下部との間の最小間隔が2.0mm乃至50.0mmとすることが好ましく、更には、5.0mm乃至45.0mmとすることが好ましい。   Furthermore, in the method for producing toner particles of the present invention, the minimum distance between the dispersion rotor and the liner in the surface modifying apparatus is preferably 0.5 mm to 15.0 mm, and more preferably 1.0 mm. It is preferable to be set to 10.0 mm. In addition, the rotational peripheral speed of the dispersion rotor is preferably 75 m / sec to 200 m / sec, and more preferably 85 m / sec to 180 m / sec. Further, the minimum distance between the upper part of the rectangular disk or cylindrical pin installed on the upper surface of the dispersion rotor in the surface modifying apparatus and the lower part of the cylindrical guide ring is 2.0 mm to 50 mm. 0.0 mm is preferable, and 5.0 mm to 45.0 mm is more preferable.

本発明において、該表面改質装置内の分散ローター及びライナーの粉砕面は耐摩耗処理されていることがトナー粒子の生産性上好ましい。尚、耐摩耗処理方法は何ら限定されるものではない。また、該表面改質装置内の分散ローター及びライナーの刃形状に関しても、何ら限定されるものではない。   In the present invention, it is preferable from the standpoint of toner particle productivity that the pulverized surfaces of the dispersion rotor and liner in the surface modifying apparatus are subjected to anti-wear treatment. In addition, the abrasion-resistant processing method is not limited at all. Further, the blade shapes of the dispersion rotor and liner in the surface modification device are not limited at all.

本発明のトナー粒子製造方法としては、あらかじめ所望の粒径付近に微粒子化された原料トナー粒子を、気流式分級機を用いて微粉及び粗粉をある程度除去した上で、表面改質装置によってトナー粒子の表面改質及び超微粉成分の除去を行うことが好ましい。あらかじめ微粉を除去しておくことにより、表面改質装置内でのトナー粒子の分散が良好になる。特に、トナー粒子中の微粉成分は、比表面積が大きく、他の大きなトナー粒子と比較して相対的に帯電量が高いために他のトナー粒子からの分離がされにくく、分級ローターで適正に超微粉成分が分級されない場合があるが、あらかじめトナー粒子中の微粉成分を除去しておくことによって、表面改質装置内で個々のトナー粒子が分散しやすくなり、超微粉成分が適正に分級ローターによって分級され、所望の粒度分布を有するトナー粒子を得ることができる。気流式分級機によって微粉を除去されたトナーは、コールターカウンター法を用いて測定される粒度分布において、4μm未満のトナー粒子の個数基準の粒径分布の累積値が10個数%以上50個数%未満、好ましくは15個数%以上45個数%未満、より好ましくは15個数%以上40個数%未満であることが好ましく、本発明の表面改質装置によって効果的に超微粉成分を除去することができる。本発明で用いられる気流式分級機としては、エルボージェット(日鉄工業社製)等があげられる。   In the toner particle production method of the present invention, the raw material toner particles finely divided in the vicinity of a desired particle diameter are removed to some extent by using an airflow classifier, and then the toner is produced by a surface modification device. It is preferable to perform surface modification of the particles and removal of the ultrafine powder component. By removing the fine powder in advance, the dispersion of the toner particles in the surface modifying apparatus becomes good. In particular, the fine powder component in the toner particles has a large specific surface area and a relatively high charge amount compared to other large toner particles, so it is difficult to separate from other toner particles, and it can be appropriately exceeded by a classification rotor. Although the fine powder component may not be classified, by removing the fine powder component in the toner particles in advance, the individual toner particles can be easily dispersed in the surface reforming device, and the ultra fine powder component is properly classified by the classification rotor. Toner particles having a desired particle size distribution can be obtained. In the toner from which fine powder has been removed by an airflow classifier, the cumulative value of the particle size distribution based on the number of toner particles of less than 4 μm in the particle size distribution measured using the Coulter counter method is 10% or more and less than 50%. It is preferably 15% by number or more and less than 45% by number, more preferably 15% by number or more and less than 40% by number, and the ultrafine powder component can be effectively removed by the surface modification apparatus of the present invention. Examples of the airflow classifier used in the present invention include elbow jet (manufactured by Nippon Steel Industries Co., Ltd.).

更に本発明においては、該表面改質装置内の分散ローター及び分級ローターの回転数等を制御することにより、トナー粒子の円形度、及びトナー粒子中の0.6μm以上3μm未満の粒子比率をより適正な値に制御することができる。本発明においては、メタノール/水混合溶媒に対するトナー粒子の濡れ性を780nmの波長光の透過率で測定した時に、透過率が80%の時のメタノール濃度及び透過率50%の時のメタノール濃度が35〜75体積%、好ましくは40〜70体積%、より好ましくは45〜65体積%、より好ましくは45〜60体積%の範囲内であることが好ましい。このようなメタノール濃度−透過率特性を有するトナー粒子は、本発明の特徴とする表面改質装置を用いて、表面改質処理条件を適切な条件にすることによって得られ、トナー粒子表面における各原材料の露出割合が適切であり、適度且つシャープな帯電性をトナー粒子にもたらすことができる。また、本発明のトナー粒子は平均円形度が0.935以上0.970未満であり、トナーとしたときの流動性に優れる。このように流動性が良く、且つ帯電量分布がシャープであるトナーは、トナー容器内でトナーが均一且つ高い帯電性を有することができ、長期の使用においても良好且つ安定した画像濃度を得ることができる。特に高温高湿環境下のようなトナーが凝集して流動性が悪化したり、また、帯電量が低下しやすい環境下において特に有効に作用する。   Furthermore, in the present invention, the circularity of the toner particles and the particle ratio of 0.6 μm or more and less than 3 μm in the toner particles are further controlled by controlling the number of rotations of the dispersion rotor and the classification rotor in the surface modifying apparatus. It can be controlled to an appropriate value. In the present invention, when the wettability of toner particles with respect to a methanol / water mixed solvent is measured by the transmittance of light having a wavelength of 780 nm, the methanol concentration when the transmittance is 80% and the methanol concentration when the transmittance is 50% are obtained. It is preferable to be within the range of 35 to 75% by volume, preferably 40 to 70% by volume, more preferably 45 to 65% by volume, and more preferably 45 to 60% by volume. Toner particles having such methanol concentration-transmittance characteristics can be obtained by setting the surface modification treatment conditions to appropriate conditions using the surface modification apparatus characterized by the present invention. The exposure ratio of the raw material is appropriate, and a moderate and sharp chargeability can be provided to the toner particles. The toner particles of the present invention have an average circularity of 0.935 or more and less than 0.970, and are excellent in fluidity when used as a toner. As described above, the toner having good fluidity and a sharp charge amount distribution allows the toner to be uniformly and highly charged in the toner container, and obtains a good and stable image density even in long-term use. Can do. In particular, it works particularly effectively in an environment where the toner aggregates in a high-temperature and high-humidity environment and the fluidity is deteriorated or the charge amount tends to decrease.

トナー粒子の、透過率が80%の時のメタノール濃度及び透過率が50%の時のメタノール濃度が35体積%より低いと、トナーの帯電性が不十分となり、画像濃度が劣るようになる場合がある。また、透過率が80%の時のメタノール濃度及び透過率が50%の時のメタノール濃度が75体積%を越えると、トナーの凝集性が高くなるために十分な流動性が得られなくなり、高温高湿環境下での現像性が不十分となる場合がある。   When the methanol concentration when the transmittance of toner particles is 80% and the methanol concentration when the transmittance is 50% is lower than 35% by volume, the chargeability of the toner becomes insufficient and the image density becomes inferior. There is. Further, if the methanol concentration when the transmittance is 80% and the methanol concentration when the transmittance is 50% exceed 75% by volume, the toner has high cohesiveness, and sufficient fluidity cannot be obtained. The developability in a high humidity environment may be insufficient.

また、トナー粒子の、透過率が80%の時のメタノール濃度と透過率が50%の時のメタノール濃度の濃度差が10%以下、好ましくは7%以下、より好ましくは5%以下であることが好ましく、より良好な現像性をトナーに付与することができる。濃度差が10%を越えると、トナーの表面状態が不均一になり、不正に現像されるトナーが増加してカブリが増加する場合がある。   Further, the difference in concentration of the toner particles when the transmittance is 80% and the methanol concentration when the transmittance is 50% is 10% or less, preferably 7% or less, more preferably 5% or less. Is preferable, and better developability can be imparted to the toner. If the density difference exceeds 10%, the surface state of the toner becomes non-uniform, and the amount of toner that is illegally developed may increase and fog may increase.

本発明においては、トナー粒子の濡れ性、即ち疎水特性は、メタノール滴下透過率曲線を用いて測定する。具体的には、その測定装置として、例えば、(株)レスカ社製の粉体濡れ性試験機WET−100Pを用い、下記の条件及び手順で測定したメタノール滴下透過率曲線を利用する。まず、メタノール20〜50体積%と水50〜80体積%とからなる含水メタノール液70mlを容器中に入れ、この中に検体であるトナー粒子を0.1g精秤して添加し、トナー粒子の疎水特性を測定するためのサンプル液を調製する。次に、この測定用サンプル液中に、メタノールを1.3ml/minの滴下速度で連続的に添加しながら波長780nmの光で透過率を測定し、図3に示したようなメタノール滴下透過率曲線を作成する。この際に、メタノールを滴定溶媒としたのは、トナー粒子に含有される染料、顔料、荷電制御剤等の溶出の影響が少なく、トナー粒子の表面状態がより正確に観察できるためである。   In the present invention, the wettability, that is, the hydrophobic property of the toner particles is measured using a methanol dropping transmittance curve. Specifically, as the measuring device, for example, a powder wettability tester WET-100P manufactured by Reska Co., Ltd. is used, and a methanol dropping transmittance curve measured under the following conditions and procedures is used. First, 70 ml of a water-containing methanol solution composed of 20 to 50% by volume of methanol and 50 to 80% by volume of water is put in a container, and 0.1 g of toner particles as a sample are precisely weighed and added thereto, and Prepare a sample solution for measuring hydrophobic properties. Next, transmittance was measured with light having a wavelength of 780 nm while continuously adding methanol to the measurement sample solution at a dropping rate of 1.3 ml / min, and the methanol dropping transmittance as shown in FIG. Create a curve. In this case, methanol is used as a titration solvent because the influence of elution of dyes, pigments, charge control agents, and the like contained in the toner particles is small, and the surface state of the toner particles can be observed more accurately.

本発明のトナーは、分子量3.0×103以上3.0×104未満の領域にメインピークを有し、かつ分子量5.0×104以上1.0×108 未満の領域に少なくとも一つのサブピークまたはショルダーを有している。 The toner of the present invention has a main peak in a region having a molecular weight of 3.0 × 10 3 or more and less than 3.0 × 10 4 , and at least in a region having a molecular weight of 5.0 × 10 4 or more and less than 1.0 × 10 8. It has one sub-peak or shoulder.

分子量3.0×103 以上3.0×104 未満、好ましくは1.0×104 以上3.0×104 未満の領域にメインピークを有することにより、トナー表面改質時において小さい負荷で高い円形度のトナーを得ることができ、生産性も向上する。また良好な定着性を持たせることができる。分子量5.0×104以上1.0×108 未満、好ましくは1.0×105乃至3.0×106の領域にサブピークまたはショルダーを有することにより、トナー全体に適度な弾性を持たせることが可能となり、トナー表面改質時においてトナーが適度な硬さを有することによって、適度にシェアがかかり所望のトナー形状が得やすくなる。また、耐オフセット性を向上させることができる。 By having a main peak in a region having a molecular weight of 3.0 × 10 3 or more and less than 3.0 × 10 4 , preferably 1.0 × 10 4 or more and less than 3.0 × 10 4 , a small load at the time of toner surface modification Thus, a toner with a high degree of circularity can be obtained, and the productivity is also improved. In addition, good fixability can be provided. By having sub-peaks or shoulders in the molecular weight range of 5.0 × 10 4 or more and less than 1.0 × 10 8 , preferably 1.0 × 10 5 to 3.0 × 10 6 , the entire toner has appropriate elasticity. Since the toner has an appropriate hardness when the toner surface is modified, an appropriate share is obtained and a desired toner shape is easily obtained. Further, the offset resistance can be improved.

本発明のような分子量分布を有するトナーと表面改質を組み合わせる効果として、優れた転写効率を得ることができる。   As an effect of combining the toner having the molecular weight distribution and the surface modification as in the present invention, excellent transfer efficiency can be obtained.

本発明のトナーは低分子量成分と高分子量成分をバランスよく有しており、トナー全体に適度な弾性を持っているため、着色剤やワックス、荷電制御剤等の原材料をトナー表面に均一に分布させることができる。トナー表面はどこでも均一な組成を持っているため、同様の帯電性を有することができシャープな帯電分布を持たせることが可能である。トナー表面組成が不均一だと、帯電分布も広く不均一になる。また、本発明のトナーは適度な平均面粗さを有することで、トナー表面において接触帯電可能な部位が多く存在する。その時に、本発明のような低分子量成分と高分子量成分をバランスよく有するトナーは、シャープでかつ高い帯電量をトナーにもたらすことができ、感光ドラムから被転写材への転写性が向上する。さらに適度な円形度を有するために、感光ドラムとトナーが分離しやすい。   The toner of the present invention has a low molecular weight component and a high molecular weight component in a well-balanced manner, and has an appropriate elasticity in the entire toner, so that raw materials such as colorants, waxes, and charge control agents are evenly distributed on the toner surface. Can be made. Since the toner surface has a uniform composition everywhere, it can have the same chargeability and a sharp charge distribution. If the toner surface composition is non-uniform, the charge distribution will be wide and non-uniform. In addition, since the toner of the present invention has an appropriate average surface roughness, there are many sites that can be contact-charged on the toner surface. At that time, a toner having a low molecular weight component and a high molecular weight component in a balanced manner as in the present invention can provide a sharp and high charge amount to the toner, and transfer properties from the photosensitive drum to the transfer material are improved. Furthermore, since it has an appropriate circularity, the photosensitive drum and the toner are easily separated.

メインピークの分子量が3.0×103より小さくなると、低分子量成分と高分子量成分の相溶性が悪くなり、トナー表面組成が不均一になりシャープな帯電分布が得られず、転写効率が低下する。メインピークの分子量が3.0×104 以上になると定着不具合が生じてしまい、また表面改質処理時の負荷が高くなり生産性も低下する。サブピークまたはショルダーの分子量が5.0×104より小さくなると、耐オフセット性能が劣ってしまう。サブピークまたはショルダーの分子量が1.0×108 以上になると、低分子量成分と高分子量成分の相溶性が悪くなり、トナー表面組成が不均一になりシャープな帯電分布が得られず、転写効率が低下する。 When the molecular weight of the main peak is smaller than 3.0 × 10 3, the compatibility between the low molecular weight component and the high molecular weight component becomes poor, the toner surface composition becomes non-uniform, and a sharp charge distribution cannot be obtained, resulting in a decrease in transfer efficiency. To do. When the molecular weight of the main peak is 3.0 × 10 4 or more, a fixing defect occurs, and the load during the surface modification treatment increases and the productivity also decreases. When the molecular weight of the sub-peak or shoulder is smaller than 5.0 × 10 4 , the offset resistance performance is inferior. When the molecular weight of the sub-peak or shoulder is 1.0 × 10 8 or more, the compatibility between the low molecular weight component and the high molecular weight component is deteriorated, the toner surface composition becomes non-uniform, and a sharp charge distribution cannot be obtained, resulting in transfer efficiency. descend.

本発明では、酸価を有する結着樹脂を用いることにより、トナーの帯電能力がより強調され、トナーの早い帯電立ち上がりを実現し、高い帯電量を付与することができる。結着樹脂中の低分子量成分あるいは高分子量成分に酸化を持ち、酸価が0.5〜30mgKOH/g未満であることが好ましい。さらには低分子量成分、高分子量側両方に酸価を持つことが好ましい。特には低分子量成分の酸価が大きいことが好ましい。   In the present invention, by using a binder resin having an acid value, the charging ability of the toner is more emphasized, the toner can be quickly charged, and a high charge amount can be imparted. It is preferable that the low molecular weight component or the high molecular weight component in the binder resin has oxidation and the acid value is 0.5 to less than 30 mgKOH / g. Furthermore, it is preferable to have an acid value on both the low molecular weight component and the high molecular weight side. In particular, the acid value of the low molecular weight component is preferably large.

・トナーのTHF可溶分及び原料結着樹脂の酸価
本発明において、トナーのTHF可溶分及び原料結着樹脂の酸価(JIS酸価)は、以下の方法により求める。尚、原料結着樹脂の酸価も、原料樹脂のTHF可溶分の酸価を意味する。
In the present invention, the THF soluble content of the toner and the acid value (JIS acid value) of the raw material binder resin are determined by the following method. The acid value of the raw material binder resin also means the acid value of the THF soluble part of the raw material resin.

基本操作はJIS K−0070に準ずる。
(1)試料は予めトナー及び原料結着樹脂のTHF不溶分を除去して使用するか、上記のTHF不溶分の測定で得られるソックスレー抽出器によるTHF溶媒によって抽出された可溶成分を試料として使用する。試料の粉砕品0.5〜2.0(g)を精秤し、可溶成分の重さをW(g)とする。
(2)300mlのビーカーに試料を入れ、トルエン/エタノール(4/1)の混合液150mlを加え溶解する。
(3)0.1mol/lのKOHのエタノール溶液を用いて、電位差滴定装置を用いて滴定する(例えば、京都電子株式会社製の電位差滴定装置AT−400(win workstation)とABP−410電動ビュレットを用いての自動滴定が利用できる。)。
(4)この時のKOH溶液の使用量をS〔ml〕とする。また、同時に試料を用いないブランク試験を行い、この時のKOH溶液の使用量をB〔ml〕とする。
(5)次式により酸価を計算する。fはKOHのファクターである。
酸価(mgKOH/g)={(S−B)×f×5.61}/W
Basic operation conforms to JIS K-0070.
(1) The sample is used by removing the THF-insoluble content of the toner and the raw material binder resin in advance, or the soluble component extracted by the THF solvent by the Soxhlet extractor obtained by the above-mentioned measurement of the THF-insoluble content is used as the sample. use. The pulverized sample 0.5 to 2.0 (g) is precisely weighed, and the weight of the soluble component is defined as W (g).
(2) A sample is put into a 300 ml beaker, and 150 ml of a toluene / ethanol (4/1) mixed solution is added and dissolved.
(3) Titration using a potentiometric titration apparatus with an ethanol solution of 0.1 mol / l KOH (for example, potentiometric titration apparatus AT-400 (winworkstation) manufactured by Kyoto Electronics Co., Ltd. and ABP-410 electric burette Automatic titration with can be used.)
(4) The amount of KOH solution used at this time is S [ml]. At the same time, a blank test without using a sample is performed, and the amount of KOH solution used at this time is B [ml].
(5) The acid value is calculated by the following formula. f is a factor of KOH.
Acid value (mgKOH / g) = {(SB) × f × 5.61} / W

本発明に使用される結着樹脂の種類としては、スチレン系樹脂、スチレン系共重合樹脂、ポリエステル樹脂、ポリオール樹脂、ポリ塩化ビニル樹脂、フェノール樹脂、天然変性フェノール樹脂、天然樹脂変性マレイン酸樹脂、アクリル樹脂、メタクリル樹脂、ポリ酢酸ビニール、シリコーン樹脂、ポリウレタン樹脂、ポリアミド樹脂、フラン樹脂、エポキシ樹脂、キシレン樹脂、ポリビニルブチラール、テルペン樹脂、クマロンインデン樹脂又は石油系樹脂が挙げられる。   As the types of binder resins used in the present invention, styrene resins, styrene copolymer resins, polyester resins, polyol resins, polyvinyl chloride resins, phenol resins, natural modified phenol resins, natural resin modified maleic resins, Examples thereof include acrylic resin, methacrylic resin, polyvinyl acetate, silicone resin, polyurethane resin, polyamide resin, furan resin, epoxy resin, xylene resin, polyvinyl butyral, terpene resin, coumarone indene resin, and petroleum resin.

スチレン系共重合体のスチレンモノマーに対するコモノマーとしては、ビニルトルエンの如きスチレン誘導体;アクリル酸、アクリル酸メチル、アクリル酸エチル、アクリル酸ブチル、アクリル酸ドデシル、アクリル酸オクチル、アクリル酸2−エチルヘキシル、アクリル酸フェニルの如きアクリル酸エステル;メタクリル酸、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸ブチル、メタクリル酸オクチルの如きメタクリル酸エステル;マレイン酸;マレイン酸ブチル、マレイン酸メチル、マレイン酸ジメチルの如き二重結合を有するジカルボン酸エステル;アクリルアミド、アクリロニトリル、メタクリロニトリル、ブタジエン;塩化ビニル、酢酸ビニル、安息香酸ビニルの如きビニルエステル;エチレン、プロピレン、ブチレンの如きエチレン系オレフィン;ビニルメチルケトン、ビニルヘキシルケトンの如きビニルケトン;ビニルメチルエーテル、ビニルエチルエーテル、ビニルイソブチルエーテルの如きビニルエーテルが挙げられる。これらのビニル系単量体が単独もしくは2つ以上用いられる。   As a comonomer for the styrene monomer of the styrene copolymer, a styrene derivative such as vinyltoluene; acrylic acid, methyl acrylate, ethyl acrylate, butyl acrylate, dodecyl acrylate, octyl acrylate, 2-ethylhexyl acrylate, acrylic Acrylic acid ester such as phenyl acid; Methacrylic acid ester such as methacrylic acid, methyl methacrylate, ethyl methacrylate, butyl methacrylate, octyl methacrylate; Maleic acid; Double such as butyl maleate, methyl maleate, dimethyl maleate Dicarboxylic acid ester having a bond; acrylamide, acrylonitrile, methacrylonitrile, butadiene; vinyl ester such as vinyl chloride, vinyl acetate, vinyl benzoate; ethylene, propylene, butylene Such ethylenic olefins, vinyl methyl ketone, such as vinyl vinyl hexyl ketone, vinyl methyl ether, vinyl ethyl ether, vinyl propionate ether. These vinyl monomers are used alone or in combination of two or more.

本発明においては、スチレン−アクリル酸エステル−アクリル酸共重合体、スチレン−アクリル酸エステル共重合体、スチレン−アクリル酸エステル−メタクリル酸共重合体が特に好ましい結着樹脂として用いられ、それによりトナー粒子の円形度を適切な値に制御しやすくなる。   In the present invention, a styrene-acrylic acid ester-acrylic acid copolymer, a styrene-acrylic acid ester copolymer, and a styrene-acrylic acid ester-methacrylic acid copolymer are used as a particularly preferable binder resin, whereby toner It becomes easy to control the circularity of the particles to an appropriate value.

本発明で使用する結着樹脂は、保存性の観点から、ガラス転移温度(Tg)が45〜80℃、好ましくは50〜70℃である。Tgが45℃より低いと高温雰囲気下でのトナーの劣化や定着時でのオフセットの原因となりやすい。また、Tgが80℃を超えると、定着性が低下する傾向にある。   The binder resin used in the present invention has a glass transition temperature (Tg) of 45 to 80 ° C, preferably 50 to 70 ° C, from the viewpoint of storage stability. When Tg is lower than 45 ° C., it tends to cause toner deterioration under a high temperature atmosphere and offset during fixing. On the other hand, when Tg exceeds 80 ° C., fixability tends to decrease.

・ガラス転移点(Tg)
昇温時のDSC曲線において比熱変化の現われる前後のベースラインの中間点を結ぶ線とDSC曲線の交点の温度。
・ Glass transition point (Tg)
The temperature at the intersection of the DSC curve and the line connecting the midpoints of the baseline before and after the change in specific heat appears in the DSC curve during temperature rise.

Tgの測定方法は、TAインスツルメンツ社製Q−1000を用いて、ASTM D3418−82に準じて行う。本発明に用いられるDSC曲線は、1回昇温、降温させ前履歴を取った後、昇温速度10℃/minで、昇温させた時に測定されるDSC曲線を用いる。定義は次のように定める。   The measuring method of Tg is performed according to ASTM D3418-82 using Q-1000 manufactured by TA Instruments. The DSC curve used in the present invention is a DSC curve measured when the temperature is raised at a rate of 10 ° C./min after raising and lowering the temperature once and taking a previous history. The definition is as follows.

本発明において、結着樹脂の、THF(テトラハイドロフラン)を溶媒としたGPCによる分子量分布は次の条件で測定される。   In the present invention, the molecular weight distribution of the binder resin by GPC using THF (tetrahydrofuran) as a solvent is measured under the following conditions.

40℃のヒートチャンバ中でカラムを安定化させ、この温度におけるカラムに、溶媒としてテトラハイドロフラン(THF)を毎分1mlの流速で流し、試料のTHF溶液を約100μl注入して測定する。試料の分子量測定にあたっては、試料の有する分子量分布を、数種の単分散ポリスチレン標準試料により作成された検量線の対数値とカウント数との関係から算出する。検量線作成用の標準ポリスチレン試料としては、たとえば、東ソー社製あるいは、昭和電工社製の分子量が102〜107程度のものを用い、少なくとも10点程度の標準ポリスチレン試料を用いるのが適当である。検出器にはRI(屈折率)検出器を用いる。カラムとしては、市販のポリスチレンジェルカラムを複数本組み合わせるのが良い。たとえば昭和電工社製のshodex GPC KF−801,802,803,804,805,806,807,800Pの組み合わせや、東ソー社製のTSKgelG1000H(HXL),G2000H(HXL),G3000H(HXL),G4000H(HXL),G5000H(HXL),G6000H(HXL),G7000H(HXL),TSKguardcolumnの組み合わせを挙げることができる。 The column is stabilized in a 40 ° C. heat chamber. Tetrahydrofuran (THF) is allowed to flow through the column at this temperature as a solvent at a flow rate of 1 ml per minute, and about 100 μl of a sample THF solution is injected and measured. In measuring the molecular weight of a sample, the molecular weight distribution of the sample is calculated from the relationship between the logarithmic value of a calibration curve prepared from several types of monodisperse polystyrene standard samples and the number of counts. As a standard polystyrene sample for preparing a calibration curve, for example, a standard polystyrene sample having a molecular weight of about 102 to 107 manufactured by Tosoh Corporation or Showa Denko is used, and at least about 10 standard polystyrene samples are suitably used. An RI (refractive index) detector is used as the detector. As the column, it is preferable to combine a plurality of commercially available polystyrene gel columns. For example, combinations of shodex GPC KF-801, 802, 803, 804, 805, 806, 807, 800P manufactured by Showa Denko KK, TSKgel G1000H (H XL ), G2000H (H XL ), G3000H (H XL ) manufactured by Tosoh Corporation , G4000H (H XL ), G5000H (H XL ), G6000H (H XL ), G7000H (H XL ), and TSK guard column.

試料は以下のようにして作製する。   The sample is prepared as follows.

試料をTHFに入れ、数時間放置した後、十分振とうしTHFと良く混ぜ(試料の合一体がなくなるまで)、更に12時間以上静置する。このときTHF中への試料の放置時間が24時間以上となるようにする。その後、サンプル処理フィルター(ポアサイズ0.45〜0.5μm、例えば、マイショリディスクH−25−5 東ソー社製、エキクロディスク25CR ゲルマン サイエンス ジャパン社製などが利用できる)を通過させたものを、GPCの測定試料とする。試料濃度は、樹脂成分が0.5〜5mg/mlとなるように調整する。   Put the sample in THF, let stand for several hours, then shake well and mix well with THF (until the sample is no longer united), and let stand for more than 12 hours. At this time, the sample is left in THF for 24 hours or longer. Thereafter, a sample processing filter (pore size 0.45 to 0.5 μm, for example, Mysori Disc H-25-5 manufactured by Tosoh Corporation, Excro Disc 25CR manufactured by Gelman Science Japan Co., Ltd., etc.) can be used. A measurement sample for GPC is used. The sample concentration is adjusted so that the resin component is 0.5 to 5 mg / ml.

本発明の結着樹脂の重合法としては、溶液重合法、乳化重合法や懸濁重合法が挙げられる。   Examples of the polymerization method of the binder resin of the present invention include a solution polymerization method, an emulsion polymerization method and a suspension polymerization method.

本発明に用いられる結着樹脂は、以下に例示する様な多官能性重合開始剤単独あるいは単官能性重合開始剤と併用して生成することが好ましい。   The binder resin used in the present invention is preferably produced by using a polyfunctional polymerization initiator alone or in combination with a monofunctional polymerization initiator as exemplified below.

多官能構造を有する多官能性重合開始剤の具体例としては、1,1−ジ−t−ブチルパーオキシ−3,3,5−トリメチルシクロヘキサン、1,3−ビス−(t−ブチルパーオキシイソプロピル)ベンゼン、2,5−ジメチル−2,5−(t−ブチルパーオキシ)ヘキサン、2,5−ジメチル−2,5−ジ−(t−ブチルパーオキシ)ヘキサン、トリス−(t−ブチルパーオキシ)トリアジン、1,1−ジ−t−ブチルパーオキシシクロヘキサン、2,2−ジ−t−ブチルパーオキシブタン、4,4−ジ−t−ブチルパーオキシバレリックアシッド−n−ブチルエステル、ジ−t−ブチルパーオキシヘキサハイドロテレフタレート、ジ−t−ブチルパーオキシアゼレート、ジ−t−ブチルパーオキシトリメチルアジペート、2,2−ビス−(4,4−ジ−t−ブチルパーオキシシクロヘキシル)プロパン、2,2−t−ブチルパーオキシオクタン及び各種ポリマーオキサイドの1分子内に2つ以上のパーオキサイド基の如き重合開始機能を有する官能基を有する多官能性重合開始剤;及びジアリルパーオキシジカーボネート、t−ブチルパーオキシマレイン酸、t−ブチルパーオキシアリルカーボネート及びt−ブチルパーオキシイソプロピルフマレート等の1分子内に、パーオキサイド基の如き重合開始機能を有する官能基と重合性不飽和基の両方を有する多官能性重合開始剤から選択される。   Specific examples of the polyfunctional polymerization initiator having a polyfunctional structure include 1,1-di-t-butylperoxy-3,3,5-trimethylcyclohexane, 1,3-bis- (t-butylperoxy Isopropyl) benzene, 2,5-dimethyl-2,5- (t-butylperoxy) hexane, 2,5-dimethyl-2,5-di- (t-butylperoxy) hexane, tris- (t-butyl) Peroxy) triazine, 1,1-di-t-butylperoxycyclohexane, 2,2-di-t-butylperoxybutane, 4,4-di-t-butylperoxyvaleric acid-n-butyl ester , Di-t-butylperoxyhexahydroterephthalate, di-t-butylperoxyazelate, di-t-butylperoxytrimethyladipate, 2,2-bis- ( , 4-di-t-butylperoxycyclohexyl) propane, 2,2-t-butylperoxyoctane and functional groups having a polymerization initiation function such as two or more peroxide groups in one molecule of various polymer oxides. A polyfunctional polymerization initiator having a peroxide group in one molecule such as diallyl peroxydicarbonate, t-butylperoxymaleic acid, t-butylperoxyallylcarbonate and t-butylperoxyisopropyl fumarate. Such a polyfunctional polymerization initiator having both a functional group having a polymerization initiating function and a polymerizable unsaturated group is selected.

これらの内、より好ましいものは、1,1−ジ−t−ブチルパーオキシ−3,3,5−トリメチルシクロヘキサン、1,1−ジ−t−ブチルパーオキシシクロヘキサン、ジ−t−ブチルパーオキシヘキサハイドロテレフタレート、ジ−t−ブチルパーオキシアゼレート、2,2−ビス−(4,4−ジ−t−ブチルパーオキシシクロヘキシル)プロパン、及びt−ブチルパーオキシアリルカーボネートである。   Of these, more preferred are 1,1-di-t-butylperoxy-3,3,5-trimethylcyclohexane, 1,1-di-t-butylperoxycyclohexane, di-t-butylperoxy. Hexahydroterephthalate, di-t-butylperoxyazelate, 2,2-bis- (4,4-di-t-butylperoxycyclohexyl) propane, and t-butylperoxyallyl carbonate.

これらの多官能性重合開始剤は、トナー用バインダーとして要求される種々の性能を満足する為には、単官能性重合開始剤と併用されることが好ましい。特に該多官能性重合開始剤の半減期10時間を得る為の分解温度よりも低い半減期10時間を有する重合開始剤と併用することが好ましい。   These polyfunctional polymerization initiators are preferably used in combination with a monofunctional polymerization initiator in order to satisfy various performances required as a binder for toner. In particular, it is preferable to use in combination with a polymerization initiator having a half-life of 10 hours lower than the decomposition temperature for obtaining a half-life of 10 hours of the polyfunctional polymerization initiator.

具体的には、ベンゾイルパーオキシド、1,1−ジ(t−ブチルパーオキシ)−3,3,5−トリメチルシクロヘキサン、n−ブチル−4,4−ジ(t−ブチルパーオキシ)バレレート、ジクミルパーオキシド、α,α’−ビス(t−ブチルパーオキシジイソプロピル)ベンゼン、t−ブチルパーオキシクメン、ジ−t−ブチルパーオキシドの如き有機過酸化物;アゾビスイソブチロニトリル、ジアゾアミノアゾベンゼン等のアゾおよびジアゾ化合物が挙げられる。   Specifically, benzoyl peroxide, 1,1-di (t-butylperoxy) -3,3,5-trimethylcyclohexane, n-butyl-4,4-di (t-butylperoxy) valerate, dichroic Organic peroxides such as milperoxide, α, α'-bis (t-butylperoxydiisopropyl) benzene, t-butylperoxycumene, di-t-butylperoxide; azobisisobutyronitrile, diazoamino Examples include azo and diazo compounds such as azobenzene.

これらの単官能性重合開始剤は、前記多官能性重合開始剤と同時にモノマー中に添加しても良いが、該多官能性重合開始剤の効率を適正に保つ為には、重合工程において該多官能性重合開始剤の示す半減期を経過した後に添加するのが好ましい。   These monofunctional polymerization initiators may be added to the monomer at the same time as the polyfunctional polymerization initiator, but in order to keep the efficiency of the polyfunctional polymerization initiator appropriate, in the polymerization step, It is preferably added after the half-life indicated by the polyfunctional polymerization initiator has elapsed.

これらの重合開始剤は、効率の点からモノマー100質量部に対し0.05〜2質量部で用いるのが好ましい。   These polymerization initiators are preferably used in an amount of 0.05 to 2 parts by mass with respect to 100 parts by mass of the monomer from the viewpoint of efficiency.

結着樹脂は架橋性モノマーで架橋されていることも好ましい。   It is also preferable that the binder resin is crosslinked with a crosslinking monomer.

架橋性モノマーとしては主として2個以上の重合可能な二重結合を有するモノマーが用いられる。具体例としては、芳香族ジビニル化合物(例えば、ジビニルベンゼン、ジビニルナフタレン等);アルキル鎖で結ばれたジアクリレート化合物類(例えば、エチレングリコールジアクリレート、1,3−ブチレングリコールジアクリレート、1,4−ブタンジオールジアクリレート、1,5−ペンタンジオールジアクリレート、1,6−ヘキサンジオールジアクリレート、ネオペンチルグリコールジアクリレート、及び以上の化合物のアクリレートをメタクリレートに代えたもの);エーテル結合を含むアルキル鎖で結ばれたジアクリレート化合物類(例えば、ジエチレングリコールジアクリレート、トリエチレングリコールジアクリレート、テトラエチレングリコールジアクリレート、ポリエチレングリコール#400ジアクリレート、ポリエチレングリコール#600ジアクリレート、ジプロピレングリコールジアクリレート、及び以上の化合物のアクリレートをメタクリレートに代えたもの);芳香族基及びエーテル結合を含む鎖で結ばれたジアクリレート化合物類(例えば、ポリオキシエチレン(2)−2,2−ビス(4−ヒドロキシフェニル)プロパンジアクリレート、ポリオキシエチレン(4)−2,2−ビス(4−ヒドロキシフェニル)プロパンジアクリレート、及び、以上の化合物のアクリレートをメタクリレートに代えたもの);更には、ポリエステル型ジアクリレート化合物類(例えば、商品名MANDA(日本化薬))が挙げられる。多官能の架橋剤としては、ペンタエリスリトールアクリレート、トリメチロールエタントリアクリレート、トリメチロールプロパントリアクリレート、テトラメチロールプロパントリアクリレート、テトラメチロールメタンテトラアクリレート、オリゴエステルアクリレート、及び以上の化合物のアクリレートをメタクリレートに代えたもの;トリアリルシアヌレート、トリアリルトリメリテート;等が挙げられる。   As the crosslinkable monomer, a monomer having two or more polymerizable double bonds is mainly used. Specific examples include aromatic divinyl compounds (eg, divinylbenzene, divinylnaphthalene, etc.); diacrylate compounds linked by alkyl chains (eg, ethylene glycol diacrylate, 1,3-butylene glycol diacrylate, 1,4 -Butanediol diacrylate, 1,5-pentanediol diacrylate, 1,6-hexanediol diacrylate, neopentyl glycol diacrylate, and acrylates of the above compounds replaced with methacrylate); alkyl chain containing an ether bond Diacrylate compounds (eg, diethylene glycol diacrylate, triethylene glycol diacrylate, tetraethylene glycol diacrylate, polyethylene glycol # 400 diacrylate, Ethylene glycol # 600 diacrylate, dipropylene glycol diacrylate, and acrylates of the above compounds in place of methacrylate); diacrylate compounds linked by a chain containing an aromatic group and an ether bond (eg, polyoxyethylene) (2) -2,2-bis (4-hydroxyphenyl) propane diacrylate, polyoxyethylene (4) -2,2-bis (4-hydroxyphenyl) propane diacrylate, and methacrylates of the above compounds Furthermore, polyester-type diacrylate compounds (for example, trade name MANDA (Nippon Kayaku)) are mentioned. As polyfunctional crosslinking agents, pentaerythritol acrylate, trimethylol ethane triacrylate, trimethylol propane triacrylate, tetramethylol propane triacrylate, tetramethylol methane tetraacrylate, oligoester acrylate, and acrylates of the above compounds are replaced with methacrylate. Triallyl cyanurate, triallyl trimellitate; and the like.

これらの架橋剤は、他のモノマー成分100質量部に対して、0.00001〜1質量部、好ましくは0.001〜0.05質量部の範囲で用いることが好ましい。   These crosslinking agents are preferably used in the range of 0.00001 to 1 part by mass, preferably 0.001 to 0.05 part by mass, with respect to 100 parts by mass of the other monomer components.

結着樹脂組成物を製造する方法として、溶液重合法により高分子量重合体と低分子量重合体を別々に合成した後にこれらを溶液状態で混合し、次いで脱溶剤する溶液ブレンド法、また、押出機等により溶融混練するドライブレンド法、溶液重合法等により得られた低分子量重合体を溶解した高分子量重合体を構成するモノマーに溶解し、懸濁重合を行い、洗浄・乾燥し、樹脂組成物を得る二段階重合法等が挙げられる。但し、ドライブレンド法では、均一な分散・相溶の点で改善すべき点がある。二段階重合法だと均一な分散性等に利点が多いが、低分子量分を高分子量分以上に増量することができ、分子量の大きい高分子量重合体の合成ができ、不必要な低分子量重合体が副生成するという問題が少ないことから、溶液ブレンド法が最も好適である。また、低分子量重合体成分に所定の酸価を導入する場合には、水系媒体を使用するの重合法に比べて酸価の設定が容易である溶液重合が好ましい。   As a method for producing a binder resin composition, a high-molecular weight polymer and a low-molecular weight polymer are separately synthesized by a solution polymerization method, mixed in a solution state, and then desolvated, and an extruder. The resin composition is prepared by dissolving in a monomer constituting a high molecular weight polymer obtained by dissolving a low molecular weight polymer obtained by a melt blending method such as a melt blending method, a solution polymerization method, etc., and performing suspension polymerization, washing and drying. And a two-stage polymerization method for obtaining However, the dry blend method has a point to be improved in terms of uniform dispersion and compatibility. The two-stage polymerization method has many advantages such as uniform dispersibility, but the low molecular weight can be increased to higher than the high molecular weight, and a high molecular weight polymer with a large molecular weight can be synthesized. The solution blending method is most suitable because there are few problems that coalescence is formed as a by-product. In addition, when a predetermined acid value is introduced into the low molecular weight polymer component, solution polymerization in which the acid value can be easily set as compared with the polymerization method using an aqueous medium is preferable.

本発明において、トナーのTHF可溶分及び原料結着樹脂の酸価(JIS酸価)は、以下の方法により求める。尚、原料結着樹脂の酸価も、原料樹脂のTHF可溶分の酸価を意味する。   In the present invention, the THF soluble content of the toner and the acid value (JIS acid value) of the raw material binder resin are determined by the following method. The acid value of the raw material binder resin also means the acid value of the THF soluble part of the raw material resin.

基本操作はJIS K−0070に準ずる。
(1)試料は予めトナー及び原料結着樹脂のTHF不溶分を除去して使用するか、上記のTHF不溶分の測定で得られるソックスレー抽出器によるTHF溶媒によって抽出された可溶成分を試料として使用する。試料の粉砕品0.5〜2.0(g)を精秤し、可溶成分の重さをW(g)とする。
(2)300mlのビーカーに試料を入れ、トルエン/エタノール(4/1)の混合液150mlを加え溶解する。
(3)0.1mol/lのKOHのエタノール溶液を用いて、電位差滴定装置を用いて滴定する(例えば、京都電子株式会社製の電位差滴定装置AT−400(win workstation)とABP−410電動ビュレットを用いての自動滴定が利用できる。)。
(4)この時のKOH溶液の使用量をS〔ml〕とする。また、同時に試料を用いないブランク試験を行い、この時のKOH溶液の使用量をB〔ml〕とする。
(5)次式により酸価を計算する。fはKOHのファクターである。
酸価(mgKOH/g)={(S−B)×f×5.61}/W
Basic operation conforms to JIS K-0070.
(1) The sample is used by removing the THF-insoluble content of the toner and the raw material binder resin in advance, or the soluble component extracted by the THF solvent by the Soxhlet extractor obtained by the above-mentioned measurement of the THF-insoluble content is used as the sample. use. The pulverized sample 0.5 to 2.0 (g) is precisely weighed, and the weight of the soluble component is defined as W (g).
(2) A sample is put into a 300 ml beaker, and 150 ml of a toluene / ethanol (4/1) mixed solution is added and dissolved.
(3) Titration using a potentiometric titration apparatus with an ethanol solution of 0.1 mol / l KOH (for example, potentiometric titration apparatus AT-400 (winworkstation) manufactured by Kyoto Electronics Co., Ltd. and ABP-410 electric burette Automatic titration with can be used.)
(4) The amount of KOH solution used at this time is S [ml]. At the same time, a blank test without using a sample is performed, and the amount of KOH solution used at this time is B [ml].
(5) The acid value is calculated by the following formula. f is a factor of KOH.
Acid value (mgKOH / g) = {(SB) × f × 5.61} / W

本発明のトナーには、荷電制御剤を含有させることが好ましい。   The toner of the present invention preferably contains a charge control agent.

トナーを負荷電性に制御するものとして下記化合物が挙げられる。   Examples of the toner that controls the negative charge include the following compounds.

例えば有機金属錯体、キレート化合物が有効であり、モノアゾ金属錯体、アセチルアセトン金属錯体、芳香族ハイドロキシカルボン酸、芳香族ダイカルボン酸系の金属錯体がある。他には、芳香族ハイドロキシカルボン酸、芳香族モノ及びポリカルボン酸及びその金属塩、無水物、エステル類、ビスフェノールの如きフェノール誘導体類などがある。   For example, organometallic complexes and chelate compounds are effective, and there are monoazo metal complexes, acetylacetone metal complexes, aromatic hydroxycarboxylic acids, and aromatic dicarboxylic acid metal complexes. Others include aromatic hydroxycarboxylic acids, aromatic mono and polycarboxylic acids and their metal salts, anhydrides, esters, and phenol derivatives such as bisphenol.

中でも、下記一般式(1)で表わされるアゾ系金属錯体が好ましい。   Among these, an azo metal complex represented by the following general formula (1) is preferable.

Figure 0004208785
Figure 0004208785

特に中心金属としてはFeが好ましく、置換基としてはハロゲン、アルキル基又はアニリド基が好ましく、カウンターイオンとしては水素、アルカリ金属、アンモニウム又は脂肪族アンモニウムが好ましい。またカウンターイオンの異なる錯塩の混合物も好ましく用いられる。   In particular, the central metal is preferably Fe, the substituent is preferably a halogen, an alkyl group or an anilide group, and the counter ion is preferably hydrogen, an alkali metal, ammonium or aliphatic ammonium. A mixture of complex salts having different counter ions is also preferably used.

あるいは次の一般式(2)に示した塩基性有機酸金属錯体も負帯電性を与える荷電制御剤として好ましい。   Alternatively, a basic organic acid metal complex represented by the following general formula (2) is also preferable as a charge control agent that imparts negative chargeability.

Figure 0004208785
Figure 0004208785

特に中心金属としてはFe,Cr,Si,Zn又はAlが好ましく、置換基としてはアルキル基、アニリド基、アリール基、ハロゲンが好ましく、カウンターイオンは水素、アンモニウム、脂肪族アンモニウムが好ましい。   In particular, Fe, Cr, Si, Zn or Al is preferred as the central metal, alkyl groups, anilide groups, aryl groups and halogens are preferred as substituents, and hydrogen, ammonium and aliphatic ammonium are preferred as counter ions.

トナーを正荷電性に制御するものとして下記の化合物がある。   The following compounds are used to control the toner to be positively charged.

ニグロシン及び脂肪酸金属塩による変成物;トリブチルベンジルアンモニウム−1−ヒドロキシ−4−ナフトスルフォン酸塩、テトラブチルアンモニウムテトラフルオロボレートの如き四級アンモニウム塩、及びこれらの類似体であるホスホニウム塩の如きオニウム塩及びこれらのレーキ顔料、トリフェニルメタン染料及びこれらのレーキ顔料(レーキ化剤としては、りんタングステン酸、りんモリブデン酸、りんタングステンモリブデン酸、タンニン酸、ラウリン酸、没食子酸、フェリシアン化物、フェロシアン化物など);高級脂肪酸の金属塩;ジブチルスズオキサイド、ジオクチルスズオキサイド、ジシクロヘキシルスズオキサイドなどのジオルガノスズオキサイド;ジブチルスズボレート、ジオクチルスズボレート、ジシクロヘキシルスズボレートの如きジオルガノスズボレート;グアニジン化合物、イミダゾール化合物。これらを単独で或いは2種類以上組合せて用いることができる。これらの中でも、トリフェニルメタン化合物、カウンターイオンがハロゲンでない四級アンモニウム塩が好ましく用いられる。また一般式(3)   Modifications with nigrosine and fatty acid metal salts; quaternary ammonium salts such as tributylbenzylammonium-1-hydroxy-4-naphthosulfonate, tetrabutylammonium tetrafluoroborate, and onium salts such as phosphonium salts thereof And these lake pigments, triphenylmethane dyes and these lake pigments (as rake agents, phosphotungstic acid, phosphomolybdic acid, phosphotungsten molybdate, tannic acid, lauric acid, gallic acid, ferricyanide, ferrocyanide) Metal salts of higher fatty acids; diorganotin oxides such as dibutyltin oxide, dioctyltin oxide, dicyclohexyltin oxide; dibutyltin borate, dioctyltin borate, dicyclohexyl Such diorgano tin borate of Suzuboreto; guanidine compounds, imidazole compounds. These can be used alone or in combination of two or more. Among these, triphenylmethane compounds and quaternary ammonium salts whose counter ions are not halogen are preferably used. Moreover, general formula (3)

Figure 0004208785
[式中、R1はH又はCH3を示し、R2及びR3は置換または未置換のアルキル基(好ましくはC1〜C4)を示す。]
で表わされるモノマーの単重合体:前述したスチレン、アクリル酸エステル、メタクリル酸エステルの如き重合性モノマーとの共重合体を正荷電性制御剤として用いることができる。この場合これらの荷電制御剤は、結着樹脂(の全部または一部)としての作用をも有する。
Figure 0004208785
[Wherein R 1 represents H or CH 3 , and R 2 and R 3 represent a substituted or unsubstituted alkyl group (preferably C 1 to C 4 ). ]
Monomers of monomers represented by: A copolymer with a polymerizable monomer such as styrene, acrylic acid ester or methacrylic acid ester described above can be used as a positive charge control agent. In this case, these charge control agents also have an action as a binder resin (all or a part thereof).

特に下記一般式(4)で表わされる化合物が本発明の正荷電制御剤として好ましい。   In particular, a compound represented by the following general formula (4) is preferred as the positive charge control agent of the present invention.

Figure 0004208785
Figure 0004208785

具体的な商品名としてはニグロシン系染料、ナフテン酸または高級脂肪酸の金属塩、アルコキシル化アミン、第4級アンモニウム塩化合物、アゾ系金属錯体、サリチル酸金属塩あるいはその金属錯体等が挙げられる。   Specific product names include nigrosine dyes, metal salts of naphthenic acid or higher fatty acids, alkoxylated amines, quaternary ammonium salt compounds, azo metal complexes, salicylic acid metal salts or metal complexes thereof.

負帯電用として好ましいものは、例えばSpilon Black TRH、T−77、T−95(保土谷化学社)、BONTRON(登録商標)S−34、S−44、S−54、E−84、E−88、E−89(オリエント化学社)があげられ、正帯電用としては好ましいものとしては、例えばTP−302、TP−415(保土谷化学社)、BONTRON(登録商標)N−01、N−04、N−07、P−51(オリエント化学社)、コピーブルーPR(クラリアント社)が例示できる。   Preferred for negative charging are, for example, Spiron Black TRH, T-77, T-95 (Hodogaya Chemical), BONTRON (registered trademark) S-34, S-44, S-54, E-84, E- 88, E-89 (Orient Chemical Co., Ltd.), and preferable examples for positive charging include TP-302, TP-415 (Hodogaya Chemical Co., Ltd.), BONTRON (registered trademark) N-01, N- 04, N-07, P-51 (Orient Chemical), and Copy Blue PR (Clariant).

電荷制御剤をトナーに含有させる方法としては、トナー粒子内部に添加する方法とトナー粒子の外部に外添する方法がある。これらの電荷制御剤の使用量としては、結着樹脂の種類、他の添加剤の有無、分散方法を含めたトナー製造方法によって決定されるもので、一義的に限定されるものではないが、好ましくは結着樹脂100質量部に対して0.1〜10質量部、より好ましくは0.1〜5質量部の範囲で用いられる。   As a method for adding the charge control agent to the toner, there are a method of adding the toner inside the toner particles and a method of adding the toner outside the toner particles. The amount of use of these charge control agents is determined by the toner production method including the type of binder resin, the presence or absence of other additives, and the dispersion method, and is not uniquely limited. Preferably, it is used in the range of 0.1 to 10 parts by mass, more preferably 0.1 to 5 parts by mass with respect to 100 parts by mass of the binder resin.

本発明のトナーはワックスを含有してもよい。本発明に用いられるワックスには次のようなものがある。例えばパラフィンワックスおよびその誘導体、モンタンワックスおよびその誘導体、マイクロクリスタリンワックスおよびその誘導体、フィッシャートロプシュワックスおよびその誘導体、ポリオレフィンワックスおよびその誘導体、カルナバワックスおよびその誘導体などである。誘導体には酸化物やビニル系モノマーとのブロック共重合物、グラフト変性物を含む。   The toner of the present invention may contain a wax. The waxes used in the present invention include the following. For example, paraffin wax and derivatives thereof, montan wax and derivatives thereof, microcrystalline wax and derivatives thereof, Fischer-Tropsch wax and derivatives thereof, polyolefin wax and derivatives thereof, carnauba wax and derivatives thereof, and the like. Derivatives include oxides, block copolymers with vinyl monomers, and graft modified products.

ワックスの具体的な例としては、ビスコール(登録商標)330−P、550−P、660−P、TS−200(三洋化成工業社)、ハイワックス400P、200P、100P、410P、420P、320P、220P、210P、110P(三井化学社)、サゾールH1、H2、C80、C105、C77(シューマン・サゾール社)、HNP−1、HNP−3、HNP−9、HNP−10、HNP−11、HNP−12(日本精鑞株式会社)、ユニリン(登録商標)350、425、550、700、ユニシッド(登録商標)、ユニシッド(登録商標)350、425、550、700(東洋ペトロライト社)、木ろう、蜜ろう、ライスワックス、キャンデリラワックス、カルナバワックス(株式会社セラリカNODAにて入手可能)等があげられる。   Specific examples of the wax include Biscol (registered trademark) 330-P, 550-P, 660-P, TS-200 (Sanyo Chemical Industries), high wax 400P, 200P, 100P, 410P, 420P, 320P, 220P, 210P, 110P (Mitsui Chemicals), Sasol H1, H2, C80, C105, C77 (Schumann-Sasol), HNP-1, HNP-3, HNP-9, HNP-10, HNP-11, HNP- 12 (Nippon Seiki Co., Ltd.), Unilin (registered trademark) 350, 425, 550, 700, Unicid (registered trademark), Unicid (registered trademark) 350, 425, 550, 700 (Toyo Petrolite Co., Ltd.), Kirou, Beeswax, rice wax, candelilla wax, carnauba wax (available at Celerica NODA Inc.) And the like.

本発明のトナーにおいては、これらのワックス総含有量は、結着樹脂100質量部に対し、0.1〜15質量部で用いられ、好ましくは0.5〜12質量部で用いるのが効果的である。   In the toner of the present invention, the total content of these waxes is 0.1 to 15 parts by mass, preferably 0.5 to 12 parts by mass with respect to 100 parts by mass of the binder resin. It is.

これらのワックスは、示差熱分析測定装置(DSC)を用いて測定される融点が65℃以上130℃未満、好ましくは70°以上120℃未満、更に好ましくは70℃以上110℃未満、更に好ましくは75℃以上100℃未満であることが好ましい。トナー粒子中にこのような融点を有するワックスは適度な硬さを有しており、トナー粒子の表面改質工程において所望の円形度、粒度分布、表面面粗さを有するトナー粒子を効果的に得ることができる。ワックスの融点が65度未満の場合、トナーの保存性が悪化する場合がある。ワックスの融点が130℃を超えると、トナー粒子が硬くなりすぎて表面改質されたトナーの生産性が悪化する場合がある。   These waxes have a melting point of 65 ° C. or higher and lower than 130 ° C., preferably 70 ° or higher and lower than 120 ° C., more preferably 70 ° C. or higher and lower than 110 ° C., more preferably measured using a differential thermal analyzer (DSC). It is preferable that it is 75 degreeC or more and less than 100 degreeC. The wax having such a melting point in the toner particles has an appropriate hardness, and the toner particles having the desired circularity, particle size distribution, and surface roughness are effectively removed in the surface modification process of the toner particles. Obtainable. When the melting point of the wax is less than 65 degrees, the storage stability of the toner may be deteriorated. When the melting point of the wax exceeds 130 ° C., the toner particles become too hard and the productivity of the surface-modified toner may deteriorate.

<ワックスの融点の測定方法>
試料:0.5〜2mg、好ましくは1mg
測定法:試料をアルミパン中に入れ、リファレンスとして空のアルミパンを用いる。
温度曲線:昇温I(20℃〜180℃、昇温速度10℃/min)
降温I(180℃〜10℃、降温速度10℃/min)
昇温II(10℃〜180℃、昇温速度10℃/min)
<Measurement method of melting point of wax>
Sample: 0.5-2 mg, preferably 1 mg
Measurement method: Place the sample in an aluminum pan, and use an empty aluminum pan as a reference.
Temperature curve: Temperature increase I (20 ° C. to 180 ° C., temperature increase rate 10 ° C./min)
Temperature drop I (180 ° C to 10 ° C, temperature drop rate 10 ° C / min)
Temperature increase II (10 ° C to 180 ° C, temperature increase rate 10 ° C / min)

上記温度曲線において昇温IIで測定される吸熱ピーク温度を融点とする。   The endothermic peak temperature measured at the temperature elevation II in the temperature curve is defined as the melting point.

本発明のトナーは磁性体を含有する場合、磁性体は着色剤の役割をかねることもできる。トナーに使用される磁性体としては、マグネタイト、ヘマタイト、フェライトの如き酸化鉄;鉄、コバルト、ニッケルのような金属或いはこれらの金属とアルミニウム、コバルト、銅、鉛、マグネシウム、スズ、亜鉛、アンチモン、ベリリウム、ビスマス、カドミウム、カルシウム、マンガン、セレン、チタン、タングステン、バナジウムのような金属との合金及びその混合物が挙げられる。   When the toner of the present invention contains a magnetic material, the magnetic material can also serve as a colorant. Magnetic materials used in the toner include iron oxides such as magnetite, hematite, and ferrite; metals such as iron, cobalt, and nickel or these metals and aluminum, cobalt, copper, lead, magnesium, tin, zinc, antimony, Examples include alloys with metals such as beryllium, bismuth, cadmium, calcium, manganese, selenium, titanium, tungsten, vanadium, and mixtures thereof.

これらの磁性体は個数平均粒径が0.05〜1.0μmが好ましく、更には0.1〜0.5μmのものが好ましい。磁性体はBET比表面積が2〜40m2/g(より好ましくは4〜20m2/g)のものが好ましく用いられる。形状には特に制限はなく、任意の形状のものが用いられる。磁気特性としては、磁場795.8kA/m下で飽和磁化が10〜200Am2/kg(より好ましくは70〜100Am2/kg)、残留磁化が1〜100Am2/kg(より好ましくは2〜20Am2/kg)、抗磁力が1〜30kA/m(より好ましくは2〜15kA/m)であるものが好ましく用いられる。これらの磁性体は結着樹脂100質量部に対し、20〜200質量部で用いられる。好ましくは40〜150質量部で用いられる。 These magnetic materials preferably have a number average particle diameter of 0.05 to 1.0 μm, more preferably 0.1 to 0.5 μm. A magnetic substance having a BET specific surface area of 2 to 40 m 2 / g (more preferably 4 to 20 m 2 / g) is preferably used. There is no restriction | limiting in particular in a shape, The thing of arbitrary shapes is used. As magnetic characteristics, a saturation magnetization is 10 to 200 Am 2 / kg (more preferably 70 to 100 Am 2 / kg) under a magnetic field of 795.8 kA / m, and a residual magnetization is 1 to 100 Am 2 / kg (more preferably 2 to 20 Am). 2 / kg) and a coercive force of 1 to 30 kA / m (more preferably 2 to 15 kA / m) are preferably used. These magnetic materials are used in an amount of 20 to 200 parts by mass with respect to 100 parts by mass of the binder resin. Preferably it is used at 40 to 150 parts by mass.

個数平均径は、透過電子顕微鏡等により拡大撮影した写真をデジタイザー等で測定することにより求めることができる。磁性体の磁気特性は、「振動試料型磁力計VSM−3S−15」(東英工業社製)を用いて外部磁場795.8kA/mの下で測定することができる。比表面積は、BET法に従って、比表面積測定装置オートソープ1(湯浅アイオニクス社製)を用いて試料表面に窒素ガスを吸着させ、BET多点法を用いて比表面積を算出することができる。   The number average diameter can be obtained by measuring a photograph taken with a transmission electron microscope or the like with a digitizer or the like. The magnetic properties of the magnetic material can be measured under an external magnetic field of 795.8 kA / m using a “vibrating sample magnetometer VSM-3S-15” (manufactured by Toei Kogyo Co., Ltd.). The specific surface area can be calculated by using the BET multipoint method by adsorbing nitrogen gas to the sample surface using a specific surface area measuring device Auto Soap 1 (manufactured by Yuasa Ionics Co., Ltd.) according to the BET method.

本発明のトナーに使用し得るその他の着色剤としては、任意の適当な顔料又は染料が挙げられる。顔料としてカーボンブラック、アニリンブラック、アセチレンブラック、ナフトールイエロー、ハンザイエロー、ローダミンレーキ、アリザリンレーキ、ベンガラ、フタロシアニンブルー、インダンスレンブルー等が挙げられる。これらは定着画像の光学濃度を維持するのに必要充分な量が用いられ、結着樹脂100質量部に対し0.1〜20質量部、好ましくは0.2〜10質量部の添加量が良い。染料としては、アゾ系染料、アントラキノン染料、キサンテン系染料、メチン系染料等が挙げられる。染料は結着樹脂100質量部に対し、0.1〜20質量部、好ましくは0.3〜10質量部の添加量が良い。   Other colorants that can be used in the toner of the present invention include any suitable pigment or dye. Examples of the pigment include carbon black, aniline black, acetylene black, naphthol yellow, Hansa yellow, rhodamine lake, alizarin lake, Bengala, phthalocyanine blue, and indanthrene blue. These are used in an amount necessary and sufficient to maintain the optical density of the fixed image, and an addition amount of 0.1 to 20 parts by mass, preferably 0.2 to 10 parts by mass is good with respect to 100 parts by mass of the binder resin. . Examples of the dye include azo dyes, anthraquinone dyes, xanthene dyes, and methine dyes. The addition amount of the dye is 0.1 to 20 parts by mass, preferably 0.3 to 10 parts by mass with respect to 100 parts by mass of the binder resin.

本発明のトナー粒子には、無機微粉体または疎水性無機微粉体が外添されることが好ましい。例えば、シリカ微粉末、酸化チタン微粉末又はそれらの疎水化物が挙げられる。それらは、単独あるいは併用して用いることが好ましい。   The toner particles of the present invention are preferably externally added with inorganic fine powder or hydrophobic inorganic fine powder. For example, silica fine powder, titanium oxide fine powder, or a hydrophobized product thereof can be used. They are preferably used alone or in combination.

シリカ微粉体としては、ケイ素ハロゲン化合物の蒸気相酸化により生成された乾式法またはヒュームドシリカと称される乾式シリカ、及び、水ガラス等から製造される湿式シリカの両方が挙げられる。表面及び内部にあるシラノール基が少なく、製造残渣のない乾式シリカの方が好ましい。   Examples of the silica fine powder include both a dry process produced by vapor phase oxidation of a silicon halogen compound or dry silica called fumed silica, and wet silica produced from water glass or the like. Dry silica with fewer silanol groups on the surface and inside and no production residue is preferred.

さらにシリカ微粉体は疎水化処理されているものが好ましい。疎水化処理するには、シリカ微粉体と反応あるいは物理吸着する有機ケイ素化合物で化学的に処理することによって付与される。好ましい方法としては、ケイ素ハロゲン化合物の蒸気相酸化により生成された乾式シリカ微粉体をシラン化合物で処理した後、あるいはシラン化合物で処理すると同時にシリコーンオイルの如き有機ケイ素化合物で処理する方法が挙げられる。   Further, the silica fine powder is preferably hydrophobized. The hydrophobizing treatment is applied by chemically treating with an organosilicon compound that reacts or physically adsorbs with silica fine powder. Preferable methods include a method in which a dry silica fine powder produced by vapor phase oxidation of a silicon halogen compound is treated with a silane compound or with a silane compound and simultaneously with an organosilicon compound such as silicone oil.

疎水化処理に使用されるシラン化合物としては、ヘキサメチルジシラザン、トリメチルシラン、トリメチルクロルシラン、トリメチルエトキシシラン、ジメチルジクロルシラン、メチルトリクロルシラン、アリルジメチルクロルシラン、アリルフェニルジクロルシラン、ベンジルジメチルクロルシラン、ブロムメチルジメチルクロルシラン、α−クロルエチルトリクロルシラン、β−クロルエチルトリクロルシラン、クロルメチルジメチルクロルシラン、トリオルガノシランメルカプタン、トリメチルシリルメルカプタン、トリオルガノシリルアクリレート、ビニルジメチルアセトキシシラン、ジメチルエトキシシラン、ジメチルジメトキシシラン、ジフェニルジエトキシシラン、ヘキサメチルジシロキサン、1,3−ジビニルテトラメチルジシロキサン、1,3−ジフェニルテトラメチルジシロキサンが挙げられる。   The silane compounds used for the hydrophobization treatment include hexamethyldisilazane, trimethylsilane, trimethylchlorosilane, trimethylethoxysilane, dimethyldichlorosilane, methyltrichlorosilane, allyldimethylchlorosilane, allylphenyldichlorosilane, benzyldimethyl. Chlorosilane, bromomethyldimethylchlorosilane, α-chloroethyltrichlorosilane, β-chloroethyltrichlorosilane, chloromethyldimethylchlorosilane, triorganosilane mercaptan, trimethylsilyl mercaptan, triorganosilyl acrylate, vinyldimethylacetoxysilane, dimethylethoxysilane , Dimethyldimethoxysilane, diphenyldiethoxysilane, hexamethyldisiloxane, 1,3-divinyltetramethyldi Examples thereof include siloxane and 1,3-diphenyltetramethyldisiloxane.

有機ケイ素化合物としては、シリコーンオイルが挙げられる。好ましいシリコーンオイルとしては、25℃における粘度がおよそ30〜1,000mm2/sのものが用いられる。例えばジメチルシリコーンオイル、メチルフェニルシリコーンオイル、α−メチルスチレン変性シリコーンオイル、クロルフェニルシリコーンオイル、フッ素変性シリコーンオイルが好ましい。 Examples of the organosilicon compound include silicone oil. As a preferable silicone oil, one having a viscosity at 25 ° C. of about 30 to 1,000 mm 2 / s is used. For example, dimethyl silicone oil, methylphenyl silicone oil, α-methylstyrene modified silicone oil, chlorophenyl silicone oil, and fluorine modified silicone oil are preferred.

シリコーンオイル処理の方法は、シラン化合物で処理されたシリカ微粉体とシリコーンオイルとをヘンシェルミキサーの如き混合機を用いて直接混合しても良いし、べースとなるシリカへシリコーンオイルを噴射する方法によっても良い。あるいは適当な溶剤にシリコーンオイルを溶解あるいは分散せしめた後、べースのシリカ微粉体とを混合し、溶剤を除去して作製しても良い。   Silicone oil treatment can be performed by directly mixing silica powder treated with a silane compound and silicone oil using a mixer such as a Henschel mixer, or spraying silicone oil onto the base silica. It may be by the method. Alternatively, the silicone oil may be dissolved or dispersed in an appropriate solvent, and then mixed with the base silica fine powder to remove the solvent.

シリカ微粉体の好ましい疎水化処理として、ヘキサメチルジシラザンで処理し、次いでシリコーンオイルで処理することにより調製する方法が挙げられる。   As a preferable hydrophobizing treatment of the silica fine powder, there is a method of preparing by treating with hexamethyldisilazane and then treating with silicone oil.

上記のようにシリカ微粉体をシラン化合物で処理し、後にオイル処理することが疎水化度を効果的に上げることができ、好ましい。   As described above, it is preferable to treat the silica fine powder with the silane compound and then oil-treat it later, so that the degree of hydrophobicity can be effectively increased.

上記シリカ微粉体における疎水化処理、更には、オイル処理を酸化チタン微粉体に施したものも、シリカ系同様に好ましい。   The silica fine powder is preferably subjected to a hydrophobization treatment, and further, an oil treatment applied to the titanium oxide fine powder, similarly to the silica-based one.

本発明のトナー粒子には、必要に応じてシリカ微粉体又は酸化チタン微粉体以外の添加剤を外添してもよい。   To the toner particles of the present invention, additives other than silica fine powder or titanium oxide fine powder may be externally added as necessary.

例えば帯電補助剤、導電性付与剤、流動性付与剤、ケーキング防止剤、熱ロール定着時の離型剤、滑剤、研磨剤の働きをする樹脂微粒子や無機微粒子である。   Examples thereof include resin fine particles and inorganic fine particles that act as charging aids, conductivity imparting agents, fluidity imparting agents, anti-caking agents, mold release agents at the time of hot roll fixing, lubricants, and abrasives.

樹脂微粒子としては、その平均粒径が0.03〜1.0μmのものが好ましい。その樹脂を構成する重合性単量体としては、スチレン;o−メチルスチレン,m−メチルスチレン,p−メチルスチレン,p−メトキシスチレン,p−エチルスチレン誘導体;アクリル酸;メタクリル酸;アクリル酸メチル,アクリル酸エチル,アクリル酸n−ブチル,アクリル酸イソブチル,アクリル酸n−プロピル,アクリル酸n−オクチル,アクリル酸ドデシル,アクリル酸2−エチルヘキシル,アクリル酸ステアリル,アクリル酸2−クロルエチル,アクリル酸フェニルの如きアクリル酸エステル;メタクリル酸メチル,メタクリル酸エチル,メタクリル酸n−プロピル、メタクリル酸n−ブチル,メタクリル酸イソブチル,メタクリル酸n−オクチル,メタクリル酸ドデシル,メタクリル酸2−エチルヘキシル,メタクリル酸ステアリル,メタクリル酸フェニル,メタクリル酸ジメチルアミノエチル,メタクリル酸ジエチルアミノエチルの如きメタクリル酸エステル;アクリロニトリル,メタクリロニトリル,アクリルアミド等の単量体が挙げられる。   The fine resin particles preferably have an average particle size of 0.03 to 1.0 μm. As the polymerizable monomer constituting the resin, styrene; o-methylstyrene, m-methylstyrene, p-methylstyrene, p-methoxystyrene, p-ethylstyrene derivatives; acrylic acid; methacrylic acid; methyl acrylate , Ethyl acrylate, n-butyl acrylate, isobutyl acrylate, n-propyl acrylate, n-octyl acrylate, dodecyl acrylate, 2-ethylhexyl acrylate, stearyl acrylate, 2-chloroethyl acrylate, phenyl acrylate Acrylic acid esters such as: methyl methacrylate, ethyl methacrylate, n-propyl methacrylate, n-butyl methacrylate, isobutyl methacrylate, n-octyl methacrylate, dodecyl methacrylate, 2-ethylhexyl methacrylate, Lil, phenyl methacrylate, dimethylaminoethyl methacrylate, such as methacrylic acid esters of diethylaminoethyl methacrylate; acrylonitrile, methacrylonitrile, and the like monomers acrylamide.

重合法としては、懸濁重合、乳化重合、ソープフリー重合が挙げられる。より好ましくは、ソープフリー重合によって得られる粒子が良い。   Examples of the polymerization method include suspension polymerization, emulsion polymerization, and soap-free polymerization. More preferably, particles obtained by soap-free polymerization are good.

その他の微粒子としては、ポリ弗化エチレン、ステアリン酸亜鉛、ポリ弗化ビニリデンの如き滑剤(中でもポリ弗化ビニリデンが好ましい);酸化セリウム、炭化ケイ素、チタン酸ストロンチウムの如き研磨剤(中でもチタン酸ストロンチウムが好ましい);酸化チタン、酸化アルミニウムの如き流動性付与剤(中でも特に疎水性のものが好ましい);ケーキング防止剤;カーボンブラック、酸化亜鉛、酸化アンチモン、酸化スズの如き導電性付与剤が挙げられる。さらに、トナーと逆極性の白色微粒子及び黒色微粒子を現像性向上剤として少量用いても良い。   Other fine particles include lubricants such as polyethylene fluoride, zinc stearate and polyvinylidene fluoride (in particular, polyvinylidene fluoride is preferred); abrasives such as cerium oxide, silicon carbide and strontium titanate (especially strontium titanate) Fluidity-imparting agents such as titanium oxide and aluminum oxide (especially hydrophobic ones are preferred); anti-caking agents; and conductivity-imparting agents such as carbon black, zinc oxide, antimony oxide and tin oxide. . Further, a small amount of white fine particles and black fine particles having a polarity opposite to that of the toner may be used as a developability improver.

トナーと混合される樹脂微粒子または無機微粉体または疎水性無機微粉体は、トナー100質量部に対して0.01〜5質量部(好ましくは0.01〜3質量部)使用するのが良い。   The resin fine particles, inorganic fine powder or hydrophobic inorganic fine powder mixed with the toner is preferably used in an amount of 0.01 to 5 parts by mass (preferably 0.01 to 3 parts by mass) with respect to 100 parts by mass of the toner.

本発明のトナーは、好ましくは重量平均粒径を2.5〜10.0μm、好ましくは5.0〜9.0μm、より好ましくは6.0〜8.0μmとした場合に十分な効果が発揮され、好ましい。   The toner of the present invention preferably exhibits a sufficient effect when the weight average particle diameter is 2.5 to 10.0 μm, preferably 5.0 to 9.0 μm, more preferably 6.0 to 8.0 μm. And preferred.

トナーの重量平均粒径及び粒度分布はコールターカウンター法を用いて行うが、例えばコールターマルチサイザー(コールター社製)を用いることが可能である。電解液は1級塩化ナトリウムを用いて1%NaCl水溶液を調製する。例えばISOTON R−II(コールターサイエンティフィックジャパン社製)が使用できる。測定法としては、前記電解水溶液100〜150ml中に分散剤として界面活性剤(好ましくはアルキルベンゼンスルフォン酸塩)を0.1〜5ml加え、更に測定試料を2〜20mg加える。試料を懸濁した電解液は超音波分散器で約1〜3分間分散処理を行い、前記測定装置によりアパーチャーとして100μmアパーチャーを用いて、2.00μm以上のトナー粒子の体積・個数を測定して体積分布と個数分布とを算出する。それから本発明に係る体積分布から求めた重量基準の重量平均粒径(D4)を算出する。チャンネルとしては、2.00〜2.52μm未満;2.52〜3.17μm未満;3.17〜4.00μm未満;4.00〜5.04μm未満;5.04〜6.35μm未満;6.35〜8.00μm未満;8.00〜10.08μm未満;10.08〜12.70μm未満;12.70〜16.00μm未満;16.00〜20.20μm未満;20.20〜25.40μm未満;25.40〜32.00μm未満;32.00〜40.30μm未満の13チャンネルを用いる。   The weight average particle diameter and particle size distribution of the toner are determined using a Coulter counter method. For example, a Coulter Multisizer (manufactured by Coulter Inc.) can be used. As the electrolytic solution, a 1% NaCl aqueous solution is prepared using primary sodium chloride. For example, ISOTON R-II (manufactured by Coulter Scientific Japan) can be used. As a measurement method, 0.1 to 5 ml of a surfactant (preferably alkylbenzene sulfonate) is added as a dispersant to 100 to 150 ml of the electrolytic aqueous solution, and 2 to 20 mg of a measurement sample is further added. The electrolytic solution in which the sample is suspended is subjected to a dispersion treatment with an ultrasonic disperser for about 1 to 3 minutes, and the volume and number of toner particles of 2.00 μm or more are measured using the 100 μm aperture as the aperture by the measuring device. Volume distribution and number distribution are calculated. Then, the weight-based weight average particle diameter (D4) obtained from the volume distribution according to the present invention is calculated. As channels, 2.00 to less than 2.52 μm; 2.52 to less than 3.17 μm; 3.17 to less than 4.00 μm; 4.00 to less than 5.04 μm; 5.04 to less than 6.35 μm; 6 Less than 35 to 8.00 μm; less than 8.00 to less than 10.08 μm; less than 10.08 to less than 12.70 μm; less than 12.70 to less than 16.00 μm; less than 16.00 to less than 20.20 μm; Use 13 channels less than 40 μm; 25.40 to less than 32.00 μm; 32.00 to less than 40.30 μm.

本発明のトナーは、キャリアと併用して二成分現像剤として用いることができる。二成分現像方法に用いる場合のキャリアとしては、従来知られているものが使用可能である。具体的には、表面酸化または未酸化の鉄、ニッケル、コバルト、マンガン、クロム、希土類の如き金属及びそれらの合金または酸化物で形成される平均粒径20〜300μmの粒子がキャリア粒子として使用される。   The toner of the present invention can be used as a two-component developer in combination with a carrier. As the carrier for use in the two-component development method, a conventionally known carrier can be used. Specifically, particles having an average particle diameter of 20 to 300 μm formed of surface oxidized or unoxidized metal such as iron, nickel, cobalt, manganese, chromium, rare earth, and alloys or oxides thereof are used as carrier particles. The

キャリア粒子の表面は、スチレン系樹脂、アクリル系樹脂、シリコーン系樹脂、フッ素系樹脂、ポリエステル樹脂の如き物質を付着または被覆されているものが好ましい。   The surface of the carrier particles is preferably coated with a substance such as styrene resin, acrylic resin, silicone resin, fluorine resin, or polyester resin.

本発明に係るトナー粒子は、結着樹脂と着色剤と、必要に応じてその他の成分を含有する組成物を溶融混練(混練工程)し、得られた混練物を粉砕(粉砕工程)することによって得られるものである。トナー粒子の構成材料は、ボールミルその他の混合機により予め十分混合した後、熱混練機を用いて混練することが好ましい。また粉砕工程は、粗粉砕工程と微粉砕工程に分かれていても良く、またその後に、分級(分級工程)を行っても良い。更に、本発明に係るトナー粒子の平均円形度及び平均面粗さを満たすために、上述したように表面改質装置を用いてトナー粒子表面を改質することが好ましく、特には、分級工程後に表面改質を行うことが好ましい。また、微粉除去を、表面改質と同時に行うことが好ましい。   The toner particles according to the present invention are obtained by melt-kneading (kneading step) a composition containing a binder resin, a colorant, and other components as necessary, and pulverizing (pulverizing step) the obtained kneaded product. Is obtained. The constituent material of the toner particles is preferably mixed in advance by a ball mill or other mixer and then kneaded using a thermal kneader. Further, the pulverization process may be divided into a coarse pulverization process and a fine pulverization process, and classification (classification process) may be performed thereafter. Furthermore, in order to satisfy the average circularity and average surface roughness of the toner particles according to the present invention, it is preferable to modify the toner particle surface using the surface modifying apparatus as described above, and in particular, after the classification step. It is preferable to perform surface modification. Moreover, it is preferable to perform fine powder removal simultaneously with surface modification.

本発明の如く、混練工程を経てトナーを製造した場合、トナー粒子の構成材料が粒子中で均一、且つ微細に分散させることができる。また、構成材料が良好に分散された混練物を粉砕することにより、トナー粒子表面における構成材料の分布が好適なものとなり、その結果、本発明の特徴とする特定の平均面粗さ、平均円形度を有するトナー粒子の効果を十分に発揮することができる。   When the toner is produced through the kneading step as in the present invention, the constituent material of the toner particles can be uniformly and finely dispersed in the particles. Further, by pulverizing the kneaded material in which the constituent materials are well dispersed, the distribution of the constituent materials on the surface of the toner particles becomes suitable. As a result, the specific average surface roughness and average circularity, which are the characteristics of the present invention, are achieved. The effect of the toner particles having a sufficient degree can be exhibited sufficiently.

例えば混合機としては、ヘンシェルミキサー(三井鉱山社製);スーパーミキサー(カワタ社製);リボコーン(大川原製作所社製);ナウターミキサー、タービュライザー、サイクロミックス(ホソカワミクロン社製);スパイラルピンミキサー(太平洋機工社製);レーディゲミキサー(マツボー社製)が挙げられ、混練機としては、KRCニーダー(栗本鉄工所社製);ブス・コ・ニーダー(Buss社製);TEM型押し出し機(東芝機械社製);TEX二軸混練機(日本製鋼所社製);PCM混練機(池貝鉄工所社製);三本ロールミル、ミキシングロールミル、ニーダー(井上製作所社製);ニーデックス(三井鉱山社製);MS式加圧ニーダー、ニダールーダー(森山製作所社製);バンバリーミキサー(神戸製鋼所社製)が挙げられる。粉砕機としては、カウンタージェットミル、ミクロンジェット、イノマイザ(ホソカワミクロン社製);IDS型ミル、PJMジェット粉砕機(日本ニューマチック工業社製);クロスジェットミル(栗本鉄工所社製);ウルマックス(日曹エンジニアリング社製);SKジェット・オー・ミル(セイシン企業社製);クリプトロン(川崎重工業社製);ターボミル(ターボ工業社製);スーパーローター(日清エンジニアリング社製)が挙げられる。分級機としては、クラッシール、マイクロンクラッシファイアー、スペディッククラッシファイアー(セイシン企業社製);ターボクラッシファイアー(日清エンジニアリング社製);ミクロンセパレータ、ターボフレックス(ATP)、TSPセパレータ(ホソカワミクロン社製);エルボージェット(日鉄鉱業社製)、ディスパージョンセパレータ(日本ニューマチック工業社製);YMマイクロカット(安川商事社製)が挙げられる。粗粒などをふるい分けるために用いられる篩い装置としては、ウルトラソニック(晃栄産業社製);レゾナシーブ、ジャイロシフター(徳寿工作所杜);バイブラソニックシステム(ダルトン社製);ソニクリーン(新東工業社製);ターボスクリーナー(ターボ工業社製);ミクロシフター(槙野産業社製);円形振動篩い等が挙げられる。   For example, as a mixer, Henschel mixer (Mitsui Mining Co., Ltd.); Super mixer (Kawata Co., Ltd.); Ribocorn (Okawara Seisakusho Co., Ltd.); (Manufactured by Taiheiyo Kiko Co., Ltd.); Ladige mixer (manufactured by Matsubo Co., Ltd.), and kneading machines such as KRC kneader (manufactured by Kurimoto Iron Works); (Manufactured by Toshiba Machine Co., Ltd.); TEX twin-screw kneader (manufactured by Nippon Steel Works); PCM kneader (manufactured by Ikegai Iron Works Co., Ltd.); Mining company); MS pressure kneader, Nider Ruder (Moriyama Seisakusho); Banbury mixer (Kobe Steel) It is below. As a pulverizer, a counter jet mill, a micron jet, an inomizer (manufactured by Hosokawa Micron); an IDS type mill, a PJM jet pulverizer (manufactured by Nippon Pneumatic Industry Co., Ltd.); a cross jet mill (manufactured by Kurimoto Iron Works Co., Ltd.); SK Jet Oh Mill (manufactured by Seishin Enterprise Co., Ltd.); Kryptron (manufactured by Kawasaki Heavy Industries, Ltd.); Turbo Mill (manufactured by Turbo Industry Co., Ltd.); Super Rotor (manufactured by Nissin Engineering Co., Ltd.). Classifiers include: Classy, Micron Classifier, Spedick Classifier (manufactured by Seishin Enterprise); Turbo Classifier (manufactured by Nisshin Engineering); Micron Separator, Turbo Flex (ATP), TSP Separator (manufactured by Hosokawa Micron) Elbow Jet (manufactured by Nippon Steel Mining Co., Ltd.), Dispersion Separator (manufactured by Nippon Pneumatic Industrial Co., Ltd.); YM Microcut (manufactured by Yaskawa Shoji Co., Ltd.). Ultrasonic (Made by Sakae Sangyo Co., Ltd.); Resona sieve, Gyroshifter (Deoksugaku Kojo Co., Ltd.); Vibrasonic system (Made by Dalton); Soniclean (Shinto) (Industry company); Turbo screener (Turbo industry company); Micro shifter (Ogino industry company); Circular vibration sieve, etc.

以下、実施例を示して、本発明を更に詳しく説明するが、本発明は何らこれらに限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to these examples.

<低分子量成分の製造例L−1>
四つ口フラスコ内にキシレン300質量部を投入し、攪拌しながらフラスコ内を十分に窒素で置換した後、昇温して還流させ、この還流下でスチレン68.8質量部、アクリル酸n−ブチル22質量部、マレイン酸モノブチル9.2質量部及びジ−t−ブチルパーオキサイド1.8質量部の混合液を4時間かけて滴下した後、2時間保持して重合を完了した後、脱溶剤し低分子量重合体(L−1)を得た。この重合体のGPC及び酸価測定を行ったところ、ピーク分子量は15000、酸価は30mgKOH/gであった。その値を表1に示す。
<Production Example L-1 for Low Molecular Weight Component>
Into a four-necked flask, 300 parts by mass of xylene was added, and the inside of the flask was sufficiently replaced with nitrogen while stirring, and then heated to reflux. Under this reflux, 68.8 parts by mass of styrene, acrylic acid n- A mixture of 22 parts by weight of butyl, 9.2 parts by weight of monobutyl maleate and 1.8 parts by weight of di-t-butyl peroxide was added dropwise over 4 hours, and the mixture was held for 2 hours to complete the polymerization. Solvent was used to obtain a low molecular weight polymer (L-1). When GPC and acid value measurement of this polymer were performed, the peak molecular weight was 15000 and the acid value was 30 mgKOH / g. The values are shown in Table 1.

<低分子量成分の製造例L−2乃至L−5>
低分子量成分製造例L−1においてスチレン、アクリル酸n−ブチル、マレイン酸モノブチルの量および重合開始剤量を表1に示すように変えた以外は同様の方法により、低分子量重合体L−2乃至L−5を得た。低分子量重合体L−2乃至L−5のピーク分子量、酸価の値を表1に示す。
<Production Examples L-2 to L-5 of Low Molecular Weight Components>
Low molecular weight polymer L-2 was prepared in the same manner as in Low molecular weight component production example L-1, except that the amounts of styrene, n-butyl acrylate and monobutyl maleate and the amount of polymerization initiator were changed as shown in Table 1. To L-5. Table 1 shows the peak molecular weight and acid value of the low molecular weight polymers L-2 to L-5.

<高分子量成分の製造例H−1>
四つ口フラスコ内に脱気水180質量部とポリビニルアルコールの2質量%水溶液20質量部を投入した後、スチレン75.3質量部、アクリル酸n−ブチル20質量部、マレイン酸モノブチル4.7質量部、ジ−t−ブチルパーオキサイド0.65質量部、ジビニルベンゼン0.008質量部、及び2,2−ビス(4,4−ジ−t−ブチルパーオキシシクロヘキシル)プロパン0.15質量部の混合液を加え、攪拌して懸濁液とした。フラスコ内を十分に窒素で置換した後、90℃まで昇温して重合を開始した。同温度で24時間保持して重合を完了し、高分子量重合体(H−1)を得た。その後重合体(H−1)を濾別し、水洗、乾燥した後、GPC及び酸価測定を行ったところ、ピーク分子量は230万、酸価は8.7であった。
<Production Example H-1 of High Molecular Weight Component>
Into a four-necked flask, 180 parts by mass of degassed water and 20 parts by mass of a 2% by weight aqueous solution of polyvinyl alcohol were added, then 75.3 parts by mass of styrene, 20 parts by mass of n-butyl acrylate, and 4.7% of monobutyl maleate. Parts by weight, 0.65 parts by weight of di-t-butyl peroxide, 0.008 parts by weight of divinylbenzene, and 0.15 parts by weight of 2,2-bis (4,4-di-t-butylperoxycyclohexyl) propane Was added and stirred to give a suspension. After sufficiently replacing the inside of the flask with nitrogen, the temperature was raised to 90 ° C. to initiate polymerization. The polymerization was completed by maintaining at the same temperature for 24 hours to obtain a high molecular weight polymer (H-1). Thereafter, the polymer (H-1) was filtered off, washed with water, dried, and then subjected to GPC and acid value measurement. As a result, the peak molecular weight was 2.3 million, and the acid value was 8.7.

<高分子量成分の製造例H−2乃至H−4>
高分子量成分製造例H−1においてスチレン、アクリル酸n−ブチル、マレイン酸モノブチル、ジ−t−ブチルパーオキサイド、ジビニルベンゼン、2,2−ビス(4,4−ジ−t−ブチルパーオキシシクロヘキシル)プロパンの量を表1に示すように変え、更に適宜ジビニルベンゼンを添加した以外は、同様の方法により、高分子量重合体H−2乃至H−4を得た。高分子量重合体H−2乃至H−4のピーク分子量、酸価の値を表1に示す。
<Production Examples H-2 to H-4 of High Molecular Weight Components>
In high molecular weight component production example H-1, styrene, n-butyl acrylate, monobutyl maleate, di-t-butyl peroxide, divinylbenzene, 2,2-bis (4,4-di-t-butylperoxycyclohexyl) ) High molecular weight polymers H-2 to H-4 were obtained by the same method except that the amount of propane was changed as shown in Table 1 and divinylbenzene was added as appropriate. Table 1 shows the peak molecular weight and acid value of the high molecular weight polymers H-2 to H-4.

Figure 0004208785
Figure 0004208785

<結着樹脂製造例1>
低分子量成分L−1と高分子量成分H−1とを表2に示す質量比でキシレン溶液中で混合して、結着樹脂1を得た。得られた結着樹脂の物性を表2に示す。
<Binder resin production example 1>
A low molecular weight component L-1 and a high molecular weight component H-1 were mixed in a xylene solution at a mass ratio shown in Table 2 to obtain a binder resin 1. Table 2 shows the physical properties of the obtained binder resin.

<結着樹脂製造例2〜8>
結着樹脂製造例1において、混合する重合体の種類を表2に示すように変えた以外は結着樹脂製造例1と同様にして、結着樹脂2〜8を得た。
<Binder resin production examples 2 to 8>
Binder resins 2 to 8 were obtained in the same manner as in Binder resin production example 1 except that the type of polymer to be mixed was changed as shown in Table 2 in Binder resin production example 1.

Figure 0004208785
Figure 0004208785

<実施例1>
[トナー1の調製]
・結着樹脂1 100質量部
・球形磁性酸化鉄(平均粒径:0.21μm、79.6kA/m(1kエルステッド)の磁場における磁気特性〔σr:5.1Am2/kg、σs:69.6Am2/kg〕)
95質量部
・負荷電性制御剤(鉄アゾ化合物、保土ヶ谷化学社製:T−77) 2質量部
・ワックス(フィッシャートロプシュ、融点=104℃、Mn=780、
Mw=1060) 4質量部
上記混合物をヘンシェルミキサーで前混合した後、110℃に加熱された2軸エクストルーダで溶融混練し、冷却した混練物をハンマーミルで粗粉砕してトナー粗粉砕物を得た。得られた粗粉砕物を、機械式粉砕機ターボミル(ターボ工業社製;回転子および固定子の表面に炭化クロムを含有したクロム合金めっきでコーティング(めっき厚150μm、表面硬さHV1050))を用いて、表3の条件表に基づき、エアー温度を調整して機械式粉砕させて微粉砕し、得られた微粉砕物をコアンダ効果を利用した多分割分級装置(日鉄鉱業社製エルボジェット分級機)で微粉及び粗粉を同時に分級除去した。そこで得られた原料トナー粒子のコールターカウンター法で測定される重量平均粒径(D4)は6.6μm、4μm未満のトナー粒子の個数基準の粒径分布の累積値は25.3個数%であった。
<Example 1>
[Preparation of Toner 1]
Binder resin 1 100 parts by mass. Magnetic properties in a magnetic field of spherical magnetic iron oxide (average particle size: 0.21 μm, 79.6 kA / m (1 k Oersted) [σr: 5.1 Am 2 / kg, σs: 69. 6Am 2 / kg])
95 parts by mass / negative charge control agent (iron azo compound, manufactured by Hodogaya Chemical Co., Ltd .: T-77) 2 parts by mass / wax (Fischer-Tropsch, melting point = 104 ° C., Mn = 780,
Mw = 1060) 4 parts by mass The above mixture was premixed with a Henschel mixer, melt kneaded with a biaxial extruder heated to 110 ° C., and the cooled kneaded product was coarsely pulverized with a hammer mill to obtain a coarsely pulverized toner product It was. The obtained coarsely pulverized product was coated with a mechanical pulverizer turbo mill (manufactured by Turbo Kogyo Co., Ltd .; coated with chromium alloy plating containing chromium carbide on the rotor and stator surfaces (plating thickness 150 μm, surface hardness HV1050)). Then, based on the condition table of Table 3, the air temperature is adjusted and mechanically pulverized to finely pulverize, and the resulting finely pulverized product is a multi-division classifier using the Coanda effect (elbow jet classification manufactured by Nittetsu Mining Co., Ltd.). Machine), fine powder and coarse powder were simultaneously classified and removed. The weight average particle diameter (D 4 ) measured by the Coulter counter method of the obtained raw toner particles is 6.6 μm, and the cumulative value of the particle size distribution based on the number of toner particles less than 4 μm is 25.3 number%. there were.

その原料トナー粒子を、図1に示す表面改質装置で表面改質及び微粉除去を行った。その際、本実施例においては、分散ローター上部に角型のディスクを16個設置し、ガイドリングと分散ローター上角型ディスクの間隔を60mm、分散ローターとライナーとの間隔を4mmとした。また分散ローターの回転周速を140m/secとし、ブロワー風量を30m3/minとした。また微粉砕品の投入量を300kg/hrとし、サイクルタイムを45secとした。またジャケットに通す冷媒の温度を−15℃、冷風温度T1を−20℃とした。更に、分級ローターの回転数を制御することにより、0.6μm以上3μm未満の粒子比率を所望の値とした。以上の工程を経て、コールターカウンター法で測定される重量平均粒径(D4)6.8μm、4μm未満のトナー粒子の個数基準の粒径分布の累積値が18.1個数%の負帯電性トナー粒子1を得た。 The raw toner particles were subjected to surface modification and fine powder removal using a surface modification apparatus shown in FIG. At this time, in this example, 16 square disks were installed on the upper part of the dispersion rotor, the distance between the guide ring and the upper square disk of the dispersion rotor was 60 mm, and the distance between the dispersion rotor and the liner was 4 mm. Further, the rotational peripheral speed of the dispersion rotor was 140 m / sec, and the blower air volume was 30 m 3 / min. The input amount of the finely pulverized product was 300 kg / hr, and the cycle time was 45 sec. The temperature of the refrigerant passed through the jacket was −15 ° C., and the cold air temperature T1 was −20 ° C. Furthermore, the particle ratio of 0.6 μm or more and less than 3 μm was set to a desired value by controlling the rotation speed of the classification rotor. Through the above-described steps, negative chargeability in which the cumulative value of the number-based particle size distribution of toner particles having a weight average particle diameter (D 4 ) of 6.8 μm and less than 4 μm measured by the Coulter counter method is 18.1% by number. Toner particles 1 were obtained.

トナー粒子1の、FPIA2100で測定された物性、及び780nmの波長光の透過率に対するメタノール濃度の値、及び走査型プローブ顕微鏡測定値を表4に、メタノール濃度−透過率曲線を図3示す。   Table 4 shows the values of the methanol concentration of the toner particles 1 measured with the FPIA 2100, the transmittance of light having a wavelength of 780 nm, and the measured value of the scanning probe microscope, and FIG. 3 shows the methanol concentration-transmittance curve.

このトナー1の、FPIA2100で測定された円相当径3μm以上400μm以下のトナーにおける平均円形度は0.947であり、走査型プローブ顕微鏡で測定されるトナー1の平均面粗さは16.5nmであった。   The average circularity of the toner 1 measured with the FPIA 2100 and having an equivalent circle diameter of 3 μm or more and 400 μm or less is 0.947, and the average surface roughness of the toner 1 measured with a scanning probe microscope is 16.5 nm. there were.

[トナー2〜10の調製]
用いる結着樹脂を表3のようにして、更にターボミルの微粉砕条件を表3に示すように変更し、多分割分級装置での分級条件を変更し、更に表面改質装置の条件を表3に示すようにした以外はトナー1と同様にしてトナー2〜10を得た。トナー粒子2〜10の、FPIA2100で測定された物性、及び780nmの波長光の透過率に対するメタノール濃度の値、及び走査型プローブ顕微鏡測定値を表4に示す。
[Preparation of Toners 2 to 10]
The binder resin to be used is changed as shown in Table 3, the finely pulverizing conditions of the turbo mill are changed as shown in Table 3, the classification conditions in the multi-division classifier are changed, and the conditions of the surface reformer are also shown in Table 3. Toners 2 to 10 were obtained in the same manner as Toner 1 except as described above. Table 4 shows the physical properties of toner particles 2 to 10 measured with FPIA 2100, the value of methanol concentration with respect to the transmittance of light having a wavelength of 780 nm, and the measured values with a scanning probe microscope.

このうちトナー10の、FPIA2100で測定された円相当径3μm以上400μm以下のトナーにおける平均円形度は0.934であり、走査型プローブ顕微鏡で測定されるトナー10の平均面粗さは30.0nmであった。   Among these, the average circularity of the toner 10 having a circle-equivalent diameter of 3 μm or more and 400 μm or less measured with the FPIA 2100 is 0.934, and the average surface roughness of the toner 10 measured with a scanning probe microscope is 30.0 nm. Met.

[トナー11の調製]
用いる結着樹脂を表3のようにして、更にターボミルの微粉砕条件を表3に示すように変更し、多分割分級装置での分級条件を変更し、得られたトナー粒子を300℃の熱風中を瞬間的に通過させる処理を行った以外はトナー1と同様にしてトナー11を得た。トナー粒子11の、FPIA2100で測定された物性、及び780nmの波長光の透過率に対するメタノール濃度の値、及び走査型プローブ顕微鏡測定値を表4に示す。
[Preparation of Toner 11]
The binder resin to be used is changed as shown in Table 3, and the pulverization conditions of the turbo mill are changed as shown in Table 3, the classification conditions in the multi-division classifier are changed, and the resulting toner particles are heated with 300 ° C. hot air. A toner 11 was obtained in the same manner as the toner 1 except that a treatment for instantaneously passing the inside was performed. Table 4 shows the physical properties of the toner particles 11 measured with FPIA 2100, the methanol concentration values with respect to the transmittance of light having a wavelength of 780 nm, and the measured values with a scanning probe microscope.

[トナー12の調製]
用いる結着樹脂を表3のようにして、更にターボミルの微粉砕条件を表3に示すように変更し、多分割分級装置での分級条件を変更し、更に表面改質装置による表面改質を行わなかった以外はトナー1と同様にしてトナー12を得た。トナー粒子12の、FPIA2100で測定された物性、及び780nmの波長光の透過率に対するメタノール濃度の値、及び走査型プローブ顕微鏡測定値を表4に示す。
[Preparation of Toner 12]
The binder resin to be used is changed as shown in Table 3, and the finely pulverized conditions of the turbo mill are changed as shown in Table 3, the classification conditions in the multi-division classifier are changed, and the surface modification by the surface reformer is further performed. Toner 12 was obtained in the same manner as Toner 1 except that this was not performed. Table 4 shows the physical properties of the toner particles 12 measured with FPIA 2100, the methanol concentration values with respect to the transmittance of light having a wavelength of 780 nm, and the measured values with a scanning probe microscope.

[トナー13の調製]
用いる結着樹脂を表3のようにして、機械式粉砕機を用いずにジェット気流式粉砕機を用い、更に多分割分級装置での分級条件を変更し、得られたトナー粒子を300℃の熱風中を瞬間的に通過させる処理を行った以外はトナー1と同様にしてトナー13を得た。トナー粒子13の、FPIA2100で測定された物性、及び780nmの波長光の透過率に対するメタノール濃度の値、及び走査型プローブ顕微鏡測定値を表4に示す。
[Preparation of Toner 13]
The binder resin to be used is as shown in Table 3, using a jet airflow type pulverizer without using a mechanical pulverizer, and further changing the classification conditions in the multi-division classifier. A toner 13 was obtained in the same manner as the toner 1 except that a treatment for instantaneously passing through hot air was performed. Table 4 shows the physical properties of the toner particles 13 measured with FPIA 2100, the methanol concentration values with respect to the transmittance of light having a wavelength of 780 nm, and the measured values with a scanning probe microscope.

[トナー14の調製]
用いる結着樹脂を表3のようにして、機械式粉砕機を用いずにジェット気流式粉砕機を用い、多分割分級装置での分級条件を変更し、更に表面改質装置による表面改質を行わなかった以外はトナー1と同様にしてトナー14を得た。トナー粒子14の、FPIA2100で測定された物性、及び780nmの波長光の透過率に対するメタノール濃度の値、及び走査型プローブ顕微鏡測定値を表4に示す。
[Preparation of Toner 14]
The binder resin to be used is as shown in Table 3, using a jet airflow pulverizer instead of a mechanical pulverizer, changing the classification conditions in the multi-division classifier, and further modifying the surface with a surface reformer. Toner 14 was obtained in the same manner as Toner 1 except that this was not performed. Table 4 shows the physical properties of the toner particles 14 measured with FPIA 2100, the methanol concentration values with respect to the transmittance of light having a wavelength of 780 nm, and the measured values with a scanning probe microscope.

Figure 0004208785
Figure 0004208785

Figure 0004208785
Figure 0004208785

<実施例1〜9、比較例1〜5>
次に、調製されたトナーを用いて、以下に示すような方法によって評価を行った。評価結果を表5に示す。
<Examples 1-9, Comparative Examples 1-5>
Next, the prepared toner was used for evaluation by the following method. The evaluation results are shown in Table 5.

Hewlett−Packard社製レーザービームプリンターLaser Jet4300nを用いて以下の評価を行った。   The following evaluation was performed using a laser beam printer Laser Jet 4300n manufactured by Hewlett-Packard.

(1)トナー消費量
常温常湿環境下(23℃,60%RH)で印字比率4%の画像で複写機用普通紙(A4サイズ:75g/m2)に18000枚の画出し試験を行う前後で、トナー容器内のトナー量を測定し、画像1枚あたりのトナー消費量を測定した。
(1) Toner consumption Image printing test of 18000 sheets on plain paper for copying machines (A4 size: 75 g / m 2 ) with an image with a printing ratio of 4% in a normal temperature and humidity environment (23 ° C., 60% RH). Before and after the process, the amount of toner in the toner container was measured, and the amount of toner consumed per image was measured.

(2)定着試験
低温定着性については、前記評価装置の定着ユニットを取り出し通常の1.1倍のプロセススピードにおいて評価できるよう改造を加えた。加熱定着装置において150〜240℃温度範囲で加熱用ヒータの温度を5℃おきに制御し、定着ローラーの表面の温度が一定になってから、未定着トナー像が形成された記録材を定着ニップ部に挿入し、得られた画像を、4.9kPaの荷重をかけたシルボン紙で5往復摺擦を行い、摺擦前後の画像濃度の濃度低下率が10%以下になる定着温度を低温定着性とした。この温度が低いほど低温定着性に優れたトナーである。未定着画像としては、普通紙(75g/m2)を用い、紙上のトナー現像量を0.6mg/cm2に設定したベタ黒画像の定着を行った。
(2) Fixing test Regarding the low-temperature fixability, the fixing unit of the evaluation apparatus was taken out and modified so that it could be evaluated at a process speed 1.1 times that of a normal one. In the heat fixing device, the temperature of the heater is controlled every 5 ° C. in the temperature range of 150 to 240 ° C., and after the surface temperature of the fixing roller becomes constant, the recording material on which the unfixed toner image is formed is fixed to the fixing nip. The resulting image is rubbed 5 times with sylbon paper applied with a load of 4.9 kPa, and the fixing temperature at which the density reduction rate of the image density before and after rubbing is 10% or less is fixed at a low temperature. It was sex. The lower this temperature, the better the low-temperature fixability. As the unfixed image, plain paper (75 g / m 2 ) was used, and a solid black image was fixed with the toner development amount on the paper set to 0.6 mg / cm 2 .

耐高温オフセット性については、上記の定着条件と同様に、定着ローラー表面が十分に加熱された状態で記録材を挿入し、評価を行った。上半分が100μm幅の横線パターン(横幅100μm、間隔100μm)、およびベタ黒、下半分が白の画像をプリントし、白画像上の汚れの発生しない最高温度を示した。試験紙としてオフセットの発生しやすい複写機用普通紙(60g/m2)を使用した。評価は高温オフセット現象による画像上の汚れを目視で確認し、発生した温度を耐高温オフセット性とした。この温度が高いほど高温オフセット性に優れたトナーである。 The high temperature offset resistance was evaluated by inserting the recording material in a state where the surface of the fixing roller was sufficiently heated, similar to the above fixing conditions. A horizontal line pattern (width 100 μm, interval 100 μm) in the upper half and a solid black and white image in the lower half were printed, showing the highest temperature at which no smudge occurred on the white image. As test paper, plain paper for copying machines (60 g / m 2 ), which is likely to cause offset, was used. In the evaluation, the stain on the image due to the high temperature offset phenomenon was visually confirmed, and the generated temperature was regarded as the high temperature offset resistance. The higher this temperature, the better the high temperature offset property.

(3)転写効率
常温常湿環境下(23℃,60%RH)で複写機用普通紙(A4サイズ:75g/m2)を用い、初期から500枚まで100枚間隔で行った。測定方法は、ベタ黒画像を出力中に本体を停止させ、感光体ドラムに現像されている単位面積あたりのトナー量と、被転写材上に転写されている単位面積あたりのトナー量とを測定する。そして、被転写材上のトナー量を感光体ドラム上のトナー量で除算することで求めた。そして、100枚間隔毎で結果を平均した。
(3) Transfer efficiency Using normal paper for copying machines (A4 size: 75 g / m 2 ) in a normal temperature and normal humidity environment (23 ° C., 60% RH), the transfer was performed at an interval of 100 sheets from the initial to 500 sheets. The measurement method is to stop the main body while outputting a solid black image, and measure the amount of toner per unit area developed on the photosensitive drum and the amount of toner per unit area transferred onto the transfer material. To do. Then, the amount of toner on the transfer material was obtained by dividing by the amount of toner on the photosensitive drum. The results were averaged every 100 sheets.

(4)ブロッチ
低温低湿環境下での耐久において、画出し中の現像スリーブ上のトナーコート状態及びプリント画像から、ブロッチの評価を行った。
A 現像スリーブ上にブロッチが全く見られない。
B 現像スリーブ上にわずかに見られるが、画像上にはその影響は現れない。
C 現像スリーブ上に見られ、画像上にもその影響がかすかに現れる。
D 現像スリーブ上にブロッチが見られ、画像上に著しくその影響が現れる。
(4) Blotch In the durability under a low temperature and low humidity environment, the blotch was evaluated from the toner coat state on the developing sleeve during printing and the printed image.
A No blotch is seen on the developing sleeve.
B Although slightly seen on the developing sleeve, the effect does not appear on the image.
C It is seen on the developing sleeve and the effect appears faintly on the image.
D Blotches are seen on the developing sleeve, and the effect appears remarkably on the image.

(5)スリーブネガゴースト
通常の複写機用普通紙(A4サイズ:75g/m2)に、低温低湿環境下(15℃,10%RH)で18000枚プリントアウトし、4500枚ごとにスリーブネガゴーストの評価を行った。ゴーストに関する画像評価には、スリーブ一周分だけベタ黒の帯を出力した後ハーフトーンの画像を出力した。パターンの概略図を図4に示す。評価方法は、一枚のプリント画像のうち、スリーブ2周目で、1周目で黒画像が形成された場所(黒印字部)と、されない場所(非画像部)での、マクベス濃度反射計により測定された反射濃度の差を下記のごとく算出した。ネガゴーストは、一般的にスリーブ2周目で出る画像において、スリーブ1周目に黒印字部だった部分の画像濃度が、スリーブ1周目に非画像部だった部分の画像濃度よりも低く、1周目で出したパターンの形がそのまま現れるゴースト現象である。ここの濃度差を、反射濃度差を測定することにより評価を行った。
反射濃度差=反射濃度(像形成されない場所)−反射濃度(像形成された場所)
(5) Sleeve negative ghost Print out 18,000 sheets of ordinary copier plain paper (A4 size: 75 g / m 2 ) in a low-temperature, low-humidity environment (15 ° C, 10% RH), and sleeve negative ghost every 4500 sheets. Was evaluated. For the image evaluation related to ghost, a solid black band was output only for one round of the sleeve, and then a halftone image was output. A schematic diagram of the pattern is shown in FIG. The evaluation method is a Macbeth densitometer at the place where the black image is formed on the second round of the sleeve (black print portion) and the place where the black image is not formed (non-image portion) in one print image. The difference in reflection density measured by was calculated as follows. In the negative ghost image, the image density of the black printed portion in the first round of the sleeve is generally lower than the image density of the non-image portion in the first round of the sleeve. This is a ghost phenomenon where the shape of the pattern produced in the first round appears as it is. The density difference here was evaluated by measuring the reflection density difference.
Reflection density difference = reflection density (place where no image is formed) −reflection density (place where an image is formed)

反射濃度差が小さいほどゴーストの発生はなくレベルは良い。ゴーストの総合評価としてA、B、C、Dの4段階で評価し、4500枚ごとの評価の中での最悪の評価結果を表6に示す。
反射濃度差 0.00以上0.02未満:A
0.02以上0.04未満:B
0.04以上0.06未満:C
0.06以上:D
The smaller the reflection density difference is, the better the level is without ghosting. As a comprehensive evaluation of ghosts, the evaluation is made in four stages of A, B, C, and D, and the worst evaluation result among the evaluations for every 4500 sheets is shown in Table 6.
Reflection density difference 0.00 or more and less than 0.02: A
0.02 or more and less than 0.04: B
0.04 or more and less than 0.06: C
0.06 or more: D

(6)飛び散り
常温常湿環境下での耐久において、初期と18000枚時に100μm(潜像)ラインでの格子パターン(1cm間隔)をプリントし、その飛び散りを光学顕微鏡を用いて目視で評価した。
A:ラインが非常にシャープで飛び散りはほとんどない
B:わずかに飛び散っている程度でラインは比較的シャープ
C:飛び散りがやや多くラインがぼんやりした感じになる
D:Cのレベルに満たない
(6) Scattering In durability under normal temperature and normal humidity environment, a lattice pattern (interval of 1 cm) at 100 μm (latent image) line was printed at the initial time and 18,000 sheets, and the scattering was visually evaluated using an optical microscope.
A: The line is very sharp and hardly splattered. B: The line is comparatively sharp with a slight splattering. C: Slightly splattering makes the line feel dull. D: Less than C level

(7)画像濃度、カブリ
低温低湿環境下(15℃,10%RH)、高温高湿環境下(32.5℃,80%RH)の各環境下で、2枚/10秒のプリント速度、印字比率3%で複写機用普通紙(A4サイズ:75g/m2)に9000枚の画出し試験を行い、一日放置して再び9000枚、計18000枚の画出し試験を行った。結果を表5に示す。
(7) Image density, fog Under a low temperature and low humidity environment (15 ° C., 10% RH) and a high temperature and high humidity environment (32.5 ° C., 80% RH), a printing speed of 2 sheets / 10 seconds, An image print test of 9000 sheets was performed on plain paper for copying machines (A4 size: 75 g / m 2 ) at a printing ratio of 3%, and the image print test was performed for a total of 18,000 sheets after leaving it for a day. . The results are shown in Table 5.

画像濃度は「マクベス反射濃度計」(マクベス社製)を用いて、原稿濃度が0.00の白地部分のプリントアウト画像に対する相対濃度を測定した。   For the image density, a “Macbeth reflection densitometer” (manufactured by Macbeth) was used to measure a relative density with respect to a printout image of a white background portion having an original density of 0.00.

リフレクトメーター(東京電色(株)製)により測定した転写紙の白色度と、ベタ白をプリント後の転写紙の白色度との比較からカブリを算出した。   The fog was calculated from a comparison between the whiteness of the transfer paper measured with a reflectometer (manufactured by Tokyo Denshoku Co., Ltd.) and the whiteness of the transfer paper after printing solid white.

Figure 0004208785
Figure 0004208785

本発明の表面改質工程において使用される一例の表面改質装置の概略的断面図である。It is a schematic sectional drawing of the surface modification apparatus of an example used in the surface modification process of this invention. 図1に示す分散ローターの上面図の一例を示す概略図である。It is the schematic which shows an example of the top view of the dispersion | distribution rotor shown in FIG. 本発明の実施例1のトナー粒子1の、メタノール濃度に対する透過率を示したグラフである。3 is a graph showing the transmittance of toner particles 1 of Example 1 of the present invention with respect to methanol concentration. スリーブゴーストを評価するためのパターンの説明図である。It is explanatory drawing of the pattern for evaluating a sleeve ghost.

符号の説明Explanation of symbols

31 分級ローター
32 微粉回収
33 原料供給口
34 ライナー
35 冷風導入口
36 分散ローター
37 製品排出口
38 排出弁
39 ガイドリング
40 角型ディスク
41 第一の空間
42 第二の空間
31 Classification rotor 32 Fine powder recovery 33 Raw material supply port 34 Liner 35 Cold air introduction port 36 Dispersion rotor 37 Product discharge port 38 Discharge valve 39 Guide ring 40 Square disk 41 First space 42 Second space

Claims (7)

結着樹脂、着色剤を少なくとも含有するトナー粒子と無機微粒子からなるトナーにおいて、
該トナー粒子のフロー式粒子像測定装置で計測される円相当径3μm以上400μm以下のトナー粒子における平均円形度が0.935以上0.970未満であり、該トナー粒子の走査型プローブ顕微鏡で測定される平均面粗さが5.0nm以上35.0nm未満であり、
さらに、トナーにおけるテトラヒドロフラン可溶分のゲルパーミエーションクロマトグラフィによって得られるクロマトグラムにおいて、分子量3.0×103以上3.0×104未満の領域にメインピークを有し、かつ分子量5.0×104以上1.0×108未満の領域に少なくとも一つのサブピークまたはショルダーを有することを特徴とするトナー。
In a toner composed of toner particles and inorganic fine particles containing at least a binder resin and a colorant,
The toner particles having an equivalent circle diameter of 3 μm or more and 400 μm or less measured by the flow type particle image measuring apparatus of the toner particles have an average circularity of 0.935 or more and less than 0.970, and the toner particles are measured by a scanning probe microscope. The average surface roughness is 5.0 nm or more and less than 35.0 nm,
Further, in the chromatogram obtained by gel permeation chromatography of the tetrahydrofuran-soluble matter in the toner, it has a main peak in a region having a molecular weight of 3.0 × 10 3 or more and less than 3.0 × 10 4 and a molecular weight of 5.0 ×. A toner having at least one sub-peak or shoulder in an area of 10 4 or more and less than 1.0 × 10 8 .
該トナー粒子のフロー式粒子像測定装置で計測される円相当径0.6μm以上400μm以下のトナー粒子における個数基準の粒径分布において、0.6μm以上3μm未満のトナー粒子比率が0個数%以上20個数%未満であることを特徴とする請求項1に記載のトナー。   In the number-based particle size distribution of toner particles having an equivalent circle diameter of 0.6 μm or more and 400 μm or less measured by the flow type particle image measuring apparatus of the toner particles, the ratio of toner particles of 0.6 μm or more and less than 3 μm is 0% by number or more. The toner according to claim 1, wherein the toner is less than 20% by number. 該トナー粒子のメタノール/水混合溶媒に対する濡れ性が、波長780nmの光の透過率が80%の時のメタノール濃度及び透過率50%の時のメタノール濃度が35〜75体積%であることを特徴とする請求項1または2に記載のトナー。   The wettability of the toner particles with respect to the methanol / water mixed solvent is characterized in that the methanol concentration when the light transmittance at a wavelength of 780 nm is 80% and the methanol concentration when the transmittance is 50% is 35 to 75% by volume. The toner according to claim 1 or 2. 該トナー粒子の円形度0.960未満のトナー粒子の個数累積値が20%以上70%未満であることを特徴とする請求項1乃至3のいずれかに記載のトナー。   4. The toner according to claim 1, wherein the toner particles have a cumulative number of toner particles having a circularity of less than 0.960 of 20% or more and less than 70%. 該トナー粒子の走査型プローブ顕微鏡で測定される最大高低差が50nm以上250nm未満であることを特徴とする請求項1乃至4のいずれかに記載のトナー。   The toner according to claim 1, wherein a maximum height difference of the toner particles measured by a scanning probe microscope is 50 nm or more and less than 250 nm. 該トナー粒子の走査型プローブ顕微鏡で測定される、トナー粒子の表面の1μm四方のエリアを測定した時の表面積が1.03μm2以上1.33μm2未満であることを特徴とする請求項1乃至5のいずれかに記載のトナー。 Measured with a scanning probe microscope of the toner particles, to claim 1 surface area when the 1μm square area of the surface was measured for the toner particles and less than 1.03 .mu.m 2 or more 1.33 2 The toner according to any one of 5. 該トナーのフロー式粒子像測定装置で計測される円相当径3μm以上400μm以下のトナーにおける平均円形度が0.935以上0.970未満であり、該トナーの走査型プローブ顕微鏡で測定される平均面粗さが10.0nm以上26.0nm未満であることを特徴とする請求項1乃至のいずれかに記載のトナー。 The average circularity of the toner having an equivalent circle diameter of 3 μm or more and 400 μm or less measured by the flow type particle image measuring apparatus of the toner is 0.935 or more and less than 0.970, and the average of the toner measured by a scanning probe microscope the toner according to any one of claims 1 to 6 surface roughness and less than or 10.0 nm 26.0 nm.
JP2004219710A 2003-08-01 2004-07-28 toner Expired - Fee Related JP4208785B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004219710A JP4208785B2 (en) 2003-08-01 2004-07-28 toner

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003205271 2003-08-01
JP2004219710A JP4208785B2 (en) 2003-08-01 2004-07-28 toner

Publications (3)

Publication Number Publication Date
JP2005070760A JP2005070760A (en) 2005-03-17
JP2005070760A5 JP2005070760A5 (en) 2007-09-13
JP4208785B2 true JP4208785B2 (en) 2009-01-14

Family

ID=34425051

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004219710A Expired - Fee Related JP4208785B2 (en) 2003-08-01 2004-07-28 toner

Country Status (1)

Country Link
JP (1) JP4208785B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4649300B2 (en) * 2005-09-14 2011-03-09 キヤノン株式会社 Image forming method and process cartridge
JP6750272B2 (en) * 2016-03-30 2020-09-02 コニカミノルタ株式会社 Image forming method

Also Published As

Publication number Publication date
JP2005070760A (en) 2005-03-17

Similar Documents

Publication Publication Date Title
KR100630985B1 (en) Toner
JP4756874B2 (en) toner
EP1505448A1 (en) Toner
US20090197192A1 (en) Magnetic toner
JP5132094B2 (en) Image forming method and process cartridge
JP2006243593A (en) Toner
JP4649300B2 (en) Image forming method and process cartridge
JP4262161B2 (en) toner
JP4401904B2 (en) Toner for electrostatic charge development and image forming method
JP4208785B2 (en) toner
JP4208784B2 (en) toner
JP2003015364A (en) Toner
JP4739115B2 (en) toner
JP4227309B2 (en) Magnetic toner
JP4262160B2 (en) toner
JP4164476B2 (en) toner
JP4164477B2 (en) toner
JP4095260B2 (en) toner
JP2005070758A (en) Toner
JP4590193B2 (en) toner
JP2002278147A (en) Magnetic toner, image forming method, and process cartridge
JP3817410B2 (en) toner
JP2004029156A (en) Image forming method, toner, and two component developer
JP3445030B2 (en) Toner for developing electrostatic images
JP3880305B2 (en) toner

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070725

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070725

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080710

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080715

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080908

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080930

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081021

R150 Certificate of patent or registration of utility model

Ref document number: 4208785

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111031

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111031

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121031

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131031

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees