JP4206702B2 - Exhaust gas purification device for internal combustion engine - Google Patents

Exhaust gas purification device for internal combustion engine Download PDF

Info

Publication number
JP4206702B2
JP4206702B2 JP2002208163A JP2002208163A JP4206702B2 JP 4206702 B2 JP4206702 B2 JP 4206702B2 JP 2002208163 A JP2002208163 A JP 2002208163A JP 2002208163 A JP2002208163 A JP 2002208163A JP 4206702 B2 JP4206702 B2 JP 4206702B2
Authority
JP
Japan
Prior art keywords
poisoning
catalyst
deterioration
amount
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002208163A
Other languages
Japanese (ja)
Other versions
JP2004052597A (en
Inventor
聡 西井
佳幸 大嶽
健一 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2002208163A priority Critical patent/JP4206702B2/en
Publication of JP2004052597A publication Critical patent/JP2004052597A/en
Application granted granted Critical
Publication of JP4206702B2 publication Critical patent/JP4206702B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Electrical Control Of Ignition Timing (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、内燃機関の排気浄化装置に関し、特に排気浄化用の触媒の被毒解除制御を行う装置に関する。
【0002】
【従来の技術】
従来の内燃機関の排気浄化装置として、特開2001−3782号公報に記載の装置が知られている。
この公報に記載の装置においては、内燃機関の排気管にNOxトラップ触媒を配置し、NOxトラップ触媒のSOx蓄積量を算出し、SOx蓄積量が所定値以上になったときにSOx脱離処理(被毒解除)を行っている。
【0003】
【発明が解決しようとする課題】
しかしながら、上記公報に記載の装置ではNOxトラップ触媒を長期間使用した場合、NOxトラップ触媒が劣化してしまうためにSOx解除がし難くなるが、この点を考慮していないので、次のような問題があった。
つまり、フレッシュ(新品)状態でのSOx解除がし易い条件に適合させて解除処理時間や温度などを設定すれば、劣化が進んだ場合に十分にSOx解除ができなくなる。一方、劣化が進んだ場合でのSOx解除がし難い条件に適合させて解除処理時間や温度などを設定すれば、フレッシュ状態の場合に過剰な解除処理により燃費悪化、或いは触媒劣化を進行させてしまうという問題があった。
【0004】
本発明はこのような問題に鑑み、NOxトラップ触媒がフレッシュ状態であると劣化が進んだ状態であると関わらず、常に好適な被毒解除が可能な内燃機関の排気浄化装置を実現することを目的とする。
【0005】
【課題を解決するための手段】
このため、本発明に係る内燃機関の排気浄化装置では、排気浄化用の触媒の経時的な劣化度合を判断する。また、車両の走行距離に基づいて被毒量を積算し、被毒解除制御時に単位時間毎に所定の被毒解除量を減算して触媒の被毒量を推定する。更に、推定された被毒量に基づいて被毒解除制御の開始時期及び終了時期を判断する。
ここで、単位時間毎の被毒解除量を、触媒の前記劣化度合とそのときの推定された被毒量に応じて設定する。
【0006】
【発明の効果】
本発明によれば、排気浄化用の触媒の劣化度合を判断し、その劣化度合に応じて適切な被毒解除制御を行うことができるため、フレッシュ状態から劣化が進んだ状態までに亘って良好に触媒の排気浄化性能を確保することができ、燃費の悪化を防止するという効果がある。
【0007】
【発明の実施の形態】
以下、図面に基づき本発明の実施形態を説明する。図1は、本発明の第1の実施形態に係る内燃機関の排気浄化装置の構成図である。
内燃機関(以下「エンジン」と称する)1の燃焼室2には、吸気通路3に設けられたスロットル弁4により制御される空気がコレクタ5を介して更に吸気バルブ6を介して吸入され、これが燃料噴射弁7から噴射される燃料と混合して燃焼に適した混合気が形成される。この混合気は、点火プラグ8の火花点火によって着火燃焼され、燃焼排気は燃焼室2から排気バルブ9を介して排気通路10へ排出される。ここで、排気の一部はEGR通路11によりEGR弁12を介してコレクタ5へ還流される。
【0008】
排気通路10には、排気浄化触媒としてのNOxトラップ触媒13が配置されている。ここでNOxトラップ触媒13は、排気の空燃比がリーン(酸素過剰状態)のときにNOxをトラップし、排気の空燃比が理論空燃比又はリッチ(燃料過剰状態)のときにNOxを脱離して浄化する。そして、NOxトラップ触媒13は、燃料に含まれる硫黄成分と酸素とが結合したSOx(硫黄酸化物)もトラップする。
【0009】
排気通路10には、NOxトラップ触媒13の上流と下流とのそれぞれに、排気中の空燃比を検出する第1酸素センサ14と第2酸素センサ15とが設けられており、これらの信号がエンジンコントロールユニット(ECU)16に送られる。ECU16には、吸気通路3にて吸入空気流量を検出するエアフロメータ17、スロットル弁4の開度を検出するスロットルセンサ18、エンジン水温を検出する水温センサ19からも信号が送られる。さらに、車速センサ(図示せず)からの車速信号Vと、クランク角センサ(図示せず)からの回転信号Neなども送られる。
【0010】
ECU16は、これらの信号に基づき演算処理を行い、燃料噴射弁7に燃料噴射信号(噴射パルス信号)を出力し、また点火プラグ8に点火信号を出力し、またEGR弁12に開閉信号を出力する。
これらの構成を備える内燃機関の排気浄化装置の制御について、以下に説明する。図2は、エンジン1の被毒解除制御を示すフローチャートであり、単位時間毎に実行される。
【0011】
図2のエンジン1の被毒解除制御において、ステップ101(図にはS101と記す。以下同様)では、車速センサ出力に基づいて検出される車速Vを読み込み、ステップ102へ進む。
ステップ102では、NOxトラップ触媒13の推定被毒量(SOxMILE)の値が、SOx解除を必要とする所定値S以上であるか否かを判断する。Yesと判断された場合には、ステップ103へ進み、被毒解除が必要であるとして被毒解除要求フラグ(FLS1)を1にして、ステップ104へ進む。ステップ102でNoと判断された場合には、後述するステップ110へ進む。
【0012】
ステップ104では、ステップ101で読み込んだ車速Vが所定値Vsp1以上であるか否かを判断する。これは、エンジン1の運転状態が被毒解除に適しているか否かを判断するもので、本実施形態では、予め実験などにより設定したVsp1以上であれば、NOxトラップ触媒13が被毒解除に適した内部温度条件を満たすこととしている。
【0013】
ステップ104でYesと判断された場合には、後述するステップ200の被毒解除制御(図3参照)を経てステップ105へ進む。ステップ104でNoと判断された場合には、後述するステップ112へ進む。
ステップ105では、NOxトラップ触媒13から単位時間においてSOx解除した被毒解除量(RSMILE)を(1)式より求める。
【0014】
RSMILE=SOxMILE(−1)×RSMILE1+RSMILE2・・・(1)
ここで、SOxMILE(−1)は、NOxトラップ触媒13の推定被毒量SOxMILEの前回値である。RSMILE1、RSMILE2は、それぞれ被毒解除定数であり、実験などにより定められた被毒量SOxMILEの減少挙動から近似的に求められる。
【0015】
ステップ106では、単位時間において新たに堆積したSOxMILEの量を求めるため、車速センサ出力に基づいて単位時間における走行距離を算出し、これに所定のSOx換算係数を乗じて、単位時間における被毒量ΔSOxを算出する。
ステップ107では、(2)式よりNOxトラップ触媒13に堆積する推定被毒量SOxMILEを求める。
【0016】
SOxMILE=SOxMILE(−1)+ΔSOx−RSMILE×TM・・・(2)
すなわち、車両の走行距離に基づいて被毒量(ΔSOx)を積算し、被毒解除制御時に単位時間毎の被毒解除量(RSMILE)を減算して、被毒量(SOxMILE)を推定する。
【0017】
ここで、TMは被毒解除制御時間係数(解除時間係数)であり、NOxトラップ触媒13の劣化度合に応じた値が実験などにより求められており、後述する図3のフローチャートにより触媒13の劣化度合が小さいほど大きく、劣化度合が大きいほど小さく設定する。被毒解除制御時間係数TMを設定することで劣化度合に応じた被毒解除制御時間とすることができる。
【0018】
ステップ108では、ステップ107で求めた推定被毒量SOxMILEが0になったか否かを判断する。Yesと判断された場合には、ステップ109へ進み、被毒解除フラグFLS1を0にしてリターンとなる。Noと判断された場合には、ステップ109を経ずにリターンとなる。
なお、ステップ102でNoと判断された場合には、ステップ110へ進み、被毒解除フラグFLS1が1であるか否かを判断する。
【0019】
ステップ110でYesと判断された場合には、ステップ104へ進み、前述の処理を行う。Noと判断された場合には、ステップ111へ進み、車速Vが所定の値Vsp2以上であるか否かを判断する。なお、車速Vsp2は車速Vsp1よりも大きい。
ステップ111でYesと判断された場合には、ステップ105へ進み、前述の処理を行う。これは車速Vが所定値Vsp2よりも大きい場合には、NOxトラップ触媒13の内部温度が高く、被毒解除制御を行わなくとも触媒13の被毒解除が行われるので、被毒解除量RSMILEの計算を行う必要があるためである。Noと判断された場合には、ステップ112へ進む。この場合は、被毒解除が行われないので、ステップ112ではRSMILEを0にしてステップ106へ進み、前述の処理を行う。
【0020】
また、ステップ104でNoと判断された場合、すなわち、被毒解除に適しない条件では被毒解除を行わないので、ステップ112へ進み、RSMILEを0にしてステップ106へ進み、前述の処理を行う。
図3は、図2のステップ200における被毒解除制御のサブルーチンを示すフローチャートである。図4は、NOxトラップ触媒13の劣化度合、第2酸素センサ15の出力反転周期Tと、空燃比のリッチシフト量P、点火時期遅角量AV、被毒解除制御時間係数TMとの関係図であり、これらの値の増減関係を劣化度合に応じて示す図である。
【0021】
ステップ201では、NOxトラップ触媒13の劣化度合を表すパラメータとして、NOxトラップ触媒13の下流に設けられた第2酸素センサ15の出力の反転周期(平均値)Tを用いており、この反転周期Tを読み込み、劣化度合を検出して、ステップ202へ進む。なお、NOxトラップ触媒13が劣化するほど酸素ストレージ能力が低下して反転周期Tが短くなる。
【0022】
ステップ202では、NOxトラップ触媒13の劣化度合を表す出力反転周期Tに基づき、予め求めておいたテーブルを参照して、空燃比リッチ量P、点火時期遅角量AV、被毒解除制御時間係数TMを設定する。
ここで、図4に示すように、触媒13の劣化度合が大きくなるほど、すなわち、反転周期Tが短くなるほど、空燃比リッチシフト量P及び点火時期遅角量AVを大きくし(制御量を大きくする方向)、また、解除時間係数TMは小さくする(制御時間を長くする方向)。
【0023】
ステップ203では、(3)式と(4)式とにより空燃比フィードバック補正係数ALPHAと点火時期ADVとを算出する。
ALPHA=ALPHA(0)+P・・・(3)
ADV=ADV(0)−AV・・・(4)
すなわち、空燃比フィードバック補正係数の演算値ALPHA(0)にリッチシフト量Pを加算することで、空燃比フィードバック補正係数ALPHAをリッチ側に補正する。なお、空燃比フィードバック補正係数ALPHAは、燃料噴射弁7による燃料噴射量を計算する際に、基本燃料噴射量に乗算される。
【0024】
また、点火時期の演算値ADV(0)から遅角量AVを減算することで、点火時期ADVを遅角側に補正する。
ステップ203で、これらの値が算出された後はリターンとなり、図2のステップ105へ進む。
このように、空燃比リッチシフト量Pによる燃料噴射量の増量及び点火時期の遅角により、触媒13に流入する排気温度が上昇し、これによりSOxの被毒解除がなされる。また、触媒13の劣化度合が大きくなるほど、燃料噴射量を更に増量し、点火時期を更に遅角することで、劣化の進行に関わらず、SOx被毒解除を常に確実に行うことができる。
【0025】
また、触媒13の劣化度合が大きくなるほど、被毒解除制御時間係数TMを小さくするが、これを小さくすると、図2のフローチャートのステップ107での推定被毒量SOxMILEの計算においてSOxMILEの減少度合が抑制される。従って、その分、ステップ108でSOxMILEが0になるまでの時間、すなわち被毒解除制御時間が長くなる。
【0026】
図5は、図2のステップ200において、図3に代えて実行される被毒解除制御のサブルーチンを示すフローチャートである。図3と同じ処理を行う部分については同じ符号を付しており、その詳細な説明は省略する。
ステップ201では、第2酸素センサ15の出力反転周期Tを読み込み、NOxトラップ触媒13の劣化度合を検出して、ステップ210へ進む。
【0027】
ステップ210では、NOxトラップ触媒13の劣化度合が小さく且つ車速Vが高いか否かを判断する。図2の場合と同じく、NOxトラップ触媒13の内部温度を車速Vによって判断する。Yesと判断された場合にはステップ211へ進み、空燃比のリッチシフト量Pを最小値、点火時期遅角量AVを0、解除制御時間係数TMを最大値(従って、制御時間を最小側)にして、ステップ203へ進む。
【0028】
ステップ210でNoと判断された場合には、ステップ202へ進み、触媒13の劣化度合に対応する空燃比のリッチシフト量P、点火時期遅角量AV、解除時間係数TMの値を、予め求めておいたテーブルを参照して設定し、ステップ203へ進む。
ステップ203では、前述の(3)式と(4)式とによって空燃比フィードバック補正係数ALPHAと点火時期ADVとを算出する。この値が算出された後はリターンとなり、図2のステップ105へ進み、前述の処理を行う。
【0029】
図6は、図2の推定被毒量SOxMILE演算のタイミングチャートであり、上段から推定被毒量SOxMILE、車速V、被毒解除フラグFLS1を示している。以下、図2を参照しながら図6について説明する。
被毒解除制御は、推定被毒量SOxMILEをパラメータとして用いている。被毒解除要求フラグFLS1が1の場合、車速Vが所定値Vsp1以上のときに被毒解除制御を行う。被毒解除を行えば被毒量SOxMILEの値が減少し、この値が0になったときに被毒解除制御を終了する。
【0030】
また、被毒量SOxMILEの多少に関わらず、車速Vが所定の値Vsp2以上であれば(図2のステップ111)、空燃比が低くても(リーン側にあるときでも)NOxトラップ触媒13の内部温度が高くなるため、被毒解除が行われ、被毒量SOxMILEが減少する。
また、被毒解除制御を行う場合に、被毒量SOxMILEがどの程度NOxトラップ触媒13に堆積されているかによって被毒解除が必要か否かを判断する(図2のステップ102)。被毒量SOxMILEの値が、予め設定された被毒解除すべき値S以上の場合に、被毒解除フラグFLSを1にする(図2のステップ103)。
【0031】
そして、被毒解除が可能な条件にあるか否かを特に温度によって判断する。本実施形態では、車速Vが予め定めた所定値Vsp1より高ければNOxトラップ触媒13の内部温度も高いものと判断して(図2のステップ104)、被毒解除制御を行う(図2のステップ200)。
被毒解除制御を行えば被毒量SOxMILEが減少する。この際に被毒解除量RSMILEを算出して、単位時間における被毒量ΔSOxを算出し、走行中の被毒量SOxMILEを算出する(図2のステップ105〜107)。被毒量SOxMILEが0になったときに、被毒解除要求フラグFLS1を0にして(図2のステップ108、109)、被毒解除を終了する。
【0032】
図7は、図3または図5のステップ201で読み込まれる第2酸素センサ15の出力反転周期Tを示す図であり、縦軸はNOxトラップ触媒13の下流側に設けられた酸素センサ15の出力、横軸は時間を示している。
図7に示した太線AはNOxトラップ触媒13の劣化度合が小さい場合であり、細線Bは劣化度合が大きい場合であり、それぞれ所定の周期で酸素センサ15の出力が反転している。ここでは、太線Aの1周期をTaとして、細線の1周期をTbとしている。
【0033】
酸素センサ15の出力は、NOxトラップ触媒13の劣化度合が小さい(太線A)場合には周期が長く、触媒13の劣化度合が大きい(細線B)場合には周期が短くなっている。これは、触媒13がフレッシュまたは劣化度合が小さい場合には、触媒13内部の酸素ストレージ能力が高いため、酸素センサ15の出力のリーン・リッチ間での出力反転周期が長くなる(Ta)。一方、触媒13の劣化度合が大きい場合には、触媒13内部の酸素ストレージ能力が低くなるため、酸素センサ15の出力のリーン・リッチ間での出力反転周期が短くなる(Tb)。
【0034】
図8は、空燃比、排気温度、被毒解除制御時間と、酸素センサ15の出力反転周期T、触媒劣化との関係を示す特性図であり、縦軸には空燃比、排気温度、被毒解除制御時間、横軸には酸素センサ15の出力反転周期T、触媒13の劣化度合を示している。
図示の通り、触媒13の劣化度合が大きい(酸素センサ15の出力反転周期が短い)場合には、被毒解除制御時間を長く、排気温度を高く、空燃比をリッチにしなければならない。 これは触媒13の劣化度合が大きい場合には、被毒解除が困難となるために、燃料噴射弁7の燃料噴射量を増加させて空燃比をリッチにすることなどをしなければ被毒解除ができなくなることを示している。
【0035】
図9は、図2のステップ105において算出される被毒解除量RSMILEを近似的に求めることを示す図であり、縦軸は被毒量、横軸は被毒解除経過時間を示している。
ここで、被毒量SOxMILEをsとして、被毒解除経過時間をtとすると、この関係は次の2次式で表せる。
【0036】
s=a×t2+b×t+c・・・(5)
なお、a、b、cは定数である。
このSOxMILEの減少挙動において、例えばA−B区間における被毒解除速度は、図9の被毒解除経過時間t1、t2の間における曲線の傾き(直線AB)で近似的に次式で表せる。
【0037】
ds/dt=2a×t+b・・・(6)
この傾き(ds/dt)が、被毒解除量RSMILEを示しており、前述の(1)式の被毒解除係数RSMILE1、RSMILE2はそれぞれ次のように表せる。
RSMILE1=2a・・・(7a)
RSMILE2=b・・・(7b)
なお、(5)式の2次曲線から直接に傾き(RSMILE)を求めることも可能である。
【0038】
なお、本実施形態では被毒解除量RSMILEの値は、図2のステップ105に示したように計算によって求めたが、図10に示すように予め実験等によって被毒量SOxMILEに応じた被毒解除量RSMILEの値を求めるテーブルを作成して、このテーブルに基づいて求めても良い。
図10は、推定被毒量SOxMILEの値に応じた被毒解除量RSMILEをテーブル化した図であり、左側には被毒量SOxMILEのしきい値、右側にはそれぞれのしきい値の範囲における被毒解除量RSMILEを示している。
【0039】
例えば、被毒量SOxMILEの値がSOxMILE1の値より大きい場合には、被毒解除量はRSMILE(1)の値が用いられることを示している。そして、このRSMILE(1)の値が、図2のステップ105の被毒解除量RSMILEの値に代えられ、ステップ106以降の処理を行う。
図11は、実験により得られたNOxトラップ触媒13の劣化度合に応じた被毒解除を示す特性図であり、縦軸は触媒13の温度、横軸は排気空燃比を示している。図11においては、触媒13の劣化度合が小さい場合には温度がある程度低くても被毒解除することができ、劣化度合が大きい場合には温度が高くなければ被毒解除することができないことを示している。
【0040】
そして、排気空燃比がリッチであってもNOxトラップ触媒13の温度が低い場合には被毒解除できない温度領域があり、排気空燃比がリーンである場合にはNOxトラップ触媒13の温度が高くても被毒解除できない空燃比領域があることを示している。
図11において触媒13の劣化度合により、劣化度合が小さいときの曲線α(触媒劣化(小))、劣化度合が曲線αより大きい場合の曲線β(触媒劣化(中))、劣化度合が曲線βより大きい場合の曲線γ(触媒劣化(大))がそれぞれ触媒劣化等高線として示されている。
【0041】
図示の通り、触媒13の劣化度合が小さい場合に、曲線αから矢印が下向きに傾いた領域では被毒解除ができないが、矢印が上向きに傾いた領域では被毒解除することができる。
触媒13の劣化度合が曲線βの状態にある場合に、曲線βから矢印が下向きに傾いた領域では被毒解除ができないが、矢印が上向きに傾いた領域では被毒解除することができる。
【0042】
触媒13の劣化度合が曲線γの状態にある場合に、曲線γから矢印が下向きに傾いた領域では被毒解除ができないが、矢印が上向きに傾いた領域では被毒解除することができる。
ここで、図11に各々の領域A、B、C、Dを設けて、触媒13の劣化度合が大きい場合に、被毒解除に要求される空燃比、排気の温度、被毒解除制御時間を比較する。A領域では更なる空燃比のリッチ化の要求が高く、B領域では更なる高排温化の要求が高く、C領域では更なる空燃比のリッチ化と排気の高温化との要求が高く、D領域では空燃比のリッチ化と排気の高温化に加えて更なる時間延長の要求が高い。
【0043】
図12は、NOxトラップ触媒13の劣化度合と被毒解除との関係を示す特性図であり、縦軸は触媒13のNOxレベル、横軸は被毒解除経過時間を示している。なお図12におけるt1、t2は、1回のインターバルでの被毒量を1回の処理で解除できる被毒解除経過時間を示している。図12においては、触媒13の劣化度合が小さい場合には被毒解除が良好であり、劣化度合が大きい場合には被毒解除が悪化することを示している。
【0044】
触媒13の劣化度合が小さい場合の曲線aでは、NOxレベルが所定の値に達したときに被毒解除を行う。劣化度合の小さい曲線aでは、被毒解除が行われると短い時間t1で被毒が無い状態までNOxレベルが低下する。
一方、触媒13の劣化度合が大きい場合の曲線bでは、被毒解除が行われると、劣化度合の小さい場合の曲線aの時間t1と比較して長い時間t2で被毒解除が行われ、触媒劣化によるNOxレベルがΔh分だけ悪化する。これは、NOxトラップ触媒13の劣化度合が進行すると被毒解除がし難くなることを示しており、この原因はNOxが被毒無しのときのレベルまでに回復し難いからである。
【0045】
ここで、触媒13の劣化度合の小さい触媒と大きい触媒との2つで、同じ被毒量の被毒解除を行ったとき、劣化度合の大きい触媒の方が被毒無しのNOxレベルまでより長い時間を要することとなる。そのため、触媒13の劣化度合が進行した状態から短時間で被毒解除を行うには、被毒解除時に排気の温度を高くして、排気の空燃比をよりリッチにすることが必要である。例えば、点火プラグ8の点火時期を遅くして、燃料噴射弁7からの燃料噴射量を多くすることなどでこれらを実現することができる。
【0046】
なお、被毒解除制御を行う際にEGR弁12を閉じて、EGRを停止することにより排気の温度を上昇させるようにしても良く、被毒解除制御のパラメータとしてEGR量を用いても良い。
本実施形態によれば、排気通路10に排気浄化用の触媒13を備え、所定の条件にて触媒13の被毒解除のための制御を行う内燃機関の排気浄化装置1において、触媒13の劣化度合を判断する触媒劣化度合判断手段(ステップ201)と、触媒13の劣化度合に応じて、被毒解除制御の制御量と制御時間とのうち少なくとも一方を変化させる被毒解除制御手段(ステップ202)とを設けた。このため、触媒13の劣化度合に応じた被毒解除ができる。
【0047】
また本実施形態によれば、触媒13は、流入する排気の空燃比がリーンのときにNOxをトラップし、リッチのときにNOxを浄化するNOxトラップ触媒とした。このため、排気空燃比の状態に応じた被毒解除ができる。
また本実施形態によれば、被毒解除制御の制御パラメータは、点火時期、燃料噴射量、EGR量のうち、いずれか1つを含むこととした(ステップ202、203、211)。このため、制御の容易なこれらのパラメータを用いて,確実に被毒解除制御が行える。
【0048】
また本実施形態によれば、触媒13の劣化が進行するほど、排気温度が上昇するように、被毒解除制御の制御量を変化させることとした(ステップ202、203、211)。このため、触媒13の劣化度合に合わせて排気温度を上昇させることができ、短時間で被毒解除制御を行うことができる。
また本実施形態によれば、触媒13の劣化が進行するほど、排気空燃比がリッチとなるように、被毒解除制御の制御量を変化させることとした(ステップ202、211)。このため、触媒13の劣化度合が少ないときには排気空燃比をリッチにして、劣化度合が高いときにはこれよりも更に排気空燃比をリッチにして、被毒解除制御を行うことができる。
【0049】
また本実施形態によれば、触媒13の劣化が進行するほど、被毒解除制御の制御時間を長くすることとした(ステップ202)。このため、触媒13の劣化度合が小さい場合には被毒解除の制御時間を短くして、劣化度合が高い場合には被毒解除の制御時間を長くして、触媒13の劣化度合に適した制御時間の被毒解除を行うことができる。
【0050】
また本実施形態によれば、触媒13の劣化が進行するほど、点火時期を遅角することとした(ステップ202)。このため、触媒13の劣化度合に応じて排気空燃比をリッチにすることができ、触媒13の劣化の進行を少なくすることができる。
また本実施形態によれば、触媒13の劣化が進行するほど、吸入空気量に対する燃料噴射量を増量することとした(ステップ202)。このため、触媒13の劣化度合に応じた排気空燃比と排気温度とを制御することができる。
【0051】
また本実施形態によれば、車両の走行距離に基づいて被毒量SOxMILEを積算し、被毒解除制御時に単位時間毎に所定の被毒解除量RSMILEを減算して、触媒13の被毒量SOxMILEを推定する手段(ステップ105〜107)と、推定された被毒量SOxMILEに基づいて被毒解除制御の開始時期及び終了時期を判断する手段(ステップ102、108)とを備えることとした。このため、被毒量SOxMILEに応じて被毒解除制御の開始および終了ができる。
【0052】
また本実施形態によれば、単位時間毎の被毒解除量RSMILEを、触媒13の劣化度合に応じて設定することとした。このため、触媒13の劣化度合に応じて被毒解除量RSMILEの制御ができる。
また本実施形態によれば、単位時間毎の被毒解除量RSMILEを、触媒13の劣化度合とそのときの被毒量SOxMILEに応じて設定することとした。このため、触媒13の劣化度合に応じて被毒解除量RSMILEの制御ができる。
【0053】
また本実施形態によれば、触媒劣化度合判断手段は、触媒13の下流側排気通路10に配置した酸素センサ15出力のリッチ・リーンの反転周期Tに基づいて、触媒13の劣化度合を判断することとした(ステップ201)。このため、反転周期Tによって触媒13の劣化度合を判断することができる。
【図面の簡単な説明】
【図1】本発明の内燃機関の排気浄化装置の構成図
【図2】エンジンの被毒解除制御を示すフローチャート
【図3】図2のステップ200における被毒解除制御のサブルーチンを示すフローチャート
【図4】触媒の劣化度合、第2酸素センサの出力反転周期Tと、空燃比リッチシフト量P、点火時期遅角量AV、被毒解除制御時間係数TMとの関係図
【図5】図2のステップ200において、NOxトラップ触媒の劣化度合が小さく、排気温度が低い場合の被毒解除制御のサブルーチンを示すフローチャート
【図6】推定被毒量SOxMILE演算のタイミングチャート
【図7】第2酸素センサの出力反転周期Tを示す図
【図8】空燃比、排気温度、被毒解除制御時間と、酸素センサの出力反転周期T、触媒の劣化度合との関係を示す特性図
【図9】図2のステップ105において算出される被毒解除量RSMILEを近似的に求めることを示す図
【図10】推定被毒量SOxMILEの値に応じた定数をテーブル化した
【図11】NOxトラップ触媒の温度と排気空燃比との関係を示す特性図
【図12】NOxレベルと被毒解除経過時間との関係を示す特性図
【符号の説明】
1 エンジン
4 スロットル弁
7 燃料噴射弁
8 点火プラグ
10 排気通路
11 EGR通路
12 EGR弁
13 NOxトラップ触媒
14 第1酸素センサ
15 第2酸素センサ
16 ECU(エンジンコントロールユニット)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an exhaust gas purification apparatus for an internal combustion engine, and more particularly to an apparatus for performing poisoning release control of a catalyst for exhaust gas purification.
[0002]
[Prior art]
As a conventional exhaust gas purification device for an internal combustion engine, a device described in Japanese Patent Application Laid-Open No. 2001-3782 is known.
In the apparatus described in this publication, a NOx trap catalyst is arranged in the exhaust pipe of the internal combustion engine, the SOx accumulation amount of the NOx trap catalyst is calculated, and the SOx desorption process ( (Toxification release).
[0003]
[Problems to be solved by the invention]
However, in the apparatus described in the above publication, when the NOx trap catalyst is used for a long period of time, the NOx trap catalyst deteriorates and it becomes difficult to release SOx. There was a problem.
In other words, if the release processing time, temperature, etc. are set in accordance with conditions that make it easy to release SOx in a fresh (new) state, SOx cannot be released sufficiently when deterioration progresses. On the other hand, if the release processing time, temperature, etc. are set in accordance with conditions that make it difficult to release SOx when deterioration has progressed, fuel consumption deterioration or catalyst deterioration will progress due to excessive release processing in the fresh state. There was a problem that.
[0004]
In view of such a problem, the present invention realizes an exhaust gas purification apparatus for an internal combustion engine that can always perform favorable detoxication regardless of whether the NOx trap catalyst is in a fresh state or a state in which deterioration has advanced. Objective.
[0005]
[Means for Solving the Problems]
For this reason, the exhaust gas purification apparatus for an internal combustion engine according to the present invention determines the degree of deterioration of the exhaust gas purification catalyst with time. Further, the poisoning amount is integrated based on the travel distance of the vehicle, and the poisoning amount of the catalyst is estimated by subtracting a predetermined poisoning release amount every unit time during the poisoning release control. Furthermore, the start timing and end timing of the poisoning release control are determined based on the estimated poisoning amount.
here ,single The poisoning release amount for each unit time is set according to the degree of deterioration of the catalyst and the estimated poisoning amount at that time.
[0006]
【The invention's effect】
According to the present invention, the degree of deterioration of the exhaust purification catalyst can be determined, and appropriate poisoning release control can be performed in accordance with the degree of deterioration, so that it is favorable from the fresh state to the state in which the deterioration has progressed. In addition, the exhaust gas purification performance of the catalyst can be ensured, and there is an effect of preventing deterioration of fuel consumption.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a configuration diagram of an exhaust emission control device for an internal combustion engine according to a first embodiment of the present invention.
In a combustion chamber 2 of an internal combustion engine (hereinafter referred to as “engine”) 1, air controlled by a throttle valve 4 provided in an intake passage 3 is sucked through a collector 5 and further through an intake valve 6. An air-fuel mixture suitable for combustion is formed by mixing with the fuel injected from the fuel injection valve 7. This air-fuel mixture is ignited and burned by spark ignition of the spark plug 8, and the combustion exhaust is discharged from the combustion chamber 2 through the exhaust valve 9 to the exhaust passage 10. Here, a part of the exhaust is recirculated to the collector 5 via the EGR valve 12 through the EGR passage 11.
[0008]
In the exhaust passage 10, a NOx trap catalyst 13 as an exhaust purification catalyst is disposed. Here, the NOx trap catalyst 13 traps NOx when the exhaust air-fuel ratio is lean (oxygen excess state), and desorbs NOx when the exhaust air-fuel ratio is stoichiometric or rich (fuel excess state). Purify. The NOx trap catalyst 13 also traps SOx (sulfur oxide) in which the sulfur component contained in the fuel and oxygen are combined.
[0009]
The exhaust passage 10 is provided with a first oxygen sensor 14 and a second oxygen sensor 15 for detecting the air-fuel ratio in the exhaust, upstream and downstream of the NOx trap catalyst 13, respectively. It is sent to a control unit (ECU) 16. Signals are also sent to the ECU 16 from an air flow meter 17 that detects the intake air flow rate in the intake passage 3, a throttle sensor 18 that detects the opening of the throttle valve 4, and a water temperature sensor 19 that detects the engine water temperature. Further, a vehicle speed signal V from a vehicle speed sensor (not shown) and a rotation signal Ne from a crank angle sensor (not shown) are also sent.
[0010]
The ECU 16 performs arithmetic processing based on these signals, outputs a fuel injection signal (injection pulse signal) to the fuel injection valve 7, outputs an ignition signal to the spark plug 8, and outputs an open / close signal to the EGR valve 12. To do.
Control of the exhaust gas purification apparatus for an internal combustion engine having these configurations will be described below. FIG. 2 is a flowchart showing the poisoning release control of the engine 1, which is executed every unit time.
[0011]
In the poisoning release control of the engine 1 in FIG. 2, in step 101 (denoted as S101 in the figure, the same applies hereinafter), the vehicle speed V detected based on the vehicle speed sensor output is read, and the process proceeds to step 102.
In step 102, it is determined whether or not the estimated poisoning amount (SOxMILE) of the NOx trap catalyst 13 is equal to or greater than a predetermined value S that requires SOx release. If YES is determined, the process proceeds to step 103, the poisoning cancellation request flag (FLS1) is set to 1 because it is necessary to cancel the poisoning, and the process proceeds to step 104. If it is determined No in step 102, the process proceeds to step 110 described later.
[0012]
In step 104, it is determined whether or not the vehicle speed V read in step 101 is equal to or higher than a predetermined value Vsp1. This is to determine whether or not the operating state of the engine 1 is suitable for the removal of poisoning. In this embodiment, the NOx trap catalyst 13 is used for releasing the poisoning if it is equal to or higher than Vsp1 set by an experiment or the like in advance. Appropriate internal temperature conditions are to be met.
[0013]
If it is determined Yes in step 104, the process proceeds to step 105 through poisoning release control (see FIG. 3) in step 200 described later. If it is determined No in step 104, the process proceeds to step 112 described later.
In step 105, the poisoning release amount (RSMILE) released from SOx in the unit time from the NOx trap catalyst 13 is obtained from equation (1).
[0014]
RSMILE = SOxMILE (−1) × RSMILE1 + RSMILE2 (1)
Here, SOxMILE (−1) is the previous value of the estimated poisoning amount SOxMILE of the NOx trap catalyst 13. RSMILE1 and RSMILE2 are poisoning release constants, respectively, and are approximately obtained from the decreasing behavior of the poisoning amount SOxMILE determined by experiments or the like.
[0015]
In step 106, in order to obtain the amount of SOxMILE newly deposited per unit time, the travel distance per unit time is calculated based on the vehicle speed sensor output, and this is multiplied by a predetermined SOx conversion factor to obtain the poisoning amount per unit time. ΔSOx is calculated.
In step 107, the estimated poisoning amount SOxMILE accumulated on the NOx trap catalyst 13 is obtained from the equation (2).
[0016]
SOxMILE = SOxMILE (−1) + ΔSOx−RSMILE × TM (2)
That is, the poisoning amount (ΔSOx) is integrated based on the travel distance of the vehicle, and the poisoning release amount (RSMILE) per unit time is subtracted during the poisoning release control to estimate the poisoning amount (SOxMILE).
[0017]
Where TM is the poisoning release control time factor (Release time coefficient) A value corresponding to the degree of deterioration of the NOx trap catalyst 13 is obtained by experiments or the like, and is set to be smaller as the degree of deterioration of the catalyst 13 is smaller and smaller as the degree of deterioration is larger according to the flowchart of FIG. By setting the poisoning release control time coefficient TM, the poisoning release control time according to the degree of deterioration can be set.
[0018]
In step 108, it is determined whether or not the estimated poisoning amount SOxMILE obtained in step 107 has become zero. If YES is determined, the process proceeds to step 109, the poisoning release flag FLS1 is set to 0, and the process returns. If NO is determined, the process returns without passing through step 109.
If it is determined No in step 102, the process proceeds to step 110, where it is determined whether or not the poisoning release flag FLS1 is 1.
[0019]
When it is determined Yes in step 110, the process proceeds to step 104 and the above-described processing is performed. When it is determined No, the process proceeds to step 111, where it is determined whether the vehicle speed V is equal to or higher than a predetermined value Vsp2. The vehicle speed Vsp2 is higher than the vehicle speed Vsp1.
If it is determined YES in step 111, the process proceeds to step 105 and the above-described processing is performed. This is because when the vehicle speed V is higher than the predetermined value Vsp2, the internal temperature of the NOx trap catalyst 13 is high, and the poisoning release of the catalyst 13 is performed without performing the poisoning release control. This is because it is necessary to perform calculation. If NO is determined, the process proceeds to step 112. In this case, since the poisoning release is not performed, in step 112, RSMILE is set to 0 and the process proceeds to step 106, and the above-described processing is performed.
[0020]
If NO is determined in step 104, that is, since the detoxication is not performed under conditions that are not suitable for detoxication, the process proceeds to step 112, RSMILE is set to 0, and the process proceeds to step 106, where the above-described processing is performed. .
FIG. 3 is a flowchart showing a subroutine of poisoning release control in step 200 of FIG. FIG. 4 is a relationship diagram of the deterioration degree of the NOx trap catalyst 13, the output reversal period T of the second oxygen sensor 15, the rich shift amount P of the air-fuel ratio, the ignition timing retardation amount AV, and the poisoning release control time coefficient TM. It is a figure which shows the increase / decrease relationship of these values according to a deterioration degree.
[0021]
In step 201, an inversion period (average value) T of the output of the second oxygen sensor 15 provided downstream of the NOx trap catalyst 13 is used as a parameter representing the degree of deterioration of the NOx trap catalyst 13, and this inversion period T , The degree of deterioration is detected, and the process proceeds to step 202. As the NOx trap catalyst 13 deteriorates, the oxygen storage capacity decreases and the inversion period T becomes shorter.
[0022]
In step 202, the air-fuel ratio rich amount P, the ignition timing retardation amount AV, the poisoning release control time coefficient are referred to based on the output inversion period T indicating the degree of deterioration of the NOx trap catalyst 13 in advance. Set TM.
Here, as shown in FIG. 4, as the degree of deterioration of the catalyst 13 increases, that is, as the inversion cycle T decreases, the air-fuel ratio rich shift amount P and the ignition timing retardation amount AV are increased (the control amount is increased). Direction), and the release time coefficient TM is reduced (in the direction of increasing the control time).
[0023]
In step 203, the air-fuel ratio feedback correction coefficient ALPHA and the ignition timing ADV are calculated from the equations (3) and (4).
ALPHA = ALPHA (0) + P (3)
ADV = ADV (0) −AV (4)
In other words, the air-fuel ratio feedback correction coefficient ALPHA is corrected to the rich side by adding the rich shift amount P to the calculated value ALPHA (0) of the air-fuel ratio feedback correction coefficient. The air-fuel ratio feedback correction coefficient ALPHA is multiplied by the basic fuel injection amount when calculating the fuel injection amount by the fuel injection valve 7.
[0024]
Further, the ignition timing ADV is corrected to the retard side by subtracting the retard amount AV from the calculated value ADV (0) of the ignition timing.
After these values are calculated in step 203, the process returns and proceeds to step 105 in FIG.
As described above, the increase in the fuel injection amount due to the air-fuel ratio rich shift amount P and the retard of the ignition timing increase the temperature of the exhaust gas flowing into the catalyst 13, thereby releasing SOx poisoning. Further, as the degree of deterioration of the catalyst 13 increases, the fuel injection amount is further increased and the ignition timing is further retarded, so that SOx poisoning can always be released reliably regardless of the progress of deterioration.
[0025]
Further, as the degree of deterioration of the catalyst 13 increases, the poisoning release control time coefficient TM is decreased. However, if this is reduced, the degree of decrease in SOxMILE is calculated in the calculation of the estimated poisoning amount SOxMILE at step 107 in the flowchart of FIG. It is suppressed. Accordingly, the time until SOxMILE becomes 0 in step 108, that is, the poisoning release control time is lengthened.
[0026]
FIG. 5 is a flowchart showing a poisoning release control subroutine executed in step 200 of FIG. 2 instead of FIG. Parts that perform the same processing as in FIG. 3 are given the same reference numerals, and detailed descriptions thereof are omitted.
In step 201, the output inversion period T of the second oxygen sensor 15 is read, the degree of deterioration of the NOx trap catalyst 13 is detected, and the routine proceeds to step 210.
[0027]
In step 210, it is determined whether the deterioration degree of the NOx trap catalyst 13 is small and the vehicle speed V is high. As in the case of FIG. 2, the internal temperature of the NOx trap catalyst 13 is determined by the vehicle speed V. If YES, the routine proceeds to step 211 where the air-fuel ratio rich shift amount P is the minimum value, the ignition timing retardation amount AV is 0, and the release control time coefficient TM is the maximum value (therefore, the control time is the minimum side). Then, the process proceeds to step 203.
[0028]
If NO is determined in step 210, the process proceeds to step 202, and the values of the air-fuel ratio rich shift amount P, ignition timing retardation amount AV, and release time coefficient TM corresponding to the degree of deterioration of the catalyst 13 are obtained in advance. The table is set with reference to the table, and the process proceeds to step 203.
In step 203, the air-fuel ratio feedback correction coefficient ALPHA and the ignition timing ADV are calculated by the above-described equations (3) and (4). After this value is calculated, the process returns, and the process proceeds to step 105 in FIG.
[0029]
FIG. 6 is a timing chart of the estimated poisoning amount SOxMILE calculation of FIG. 2 and shows the estimated poisoning amount SOxMILE, the vehicle speed V, and the poisoning release flag FLS1 from the top. Hereinafter, FIG. 6 will be described with reference to FIG.
The poisoning release control uses the estimated poisoning amount SOxMILE as a parameter. When the poisoning release request flag FLS1 is 1, poisoning release control is performed when the vehicle speed V is equal to or higher than a predetermined value Vsp1. If the poisoning release is performed, the value of the poisoning amount SOxMILE decreases, and when this value becomes 0, the poisoning release control is terminated.
[0030]
If the vehicle speed V is equal to or higher than the predetermined value Vsp2 (step 111 in FIG. 2) regardless of the amount of poisoning amount SOxMILE, even if the air-fuel ratio is low (even when on the lean side), the NOx trap catalyst 13 Since the internal temperature increases, the poisoning is released and the poisoning amount SOxMILE is reduced.
In addition, when performing the poisoning release control, it is determined whether or not the poisoning release is necessary based on how much the poisoning amount SOxMILE is deposited on the NOx trap catalyst 13 (step 102 in FIG. 2). When the value of the poisoning amount SOxMILE is equal to or greater than a preset value S to be removed, the poisoning release flag FLS is set to 1 (step 103 in FIG. 2).
[0031]
And it is judged by temperature especially whether it is in the conditions which can cancel poisoning. In this embodiment, if the vehicle speed V is higher than a predetermined value Vsp1, it is determined that the internal temperature of the NOx trap catalyst 13 is also high (step 104 in FIG. 2), and poisoning release control is performed (step in FIG. 2). 200).
When the poisoning release control is performed, the poisoning amount SOxMILE decreases. At this time, the poisoning release amount RSMILE is calculated, the poisoning amount ΔSOx per unit time is calculated, and the running poisoning amount SOxMILE is calculated (steps 105 to 107 in FIG. 2). When the poisoning amount SOxMILE becomes 0, the poisoning release request flag FLS1 is set to 0 (steps 108 and 109 in FIG. 2), and the poisoning release is ended.
[0032]
FIG. 7 is a diagram showing the output reversal period T of the second oxygen sensor 15 read in step 201 of FIG. 3 or FIG. 5, and the vertical axis indicates the output of the oxygen sensor 15 provided on the downstream side of the NOx trap catalyst 13. The horizontal axis indicates time.
The thick line A shown in FIG. 7 is the case where the degree of deterioration of the NOx trap catalyst 13 is small, and the thin line B is the case where the degree of deterioration is large, and the output of the oxygen sensor 15 is inverted in each predetermined cycle. Here, one cycle of the thick line A is Ta, and one cycle of the thin line is Tb.
[0033]
The output of the oxygen sensor 15 has a long cycle when the deterioration degree of the NOx trap catalyst 13 is small (thick line A), and a short period when the deterioration degree of the catalyst 13 is large (thin line B). This is because when the catalyst 13 is fresh or has a low degree of deterioration, the oxygen storage capacity inside the catalyst 13 is high, and therefore the output inversion period between the lean and rich outputs of the oxygen sensor 15 becomes long (Ta). On the other hand, when the degree of deterioration of the catalyst 13 is large, the oxygen storage capacity inside the catalyst 13 becomes low, and therefore the output inversion period between lean and rich of the output of the oxygen sensor 15 becomes short (Tb).
[0034]
FIG. 8 is a characteristic diagram showing the relationship between the air-fuel ratio, the exhaust temperature, the poisoning release control time, the output reversal period T of the oxygen sensor 15, and the catalyst deterioration. The vertical axis represents the air-fuel ratio, the exhaust temperature, and the poisoning. The release control time and the horizontal axis indicate the output inversion period T of the oxygen sensor 15 and the degree of deterioration of the catalyst 13.
As shown in the figure, when the degree of deterioration of the catalyst 13 is large (the output reversal cycle of the oxygen sensor 15 is short), the poisoning release control time must be long, the exhaust temperature must be high, and the air-fuel ratio must be rich. This is because when the deterioration degree of the catalyst 13 is large, it becomes difficult to cancel the poisoning. Therefore, the poisoning is canceled unless the fuel injection amount of the fuel injection valve 7 is increased to make the air-fuel ratio rich. Indicates that it will not be possible.
[0035]
FIG. 9 is a diagram showing that the poisoning release amount RSMILE calculated in step 105 of FIG. 2 is approximately calculated, where the vertical axis shows the poisoning amount and the horizontal axis shows the poisoning release elapsed time.
Here, assuming that the poisoning amount SOxMILE is s and the poisoning release elapsed time is t, this relationship can be expressed by the following quadratic expression.
[0036]
s = a × t 2 + B × t + c (5)
Note that a, b, and c are constants.
In the decrease behavior of SOxMILE, for example, the poisoning release speed in the AB section can be approximately expressed by the following equation by the slope of the curve (straight line AB) between the poisoning release elapsed times t1 and t2 in FIG.
[0037]
ds / dt = 2a × t + b (6)
This inclination (ds / dt) indicates the poisoning release amount RSMILE, and the poisoning release coefficients RSMILE1 and RSMILE2 in the above-described equation (1) can be expressed as follows.
RSMILE1 = 2a (7a)
RSMILE2 = b (7b)
Note that the slope (RSMILE) can also be obtained directly from the quadratic curve of equation (5).
[0038]
In the present embodiment, the value of the poisoning release amount RSMILE is obtained by calculation as shown in Step 105 of FIG. 2, but as shown in FIG. 10, the poisoning corresponding to the poisoning amount SOxMILE is previously determined by experiments or the like. A table for obtaining the value of the release amount RSMILE may be created and obtained based on this table.
FIG. 10 is a table showing the poisoning release amount RSMILE according to the value of the estimated poisoning amount SOxMILE, with the threshold value of the poisoning amount SOxMILE on the left side and the respective threshold value ranges on the right side. The poisoning release amount RSMILE is shown.
[0039]
For example, when the value of the poisoning amount SOxMILE is larger than the value of SOxMILE1, it indicates that the value of RSMILE (1) is used as the poisoning release amount. Then, the value of this RSMILE (1) is replaced with the value of the poisoning release amount RSMILE at Step 105 in FIG. 2, and the processing after Step 106 is performed.
FIG. 11 is a characteristic diagram showing the release of poisoning in accordance with the degree of deterioration of the NOx trap catalyst 13 obtained by experiments. The vertical axis shows the temperature of the catalyst 13 and the horizontal axis shows the exhaust air-fuel ratio. In FIG. 11, when the degree of deterioration of the catalyst 13 is small, the poisoning can be released even if the temperature is low to some extent, and when the degree of deterioration is large, the poisoning cannot be released unless the temperature is high. Show.
[0040]
And even if the exhaust air-fuel ratio is rich, there is a temperature region where poisoning cannot be released when the temperature of the NOx trap catalyst 13 is low, and when the exhaust air-fuel ratio is lean, the temperature of the NOx trap catalyst 13 is high. This also indicates that there is an air-fuel ratio region where poisoning cannot be released.
In FIG. 11, depending on the degree of deterioration of the catalyst 13, a curve α (catalyst deterioration (small)) when the degree of deterioration is small, a curve β (catalyst deterioration (medium)) when the degree of deterioration is larger than the curve α, and a degree of deterioration is the curve β. Curves γ (catalyst degradation (large)) when larger are shown as catalyst degradation contours, respectively.
[0041]
As shown in the figure, when the degree of deterioration of the catalyst 13 is small, the poisoning cannot be released in the region where the arrow is inclined downward from the curve α, but the poisoning can be released in the region where the arrow is inclined upward.
When the degree of deterioration of the catalyst 13 is in the state of the curve β, the poisoning cannot be released in the region where the arrow is inclined downward from the curve β, but the poisoning can be released in the region where the arrow is inclined upward.
[0042]
When the degree of deterioration of the catalyst 13 is in the curve γ, the poisoning cannot be released in the region where the arrow is inclined downward from the curve γ, but the poisoning can be released in the region where the arrow is inclined upward.
Here, when the respective regions A, B, C, and D are provided in FIG. 11 and the degree of deterioration of the catalyst 13 is large, the air-fuel ratio, the exhaust gas temperature, and the poisoning removal control time required for the poisoning removal are set. Compare. There is a high demand for further enrichment of the air-fuel ratio in the A region, a high demand for further exhaust temperature increase in the B region, and a high demand for further enrichment of the air-fuel ratio and higher exhaust temperature in the C region. In the region D, there is a high demand for further time extension in addition to the enrichment of the air-fuel ratio and the high temperature of the exhaust.
[0043]
FIG. 12 is a characteristic diagram showing the relationship between the degree of deterioration of the NOx trap catalyst 13 and the release of poisoning. The vertical axis shows the NOx level of the catalyst 13 and the horizontal axis shows the elapsed time of poisoning release. In addition, t1 and t2 in FIG. 12 have shown the poisoning cancellation | release elapsed time which can cancel the poisoning amount in one time interval by one process. FIG. 12 shows that the poisoning release is good when the degree of deterioration of the catalyst 13 is small, and the poisoning release is worsened when the degree of deterioration is large.
[0044]
In curve a when the degree of deterioration of the catalyst 13 is small, poisoning is released when the NOx level reaches a predetermined value. In the curve a having a small deterioration degree, when the poisoning is released, the NOx level is lowered to a state where there is no poisoning in a short time t1.
On the other hand, in the curve b when the deterioration degree of the catalyst 13 is large, when the poisoning release is performed, the poisoning release is performed at a time t2 longer than the time t1 of the curve a when the deterioration degree is small. The NOx level due to deterioration deteriorates by Δh. This indicates that it is difficult to release poisoning when the degree of deterioration of the NOx trap catalyst 13 progresses, and this is because it is difficult to recover to the level when NOx is not poisoned.
[0045]
Here, when the same amount of poisoning is released with the catalyst 13 having a small degree of deterioration and the catalyst having a large degree of deterioration, the catalyst having a large degree of deterioration is longer than the NOx level without poisoning. It will take time. Therefore, in order to release poisoning in a short time from a state in which the degree of deterioration of the catalyst 13 has progressed, it is necessary to increase the temperature of the exhaust at the time of releasing the poisoning to make the air-fuel ratio of the exhaust richer. For example, these can be realized by delaying the ignition timing of the spark plug 8 and increasing the fuel injection amount from the fuel injection valve 7.
[0046]
Note that when performing the poisoning release control, the exhaust gas temperature may be raised by closing the EGR valve 12 and stopping the EGR, or the EGR amount may be used as a parameter for the poisoning release control.
According to the present embodiment, in the exhaust gas purification apparatus 1 for an internal combustion engine that includes the exhaust gas purification catalyst 13 in the exhaust passage 10 and performs control for detoxication of the catalyst 13 under a predetermined condition, the deterioration of the catalyst 13 A catalyst deterioration degree determining means (step 201) for determining the degree, and a poisoning release control means (step 202) for changing at least one of the control amount and the control time of the poisoning release control according to the deterioration degree of the catalyst 13. ). For this reason, the poisoning cancellation | release according to the deterioration degree of the catalyst 13 can be performed.
[0047]
Further, according to the present embodiment, the catalyst 13 is a NOx trap catalyst that traps NOx when the air-fuel ratio of the inflowing exhaust gas is lean and purifies NOx when it is rich. For this reason, it is possible to cancel the poisoning according to the state of the exhaust air-fuel ratio.
According to the present embodiment, the control parameter for the poisoning release control includes any one of the ignition timing, the fuel injection amount, and the EGR amount (steps 202, 203, and 211). For this reason, the poisoning release control can be surely performed using these parameters that are easy to control.
[0048]
Further, according to the present embodiment, the control amount of the poisoning release control is changed so that the exhaust gas temperature increases as the deterioration of the catalyst 13 progresses (steps 202, 203, and 211). For this reason, the exhaust gas temperature can be raised in accordance with the degree of deterioration of the catalyst 13, and the poisoning release control can be performed in a short time.
Further, according to the present embodiment, the control amount of the poisoning release control is changed so that the exhaust air-fuel ratio becomes richer as the deterioration of the catalyst 13 progresses (steps 202 and 211). For this reason, when the degree of deterioration of the catalyst 13 is small, the exhaust air-fuel ratio can be made rich, and when the degree of deterioration is high, the exhaust air-fuel ratio can be made richer than this to perform poisoning release control.
[0049]
Further, according to the present embodiment, as the deterioration of the catalyst 13 progresses, the control time for the poisoning release control is lengthened (step 202). For this reason, when the degree of deterioration of the catalyst 13 is small, the control time for removing poisoning is shortened, and when the degree of deterioration is high, the control time for removing poisoning is lengthened, which is suitable for the degree of deterioration of the catalyst 13. The poisoning can be released during the control time.
[0050]
Further, according to the present embodiment, the ignition timing is retarded as the deterioration of the catalyst 13 progresses (step 202). For this reason, the exhaust air-fuel ratio can be made rich according to the degree of deterioration of the catalyst 13, and the progress of deterioration of the catalyst 13 can be reduced.
Further, according to this embodiment, the fuel injection amount with respect to the intake air amount is increased as the deterioration of the catalyst 13 progresses (step 202). For this reason, it is possible to control the exhaust air-fuel ratio and the exhaust temperature according to the degree of deterioration of the catalyst 13.
[0051]
Further, according to the present embodiment, the poisoning amount SOxMILE is integrated based on the travel distance of the vehicle, and the predetermined poisoning release amount RSMILE is subtracted every unit time during the poisoning release control, so that the poisoning amount of the catalyst 13 is increased. Means for estimating SOxMILE (steps 105 to 107) and means for judging the start timing and end timing of poisoning release control based on the estimated poisoning amount SOxMILE (step) 102, 108). For this reason, the poisoning release control can be started and ended in accordance with the poisoning amount SOxMILE.
[0052]
Further, according to the present embodiment, the poisoning release amount RSMILE per unit time is set according to the degree of deterioration of the catalyst 13. For this reason, the poisoning release amount RSMILE can be controlled in accordance with the degree of deterioration of the catalyst 13.
Further, according to the present embodiment, the poisoning release amount RSMILE per unit time is set according to the degree of deterioration of the catalyst 13 and the poisoning amount SOxMILE at that time. For this reason, the poisoning release amount RSMILE can be controlled in accordance with the degree of deterioration of the catalyst 13.
[0053]
Further, according to the present embodiment, the catalyst deterioration degree determination means determines the deterioration degree of the catalyst 13 based on the rich / lean reversal period T of the output of the oxygen sensor 15 disposed in the downstream exhaust passage 10 of the catalyst 13. (Step 201). For this reason, the degree of deterioration of the catalyst 13 can be determined by the inversion period T.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of an exhaust emission control device for an internal combustion engine according to the present invention.
FIG. 2 is a flowchart showing engine poisoning release control;
FIG. 3 is a flowchart showing a subroutine for poisoning release control in step 200 of FIG. 2;
FIG. 4 is a relationship diagram of the degree of deterioration of the catalyst, the output reversal period T of the second oxygen sensor, the air-fuel ratio rich shift amount P, the ignition timing retardation amount AV, and the poisoning release control time coefficient TM.
FIG. 5 is a flowchart showing a poisoning release control subroutine when the deterioration degree of the NOx trap catalyst is small and the exhaust temperature is low in step 200 of FIG. 2;
FIG. 6 is a timing chart of the estimated poisoning amount SOxMILE calculation.
FIG. 7 is a diagram showing an output inversion period T of the second oxygen sensor.
FIG. 8 is a characteristic diagram showing the relationship among air-fuel ratio, exhaust temperature, poisoning release control time, output reversal period T of the oxygen sensor, and catalyst deterioration degree.
FIG. 9 is a diagram showing that the poisoning release amount RSMILE calculated in step 105 of FIG. 2 is approximately obtained.
FIG. 10 is a table of constants corresponding to the estimated poisoning amount SOxMILE.
FIG. 11 is a characteristic diagram showing the relationship between the temperature of the NOx trap catalyst and the exhaust air-fuel ratio.
FIG. 12 is a characteristic diagram showing the relationship between NOx level and poisoning release elapsed time
[Explanation of symbols]
1 engine
4 Throttle valve
7 Fuel injection valve
8 Spark plug
10 Exhaust passage
11 EGR passage
12 EGR valve
13 NOx trap catalyst
14 First oxygen sensor
15 Second oxygen sensor
16 ECU (Engine Control Unit)

Claims (9)

排気通路に排気浄化用の触媒を備え、所定の条件にて触媒の被毒解除のための制御を行う内燃機関の排気浄化装置において、
触媒の経時的な劣化度合を判断する触媒劣化度合判断手段と、
車両の走行距離に基づいて被毒量を積算し、被毒解除制御時に単位時間毎に所定の被毒解除量を減算して、触媒の被毒量を推定する手段と、
推定された被毒量に基づいて被毒解除制御の開始時期及び終了時期を判断する手段と、
を設け、
単位時間毎の被毒解除量を、触媒の前記劣化度合とそのときの推定された被毒量に応じて設定することを特徴とする内燃機関の排気浄化装置。
In an exhaust gas purification apparatus for an internal combustion engine that includes an exhaust gas purification catalyst in an exhaust passage and performs control for removing poisoning of the catalyst under a predetermined condition.
A catalyst deterioration degree judging means for judging the deterioration degree of the catalyst over time;
Means for estimating the poisoning amount of the catalyst by accumulating the poisoning amount based on the travel distance of the vehicle, subtracting a predetermined poisoning release amount per unit time during poisoning release control,
Means for determining the start timing and end timing of the poisoning release control based on the estimated poisoning amount;
Provided,
An exhaust gas purification apparatus for an internal combustion engine, wherein the poisoning release amount per unit time is set according to the degree of deterioration of the catalyst and the estimated poisoning amount at that time.
前記触媒は、流入する排気の空燃比がリーンのときにNOxをトラップし、リッチのときにNOxを浄化するNOxトラップ触媒であることを特徴とする請求項1記載の内燃機関の排気浄化装置。The catalyst air-fuel ratio of the exhaust gas flowing into traps NOx when the lean exhaust gas purifying apparatus for an internal combustion engine according to claim 1 Symbol mounting, characterized in that a NOx trap catalyst for purifying NOx when the rich . 触媒の前記劣化度合に応じて、被毒解除制御の制御量を変化させる被毒解除制御手段を設けたことを特徴とする請求項1または2に記載の内燃機関の排気浄化装置。The exhaust gas purification apparatus for an internal combustion engine according to claim 1 or 2 , further comprising poisoning cancellation control means for changing a control amount of the poisoning cancellation control in accordance with the degree of deterioration of the catalyst. 触媒の経時的な劣化が進行するほど、排気温度が上昇するように、被毒解除制御の制御量を変化させることを特徴とする請求項記載の内燃機関の排気浄化装置。4. The exhaust gas purification apparatus for an internal combustion engine according to claim 3, wherein the control amount of the poisoning release control is changed so that the exhaust gas temperature increases as the deterioration of the catalyst with time progresses. 被毒解除制御の制御パラメータは点火時期であり、触媒の経時的な劣化が進行するほど、点火時期を遅角することを特徴とする請求項記載の内燃機関の排気浄化装置。The exhaust gas purification apparatus for an internal combustion engine according to claim 4 , wherein the control parameter of the poisoning release control is an ignition timing, and the ignition timing is retarded as the deterioration of the catalyst with time progresses. 触媒の経時的な劣化が進行するほど、排気空燃比がリッチとなるように、被毒解除制御の制御量を変化させることを特徴とする請求項〜請求項のいずれか1つに記載の内燃機関の排気浄化装置。More deterioration over time of the catalyst progresses, so that the exhaust air-fuel ratio becomes rich, as described in any one of claims 3 to 5, wherein the changing the control amount of the poisoning removal control Exhaust gas purification device for internal combustion engine. 被毒解除制御の制御パラメータは燃料噴射量であり、触媒の経時的な劣化が進行するほど、吸入空気量に対する燃料噴射量を増量することを特徴とする請求項記載の内燃機関の排気浄化装置。7. The exhaust gas purification of an internal combustion engine according to claim 6 , wherein the control parameter of the poisoning release control is a fuel injection amount, and the fuel injection amount with respect to the intake air amount is increased as the deterioration of the catalyst with time progresses. apparatus. 触媒の経時的な劣化が進行するほど、被毒解除制御の開始から終了までの制御時間を長くすることを特徴とする請求項1〜請求項のいずれか1つに記載の内燃機関の排気浄化装置。The exhaust time of an internal combustion engine according to any one of claims 1 to 7 , wherein the control time from the start to the end of the poisoning release control is lengthened as the deterioration of the catalyst with time progresses. Purification equipment. 前記触媒劣化度合判断手段は、前記触媒の下流側排気通路に配置した酸素センサの出力のリッチ・リーンの反転周期に基づいて、前記触媒の経時的な劣化度合を判断することを特徴とする請求項1〜請求項のいずれか1つに記載の内燃機関の排気浄化装置。The catalyst deterioration degree determination means determines the deterioration degree of the catalyst with time based on a rich / lean reversal period of an output of an oxygen sensor arranged in a downstream exhaust passage of the catalyst. The exhaust emission control device for an internal combustion engine according to any one of claims 1 to 8 .
JP2002208163A 2002-07-17 2002-07-17 Exhaust gas purification device for internal combustion engine Expired - Fee Related JP4206702B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002208163A JP4206702B2 (en) 2002-07-17 2002-07-17 Exhaust gas purification device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002208163A JP4206702B2 (en) 2002-07-17 2002-07-17 Exhaust gas purification device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2004052597A JP2004052597A (en) 2004-02-19
JP4206702B2 true JP4206702B2 (en) 2009-01-14

Family

ID=31932386

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002208163A Expired - Fee Related JP4206702B2 (en) 2002-07-17 2002-07-17 Exhaust gas purification device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP4206702B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101610463B1 (en) * 2014-04-02 2016-04-07 현대자동차주식회사 DESULFATION METHOD OF INTERNAL COMBUSTION ENGINE DeNOx AFTERTREATMENT SYSTEM

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4736930B2 (en) * 2006-04-26 2011-07-27 トヨタ自動車株式会社 Catalyst control device for internal combustion engine
JP5560794B2 (en) * 2010-03-16 2014-07-30 ソニー株式会社 Control device, control method and program
WO2013190633A1 (en) * 2012-06-19 2013-12-27 トヨタ自動車株式会社 Exhaust purification device for internal combustion engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101610463B1 (en) * 2014-04-02 2016-04-07 현대자동차주식회사 DESULFATION METHOD OF INTERNAL COMBUSTION ENGINE DeNOx AFTERTREATMENT SYSTEM

Also Published As

Publication number Publication date
JP2004052597A (en) 2004-02-19

Similar Documents

Publication Publication Date Title
JP3684854B2 (en) Catalyst deterioration diagnosis device for internal combustion engine
JP4120523B2 (en) Exhaust gas recirculation control device for internal combustion engine
US6438944B1 (en) Method and apparatus for optimizing purge fuel for purging emissions control device
JP5754512B2 (en) Spark ignition internal combustion engine and method for controlling spark ignition internal combustion engine
US6487849B1 (en) Method and apparatus for controlling lean-burn engine based upon predicted performance impact and trap efficiency
JP5195287B2 (en) Exhaust gas purification device for internal combustion engine
JP4508045B2 (en) Control device for internal combustion engine
JP3618598B2 (en) Exhaust gas purification device for internal combustion engine
JP2002364349A (en) Exhaust emission control system for internal combustion engine
US6308515B1 (en) Method and apparatus for accessing ability of lean NOx trap to store exhaust gas constituent
US6374597B1 (en) Method and apparatus for accessing ability of lean NOx trap to store exhaust gas constituent
JP4061995B2 (en) Exhaust gas purification device for internal combustion engine
US6629453B1 (en) Method and apparatus for measuring the performance of an emissions control device
US7036304B2 (en) Exhaust gas purifying apparatus and method for internal combustion engine
JP3807090B2 (en) Lean combustion internal combustion engine
JP3778012B2 (en) Air-fuel ratio control device for internal combustion engine
JP3528698B2 (en) Fuel sulfur concentration estimation device
JP4206702B2 (en) Exhaust gas purification device for internal combustion engine
JP5708593B2 (en) Catalyst deterioration diagnosis device
JP4688941B2 (en) Catalyst deterioration judgment device
JP4291650B2 (en) Exhaust purification equipment
EP3269954B1 (en) Exhaust purification system, and control method for exhaust purification system
US6843051B1 (en) Method and apparatus for controlling lean-burn engine to purge trap of stored NOx
JP2005273653A (en) Deterioration diagnosis device for filter
JP2002364428A (en) Catalyst deterioration decision device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050328

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080205

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080331

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080402

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080402

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080404

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080624

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080801

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080829

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080924

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081007

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111031

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121031

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121031

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131031

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees