JP4206461B2 - Quantitative analysis method and specimen holding tool used therefor - Google Patents

Quantitative analysis method and specimen holding tool used therefor Download PDF

Info

Publication number
JP4206461B2
JP4206461B2 JP20052299A JP20052299A JP4206461B2 JP 4206461 B2 JP4206461 B2 JP 4206461B2 JP 20052299 A JP20052299 A JP 20052299A JP 20052299 A JP20052299 A JP 20052299A JP 4206461 B2 JP4206461 B2 JP 4206461B2
Authority
JP
Japan
Prior art keywords
specimen
porous material
holding
detectable substance
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP20052299A
Other languages
Japanese (ja)
Other versions
JP2001027638A (en
Inventor
雄一郎 野田
義行 田中
佳 平尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Arkray Inc
Original Assignee
Arkray Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arkray Inc filed Critical Arkray Inc
Priority to JP20052299A priority Critical patent/JP4206461B2/en
Publication of JP2001027638A publication Critical patent/JP2001027638A/en
Application granted granted Critical
Publication of JP4206461B2 publication Critical patent/JP4206461B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analysing Biological Materials (AREA)

Description

【0001】
【発明が属する技術分野】
本発明は、未知量の検体中に存在する成分量を決定する定量分析法およびそれに用いる検体保持用具に関する。
【0002】
【従来の技術】
従来、患者は、各種病気の治療や診断のために、医療機関に出向き、血液や尿等を採取して検査してもらう必要があった。しかし、次回の受診まで待つか、または、長時間待たなければ、これらの検査結果を得ることはできないため、患者や医療機関にとって非常に手間がかかるという問題があった。
【0003】
近年、このような問題を回避するために、濾紙等から形成された検体採取用カードが提案されており、例えば、特開平10−104226号公報には、採血カードが開示されている。患者は、例えば、この採血カードに自分自身で採血した血液を含浸・乾燥させ、これを医療機関に郵送する。これを受け取った医療機関は、前記採血カードの血液含浸部分を切り抜き、これから血液を抽出して、各検査項目についての検査を行なう。そして、患者が医療機関に来た時に、前記検査結果に基づいて治療や診断を行なう。
【0004】
このような採血カードを使用する場合、例えば、患者自身が前述のように採血を行なうため、前記採血カードに含浸させる血液量は未知量であり、血液中の成分量を正確に定量することは困難であった。そこで、例えば、一定面積に一定量の血液を保持する濾紙を使用し、前記濾紙の血液含浸部分を一定面積切り出すことによって一定量の血液試料を確保する方法や、一定量の血液を保持する一定面積の濾紙を使用し、前記濾紙に飽和保持量の血液を供給することによって一定量の血液試料を確保する方法等が提案されている。
【0005】
【発明が解決しようとする課題】
しかしながら、前述のような濾紙には、以下に示すような問題がある。例えば、前者の濾紙を用いた場合、切り出した濾紙全体に血液が含浸されている必要があるため、切り出し部分の選択や、切り出しの操作が困難である。また、後者の濾紙に飽和保持量の血液を含浸させる場合、実際には、飽和保持量以上の血液を供給して充分に血液を含浸させる必要があるため、手間もかかり患者の負担が大きくなる。さらに、これらの定量性濾紙は、その定量性を向上させるためには、その製造自体が非常に複雑困難となり、コストも高くなる。
【0006】
そこで、本発明の目的は、未知量の検体を用いる場合でも、検体中の成分量を精度よく測定できる定量分析法およびそれに用いる検体保持用具の提供である。
【0007】
【課題を解決するための手段】
前記目的を達成するために、本発明の定量分析法は、多孔質材に検体を保持させ、前記多孔質材から前記検体を回収し、前記検体中の成分量を測定する定量分析法であって、前記多孔質材に検体を保持させる際に、前記検体量に応じた検出可能物質も保持させ、前記検体の回収の際に前記検出可能物質も回収し、回収された前記検出可能物質の量を測定し、その値から前記検体量を決定し、さらにこの値を基準に前記検体中の成分量を決定する方法である。
【0008】
本発明の定量分析法では、前記多孔質材に検体を保持させるだけでなく、前記検体量に応じた検出可能物質を保持させ、この量も測定する。このようにすれば、前記多孔質材に保持された検体量が未知量であっても、同様に保持された検出可能物質を測定することにより、その測定値を前記検体量の基準にすることができる。例えば、予め、保持される検体量と回収される検出可能物質量との比率を求めておけば、前述のように検出可能物質の測定値から検体量を求めることができる。このため、本発明の定量分析法によれば、検体量を優れた精度で求めることができ、検体中の成分量の定量性が向上する。さらに、本発明は、定量性を向上させるために、例えば、特殊な多孔質材等を使用する必要がないため、低コスト化を図ることも可能である。また、その定量操作も簡便であり、例えば、臨床医療等における各種検査に有用である。
【0009】
本発明の定量分析法において、前記多孔質材として、検体保持用多孔質材の上に、検出可能物質を保持する多孔質材(以下、「検出可能物質保持多孔質材」という)を配置した複合多孔質材を用い、前記検出可能物質保持多孔質材を通して検体を前記検体保持用多孔質材に移行させることにより、前記検出可能物質も前記検体保持用多孔質材に移行させることが好ましい。このように、検体の移行により、前記検出可能物質を移行させれば、検体量に応じて前記検出可能物質を移行できる。
【0010】
本発明の定量分析法において、前記検体が水性溶媒を含み、前記検出可能物質が前記水性溶媒に溶解可能であることが好ましい。これによれば、前記検出可能物質は、移行する検体に接触することにより、前記検体に溶解され、前記検体と伴に移行することができる。なお、前記検出可能物質は、前記水性溶媒に溶解可能である物質には特に制限されず、この他にも、例えば、検体の移行により物理的に前記検出可能物質保持多孔質材から遊離されるものであってもよい。
【0011】
本発明の定量分析法において、前記検出可能物質が水溶性色素であることが好ましく、前記水溶性色素としては、例えば、インドシアニングリーン(以下、「ICG」という)、インジゴカルミン、フェノールスルホンフタレイン(以下、「PSP」という)等の色素があげられる。この中でも、例えば、各種分析対象成分を光学的手法により検出する場合、一般的な検出波長と異なる近赤外波長に吸収領域を有し、前記分析対象成分の検出を妨げないことから、ICGが好ましい。
【0012】
本発明の定量分析法において、前記検体が、生体由来の水性液状検体であることが好ましく、例えば、血液、尿、唾液、リンパ液、髄液、間質液等があげられる。このような生体試料の定量に本発明を適用すれば、例えば、臨床医療における各種診断等を精度よく行なうことができる。
【0013】
つぎに、本発明の検体保持用具は、検体保持用多孔質材の上に、検出可能物質保持多孔質材が配置され、前記検出可能物質保持多孔質材を通して検体を前記検体保持用多孔質材に保持させるという構成を有する。この検体保持用具を用いれば、前述の本発明の定量分析法を容易に優れた精度で行なうことができる。また、前記検出可能物質を多孔質材に保持させるには、例えば、前記検出可能物質を水等に溶解または分散させ、この液を多孔質材に滴下したり、前記液に多孔質材を含浸させた後、乾燥するだけでよく、非常に容易かつ低コストで調製することができる。本発明の検体保持用具は、例えば、臨床医療における検査等に有用であり、前述のように、患者自身が採取した検体をこの検体保持用具に含浸・乾燥させ、これを医療機関に輸送すれば、簡便に検体中成分の定量分析を行なうことができるため、患者と医療機関の両方の手間を省くことができる。
【0014】
本発明の検体保持用具において、分析対象が血漿または血清中の成分である場合、前記検体保持用多孔質材の上に血球分離材が配置されていることが好ましく、より好ましくは、血球分離能を充分に発揮できることから、前記検出可能物質保持多孔質部材の上に、血球分離材が配置されている構成である。また、このような構成には限定されず、例えば、前記検出可能物質保持多孔質材が、血球分離機能を有することも好ましい。この構成によれば、血球分離材と検出可能物質保持多孔質材とが同一の層となるため、さらに低コスト化を図ることができる。このように血球分離能を有する本発明の検体保持用具を使用すれば、例えば、全血を添加するだけで血球分離を行なうことができ、操作の簡略化を図ることができる。
【0015】
本発明の検体保持用具において、前記検出可能物質が、前記定量分析法と同様に、ICG、インジゴカルミン、PSP等の色素であることが好ましく、より好ましくはICGである。
【0016】
【発明の実施の形態】
図1に本発明の検体保持用具の一例を示す。図示のように、この検体保持用具には、検体保持用多孔質材1の上に検出可能物質保持多孔質材2が配置されている。
【0017】
検体保持用多孔質材1の大きさは、例えば、保持する検体量に応じて適宜決定できるが、例えば、保持する検体量が、約10〜100μlの場合、全長1〜100mmの範囲、幅1〜100mmの範囲、厚み10〜1000μmの範囲であり、検出可能物質保持多孔質材2の大きさは、例えば、全長1〜100mmの範囲、幅1〜100mmの範囲、厚み10〜1000μmの範囲である。
【0018】
検体保持用多孔質材1の材料は、特に制限されないが、例えば、濾紙、ガラスフィルター、樹脂製の多孔質膜等が使用でき、この中でも、コストや取り扱いの簡便性等の点から濾紙が好ましい。この検体保持用多孔質材1の平均孔径は、検体が浸透し、かつ保持されれば、特に制限されないが、例えば、0.1〜100μmの範囲である。
【0019】
また、検体保持用多孔質材1は、保持する検体中の成分を安定に保つために、例えば、スクロース、トレハロース、ラクトース、グルコース等の糖類、グリシン、塩化ナトリウム、塩化カリウム等の塩類、リン酸緩衝剤、クエン酸緩衝剤、グッド緩衝剤等の緩衝剤等の安定化剤を含有してもよい。前記安定化剤の含有量は、その種類等によって適宜決定できるが、例えば、検体保持用多孔質材1の体積1cm3当たり0.01〜10mgの範囲である。
【0020】
検出可能物質保持多孔質材2の材料は、前記検出可能物質が保持できれば、特に制限されないが、例えば、樹脂製の多孔質膜、濾紙、ガラスフィルター、メッシュ、布、ゲル等が使用できる。前記樹脂製多孔質膜の材料としては、例えば、ポリスルホン、ポリエステル、ナイロン、ニトロセルロース、ポリカーボネート等があげられる。また、その平均孔径は、検体および検出可能物質が浸透・透過すれば、特に制限されないが、例えば、0.1〜100μmの範囲である。
【0021】
前記検出可能物質としては、例えば、前述のような水溶性色素等が使用できるが、分析対象成分と反応せず、かつ分析対象成分の検出を妨げないものであればよく、特に制限されない。
【0022】
例えば、光学的手法により分析対象成分の検出を行なう場合、前記検出可能物質は、前記分析対象成分の検出波長領域とは異なる波長領域に吸収を有するものが好ましい。また、前述のような色素等には制限されず、例えば、呈色していない(例えば、無色)基質や、そのままでは吸収波長を有さない基質等も使用できる。このような基質は、その検出段階において、例えば、酵素反応や化学反応等によって呈色させること等により検出することができる。
【0023】
検出可能物質保持多孔質材2における前記検出可能物質の保持量は、前記検出可能物質の種類等によって適宜決定できるが、例えば、前記多孔質材の体積1cm3当たり0.1〜10000μgの範囲、好ましくは、1〜1000μgの範囲である。具体的には、検出可能物質がICGの場合、例えば、多孔質材の体積1cm3当たり1〜1000μgの範囲、好ましくは、10〜500μgの範囲である。
【0024】
前記多孔質材への前記検出可能物質の保持は、例えば、前記検出可能物質を水に溶解・分散した液を多孔質材に滴下したり、前記液中に多孔質材を浸漬した後、乾燥させればよい。前記液は、例えば、濃度1〜10000mg/リットルの範囲になるように調製する。乾燥処理は、例えば、自然乾燥でも風乾でもよく、その処理条件は、例えば、温度1〜200℃の範囲であり、処理時間10秒〜3日の範囲である。
【0025】
この検体保持用具は、例えば、検体保持用多孔質材1の上に検出可能物質保持多孔質材2を積層するだけでもよいし、前記両者を、検体および検出可能物質の移行を妨げない範囲で、接着剤等を用いて一体化してもよい。
【0026】
つぎに、図1に基づき、検体として尿、検出可能物質としてICGをそれぞれ使用して、この検体保持用具により定量分析を行なう一例について、説明する。
【0027】
まず、尿を検出可能物質保持多孔質材2の上に滴下する。すると、尿は、この検出可能物質保持多孔質材2の内部を厚み方向に移行しながら、ICGと接触する。ICGは、接触する尿の量に応じて溶解され、前記尿と共に検出可能物質保持多孔質材2を厚み方向に移行して、前記両者は検体保持用多孔質材1に到達し、これに含浸される。
【0028】
この検体保持用具を、風乾または自然乾燥等により乾燥した後、前記検体保持用具から検出可能物質保持多孔質材2を除去し、検体保持用多孔質材1の検体含浸部分の切り抜きまたは打ち抜き等を行なう。打ち抜きには、例えば、パンチ等が使用できる。打ち抜き等の大きさは、特に制限されないが、例えば、直径1〜30mmの範囲である。また、打ち抜く箇所は、検体含浸部分を多く含んでいることが好ましいが、本発明によれば、打ち抜く箇所やその面積には関係なく検体量を定量できるため、例えば、前述のような定量性濾紙とは異なり、検体を含浸していない部分を含んでいても定量性には問題ない。
【0029】
打ち抜き等により得られた切片を、例えば、チューブ等に入れ、これに抽出溶液を添加して放置することにより、尿およびICGを抽出して回収する。前記抽出溶液としては、前記両者を抽出でき、検体中の分析対象成分の検出に影響を与えないものであれば特に制限されず、例えば、緩衝液、生理食塩水、精製水、蛋白溶液等が使用できる。前記緩衝液としては、例えば、リン酸、クエン酸、塩酸、酢酸等を含む各種緩衝液等があげられ、そのpHは、例えば、pH3〜9の範囲である。前記抽出溶液の添加量は、例えば、その量が既知であれば特に制限されないが、例えば、切片の大きさ等によって適宜決定でき、例えば、切片の体積の1〜1000倍の範囲である。なお、さらに定量性を向上できることから、例えば、切片の大きさに対する前記抽出溶液の添加量を、一定にすることが好ましい。また、抽出処理時間は、特に制限されないが、例えば、1〜300分の範囲である
【0030】
次に、前記回収液におけるICG量を測定し、その測定量から尿の量を求める。例えば、予め、様々な既知量の尿の標準液(例えば、検体が血液の場合、標準液は血液とする)と前記検体保持用具とを用いて、同様にして前記標準液とICGとを一定量の抽出液を用いて回収し、回収液中のICG量を測定することにより、前記標準液量とICG量との関係を示す検量線を作成し、この検量線と前記回収液中のICG量とから尿の量を求めることができる。ICGの検出手段としては、例えば、光学的手段があげられ、波長700〜850nmの範囲における吸光度を測定することにより検出できる。なお、検出可能物質の検出手段は、検出可能物質の種類によって適宜決定できるが、前述のような直接的な光学的手段の他に、例えば、発色反応等を利用した間接的な光学的手段、バイオセンサーによる電気化学的手段、氷点降下法による手段等も採用できる。
【0031】
そして、前記回収液を用いて、尿中の分析対象成分の測定を行ない、前記尿の量の値を基準として、尿検体中の成分量を決定することができる。
【0032】
つぎに、本発明の検体保持用具において、前記図1に示す検出可能物質保持多孔質材2の上に血球分離材3が配置されている一例を図2に示す。図2において、図1と同一部分には同一符号を付している。
【0033】
血球分離材3は、例えば、分析対象が全血中の血漿または血清成分であり、血球を取り除く必要がある場合に設ける任意の構成要素である。
【0034】
血球分離材3の大きさは、特に制限されないが、例えば、全長1〜100mmの範囲、幅1〜100mmの範囲、厚み1〜1000μmの範囲である。
【0035】
血球分離材3の材料は、特に制限されず、例えば、ガラスフィルター、樹脂製多孔質膜等が使用でき、前記樹脂製多孔質膜の材料としては、例えば、ポリスルホン、ポリエステル、ナイロン、ニトロセルロース、ポリカーボネート等があげられる。また、その平均孔径は、血球が分離できれば、特に制限されず、例えば、0.1〜100μmの範囲である。また、その孔構造が、例えば、膜の一方の面から他方の面に向って、連続的または段階的に孔径が変化する孔構造(異方性孔径傾斜構造)である多孔質膜を用いることもできる。
【0036】
なお、このように血球分離を行なうことができる本発明の検体保持用具としては、例えば、図3に示すように、血球分離能を有する検出可能物質保持多孔質材4が検体保持用多孔質材1の上に配置された構成でもよい。この血球分離能を有する検出可能物質保持多孔質材4は、例えば、前記血球分離材3の材料に、前述と同様にして検出可能物質を保持させることにより製造できる。
【0037】
つぎに、検体が全血であり、血漿中の特定成分を分析対象とする場合に、検出可能物質としてICGを使用して、前記図2または図3に示す検体保持用具により定量分析を行なう例について説明する。なお、特に示さない限りは、前記図1に示す検体保持用具を用いた定量分析と同様にして測定を行なうことができる。
【0038】
前記図2に示す検体保持用具を使用する場合、血球分離材3の上に全血を滴下すると、全血は、この血球分離材3の内部を厚み方向に移行しながら、血球分離材3の孔構造により血球が捕捉され、血球と血漿とに分離される。分離された血漿は、血球分離材3を通過し、検出可能物質保持多孔質材2に達し、これに含浸される。そして、含浸した血漿は、検出可能物質保持多孔質材2を移行しながらICGと接触する。ICGは、接触する血漿量に応じて溶解され、前記血漿と伴に検出可能物質保持多孔質材2内部を移行し、血漿と伴に検体保持用多孔質材1に達し、これに含浸される。また、前記図3に示す検体保持用具を使用する場合、血球分離能を有する検出可能物質保持多孔質材4の上に全血を滴下すると、全血は、前記多孔質材4の内部を厚み方向に移行しながら、前述のように血球と血漿とに分離される。さらに、この分離と同時に、全血中の血漿成分と接触したICGは、前述と同様に、血漿量に応じて溶解され、前記血漿と共に前記多孔質材4内部を移行する。そして、ICGおよび血漿は、検体保持用多孔質材1に達し、これに含浸される。
【0039】
【実施例】
以下に示すようにして、前記図3に示すような検体保持用具を作製し、これを用いて血漿中の各種成分の測定およびICGの測定を行なった。
【0040】
(検体保持用具の作製)
ICG(Lot.GG01:東京化成社製)を濃度200mg/100mlになるように水に溶解してICG溶液を調製した。そして、このICG水溶液75μlを、厚み320μm、15×15mmのポリスルホン多孔質膜(BTS−sp、Lot.9043PL2:USフィルター社製)にオートピペットを用いて滴下した後、常温(約25℃)・常湿(約60%)で一晩放置して風乾させ、これを血球分離能を有するICG保持多孔質材4とした。
【0041】
スクロース(ナカライテスク社製)を、濃度250g/リットルになるように生食等張PBS溶液(Phosphate−buffered saline:pH7.4)に溶解して、スクロース/PBS溶液を調製した。そして、濾紙(BFC180:ワットマン社製)を前記スクロース/PBS溶液中に浸漬させた後、常温(約25℃)・常湿(約60%)に一晩放置して風乾させ、これを血漿保持多孔質材1とした。そして、前記血漿保持多孔質材1上に前記血球分離能を有するICG保持多孔質材4を配置して、これを検体保持用具とした。この検体保持用具を用いて、以下のようにして血漿試料を調製した。
【0042】
(血漿試料の調製)
ヘパリン入り採血管(インセパック−E:積水化学工業社製)を用いて全血を採血し、これを検体とした。前記検体150μlを前記血液保持用具の血球分離能を有するICG保持多孔質材4表面に滴下して、温度25℃で1時間乾燥させた。そして、前記血液保持用具から前記血球分離能を有するICG保持多孔質材4を除去し、血漿保持多孔質材1の血漿含浸部分を、文具用パンチを用いて直径6mmの大きさに無作為に打ち抜き、この切片を1.5ml容量のディスポチューブに入れた。さらに、抽出溶液として前記PBS溶液300μlを添加して室温で20分間放置した後、上清をとり出し、これを血漿試料液とした。そして、同様にして合計20個の血漿試料液を調製した。なお、血漿含浸部の打ち抜きは、血漿濃度がばらつくように行なった。
【0043】
これらの血漿試料液を用いて、以下に示す方法により、ICG量および下記各種成分量の測定を行なった。ICGは、前記血漿試料液の波長805nmにおける吸収を、自動分析機(BM−8:日本電子社製)を用いてそれぞれ測定した。グルコース(以下、「Glc」という)は、グルコースII−HAテストワコー(和光純薬工業社製)、トータルコレステロール(以下、「TC」という)は、デタミナーL TCII(協和メデックス社製)、グルタミック−ピルビックトランスアミナーゼ(以下、「GPT」という)は、トランスアミナーゼHR−II(GPT−7070:和光純薬工業社製)、アルカリホスファターゼ(以下、「ALP」という)は、ALPII−HAテストワコー(7150:和光純薬工業社製)、クレアチンキナーゼ(以下、「CPK」という)は、CK E−HAテストワコー(和光純薬工業社製)、アミラーゼ(以下、「Amy」という)は、AmyII−HAテストワコー(和光純薬工業社製)、クレアチニン(以下、「Cre」という)は、ピュアオートS CRE−N(第一化学薬品社製)、尿素窒素(以下、「BUN」という)は、尿素窒素II−HAテストワコー(7070:和光純薬工業社製)、トリグリセライド(以下、「TG」という)は、トリグリセライドE−HAテストワコー(和光純薬工業社製)およびHDL−コレステロール(以下、「HDL−C」という)は、コレテストHDL(第一化学薬品社製)をそれぞれ使用し、それらの使用方法に準じて測定した。なお、各種測定において、ブランクは精製水を用いた。これらの各種成分量の結果を、ICG量の結果と併せて図4〜図13にそれぞれ示す。各図は、血漿試料液における各成分濃度とICG濃度との相関関係を示すグラフであり、図中の式は、前記相関関係を表す式、R2は相関係数をそれぞれ示す。
【0044】
図4〜図13に示すように、血漿中の各種成分濃度とICG濃度との間には、高い相関性が見られた。これは、ICG量と血漿量とが比例関係にあり、ICG量が多いということは、血漿量も多いということであり、この血漿量に応じて各種成分の量も多くなったということである。これらの結果からわかるように、検体と伴にICG等の検出可能物質を多孔質材に保持させ、その回収液中の検体量を測定すれば、例えば、予め作成した検量線から検体量を決定することができ、分析対象成分量の定量性が向上する。なお、ICG濃度が高くなると相関性が低下するが、これは血漿試料をさらに希釈して測定することにより解消される。
【0045】
【発明の効果】
以上のように、本発明の定量分析法によれば、検体量を決定できるため、検体中の成分の定量性が向上する。このような本発明の定量分析法は、例えば、臨床医療における診断等に有用である。
【図面の簡単な説明】
【図1】本発明の検体保持用具の一実施形態を示す断面図である。
【図2】本発明の検体保持用具のその他の実施形態を示す断面図である。
【図3】本発明の検体保持用具のさらにその他の実施形態を示す断面図である。
【図4】本発明の一実施例において、血漿試料中のICG濃度とグルコース濃度との相関関係を示すグラフである。
【図5】本発明の前記実施例において、血漿試料中のICG濃度とTC濃度との相関関係を示すグラフである。
【図6】本発明の前記実施例において、血漿試料中のICG濃度とGPT濃度との相関関係を示すグラフである。
【図7】本発明の前記実施例において、血漿試料中のICG濃度とALP濃度との相関関係を示すグラフである。
【図8】本発明の前記実施例において、血漿試料中のICG濃度とCPK濃度との相関関係を示すグラフである。
【図9】本発明の前記実施例において、血漿試料中のICG濃度とAmy濃度との相関関係を示すグラフである。
【図10】本発明の前記実施例において、血漿試料中のICG濃度とCre濃度との相関関係を示すグラフである。
【図11】本発明の前記実施例において、血漿試料中のICG濃度とBUN濃度との相関関係を示すグラフである。
【図12】本発明の前記実施例において、血漿試料中のICG濃度とTG濃度との相関関係を示すグラフである。
【図13】本発明の前記実施例において、血漿試料中のICG濃度とHDL−C濃度との相関関係を示すグラフである。
【符号の説明】
1 検体保持用多孔質材
2 検出可能物質保持多孔質材
3 血球分離材
4 血球分離能を有する検出可能物質保持多孔質材
[0001]
[Technical field to which the invention belongs]
The present invention relates to a quantitative analysis method for determining the amount of a component present in an unknown amount of sample and a sample holding tool used therefor.
[0002]
[Prior art]
Conventionally, patients have to go to a medical institution to collect blood and urine for examination and treatment of various diseases. However, these test results cannot be obtained unless waiting until the next visit or waiting for a long time, and there is a problem that it is very time-consuming for patients and medical institutions.
[0003]
In recent years, in order to avoid such a problem, a sample collection card formed of filter paper or the like has been proposed. For example, Japanese Patent Application Laid-Open No. 10-104226 discloses a blood collection card. The patient, for example, impregnates and dries the blood collected by himself on this blood collection card and mails it to a medical institution. Upon receiving this, the medical institution cuts out the blood-impregnated portion of the blood collection card, extracts blood therefrom, and conducts an inspection for each inspection item. And when a patient comes to a medical institution, treatment and diagnosis are performed based on the test result.
[0004]
When using such a blood collection card, for example, since the patient himself collects blood as described above, the amount of blood impregnated in the blood collection card is an unknown amount, and it is not possible to accurately quantify the amount of components in the blood. It was difficult. Therefore, for example, using a filter paper that holds a certain amount of blood in a certain area and cutting out the blood-impregnated portion of the filter paper by a certain area, a method for securing a certain amount of blood sample, or a certain amount that holds a certain amount of blood A method of securing a certain amount of blood sample by using a filter paper of an area and supplying a saturated retention amount of blood to the filter paper has been proposed.
[0005]
[Problems to be solved by the invention]
However, the filter paper as described above has the following problems. For example, when the former filter paper is used, it is necessary to impregnate the entire cut out filter paper with blood, so that it is difficult to select a cut-out portion and to perform the cut-out operation. In addition, when the latter filter paper is impregnated with a saturated retention amount of blood, it is actually necessary to supply blood with a saturation retention amount or more to sufficiently impregnate the blood, which takes time and increases the burden on the patient. . Furthermore, in order to improve the quantitativeness of these quantitative filter papers, the production itself becomes very difficult and complicated, and the cost increases.
[0006]
Accordingly, an object of the present invention is to provide a quantitative analysis method capable of accurately measuring the amount of a component in a sample even when an unknown amount of sample is used, and a sample holding tool used therefor.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, the quantitative analysis method of the present invention is a quantitative analysis method in which a specimen is held in a porous material, the specimen is collected from the porous material, and the amount of components in the specimen is measured. When the specimen is held in the porous material, the detectable substance corresponding to the quantity of the specimen is also held, the detectable substance is also collected when the specimen is collected, and the collected detectable substance is collected. In this method, the amount of the sample is determined from the measured value, and the amount of the component in the sample is determined based on this value.
[0008]
In the quantitative analysis method of the present invention, not only the sample is held in the porous material, but also a detectable substance corresponding to the amount of the sample is held, and this amount is also measured. In this way, even if the amount of the sample retained in the porous material is an unknown amount, by measuring the retained detectable substance, the measured value can be used as a reference for the amount of the sample. Can do. For example, if the ratio between the amount of the retained sample and the amount of the detectable substance to be collected is obtained in advance, the amount of the sample can be obtained from the measured value of the detectable substance as described above. For this reason, according to the quantitative analysis method of the present invention, the amount of the sample can be obtained with excellent accuracy, and the quantitative property of the component amount in the sample is improved. Furthermore, since the present invention does not require the use of a special porous material or the like, for example, in order to improve the quantitativeness, the cost can be reduced. Further, the quantitative operation is simple, and is useful for various tests in clinical medicine, for example.
[0009]
In the quantitative analysis method of the present invention, a porous material that holds a detectable substance (hereinafter referred to as “detectable substance-holding porous material”) is disposed on the specimen-holding porous material as the porous material. Preferably, the detectable substance is also transferred to the specimen-holding porous material by using a composite porous material and transferring the specimen to the specimen-holding porous material through the detectable substance-holding porous material. Thus, if the detectable substance is transferred by the transfer of the specimen, the detectable substance can be transferred according to the amount of the specimen.
[0010]
In the quantitative analysis method of the present invention, it is preferable that the specimen contains an aqueous solvent, and the detectable substance can be dissolved in the aqueous solvent. According to this, the detectable substance can be dissolved in the sample by contacting the sample to be transferred, and can be transferred together with the sample. The detectable substance is not particularly limited to a substance that can be dissolved in the aqueous solvent. In addition, for example, the detectable substance is physically released from the detectable substance-holding porous material by migration of the specimen. It may be a thing.
[0011]
In the quantitative analysis method of the present invention, the detectable substance is preferably a water-soluble dye, and examples of the water-soluble dye include indocyanine green (hereinafter referred to as “ICG”), indigo carmine, phenol sulfonephthalein. (Hereinafter referred to as “PSP”). Among these, for example, when various analysis target components are detected by an optical method, the ICG has an absorption region at a near infrared wavelength different from a general detection wavelength and does not prevent detection of the analysis target component. preferable.
[0012]
In the quantitative analysis method of the present invention, the specimen is preferably a living body-derived aqueous liquid specimen, and examples thereof include blood, urine, saliva, lymph fluid, spinal fluid, and interstitial fluid. If the present invention is applied to such biological sample quantification, for example, various diagnoses in clinical medicine can be performed with high accuracy.
[0013]
Next, in the specimen holding tool of the present invention, a detectable substance-holding porous material is disposed on a specimen-holding porous material, and the specimen is passed through the detectable substance-holding porous material, and the specimen-holding porous material. It has the structure of making it hold | maintain. By using this specimen holding tool, the above-described quantitative analysis method of the present invention can be easily performed with excellent accuracy. In order to retain the detectable substance in the porous material, for example, the detectable substance is dissolved or dispersed in water or the like, and this liquid is dropped into the porous material, or the liquid is impregnated with the porous material. Then, it only needs to be dried and can be prepared very easily and at low cost. The specimen holding tool of the present invention is useful for, for example, clinical medical examinations. As described above, the specimen collected by the patient itself is impregnated and dried in the specimen holding tool and transported to a medical institution. Since the quantitative analysis of the components in the sample can be easily performed, both the patient and the medical institution can be saved.
[0014]
In the sample holding device of the present invention, when the analysis target is a component in plasma or serum, it is preferable that a blood cell separation material is disposed on the porous material for sample holding, and more preferably blood cell separation ability. Therefore, a blood cell separator is disposed on the detectable substance-holding porous member. Moreover, it is not limited to such a structure, For example, it is also preferable that the said detectable substance holding porous material has a blood cell separation function. According to this configuration, since the blood cell separation material and the detectable substance-holding porous material are in the same layer, the cost can be further reduced. If the specimen holding device of the present invention having blood cell separation ability is used as described above, for example, blood cells can be separated simply by adding whole blood, and the operation can be simplified.
[0015]
In the specimen holding device of the present invention, the detectable substance is preferably a pigment such as ICG, indigo carmine, PSP, and more preferably ICG, as in the quantitative analysis method.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 shows an example of the specimen holding tool of the present invention. As shown in the drawing, in this specimen holding tool, a detectable substance-holding porous material 2 is disposed on a specimen-holding porous material 1.
[0017]
The size of the specimen-holding porous material 1 can be appropriately determined according to, for example, the quantity of specimen to be held. For example, when the specimen quantity to be held is about 10 to 100 μl, the length is 1 to 100 mm and the width is 1 The size of the detectable substance-holding porous material 2 is, for example, in the range of 1 to 100 mm in length, in the range of 1 to 100 mm in width, and in the range of 10 to 1000 μm in thickness. is there.
[0018]
The material of the specimen holding porous material 1 is not particularly limited. For example, a filter paper, a glass filter, a resin porous membrane, and the like can be used. Among these, a filter paper is preferable from the viewpoints of cost and ease of handling. . The average pore diameter of the porous material 1 for holding a sample is not particularly limited as long as the sample penetrates and is held, but is, for example, in the range of 0.1 to 100 μm.
[0019]
In addition, the porous material 1 for holding a specimen is used, for example, to maintain a stable component in the specimen to be held, for example, sugars such as sucrose, trehalose, lactose, glucose, salts such as glycine, sodium chloride, potassium chloride, phosphoric acid, etc. You may contain stabilizers, such as buffers, such as a buffer, a citrate buffer, and a Good buffer. The content of the stabilizer can be appropriately determined depending on the type and the like, and is, for example, in the range of 0.01 to 10 mg per 1 cm 3 of the specimen-holding porous material 1.
[0020]
The material of the detectable substance-holding porous material 2 is not particularly limited as long as the detectable substance can be held, but for example, a resin porous film, a filter paper, a glass filter, a mesh, a cloth, a gel, and the like can be used. Examples of the material for the resin porous membrane include polysulfone, polyester, nylon, nitrocellulose, and polycarbonate. Further, the average pore diameter is not particularly limited as long as the specimen and the detectable substance permeate and permeate, but it is, for example, in the range of 0.1 to 100 μm.
[0021]
As the detectable substance, for example, a water-soluble dye as described above can be used, and it is not particularly limited as long as it does not react with the analysis target component and does not interfere with detection of the analysis target component.
[0022]
For example, when the analysis target component is detected by an optical method, it is preferable that the detectable substance has absorption in a wavelength region different from the detection wavelength region of the analysis target component. Moreover, it is not restrict | limited to the above pigment | dyes etc., For example, the substrate which is not colored (for example, colorless), the substrate which does not have an absorption wavelength as it is, etc. can be used. Such a substrate can be detected in the detection stage by, for example, coloring it by an enzyme reaction or a chemical reaction.
[0023]
The amount of the detectable substance retained in the detectable substance-holding porous material 2 can be appropriately determined depending on the type of the detectable substance, etc., for example, a range of 0.1 to 10,000 μg per 1 cm 3 of the porous material, Preferably, it is the range of 1-1000 micrograms. Specifically, when the detectable substance is ICG, for example, the range is 1 to 1000 μg, preferably 10 to 500 μg, per 1 cm 3 of the volume of the porous material.
[0024]
The detection of the detectable substance in the porous material is performed by, for example, dropping a solution obtained by dissolving or dispersing the detectable substance in water onto the porous material, or immersing the porous material in the liquid and then drying the porous material. You can do it. The liquid is prepared to have a concentration in the range of 1 to 10,000 mg / liter, for example. The drying process may be, for example, natural drying or air drying, and the processing conditions are, for example, a temperature range of 1 to 200 ° C. and a processing time of 10 seconds to 3 days.
[0025]
For example, the specimen holding tool may be formed by simply laminating the detectable substance-holding porous material 2 on the specimen-holding porous material 1, or both of them within a range that does not hinder the migration of the specimen and the detectable substance. , And may be integrated using an adhesive or the like.
[0026]
Next, based on FIG. 1, an example in which quantitative analysis is performed with this sample holding tool using urine as a sample and ICG as a detectable substance will be described.
[0027]
First, urine is dropped on the detectable substance-holding porous material 2. Then, urine contacts ICG while moving inside the detectable substance-holding porous material 2 in the thickness direction. The ICG is dissolved in accordance with the amount of urine that comes into contact with the urine and moves along with the urine in the thickness direction of the detectable substance-holding porous material 2 so that the both reach the specimen-holding porous material 1 and impregnate it. Is done.
[0028]
After the specimen holding tool is dried by air drying or natural drying, the detectable substance-holding porous material 2 is removed from the specimen holding tool, and the specimen-impregnated portion of the specimen-holding porous material 1 is cut or punched. Do. For punching, for example, a punch or the like can be used. The size of punching or the like is not particularly limited, but is, for example, in the range of 1 to 30 mm in diameter. In addition, it is preferable that the portion to be punched out contains a large amount of the sample-impregnated portion. However, according to the present invention, the amount of the sample can be quantified regardless of the portion to be punched and its area. Unlike that, there is no problem in quantitativeness even if a portion not impregnated with the specimen is included.
[0029]
A section obtained by punching or the like is placed in, for example, a tube or the like, and an extraction solution is added to the section, and the urine and ICG are extracted and collected. The extraction solution is not particularly limited as long as it can extract both of the above and does not affect the detection of the component to be analyzed in the sample. For example, a buffer solution, physiological saline, purified water, protein solution, etc. Can be used. Examples of the buffer solution include various buffer solutions containing phosphoric acid, citric acid, hydrochloric acid, acetic acid and the like, and the pH is, for example, in the range of pH 3-9. The amount of the extraction solution added is not particularly limited as long as the amount is known, but can be appropriately determined depending on the size of the slice, for example, and is, for example, in the range of 1 to 1000 times the volume of the slice. In addition, since quantitative property can be further improved, for example, it is preferable to make the addition amount of the extraction solution constant with respect to the size of the section. Further, the extraction processing time is not particularly limited, but is, for example, in the range of 1 to 300 minutes.
Next, the amount of ICG in the collected liquid is measured, and the amount of urine is obtained from the measured amount. For example, using a standard solution of various known amounts of urine (for example, when the sample is blood, the standard solution is blood) and the sample holding device, the standard solution and ICG are fixed in the same manner. A calibration curve showing the relationship between the standard solution amount and the ICG amount is created by measuring the amount of ICG in the recovery solution and collecting the calibration curve and the ICG in the recovery solution. The amount of urine can be determined from the amount. Examples of ICG detection means include optical means, which can be detected by measuring absorbance in the wavelength range of 700 to 850 nm. The detection means for the detectable substance can be appropriately determined depending on the type of the detectable substance. In addition to the direct optical means as described above, for example, an indirect optical means using a color reaction or the like, Electrochemical means using biosensors, means by freezing point method, etc. can also be employed.
[0031]
Then, the component to be analyzed in urine is measured using the collected liquid, and the amount of component in the urine sample can be determined based on the value of the amount of urine.
[0032]
Next, FIG. 2 shows an example in which the blood cell separation material 3 is arranged on the detectable substance-holding porous material 2 shown in FIG. 1 in the specimen holding tool of the present invention. In FIG. 2, the same parts as those in FIG.
[0033]
The blood cell separation material 3 is an optional component provided when, for example, the analysis target is plasma or serum components in whole blood and it is necessary to remove the blood cells.
[0034]
The size of the blood cell separation material 3 is not particularly limited, but is, for example, a total length range of 1 to 100 mm, a width range of 1 to 100 mm, and a thickness range of 1 to 1000 μm.
[0035]
The material of the blood cell separator 3 is not particularly limited, and for example, a glass filter, a resin porous membrane, and the like can be used. Examples of the resin porous membrane material include polysulfone, polyester, nylon, nitrocellulose, Examples include polycarbonate. The average pore diameter is not particularly limited as long as blood cells can be separated, and is, for example, in the range of 0.1 to 100 μm. Also, use a porous membrane whose pore structure is, for example, a pore structure (an anisotropic pore diameter gradient structure) in which the pore diameter changes continuously or stepwise from one surface to the other surface of the membrane. You can also.
[0036]
As the specimen holding device of the present invention capable of performing blood cell separation in this way, for example, as shown in FIG. 3, a detectable substance-holding porous material 4 having blood cell separation ability is a specimen-holding porous material. The structure arrange | positioned on 1 may be sufficient. The detectable substance-holding porous material 4 having blood cell separation ability can be produced, for example, by holding a detectable substance in the material of the blood cell separating material 3 in the same manner as described above.
[0037]
Next, when the sample is whole blood and a specific component in plasma is an analysis target, ICG is used as a detectable substance, and quantitative analysis is performed using the sample holding tool shown in FIG. 2 or FIG. Will be described. Unless otherwise indicated, the measurement can be performed in the same manner as the quantitative analysis using the specimen holding tool shown in FIG.
[0038]
When the specimen holding tool shown in FIG. 2 is used, when whole blood is dripped onto the blood cell separation material 3, the whole blood moves inside the blood cell separation material 3 in the thickness direction, while the blood cell separation material 3 Blood cells are captured by the pore structure and separated into blood cells and plasma. The separated plasma passes through the blood cell separator 3, reaches the detectable substance-holding porous material 2, and is impregnated therein. Then, the impregnated plasma comes into contact with the ICG while moving the detectable substance-holding porous material 2. The ICG is dissolved in accordance with the amount of plasma in contact with it, moves along with the plasma inside the detectable substance-holding porous material 2, reaches the specimen-holding porous material 1 together with the plasma, and is impregnated therein. . In addition, when using the specimen holding tool shown in FIG. 3, when whole blood is dropped on the detectable substance-holding porous material 4 having blood cell separation ability, the whole blood has a thickness inside the porous material 4. While moving in the direction, it is separated into blood cells and plasma as described above. Further, simultaneously with this separation, the ICG that has come into contact with the plasma component in the whole blood is dissolved in accordance with the amount of plasma as described above, and moves inside the porous material 4 together with the plasma. Then, ICG and plasma reach the specimen holding porous material 1 and are impregnated therein.
[0039]
【Example】
As shown below, a specimen holding tool as shown in FIG. 3 was prepared, and various components in plasma and ICG were measured using this.
[0040]
(Preparation of specimen holding tool)
ICG (Lot. GG01: manufactured by Tokyo Chemical Industry Co., Ltd.) was dissolved in water to a concentration of 200 mg / 100 ml to prepare an ICG solution. Then, 75 μl of this ICG aqueous solution was dropped onto a polysulfone porous membrane (BTS-sp, Lot. 9043PL2: manufactured by US Filter) having a thickness of 320 μm and 15 × 15 mm using an autopipette, and then at room temperature (about 25 ° C.) The ICG holding porous material 4 having blood cell separation ability was left to air dry at room temperature (about 60%) overnight.
[0041]
Sucrose (manufactured by Nacalai Tesque) was dissolved in a saline-isotonic PBS solution (Phosphate-buffered saline: pH 7.4) to a concentration of 250 g / liter to prepare a sucrose / PBS solution. Then, a filter paper (BFC180: manufactured by Whatman) is immersed in the sucrose / PBS solution, and is left to stand overnight at room temperature (about 25 ° C.) and normal humidity (about 60%) to air-dry it. Porous material 1 was obtained. Then, the ICG holding porous material 4 having the blood cell separation ability was disposed on the plasma holding porous material 1, and this was used as a specimen holding tool. Using this sample holding tool, a plasma sample was prepared as follows.
[0042]
(Preparation of plasma sample)
Whole blood was collected using a heparin-containing blood collection tube (Insepack-E: manufactured by Sekisui Chemical Co., Ltd.), and this was used as a specimen. 150 μl of the specimen was dropped onto the surface of the ICG holding porous material 4 having the blood cell separation ability of the blood holding tool and dried at a temperature of 25 ° C. for 1 hour. Then, the ICG holding porous material 4 having the blood cell separation ability is removed from the blood holding tool, and the plasma-impregnated portion of the plasma holding porous material 1 is randomized to a diameter of 6 mm using a stationery punch. Punched and placed in a 1.5 ml disposable tube. Further, 300 μl of the PBS solution was added as an extraction solution and allowed to stand at room temperature for 20 minutes, and then the supernatant was taken out and used as a plasma sample solution. In the same manner, a total of 20 plasma sample solutions were prepared. The plasma impregnation part was punched so that the plasma concentration varied.
[0043]
Using these plasma sample solutions, the ICG amount and the following various component amounts were measured by the method described below. ICG measured the absorption of the plasma sample solution at a wavelength of 805 nm using an automatic analyzer (BM-8: manufactured by JEOL Ltd.). Glucose (hereinafter referred to as “Glc”) is glucose II-HA Test Wako (manufactured by Wako Pure Chemical Industries, Ltd.), total cholesterol (hereinafter referred to as “TC”) is Determiner L TCII (manufactured by Kyowa Medex), Glutamic- Pyrvic transaminase (hereinafter referred to as “GPT”) is transaminase HR-II (GPT-7070: manufactured by Wako Pure Chemical Industries, Ltd.) and alkaline phosphatase (hereinafter referred to as “ALP”) is ALPII-HA test Wako (7150: Wako Pure Chemical Industries, Ltd.), creatine kinase (hereinafter referred to as “CPK”) is CK E-HA Test Wako (manufactured by Wako Pure Chemical Industries, Ltd.), and amylase (hereinafter referred to as “Amy”) is Amy II-HA test. Wako (manufactured by Wako Pure Chemical Industries, Ltd.) and creatinine (hereinafter referred to as “Cre”) are pure auto CRE-N (Daiichi Chemicals Co., Ltd.) and urea nitrogen (hereinafter referred to as “BUN”) are urea nitrogen II-HA test Wako (7070: manufactured by Wako Pure Chemical Industries, Ltd.) and triglyceride (hereinafter referred to as “TG”). ), Triglyceride E-HA test Wako (manufactured by Wako Pure Chemical Industries, Ltd.) and HDL-cholesterol (hereinafter referred to as “HDL-C”), Choletest HDL (manufactured by Daiichi Chemicals), respectively, It measured according to the usage method. In various measurements, purified water was used as a blank. The results of these various component amounts are shown in FIGS. 4 to 13 together with the results of ICG amounts. Each figure is a graph showing the correlation between the concentration of each component and the ICG concentration in the plasma sample solution. The formula in the figure shows the correlation and R 2 shows the correlation coefficient.
[0044]
As shown in FIGS. 4 to 13, a high correlation was observed between the concentrations of various components in the plasma and the ICG concentrations. This is because the ICG amount and the plasma amount are in a proportional relationship, and the large amount of ICG means that the amount of plasma is also large, and the amount of various components increases according to this plasma amount. . As can be seen from these results, if a detectable substance such as ICG is held in a porous material together with the sample and the amount of the sample in the recovered solution is measured, the amount of the sample is determined from a calibration curve prepared in advance, for example. This improves the quantitativeness of the amount of component to be analyzed. The correlation decreases as the ICG concentration increases, but this is eliminated by further diluting and measuring the plasma sample.
[0045]
【The invention's effect】
As described above, according to the quantitative analysis method of the present invention, the amount of the sample can be determined, so that the quantitativeness of the components in the sample is improved. Such a quantitative analysis method of the present invention is useful for diagnosis in clinical medicine, for example.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing an embodiment of a specimen holding tool of the present invention.
FIG. 2 is a cross-sectional view showing another embodiment of the specimen holding tool of the present invention.
FIG. 3 is a cross-sectional view showing still another embodiment of the specimen holding tool of the present invention.
FIG. 4 is a graph showing the correlation between ICG concentration and glucose concentration in a plasma sample in one example of the present invention.
FIG. 5 is a graph showing a correlation between ICG concentration and TC concentration in a plasma sample in the Example of the present invention.
FIG. 6 is a graph showing the correlation between ICG concentration and GPT concentration in a plasma sample in the Example of the present invention.
FIG. 7 is a graph showing the correlation between ICG concentration and ALP concentration in a plasma sample in the Example of the present invention.
FIG. 8 is a graph showing a correlation between ICG concentration and CPK concentration in a plasma sample in the Example of the present invention.
FIG. 9 is a graph showing the correlation between ICG concentration and Amy concentration in a plasma sample in the Example of the present invention.
FIG. 10 is a graph showing the correlation between ICG concentration and Cre concentration in a plasma sample in the Example of the present invention.
FIG. 11 is a graph showing a correlation between ICG concentration and BUN concentration in a plasma sample in the Example of the present invention.
FIG. 12 is a graph showing a correlation between ICG concentration and TG concentration in a plasma sample in the Example of the present invention.
FIG. 13 is a graph showing the correlation between ICG concentration and HDL-C concentration in a plasma sample in the Example of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Porous material for specimen holding 2 Detectable substance holding porous material 3 Blood cell separation material 4 Detectable substance holding porous material having blood cell separation ability

Claims (8)

多孔質材に検体を保持させ、前記多孔質材から前記検体を回収し、前記検体中の成分量を測定する定量分析法であって、
多孔質材として、検体保持用多孔質材の上に、検出可能物質を保持する多孔質材を配置した複合多孔質材を用い、
前記検体は、水性溶媒を含み、
前記検出可能物質は、前記水性溶媒に溶解可能な水溶性色素であり、
前記多孔質材に検体を保持させる際に、前記検体量に応じた検出可能物質も保持させ、前記検出可能物質を保持する多孔質材を通して検体を前記検体保持用多孔質材に移行させることにより、前記検出可能物質も前記検体保持用多孔質材に移行させ、前記検体の回収の際に前記検出可能物質も回収し、回収された前記検出可能物質の量を測定し、その値から前記検体量を決定し、さらにこの値を基準に前記検体中の成分量を決定する定量分析法。
A quantitative analysis method for holding a specimen in a porous material, collecting the specimen from the porous material, and measuring the amount of a component in the specimen,
As a porous material, using a composite porous material in which a porous material that holds a detectable substance is disposed on a porous material for specimen holding,
The specimen includes an aqueous solvent,
The detectable substance is a water-soluble dye that is soluble in the aqueous solvent,
By holding a detectable substance corresponding to the amount of the specimen when the specimen is held in the porous material, the specimen is transferred to the porous material for specimen holding through the porous material holding the detectable substance. The detectable substance is also transferred to the porous material for holding a specimen, the detectable substance is also collected at the time of collecting the specimen, the amount of the collected detectable substance is measured, and the specimen is calculated from the value. A quantitative analysis method for determining an amount and further determining an amount of a component in the sample based on this value.
水溶性色素が、インドシアニングリーン、インジゴカルミンおよびフェノールスルホンフタレインからなる群から選択された少なくとも一つの色素である請求項記載の定量分析法。Water-soluble dye, quantitative analysis according to claim 1, wherein at least one dye selected from the group consisting of indocyanine green, indigo carmine and phenolsulfonphthalein. 検体が、生体由来の水性液状検体である請求項1又は2に記載の定量分析法。Specimen, the quantitative analysis according to claim 1 or 2 which is an aqueous liquid specimen of biological origin. 検体が、血液、尿、唾液、リンパ液、髄液、間質液からなる群から選択された少なくとも一つの検体である請求項に記載の定量分析法。The quantitative analysis method according to claim 3 , wherein the specimen is at least one specimen selected from the group consisting of blood, urine, saliva, lymph, cerebrospinal fluid, and interstitial fluid. 請求項1から4のいずれか一項に記載された定量分析法に用いる検体保持用具であって、
検体保持用多孔質材の上に、検出可能物質を保持する多孔質材が配置され、
前記検出可能物質は、水性溶媒に溶解可能な水溶性色素であり、
前記検出可能物質を保持する多孔質材を通して検体を前記検体保持用多孔質材に保持させる検体保持用具。
A specimen holding tool used in the quantitative analysis method according to any one of claims 1 to 4,
A porous material holding a detectable substance is disposed on the porous material for holding the specimen,
The detectable substance is a water-soluble dye that is soluble in an aqueous solvent,
A specimen holding tool for holding a specimen on the specimen-holding porous material through a porous material that holds the detectable substance.
分析対象が、血漿または血清中の成分であり、検出可能物質を保持する多孔質材の上に、血球分離材が配置されている請求項記載の検体保持用具。The specimen holding device according to claim 5 , wherein the analysis target is a component in plasma or serum, and a blood cell separation material is disposed on a porous material holding a detectable substance. 分析対象が、血漿または血清中の成分であり、検出可能物質を保持する多孔質材が、血球分離機能を有する請求項記載の検体保持用具。The specimen holding device according to claim 5 , wherein the analysis target is a component in plasma or serum, and the porous material holding a detectable substance has a blood cell separation function. 検出可能物質が、インドシアニングリーン、インジゴカルミンおよびフェノールスルホンフタレインからなる群から選択された少なくとも一つの色素である請求項5から7のいずれか一項に記載の検体保持用具。The specimen holding device according to any one of claims 5 to 7 , wherein the detectable substance is at least one dye selected from the group consisting of indocyanine green, indigo carmine, and phenol sulfonephthalein.
JP20052299A 1999-07-14 1999-07-14 Quantitative analysis method and specimen holding tool used therefor Expired - Lifetime JP4206461B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20052299A JP4206461B2 (en) 1999-07-14 1999-07-14 Quantitative analysis method and specimen holding tool used therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20052299A JP4206461B2 (en) 1999-07-14 1999-07-14 Quantitative analysis method and specimen holding tool used therefor

Publications (2)

Publication Number Publication Date
JP2001027638A JP2001027638A (en) 2001-01-30
JP4206461B2 true JP4206461B2 (en) 2009-01-14

Family

ID=16425721

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20052299A Expired - Lifetime JP4206461B2 (en) 1999-07-14 1999-07-14 Quantitative analysis method and specimen holding tool used therefor

Country Status (1)

Country Link
JP (1) JP4206461B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6198408B2 (en) * 2012-04-02 2017-09-20 株式会社日立ハイテクノロジーズ Method for analyzing volatile substances in sample liquid

Also Published As

Publication number Publication date
JP2001027638A (en) 2001-01-30

Similar Documents

Publication Publication Date Title
JP3643011B2 (en) Quantitative analysis
EP0654659B1 (en) Defined volume test device
CA2457665C (en) Method for reducing effect of hematocrit on measurement of an analyte in whole blood, and test kit and test article useful in the method
EP0597268A1 (en) Device and method of assaying whole blood for hdl cholesterol
US20090145840A1 (en) Blood cell separation membrane and blood retention tool using the same
US20010005488A1 (en) Blood testing tool
US20040030228A1 (en) Method and kit for the transderaml determinaton of analyte concentration in blood
JP2002510392A (en) Analyte measuring device in body fluid
JP2001518622A (en) Analyzer using capillary reagent carrier
JP6518629B2 (en) Blood test kit and blood analysis method
EP0436897A2 (en) Device and method of separating and assaying whole blood
JP4206461B2 (en) Quantitative analysis method and specimen holding tool used therefor
JP3285451B2 (en) Analysis method and analysis element for whole blood sample
CN113330315A (en) Microsampling detection of diabetes
JP3290168B2 (en) Blood test equipment
JP3716373B2 (en) Blood test tool
EP3321679B1 (en) Blood analysis method
US20110287461A1 (en) Enzymatic analytical membrane, test device and method
US20060147349A1 (en) Sample collection device
US20100297601A1 (en) Small volume and ultra speed colorimetric sensor
JP3664278B2 (en) Method for preparing plasma or serum sample
CN111220431A (en) Method for detecting active components in blood plasma and blood plasma card using same
JPH0255952A (en) Dry chemical reagent release product, manufacture thereof and analysis method and test kit using the same
Kim et al. Enhanced Extraction of Skin Interstitial Fluid Using a Tilted Microneedle Device Fabricated by 3D Printing
EP1518118A2 (en) Sample collection device comprising a hydrophilic membrane for separating particulate material in the sample

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060531

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080602

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080605

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080801

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080826

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080918

R150 Certificate of patent or registration of utility model

Ref document number: 4206461

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111031

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121031

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131031

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term