JP4204925B2 - Anti-friction coating for torque limiter and anti-friction coating for torque limiter - Google Patents

Anti-friction coating for torque limiter and anti-friction coating for torque limiter Download PDF

Info

Publication number
JP4204925B2
JP4204925B2 JP2003285051A JP2003285051A JP4204925B2 JP 4204925 B2 JP4204925 B2 JP 4204925B2 JP 2003285051 A JP2003285051 A JP 2003285051A JP 2003285051 A JP2003285051 A JP 2003285051A JP 4204925 B2 JP4204925 B2 JP 4204925B2
Authority
JP
Japan
Prior art keywords
friction
zinc
coating film
torque limiter
resistant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003285051A
Other languages
Japanese (ja)
Other versions
JP2005054021A (en
Inventor
信裕 田平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Chemical Co Ltd
Original Assignee
Aisin Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Chemical Co Ltd filed Critical Aisin Chemical Co Ltd
Priority to JP2003285051A priority Critical patent/JP4204925B2/en
Publication of JP2005054021A publication Critical patent/JP2005054021A/en
Application granted granted Critical
Publication of JP4204925B2 publication Critical patent/JP4204925B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

本発明は、母材(鋼板または樹脂)に摩擦材を接着することによって相手材との摩擦面を形成している部品において、摩擦材を接着する代わりに母材表面に直接塗布することによって摩擦面を形成することができるトルクリミッター用耐摩擦塗膜及びそのトルクリミッター用耐摩擦塗膜を形成するためのトルクリミッター用耐摩擦塗料に関するものである。 In the present invention, the friction material is bonded to the base material (steel plate or resin) to form a friction surface with the counterpart material, and the friction is applied by directly applying the friction material to the base material surface instead of adhering the friction material. The present invention relates to a friction-resistant coating film for torque limiter that can form a surface, and a friction-resistant coating material for torque limiter for forming the friction-resistant coating film for torque limiter .

自動車等に使用されるダンパーやトルクリミッター等は、母材表面に接着された摩擦材と相手材(鋼板)が接触して摩擦材が一定のトルクで滑ることによって、出力軸トルクを抑え、または出力軸トルクの変動を抑えている。   For dampers and torque limiters used in automobiles, etc., the friction material bonded to the base material surface and the mating material (steel plate) come into contact with each other and the friction material slides at a constant torque, or the output shaft torque is suppressed, or The fluctuation of the output shaft torque is suppressed.

特許文献1の「回転体のトルクリミッター機構」においては、摩擦材を従来のフェルト材に代えて合成高分子物質からなるシート材で形成している。これによって、フェルト材が湿気を吸収することによる寸法変化に起因するトルク変動が防止され、また合成高分子物質からなるシート材は腰が強く剛性を有しているので、回転入力体と回転出力体との間に配置するだけで良く、いずれかに接着する必要がなくなって組立工程が短縮される。   In the “rotor torque limiter mechanism” of Patent Document 1, the friction material is formed of a sheet material made of a synthetic polymer material instead of a conventional felt material. This prevents torque fluctuations due to dimensional changes caused by the moisture absorption of the felt material, and the sheet material made of a synthetic polymer material is stiff and rigid. It is only necessary to arrange it between the body, and it is not necessary to adhere to either one, and the assembly process is shortened.

また、特許文献2の「トルクリミッター付ダンパー組立体」においては、成形された摩擦材を組み込んだ構成となっている。最近エンジンがますます高出力化しているにも関わらず、装置の小型化・省スペース化の要求が増大しているため、ダンパーにときとして過大なトルクが掛かることが避けられず、破損につながる恐れが大きくなっている。この問題を解決するために、入力軸または出力軸と密閉式ダンパーとの間に摩擦式のトルクリミッターを設けたものである。
特開平7−127656号公報 特開2002−181085号公報
In addition, the “damper assembly with torque limiter” of Patent Document 2 has a configuration in which a molded friction material is incorporated. Despite the ever-increasing output of engines, the demand for smaller and space-saving devices is increasing, and it is inevitable that excessive torque is sometimes applied to the damper, leading to damage. The fear is growing. In order to solve this problem, a friction type torque limiter is provided between the input shaft or the output shaft and the hermetic damper.
JP-A-7-127656 JP 2002-181085 A

しかしながら、上記特許文献1に記載の技術においても特許文献2に記載の技術においても、成形された摩擦材を使用しており、成形型のコストと成形の手間と、組み込みの手間がかかって、コスト高になってしまう。また、従来の摩擦材は鋼板と摩擦材との間に錆が発生しクラッチ固着等の不具合が起こるという問題点があった。   However, both the technology described in Patent Document 1 and the technology described in Patent Document 2 use a molded friction material, which takes the cost of the mold and the time and effort of molding, It becomes expensive. Further, the conventional friction material has a problem in that rust is generated between the steel plate and the friction material, and problems such as clutch fixation occur.

そこで、本発明は、成形された摩擦材の代わりに母材である鋼板または樹脂に直接コーティングすることで摩擦面を形成して低コスト化を図ることができ、コーティングを鋼板に施すことによって錆の発生もなくクラッチ固着等の不具合を防止できるトルクリミッター用耐摩擦塗膜及びトルクリミッター用耐摩擦塗料を提供することを課題とするものである。 Therefore, the present invention can reduce the cost by forming a friction surface by directly coating the base steel plate or resin instead of the formed friction material. It is an object of the present invention to provide a friction-resistant coating film for a torque limiter and a friction-resistant coating material for a torque limiter that can prevent problems such as clutch sticking and the like.

請求項1の発明にかかるトルクリミッター用耐摩擦塗料は、亜鉛粉、熱硬化性樹脂、硬化剤、分散剤、溶剤、水からなるトルクリミッター用の耐摩擦塗料であって、前記トルクリミッターを構成する摩擦材と鋼材とが接触する部分において前記摩擦材と前記鋼材のいずれかの接触面に塗布するものであり、前記耐摩擦塗料を塗布してなる塗膜(固形分)中の亜鉛量は60重量%〜75重量%の範囲内であるものである。 Rub paint torque limiter according to a first aspect of the invention, zinc dust, thermosetting resin, curing agent, dispersing agent, solvent, an abrasion paint for torque limiter consisting of water, constituting the torque limiter The amount of zinc in the coating film (solid content) formed by applying the anti-friction paint is applied to any contact surface of the friction material and the steel material at a portion where the friction material and the steel material contact each other. It is in the range of 60% to 75% by weight.

請求項2の発明にかかるトルクリミッター用耐摩擦塗料は、請求項1の構成において、前記亜鉛粉の平均粒径は1μm〜20μmの範囲内であるものである。 The friction-resistant paint for torque limiter according to the invention of claim 2 is the structure of claim 1, wherein the average particle size of the zinc powder is in the range of 1 to 20 μm.

請求項3の発明にかかるトルクリミッター用耐摩擦塗膜は、請求項1または請求項2に記載のトルクリミッター用耐摩擦塗料を前記摩擦材と前記鋼材のいずれかの接触面に塗布してなるものである。 Torque limiter for antifriction coating according to the invention of claim 3 is formed by applying a rub paint torque limiter according to any one of the contact surfaces of the steel and the friction member to claim 1 or claim 2 Is.

請求項4の発明にかかるトルクリミッター用耐摩擦塗膜は、請求項3の構成において、塗膜(固形分)中の亜鉛量は60重量%〜75重量%の範囲内であるものである。 The friction-resistant coating film for torque limiter according to the invention of claim 4 is the structure of claim 3, wherein the amount of zinc in the coating film (solid content) is in the range of 60 wt% to 75 wt%.

請求項5の発明にかかるトルクリミッター用耐摩擦塗膜は、請求項3または請求項4の構成において、塗膜の厚さは15μm〜35μmの範囲内であるものである。 The friction-resistant coating film for a torque limiter according to the invention of claim 5 is the structure of claim 3 or claim 4, wherein the thickness of the coating film is in the range of 15 μm to 35 μm.

請求項1の発明にかかるトルクリミッター用耐摩擦塗料は、亜鉛粉、熱硬化性樹脂、硬化剤、分散剤、溶剤、水からなるトルクリミッター用の耐摩擦塗料であって、トルクリミッターを構成する摩擦材と鋼材とが接触する部分において摩擦材と鋼材のいずれかの接触面に塗布するものであり、耐摩擦塗料を塗布してなる塗膜(固形分)中の亜鉛量が60重量%〜75重量%の範囲内である。 Rub paint torque limiter according to a first aspect of the invention, zinc dust, thermosetting resin, curing agent, dispersing agent, solvent, an abrasion paint for torque limiter consisting of water, constituting the torque limiter It is applied to the contact surface between the friction material and the steel material at the portion where the friction material and the steel material are in contact with each other, and the zinc content in the coating film (solid content) formed by applying the anti-friction paint is from 60% by weight to It is in the range of 75% by weight.

請求項1の発明にかかるトルクリミッター用耐摩擦塗料においては、トルクリミッターを構成する摩擦材と鋼材とが接触する部分において摩擦材と鋼材のいずれかの接触面に塗布することによって耐摩擦性の塗膜を形成するので、母材に摩擦材を接着する代わりに、母材表面に耐摩擦塗料を塗布することによって、相手材の摩擦面と擦れる際、亜鉛の切削抵抗が摩擦力となって適切な摩擦係数が得られる。また、樹脂にガラス繊維や金属粉を配合して摩擦材としての機能を持たせることも考えられるが、表面の樹脂層の部分では摩擦係数が低下し初期の摩擦係数が安定しないという欠点があった。これに対して、本発明の耐摩擦塗料を塗布してなる塗膜においては、最初から亜鉛が表面に出ているため摩擦初期から安定した摩擦係数が得られる。さらに、亜鉛を含む耐摩擦性塗膜が鋼板に形成されることによって、亜鉛の犠牲腐食作用によって錆の発生もなく、フライホイールクラッチ等におけるクラッチ固着も防止できる。 In the friction-resistant paint for a torque limiter according to the invention of claim 1, the friction-resistant coating is applied to any contact surface of the friction material and the steel material at a portion where the friction material constituting the torque limiter and the steel material are in contact with each other. Since a coating film is formed, instead of adhering the friction material to the base material, by applying a friction-resistant paint to the base material surface, when the friction surface of the counterpart material is rubbed, the zinc cutting resistance becomes a frictional force. Appropriate coefficient of friction is obtained. It is also conceivable to add glass fiber or metal powder to the resin so that it has a function as a friction material. However, there is a drawback that the initial friction coefficient is not stable because the friction coefficient decreases in the resin layer portion on the surface. It was. On the other hand, in the coating film formed by applying the friction-resistant paint of the present invention, since the zinc is exposed from the beginning, a stable friction coefficient can be obtained from the initial stage of friction. Furthermore, since the friction-resistant coating film containing zinc is formed on the steel plate, rust is not generated by the sacrificial corrosion action of zinc, and clutch sticking in a flywheel clutch or the like can be prevented.

また、亜鉛粉がバインダーとしての熱硬化性樹脂で均一かつ強固に固められて、塗膜が相手材と摩擦しても亜鉛粉が剥離することがない。更に、耐摩擦塗料を塗布してなる塗膜(固形分)中の亜鉛量が60重量%未満の場合には、摩擦係数の変動幅が大きくなるとともに、付着性に問題が出てきて表面剥離が生じ始める。また、亜鉛量が75重量%を超える場合には、塗膜硬度が不足するとともに、バインダー量が不足するためにやはり付着性(塗布性)に問題が生ずる。したがって、耐摩擦塗料を塗布してなる塗膜中の亜鉛量は60重量%〜75重量%の範囲内とするのが好ましい。   Moreover, even if the zinc powder is hardened uniformly and firmly with a thermosetting resin as a binder, the zinc powder does not peel even if the coating film rubs against the counterpart material. Furthermore, when the amount of zinc in the coating film (solid content) formed by applying the anti-friction paint is less than 60% by weight, the fluctuation range of the friction coefficient becomes large and a problem arises in the adhesion, resulting in surface peeling. Begins to occur. On the other hand, when the amount of zinc exceeds 75% by weight, the coating film hardness is insufficient and the amount of the binder is insufficient, which also causes a problem in adhesion (applicability). Therefore, it is preferable that the amount of zinc in the coating film formed by applying the antifriction coating is in the range of 60 wt% to 75 wt%.

このようにして、成形された摩擦材の代わりに母材である鋼板または樹脂に直接コーティングすることで摩擦面を形成して低コスト化を図ることができ、コーティングを鋼板に施すことによって錆の発生もなくクラッチ固着等の不具合を防止できるトルクリミッター用耐摩擦塗料となる。 In this way, it is possible to reduce the cost by forming a friction surface by directly coating the base material steel plate or resin instead of the formed friction material. It becomes a friction-resistant paint for torque limiters that can prevent problems such as clutch sticking without occurrence.

請求項2の発明にかかるトルクリミッター用耐摩擦塗料においては、亜鉛粉の平均粒径が1μm〜20μmの範囲内である。 In the friction-resistant paint for torque limiter according to the invention of claim 2, the average particle size of the zinc powder is in the range of 1 μm to 20 μm.

亜鉛粉の平均粒径がこの範囲内であれば、亜鉛粉を多く含む耐摩擦塗膜によって、相手材の摩擦面と擦れる際、亜鉛の切削抵抗が摩擦力となって適切な摩擦係数が得られる。亜鉛粉の平均粒径が1μmより小さいと切削抵抗による摩擦力が得られず、亜鉛粉の平均粒径が20μmより大きいと亜鉛粉がバインダーで強固に固められず、耐摩擦塗膜が相手材と摩擦したときに亜鉛粉が剥離する恐れがある。したがって、亜鉛粉の平均粒径は1μm〜20μmの範囲内とするのが好ましい。   If the average particle size of the zinc powder is within this range, an appropriate friction coefficient can be obtained when the frictional coating film containing a large amount of zinc powder rubs against the friction surface of the mating material and the cutting force of the zinc acts as a frictional force. It is done. If the average particle size of the zinc powder is smaller than 1 μm, frictional force due to cutting resistance cannot be obtained, and if the average particle size of the zinc powder is larger than 20 μm, the zinc powder cannot be firmly solidified with a binder, and the friction-resistant coating film is a counterpart material. Zinc powder may peel off when rubbed. Therefore, the average particle size of the zinc powder is preferably in the range of 1 μm to 20 μm.

このようにして、成形された摩擦材の代わりに、母材である鋼板または樹脂に直接適切な平均粒径の亜鉛粉をコーティングすることで、摩擦面を形成して適切な摩擦係数が得られるトルクリミッター用耐摩擦塗料となる。 In this way, instead of the formed friction material, the base steel plate or resin is directly coated with zinc powder having an appropriate average particle diameter, thereby forming a friction surface and obtaining an appropriate coefficient of friction. This is a friction-resistant paint for torque limiters .

請求項3の発明にかかるトルクリミッター用耐摩擦塗膜は、請求項1または請求項2に記載のトルクリミッター用耐摩擦塗料を摩擦材と鋼材のいずれかの接触面に塗布してなる。 A friction-resistant coating film for a torque limiter according to a third aspect of the invention is formed by applying the friction-resistant coating material for a torque limiter according to the first or second aspect to any contact surface of a friction material and a steel material.

このように、本発明にかかるトルクリミッター用耐摩擦塗膜においては、トルクリミッターを構成する摩擦材と鋼材とが接触する部分において摩擦材と鋼材のいずれかの接触面に塗布することによって耐摩擦性の塗膜を形成するので、相手材の摩擦面と擦れる際、亜鉛の切削抵抗が摩擦力となって適切な摩擦係数が得られる。また、樹脂にガラス繊維や金属粉を配合して摩擦材としての機能を持たせることも考えられるが、表面の樹脂層の部分では摩擦係数が低下し初期の摩擦係数が安定しないという欠点があった。これに対して、本発明の耐摩擦塗膜においては、最初から亜鉛が表面に出ているため摩擦初期から安定した摩擦係数が得られる。さらに、亜鉛を含む耐摩擦性塗膜が鋼板に形成されることによって、亜鉛の犠牲腐食作用によって錆の発生もなく、フライホイールクラッチ等におけるクラッチ固着も防止できる。 Thus, in the friction-resistant coating film for torque limiter according to the present invention, the friction-resistant coating is applied to any contact surface of the friction material and the steel material at the portion where the friction material constituting the torque limiter and the steel material are in contact with each other. Therefore, when rubbing against the friction surface of the counterpart material, the cutting resistance of zinc becomes a frictional force and an appropriate friction coefficient is obtained. It is also conceivable to add glass fiber or metal powder to the resin so that it has a function as a friction material. However, there is a drawback that the initial friction coefficient is not stable because the friction coefficient decreases in the resin layer portion on the surface. It was. On the other hand, in the friction-resistant coating film of the present invention, a stable friction coefficient can be obtained from the initial stage of friction because zinc is exposed on the surface from the beginning. Furthermore, since the friction-resistant coating film containing zinc is formed on the steel plate, rust is not generated by the sacrificial corrosion action of zinc, and clutch sticking in a flywheel clutch or the like can be prevented.

また、亜鉛粉がバインダーとしての熱硬化性樹脂で均一かつ強固に固められて、塗膜が相手材と摩擦しても亜鉛粉が剥離することがない。   Moreover, even if the zinc powder is hardened uniformly and firmly with a thermosetting resin as a binder, the zinc powder does not peel even if the coating film rubs against the counterpart material.

このようにして、成形された摩擦材の代わりに母材である鋼板または樹脂に直接コーティングすることで摩擦面を形成して低コスト化を図ることができ、コーティングを鋼板に施すことによって錆の発生もなくクラッチ固着等の不具合を防止できるトルクリミッター用耐摩擦塗膜となる。 In this way, it is possible to reduce the cost by forming a friction surface by directly coating the base material steel plate or resin instead of the formed friction material. It becomes a friction-resistant coating film for a torque limiter that can prevent defects such as clutch sticking without occurrence.

請求項4の発明にかかるトルクリミッター用耐摩擦塗膜においては、塗膜(固形分)中の亜鉛量が60重量%〜75重量%の範囲内である。亜鉛量が60重量%未満の場合には、摩擦係数の変動幅が大きくなるとともに、付着性に問題が出てきて表面剥離が生じ始める。また、亜鉛量が75重量%を超える場合には、塗膜硬度が不足するとともに、バインダー量が不足するためにやはり付着性(塗布性)に問題が生ずる。したがって、耐摩擦塗膜中の亜鉛量は60重量%〜75重量%の範囲内とするのが好ましい。 In the friction-resistant coating film for torque limiter according to the invention of claim 4, the amount of zinc in the coating film (solid content) is in the range of 60 wt% to 75 wt%. When the amount of zinc is less than 60% by weight, the fluctuation range of the friction coefficient becomes large, and a problem arises in adhesion, and surface peeling begins to occur. On the other hand, when the amount of zinc exceeds 75% by weight, the coating film hardness is insufficient and the amount of the binder is insufficient, which also causes a problem in adhesion (applicability). Therefore, the amount of zinc in the anti-friction coating is preferably in the range of 60% to 75% by weight.

このようにして、成形された摩擦材の代わりに、母材である鋼板または樹脂に直接適量の亜鉛粉をコーティングすることで、摩擦面を形成して適切な摩擦係数が得られるトルクリミッター用耐摩擦塗膜となる。 Thus, instead of the molded friction material, to coat directly suitable amount of zinc powder steel or resin as the base material, resistant torque limiter suitable friction coefficient to form a friction surface is obtained It becomes a friction coating.

請求項5の発明にかかるトルクリミッター用耐摩擦塗膜は、塗膜の厚さが15μm〜35μmの範囲内である。耐摩擦塗膜の厚さが15μm未満では薄すぎて摩擦面として機能せず、耐摩擦塗膜の厚さが35μmを超える場合には摩擦係数の変動幅が大きくなって好ましくない。したがって、耐摩擦塗膜の厚さは、15μm〜35μmの範囲内であることが好ましい。 The friction-resistant coating film for torque limiter according to the invention of claim 5 has a coating film thickness in the range of 15 μm to 35 μm. If the thickness of the friction-resistant coating film is less than 15 μm, it is too thin to function as a friction surface, and if the thickness of the friction-resistant coating film exceeds 35 μm, the fluctuation range of the friction coefficient increases, which is not preferable. Therefore, the thickness of the friction-resistant coating film is preferably in the range of 15 μm to 35 μm.

このようにして、成形された摩擦材の代わりに、母材である鋼板または樹脂に直接適切な厚さの亜鉛粉をコーティングすることで、摩擦面を形成して適切な摩擦係数が得られるトルクリミッター用耐摩擦塗膜となる。 Thus, instead of the molded friction material, by coating the zinc powder directly suitable thickness of the steel sheet or a resin as the base material, suitable friction coefficient to form a friction surface can be obtained torque It becomes a friction-resistant coating film for limiters .

以下、本発明の実施の形態について、図1乃至図3を参照して説明する。   Hereinafter, embodiments of the present invention will be described with reference to FIGS. 1 to 3.

図1(a)は従来の摩擦材を母材に貼り付けた部品を示す斜視図、(b)は本発明の実施の形態にかかる耐摩擦塗膜としての亜鉛をコーティングした部品を示す斜視図であり、いずれも摩擦材・コーティング材の厚さを実際より厚く誇張した模式図である。図2は本発明の実施の形態にかかる耐摩擦塗膜としての亜鉛コーティング部品の摩擦係数の測定方法を示す模式図である。図3は本発明の実施の形態にかかる耐摩擦塗膜としての亜鉛コーティング部品の摩擦係数の経時変化を従来の摩擦材を母材に貼り付けた部品と比較して示した図である。   FIG. 1A is a perspective view showing a part in which a conventional friction material is pasted on a base material, and FIG. 1B is a perspective view showing a part coated with zinc as a friction-resistant coating film according to an embodiment of the present invention. Both are schematic diagrams in which the thickness of the friction material / coating material is exaggerated to be thicker than the actual thickness. FIG. 2 is a schematic diagram showing a method for measuring a friction coefficient of a zinc-coated component as a friction-resistant coating film according to an embodiment of the present invention. FIG. 3 is a diagram showing the change over time in the coefficient of friction of a zinc-coated part as a friction-resistant coating film according to an embodiment of the present invention compared with a part in which a conventional friction material is attached to a base material.

図1(a)に示されるように、従来の摩擦部品1は、母材となるベース樹脂3にゴムに真鍮粉を配合した摩擦材2を接着剤(熱硬化性のエポキシ系接着剤等)4で接着してなるものであり、摩擦材2を成形するための成形型のコストや、接着剤4を塗布して接着して加熱硬化させる手間がかかるために、コスト高になっていた。これに対して、図1(b)に示されるように、本実施の形態の亜鉛コーティング部品5は同じく母材となるベース樹脂3に、本実施の形態の耐摩擦塗料を塗布して加熱硬化し表面に耐摩擦塗膜としての亜鉛塗膜6を形成させたもので、手間が掛からないため従来の摩擦部品1に比べてずっと低コスト化できる。なお、本実施の形態のベース樹脂3としてはPAGF(ポリアミド(ナイロン)ガラス繊維)強化樹脂を使用した。   As shown in FIG. 1 (a), a conventional friction component 1 has an adhesive (such as a thermosetting epoxy-based adhesive) bonded to a friction material 2 in which brass powder is mixed with a base resin 3 as a base material. 4, the cost of the molding die for molding the friction material 2 and the labor of applying and bonding the adhesive 4 and heating and curing it are high. On the other hand, as shown in FIG. 1B, the zinc-coated component 5 of the present embodiment is heat-cured by applying the friction-resistant paint of the present embodiment to the base resin 3 that is also the base material. In this case, the surface is formed with a zinc coating 6 as a friction-resistant coating, so that it does not take time, and therefore, the cost can be reduced compared with the conventional friction component 1. Note that PAGF (polyamide (nylon) glass fiber) reinforced resin was used as the base resin 3 of the present embodiment.

次に、この本実施の形態にかかる耐摩擦塗膜としての亜鉛塗膜6を形成するための本実施の形態にかかる耐摩擦塗料の作製方法について、(表1)を参照して説明する。   Next, a method for producing a friction-resistant coating material according to this embodiment for forming the zinc coating film 6 as the friction-resistant coating film according to this embodiment will be described with reference to (Table 1).

Figure 0004204925
Figure 0004204925

表1に示されるように、本実施の形態の耐摩擦塗料は、熱硬化性樹脂として水性アルキッド樹脂を64.4重量%、硬化剤としてメチルエーテル化メラミンを6.5重量%、分散剤としてアセチレンジオール系分散剤を2.1重量%、溶剤としてブチルセロソルブを14.0重量%、そしてイオン交換水を13.0重量%混合して良く攪拌し、塗料液を作る。この塗料液に平均粒径5μmの亜鉛末を、乾燥したとき亜鉛含有量が約60重量%〜約75重量%の範囲内に入るように適量を加えて攪拌し、耐摩擦塗料を作製する。本実施の形態においては、乾燥したとき亜鉛含有量が約70重量%を中心として何種類かになるように塗料液に亜鉛末を加えて攪拌した。   As shown in Table 1, the friction-resistant paint of the present embodiment has a water-based alkyd resin as the thermosetting resin of 64.4% by weight, a methyl etherified melamine as the curing agent of 6.5% by weight, and a dispersant. Mix 2.1% by weight of acetylenic diol-based dispersant, 14.0% by weight of butyl cellosolve as a solvent, and 13.0% by weight of ion-exchanged water. A suitable amount of zinc powder having an average particle size of 5 μm is added to this coating liquid and stirred so that the zinc content falls within the range of about 60 wt% to about 75 wt% when dried to produce a friction resistant coating. In the present embodiment, zinc powder was added to the coating liquid and stirred so that the zinc content would be several types, mainly about 70% by weight when dried.

この亜鉛塗膜6について、含有亜鉛(Zn)量と塗膜性能の関係について、下記(表2)に測定結果を比較例と比較してまとめた。亜鉛塗膜6の作製方法としては、上述のようにして作製した本実施の形態の耐摩擦塗料をエアスプレー法で被塗物に塗装し、室温にて5分間セッティング後、130℃の乾燥機で20分間焼き付けを行った。   About this zinc coating film 6, about the relationship between the amount of zinc (Zn) and coating film performance, the measurement result was put together in the following (Table 2) compared with the comparative example. As a method for producing the zinc coating film 6, the friction-resistant paint of the present embodiment produced as described above is applied to an article to be coated by an air spray method, set at room temperature for 5 minutes, and then a dryer at 130 ° C. And baked for 20 minutes.

Figure 0004204925
Figure 0004204925

表2に示されるように、亜鉛塗膜6について、含有亜鉛(Zn)量が80%の比較例1と、75%から60%まで5%ずつ減らした実施例1,2,3,4、含有亜鉛量が50%の比較例2、30%の比較例3について塗膜性能を測定した。合わせて、従来品の摩擦材2についても、比較のために摩擦係数を測定した。   As shown in Table 2, with respect to the zinc coating film 6, Comparative Example 1 in which the amount of zinc (Zn) contained was 80%, and Examples 1, 2, 3, 4, and 5% reduced from 75% to 60%. The coating film performance was measured for Comparative Example 2 with a zinc content of 50% and Comparative Example 3 with 30%. In addition, the friction coefficient of the conventional friction material 2 was also measured for comparison.

表2に示されるように、外観については実施例1〜4と比較例1は通常の亜鉛の色で良好であったが、比較例2は褐色、比較例3は茶褐色であった。付着性については、実施例1〜4と比較例2は表面剥離が0%と良好であったが、比較例3は表面剥離が30%であり、また比較例1は表面剥離こそ0%であるがバインダーの割合が少ないため表層で剥離が起こり好ましくない結果であった。   As shown in Table 2, in terms of appearance, Examples 1 to 4 and Comparative Example 1 were good in ordinary zinc color, but Comparative Example 2 was brown, and Comparative Example 3 was brown. Regarding adhesion, Examples 1 to 4 and Comparative Example 2 had good surface peeling of 0%, Comparative Example 3 had 30% surface peeling, and Comparative Example 1 had only 0% surface peeling. However, since the ratio of the binder was small, peeling occurred on the surface layer, which was an undesirable result.

次に、塗膜硬度であるが、これはJIS(日本工業規格)の「鉛筆硬度」の測定方法にしたがって測定した。その結果、比較例1は2Hとやや軟らかく、実施例1〜4は4Hで良好であり、比較例2は5H、比較例3は6Hと、含有亜鉛量が少なくなるほど塗膜硬度は高くなった。   Next, the coating film hardness was measured according to the “pencil hardness” measuring method of JIS (Japanese Industrial Standard). As a result, Comparative Example 1 was slightly soft as 2H, Examples 1 to 4 were good at 4H, Comparative Example 2 was 5H, Comparative Example 3 was 6H, and the coating hardness increased as the amount of zinc contained decreased. .

最後に摩擦係数は、鈴木式摩擦摩耗試験機を用いて、一定の回転数で供試体を回転させながら一定の圧力で鋼板を押し付けて、その際の滑りトルクをロードセルで測定して算出した。鈴木式摩擦摩耗試験機による、具体的な測定方法の模式図を図2に示す。図2に示されるように、半径r=1.15cmの供試体(摩擦部品)5の摩擦面に鋼板7を加圧荷重Wで押し付けて、供試体5の中心からR=10cm離れた位置においてロードセル8で検出された荷重Fから、摩擦係数μの計算式(1)、
μ=(F×R)/(W×r) ……(1)
によって摩擦係数μを算出する。本実施の形態においては、R=10cm,r=1.15cmであるから、式(1)は次式(2)となる。
μ=(F×10)/(W×1.15) ……(2)
測定条件としては、雰囲気温度は室温、加圧荷重W=0.76MPa/cm2 、滑り速度18m/minで測定した。
Finally, the friction coefficient was calculated by using a Suzuki friction and wear tester, pressing the steel plate with a constant pressure while rotating the specimen at a constant rotation speed, and measuring the sliding torque with a load cell. FIG. 2 shows a schematic diagram of a specific measurement method using a Suzuki friction and wear tester. As shown in FIG. 2, the steel plate 7 is pressed against the friction surface of the specimen (friction part) 5 having a radius r = 1.15 cm with a pressurized load W, and R = 10 cm away from the center of the specimen 5. From the load F detected by the load cell 8, a calculation formula (1) of the friction coefficient μ,
μ = (F × R) / (W × r) (1)
To calculate the friction coefficient μ. In this embodiment, since R = 10 cm and r = 1.15 cm, the expression (1) becomes the following expression (2).
μ = (F × 10) / (W × 1.15) (2)
As measurement conditions, the ambient temperature was room temperature, the pressure load W was 0.76 MPa / cm 2 , and the sliding speed was 18 m / min.

その結果、実施例1〜4と比較例1及び比較例4は、初期摩擦係数がいずれも≒0.4で、変動幅(12時間摩擦後の最大値と最小値の差)も27%以下と小さいが、比較例2,比較例3は初期摩擦係数が0.45,0.48と高く、変動幅も28%以上と大きい。   As a result, each of Examples 1 to 4, Comparative Example 1 and Comparative Example 4 had an initial friction coefficient of ≈0.4, and a fluctuation range (difference between the maximum value and the minimum value after 12 hours of friction) was 27% or less. However, Comparative Example 2 and Comparative Example 3 have high initial friction coefficients of 0.45 and 0.48, and a large fluctuation range of 28% or more.

以上の結果から、亜鉛塗膜6の含有亜鉛量は約60重量%〜約75重量%の範囲が最適量と判定される。   From the above results, the zinc content of the zinc coating film 6 is determined to be an optimum amount in the range of about 60 wt% to about 75 wt%.

次に、亜鉛塗膜の膜厚と摩擦係数の関係について(表3)を参照して説明する。   Next, the relationship between the film thickness of the zinc coating film and the friction coefficient will be described with reference to (Table 3).

Figure 0004204925
Figure 0004204925

この試験は、含有亜鉛量が約70重量%となる耐摩擦塗料を用いて行った。その結果、4種類の膜厚の耐摩擦塗膜について外観、付着性、硬度には問題がなく、摩擦係数の変動幅は膜厚100μmでは38%と大きくなった。他の膜厚15,25,35μmの供試体については、初期摩擦係数も変動幅も問題なく、亜鉛塗膜の膜厚は約15μm〜約35μmの範囲内とすることが好ましいことが分かった。膜厚が約15μmより小さいと薄すぎて摩擦面として機能せず、膜厚が約35μmより大きいと摩擦係数の変動幅が大きくなって好ましくない。   This test was performed using a friction-resistant paint having a zinc content of about 70% by weight. As a result, there were no problems in the appearance, adhesion, and hardness of the four types of anti-friction coating films, and the fluctuation range of the friction coefficient was as large as 38% when the film thickness was 100 μm. For other specimens with film thicknesses of 15, 25, and 35 μm, it was found that the initial friction coefficient and the fluctuation range were satisfactory, and the film thickness of the zinc coating film was preferably within the range of about 15 μm to about 35 μm. If the film thickness is smaller than about 15 μm, it is too thin to function as a friction surface, and if the film thickness is larger than about 35 μm, the fluctuation range of the friction coefficient becomes large, which is not preferable.

次に、母剤としてのPAGF強化樹脂3に摩擦材2を接着剤4で貼り付けた従来品1と、本実施の形態の耐摩擦塗料をPAGF強化樹脂3に塗布して耐摩擦塗膜としての亜鉛塗膜6(亜鉛含有量70重量%、亜鉛粉平均粒径約5μm、膜厚25μm)を形成した摩擦部品5との摩擦係数μの経時変化について、(表4)を参照して説明する。なお、比較のためにPAGF強化樹脂3そのものを摩擦面とした場合についても測定した。   Next, the conventional product 1 in which the friction material 2 is bonded to the PAGF reinforced resin 3 as a base material with the adhesive 4 and the friction resistant paint of the present embodiment are applied to the PAGF reinforced resin 3 to form a friction resistant coating film. Change with time of friction coefficient μ with friction component 5 on which a zinc coating film 6 (zinc content 70% by weight, zinc powder average particle diameter of about 5 μm, film thickness 25 μm) was formed is described with reference to (Table 4) To do. For comparison, the PAGF reinforced resin 3 itself was also measured as a friction surface.

Figure 0004204925
Figure 0004204925

その結果、表4に示されるように、従来品1(摩擦材貼り付け)と本実施の形態の亜鉛塗膜6を形成した摩擦部品5(亜鉛コーティング)とは、初期の摩擦係数も適切な値で安定しており、18.8時間摩擦試験後の摩擦係数の変動幅もそれぞれ27%と22%と小さい。特に、本実施の形態の亜鉛塗膜6を形成した摩擦部品5は、従来品1と同等以上の特性を示している。   As a result, as shown in Table 4, the friction coefficient 5 (zinc coating) on which the conventional product 1 (friction material pasting) and the zinc coating 6 of the present embodiment are formed has an appropriate initial friction coefficient. The fluctuation range of the coefficient of friction after the 18.8 hour friction test is also small, 27% and 22%, respectively. In particular, the friction component 5 on which the zinc coating film 6 of the present embodiment is formed exhibits characteristics equal to or higher than those of the conventional product 1.

これに対して、PAGF強化樹脂3そのものを摩擦面とした場合には、初期の摩擦係数が小さく摩擦係数の変動も大きい。これは、PAGF強化樹脂3の表層にはPA(ポリアミド)樹脂のみが存在しており、強化用のGF(ガラスファイバー)が存在していないため、初期のポリアミド樹脂のみが削られる段階では摩擦係数が小さく、ガラスファイバーが表面に現れた時点で摩擦係数が急激に大きくなるものと考えられる。したがって、摩擦係数の変動幅も121%と極めて大きくなっている。   On the other hand, when the PAGF reinforced resin 3 itself is used as a friction surface, the initial friction coefficient is small and the fluctuation of the friction coefficient is large. This is because only the PA (polyamide) resin is present on the surface layer of the PAGF reinforced resin 3 and no reinforcing GF (glass fiber) is present. The friction coefficient is considered to increase rapidly when the glass fiber appears on the surface. Therefore, the fluctuation range of the friction coefficient is as extremely large as 121%.

この表4の測定結果をグラフにしたものが、図3である。図3に示されるように、本実施の形態の亜鉛コーティング品は、初期(0〜2時間)の摩擦係数が極めて安定しており、従来品(摩擦材貼り付け品)よりも優れている。したがって、トルクリミッター等のように短時間しか摩擦しない摩擦部品においては、特に優れた性能を発揮することが期待される。   FIG. 3 is a graph showing the measurement results in Table 4. As shown in FIG. 3, the zinc-coated product of the present embodiment has an extremely stable initial (0 to 2 hours) friction coefficient, and is superior to the conventional product (friction material-attached product). Therefore, it is expected that a friction part that only rubs for a short time such as a torque limiter will exhibit particularly excellent performance.

このように、本実施の形態の耐摩擦塗料を母材に塗布して加熱硬化してなる耐摩擦塗膜は、亜鉛を多く含み、最初から亜鉛が表面に出ているため、摩擦初期から安定した摩擦係数が得られる。さらに、亜鉛を多く含む耐摩擦塗膜が鋼板に形成されることによって、亜鉛の犠牲腐食作用によって錆の発生もなく、フライホイールクラッチ等におけるクラッチ固着も防止できる。このようにして、成形された摩擦材の代わりに母材である鋼板または樹脂に直接コーティングすることで摩擦面を形成して低コスト化を図ることができ、コーティングを鋼板に施すことによって錆の発生もなくクラッチ固着等の不具合を防止できる。また、耐摩擦塗料は、亜鉛粉・熱硬化性樹脂・硬化剤・分散剤・溶剤・水からなるので、多量の亜鉛粉がバインダーとしての熱硬化性樹脂で均一かつ強固に固められて、塗膜が相手材と摩擦しても亜鉛粉が剥離することがない。   As described above, the friction-resistant coating film obtained by applying the friction-resistant paint of the present embodiment to the base material and heat-curing contains a large amount of zinc, and since zinc is exposed on the surface from the beginning, it is stable from the beginning of friction. The coefficient of friction obtained is obtained. Furthermore, since a friction-resistant coating film containing a large amount of zinc is formed on the steel sheet, rust is not generated by the sacrificial corrosion action of zinc, and clutch sticking in a flywheel clutch or the like can be prevented. In this way, it is possible to reduce the cost by forming a friction surface by directly coating the base material steel plate or resin instead of the formed friction material. There is no occurrence and problems such as clutch fixation can be prevented. In addition, since the anti-friction coating is composed of zinc powder, thermosetting resin, curing agent, dispersant, solvent, and water, a large amount of zinc powder is uniformly and firmly hardened with the thermosetting resin as a binder. Even if the film rubs against the mating material, the zinc powder does not peel off.

また、亜鉛粉の平均粒径が約5μmであるため、相手材の摩擦面と擦れる際、亜鉛の切削抵抗が摩擦力となって適切な摩擦係数が得られる。さらに、耐摩擦塗膜(固形分)中の亜鉛量が約70重量%であるため、摩擦係数の変動幅も小さく、付着性にも問題はない。そして、耐摩擦塗膜の厚さが約25μmであるため、充分摩擦面として機能し、摩擦係数の変動幅も小さく抑えられる。   Moreover, since the average particle diameter of zinc powder is about 5 micrometers, when rubbing with the friction surface of a counterpart material, the cutting resistance of zinc becomes a frictional force and an appropriate friction coefficient is obtained. Furthermore, since the amount of zinc in the friction-resistant coating film (solid content) is about 70% by weight, the fluctuation range of the friction coefficient is small, and there is no problem in adhesion. And since the thickness of a friction-resistant coating film is about 25 micrometers, it functions as a friction surface enough and the fluctuation range of a friction coefficient is also suppressed small.

本実施の形態においては、耐摩擦塗膜の亜鉛粉の平均粒径を約5μmとしたが、約1μm〜約20μmの範囲内であれば良い。また、亜鉛量を約70重量%としたが、約60重量%〜約75重量%の範囲内であれば良い。さらに、耐摩擦塗膜の厚さを約25μmとしたが、約15μm〜約35μmの範囲内であれば良い。   In the present embodiment, the average particle size of the zinc powder of the friction-resistant coating film is about 5 μm, but it may be in the range of about 1 μm to about 20 μm. Further, although the zinc amount is about 70% by weight, it may be in the range of about 60% to about 75% by weight. Furthermore, although the thickness of the friction-resistant coating film is about 25 μm, it may be in the range of about 15 μm to about 35 μm.

また、本実施の形態においては、耐摩擦塗料の熱硬化性樹脂としてアルキッド樹脂を用いているが、エポキシ樹脂等の有機バインダーやアルキルシリケート等の無機バインダー等、他の熱硬化性樹脂を用いることもできる。   In this embodiment, the alkyd resin is used as the thermosetting resin of the friction-resistant paint, but other thermosetting resins such as an organic binder such as an epoxy resin and an inorganic binder such as an alkyl silicate are used. You can also.

本発明を実施するに際しては、トルクリミッター用耐摩擦塗膜またはトルクリミッター用耐摩擦塗料のその他の部分の構成、形状、数量、材質、大きさ、接続関係等についても、本実施の形態に限定されるものではない。 In practicing the present invention, configuration of the other parts of the anti-friction coating or friction resistance paint torque limiter for torque limiter, shape, quantity, material, size, for the connection relationship, etc., limited to the embodiment Is not to be done.

図1(a)は従来の摩擦材を母材に貼り付けた部品を示す斜視図、(b)は本発明の実施の形態にかかる耐摩擦塗膜としての亜鉛をコーティングした部品を示す斜視図であり、いずれも摩擦材・コーティング材の厚さを実際より厚く誇張した模式図である。FIG. 1A is a perspective view showing a part in which a conventional friction material is pasted on a base material, and FIG. 1B is a perspective view showing a part coated with zinc as a friction-resistant coating film according to an embodiment of the present invention. Both are schematic diagrams in which the thickness of the friction material / coating material is exaggerated to be thicker than the actual thickness. 図2は本発明の実施の形態にかかる耐摩擦塗膜としての亜鉛コーティング部品の摩擦係数の測定方法を示す模式図である。FIG. 2 is a schematic diagram showing a method for measuring a friction coefficient of a zinc-coated component as a friction-resistant coating film according to an embodiment of the present invention. 図3は本発明の実施の形態にかかる耐摩擦塗膜としての亜鉛コーティング部品の摩擦係数の経時変化を従来の摩擦材を母材に貼り付けた部品と比較して示した図である。FIG. 3 is a diagram showing the change over time in the coefficient of friction of a zinc-coated part as a friction-resistant coating film according to an embodiment of the present invention compared with a part in which a conventional friction material is attached to a base material.

符号の説明Explanation of symbols

2 摩擦材
3 母材
4 接着剤
5 亜鉛コーティング部品
6 亜鉛塗膜
2 Friction material 3 Base material 4 Adhesive 5 Zinc coating part 6 Zinc coating

Claims (5)

亜鉛粉、熱硬化性樹脂、硬化剤、分散剤、溶剤、水からなるトルクリミッター用の耐摩擦塗料であって、
前記トルクリミッターを構成する摩擦材と鋼材とが接触する部分において前記摩擦材と前記鋼材のいずれかの接触面に塗布するものであり、
前記耐摩擦塗料を塗布してなる塗膜(固形分)中の亜鉛量は60重量%〜75重量%の範囲内であることを特徴とするトルクリミッター用耐摩擦塗料。
A friction-resistant paint for torque limiters consisting of zinc powder, thermosetting resin, curing agent, dispersant, solvent, water,
The friction limiter constituting the torque limiter is applied to any contact surface of the friction material and the steel material at a portion where the friction material and the steel material are in contact with each other,
A friction-resistant paint for torque limiters, wherein the amount of zinc in the coating film (solid content) formed by applying the friction-resistant paint is in the range of 60 wt% to 75 wt%.
前記亜鉛粉の平均粒径は1μm〜20μmの範囲内であることを特徴とする請求項1に記載のトルクリミッター用耐摩擦塗料。 The friction resistant paint for a torque limiter according to claim 1, wherein an average particle size of the zinc powder is in a range of 1 µm to 20 µm. 請求項1または請求項2に記載のトルクリミッター用耐摩擦塗料を前記摩擦材と前記鋼材のいずれかの接触面に塗布してなることを特徴とするトルクリミッター用耐摩擦塗膜。 A friction-resistant paint film for torque limiters , comprising the friction-resistant paint for torque limiters according to claim 1 or 2 applied to any contact surface of the friction material and the steel material. 塗膜(固形分)中の亜鉛量は60重量%〜75重量%の範囲内であることを特徴とする請求項3に記載のトルクリミッター用耐摩擦塗膜。 The friction-resistant coating film for a torque limiter according to claim 3, wherein the amount of zinc in the coating film (solid content) is in the range of 60 wt% to 75 wt%. 塗膜の厚さは15μm〜35μmの範囲内であることを特徴とする請求項3または請求項4に記載のトルクリミッター用耐摩擦塗膜。 The friction-resistant coating film for a torque limiter according to claim 3 or 4, wherein the thickness of the coating film is in the range of 15 µm to 35 µm.
JP2003285051A 2003-08-01 2003-08-01 Anti-friction coating for torque limiter and anti-friction coating for torque limiter Expired - Fee Related JP4204925B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003285051A JP4204925B2 (en) 2003-08-01 2003-08-01 Anti-friction coating for torque limiter and anti-friction coating for torque limiter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003285051A JP4204925B2 (en) 2003-08-01 2003-08-01 Anti-friction coating for torque limiter and anti-friction coating for torque limiter

Publications (2)

Publication Number Publication Date
JP2005054021A JP2005054021A (en) 2005-03-03
JP4204925B2 true JP4204925B2 (en) 2009-01-07

Family

ID=34364804

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003285051A Expired - Fee Related JP4204925B2 (en) 2003-08-01 2003-08-01 Anti-friction coating for torque limiter and anti-friction coating for torque limiter

Country Status (1)

Country Link
JP (1) JP4204925B2 (en)

Also Published As

Publication number Publication date
JP2005054021A (en) 2005-03-03

Similar Documents

Publication Publication Date Title
JP6486373B2 (en) Sliding coating film and sliding bearing layer composite material having such a coating film
US7820298B2 (en) Antifriction composite multilayer strip and bearing part therefrom
RU2007124551A (en) POWDER COMPOSITION FOR COATING SURFACE OF THERMOSENSITIVE SUBSTRATES
JP5617934B2 (en) Metal rubber laminate material
CN104511846B (en) A kind of preparation method of thin film abrasive paper
RU2008143367A (en) NON-COATING SURFACE COATING
JP2851225B2 (en) Friction material
US20190085909A1 (en) Paper friction material and method of manufacturing the same
JP4204925B2 (en) Anti-friction coating for torque limiter and anti-friction coating for torque limiter
JP2012115841A (en) Coating composition for forming lubricating mold-release surface layer, method for forming the lubricating mold-release surface layer, and mold
JP2003028307A (en) Metal gasket material plate and manufacturing method thereof
CN109210113A (en) For the composite coating of noise abatement and vibration damping and the brake(-holder) block with this coating
US5342655A (en) Solid film lubricant
WO2011048972A1 (en) Composite member
JP2007009039A (en) Dry lubrication coating film composition
CN85100715A (en) Semi-solid damping material
US11940028B2 (en) Flexible wet friction materials including silanes
JP5139946B2 (en) Brake pad manufacturing method, bonding method, and powder adhesive
CN209584080U (en) Novel fluorine moulds lubricant coating
JP2006199753A (en) Friction material
JPH0825552A (en) Laminated body having coating layer and its manufacture
JP2004107565A (en) Dry friction material and manufacturing method therefor
JP2003286775A (en) Sliding device for base-isolating device
JPH05346129A (en) Disc brake pad
CN113072855A (en) Hydrophobic coating with strong hydrophobic surface stability and preparation method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070313

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070410

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081014

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081015

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111024

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4204925

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111024

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121024

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121024

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131024

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees