JP4204521B2 - Exhaust gas purification catalyst - Google Patents

Exhaust gas purification catalyst Download PDF

Info

Publication number
JP4204521B2
JP4204521B2 JP2004200030A JP2004200030A JP4204521B2 JP 4204521 B2 JP4204521 B2 JP 4204521B2 JP 2004200030 A JP2004200030 A JP 2004200030A JP 2004200030 A JP2004200030 A JP 2004200030A JP 4204521 B2 JP4204521 B2 JP 4204521B2
Authority
JP
Japan
Prior art keywords
exhaust gas
composite oxide
oxide
catalyst
based composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004200030A
Other languages
Japanese (ja)
Other versions
JP2006021091A (en
Inventor
敦史 古川
一徳 木口
紀彦 鈴木
雄一 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2004200030A priority Critical patent/JP4204521B2/en
Publication of JP2006021091A publication Critical patent/JP2006021091A/en
Application granted granted Critical
Publication of JP4204521B2 publication Critical patent/JP4204521B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、排ガス浄化触媒に係り、特に、自動車等の内燃機関から排出される排ガス中の窒素酸化物(NOx)、炭化水素(HC)及び一酸化炭素(CO)を同時に効率よく浄化、低減させることのできる排ガス浄化触媒に関する。なお、本発明は、とりわけ、排ガス浄化触媒の耐久処理後の低温運転時における浄化性能を向上させたものである。   The present invention relates to an exhaust gas purification catalyst, and in particular, efficiently and efficiently purifies and reduces nitrogen oxides (NOx), hydrocarbons (HC) and carbon monoxide (CO) in exhaust gas discharged from an internal combustion engine such as an automobile. The present invention relates to an exhaust gas purifying catalyst that can be used. The present invention particularly improves the purification performance during low temperature operation after the endurance treatment of the exhaust gas purification catalyst.

排ガス(例えばCO、HC、NO、NO等)の浄化には、貴金属元素(Pt、Rh、Pd、Ir)が高性能を示すことが知られている。このため、排ガス浄化触媒には、上記貴金属元素を用いることが好適である。通常、これらの貴金属は、La、Ce、Nd等の添加剤とともに、高比表面積担体のAlに混合又は担持されて用いられる。一方、貴金属は、ペロブスカイト等の複合酸化物の構成元素とすることにより、様々な元素と組み合わせることができ、これにより貴金属のみの場合よりも多様な性質が得られ、浄化性能を向上させることができる。さらに、このような複合酸化物に貴金属を担持すると、複合酸化物の様々な性質による影響により、貴金属の性質が大きく変化することが知られている。 It is known that noble metal elements (Pt, Rh, Pd, Ir) exhibit high performance for purification of exhaust gas (for example, CO, HC, NO, NO 2, etc.). For this reason, it is suitable to use the said noble metal element for an exhaust gas purification catalyst. Usually, these noble metals are used by being mixed or supported on Al 2 O 3 which is a high specific surface area support together with additives such as La, Ce and Nd. On the other hand, noble metals can be combined with various elements by using them as constituent elements of complex oxides such as perovskites. This makes it possible to obtain various properties and improve purification performance compared to the case of noble metals alone. it can. Furthermore, it is known that when a noble metal is supported on such a composite oxide, the properties of the noble metal change greatly due to the influence of various properties of the composite oxide.

このような排ガス浄化触媒には、貴金属の劣化の主原因は凝集による活性点の減少であることに鑑み、ペロブスカイト型複合酸化物を担体とすることにより、貴金属の凝集速度を低下させる技術が開示されている(特許文献1参照)。また、貴金属がPdの場合はNO還元反応の活性種であるPdOが低活性のPdに還元されることに鑑み、Aサイト欠陥型のペロブスカイト型複合酸化物を用いることで、PdOの還元を抑制する技術が開示されている(特許文献2参照)。   In view of the fact that the main cause of deterioration of noble metals is a decrease in active sites due to aggregation, such an exhaust gas purification catalyst discloses a technique for reducing the aggregation rate of noble metals by using a perovskite complex oxide as a support. (See Patent Document 1). In addition, when the noble metal is Pd, in view of the fact that PdO, which is the active species of the NO reduction reaction, is reduced to low-activity Pd, the reduction of PdO is suppressed by using an A-site defect type perovskite complex oxide. The technique to do is disclosed (refer patent document 2).

一方、貴金属は、通常、A1等の担体上に、単独又は複数種類の組み合わせで用いられる。しかしながら、自動車走行時等の過酷な使用条件下では、貴金属の凝集による活性点の減少により、活性が大きく低下する。この問題を解決する手段として、貴金属元素とそれ以外の元素を含む複合酸化物を形成する方法が種々提案されている。なお、貴金属の中でもPdを含むものに関する技術としては、希土類元素とPdとを組み合わせた複合酸化物が開示されている(特許文献3〜8参照)。 On the other hand, noble metals are usually used alone or in combination of a plurality of types on a carrier such as A1 2 O 3 . However, under severe usage conditions such as when driving a car, the activity is greatly reduced due to the reduction of active sites due to aggregation of noble metals. As means for solving this problem, various methods for forming complex oxides containing noble metal elements and other elements have been proposed. In addition, as a technique regarding a noble metal containing Pd, a composite oxide in which a rare earth element and Pd are combined is disclosed (see Patent Documents 3 to 8).

さらに、本発明者等は、以前に、示性式がLaxPdOy(X=2,4,y=4,7)/LnAlOなる排ガス浄化触媒を提案した。上記触媒中、被担持体であるLaxPdOyについては、Pd−Pd間にLaが存在するため、Pd同士の凝集を防止することができ、また、担体であるLaAlOについてはアンカー効果を奏し、Pd粒子をLaAlO上に固定する作用がある。このため、この排ガス浄化触媒においては、Pdを高分散状態に維持することができる(特許文献9参照)。 Furthermore, the present inventors have previously proposed an exhaust gas purification catalyst having a characteristic formula of LaxPdOy (X = 2, 4, y = 4, 7) / LnAlO 3 . In the above catalyst, for LaxPdOy is the carrier, because of the presence of La between Pd-Pd, it is possible to prevent aggregation of Pd each other also exhibit the anchor effect for the LaAlO 3 is a carrier, Pd There is an effect of fixing the particles on LaAlO 3 . For this reason, in this exhaust gas purification catalyst, Pd can be maintained in a highly dispersed state (see Patent Document 9).

特公平5−86259号公報Japanese Patent Publication No. 5-86259 特開2003−175337号公報JP 2003-175337 A 特開昭61−209045号公報JP-A 61-209045 特開平1−43347号公報JP-A-1-43347 特開平4−27433号公報JP-A-4-27433 特開平4−341343号公報JP-A-4-341343 特開平7−88372号公報JP-A-7-88372 特開平10−277393号公報JP 10-277393 A 特願2003−322754号Japanese Patent Application No. 2003-322754

上記した従来の排ガス浄化触媒は、浄化性能に加えて耐食性能を考慮しても、比較的高温(400℃以上)である自動車走行時等においては、排ガス中のCO、HC、及びNOxを浄化するに十分な性能を発揮するものである。しかしながら、これらの排ガス浄化触媒は、比較的低温(400℃未満)である自動車の始動時又はアイドリング時においては、十分な耐久性能を発揮し得ないのが現状である。この理由は、以下のとおりである。   The above-described conventional exhaust gas purification catalyst purifies CO, HC, and NOx in the exhaust gas when the automobile is running at a relatively high temperature (400 ° C. or higher), considering the corrosion resistance in addition to the purification performance. It exhibits sufficient performance. However, at present, these exhaust gas purification catalysts cannot exhibit sufficient durability performance at the time of start-up or idling of an automobile at a relatively low temperature (less than 400 ° C.). The reason for this is as follows.

即ち、Pt、Rh、及びPd等の貴金属は、通常、高比表面積のA1上に担持された状態で使用される。このため、これらの貴金属は、A1上に高分散状態に担持することができる。しかしながら、A1は安定化合物であるため、担持された貴金属に対して相互作用を及ぼさない。よって、単位貴金属量あたりの活性が低く、このため、触媒を高温雰囲気に長時間曝露した後には、優れた浄化性能を維持することができない。従って、近年においては、高温雰囲気に長時間曝露した後においても優れた浄化性能を維持することのできる排ガス浄化触媒の開発が要請されていた。 That is, noble metals such as Pt, Rh, and Pd are usually used in a state where they are supported on A1 2 O 3 having a high specific surface area. Therefore, these noble metals can be supported on A1 2 O 3 in a highly dispersed state. However, since A1 2 O 3 is a stable compound, it does not interact with the supported noble metal. Therefore, the activity per unit noble metal amount is low, and therefore excellent purification performance cannot be maintained after the catalyst is exposed to a high temperature atmosphere for a long time. Therefore, in recent years, there has been a demand for the development of an exhaust gas purification catalyst capable of maintaining excellent purification performance even after being exposed to a high temperature atmosphere for a long time.

また、Pdの酸化状態にはPd2+とPd(金属状態)とがあるが、排ガス浄化に好ましい状態は、Pd2+であるため、自動車走行時においては、PdがPdOの状態で存在することが望ましい。しかしながら、A1上に担持されたPdは、初期はPdOの状態で存在していても、高温(900℃以上)雰囲気に長時間曝露された後には、金属状態のPdに還元され、活性が大きく低下してしまう。また、A1上に担持されたPdを高温(900℃以上)雰囲気に長時間曝露した後には、Pd同士が凝集することにより、活性点が減少し、活性が低下するという問題もある。 In addition, Pd 2+ and Pd 0 (metal state) exist in the oxidation state of Pd, but the preferred state for exhaust gas purification is Pd 2+ , so that Pd exists in the PdO state when the vehicle is running. Is desirable. However, Pd supported on A1 2 O 3 is reduced to Pd in a metallic state after being exposed to a high temperature (900 ° C. or higher) atmosphere for a long time, even if it initially exists in the state of PdO. The activity is greatly reduced. In addition, after Pd supported on A1 2 O 3 is exposed to a high-temperature (900 ° C. or higher) atmosphere for a long time, Pd aggregates to reduce the active sites and lower the activity. .

さらに、従来の排ガス浄化触媒の中には、上述したように、貴金属元素とそれ以外の元素とを組み合わせて複合酸化物を形成する技術も提案されている。しかしながら、このような排ガス浄化触媒には、1000℃程度という条件下では貴金属を含む複合酸化物自体が凝集してしまい、活性点が減少して浄化性能が低下するという問題がある。また、本発明者等の以前の提案である、示性式がLaxPdOy(X=2,4、y=4,7)/LnAlOの排ガス浄化触媒についても、1000℃程度という高温下ではLaxPdOyの凝集により活性点が減少し、活性が低下するという問題がある。 Further, as described above, a technique for forming a composite oxide by combining a noble metal element and other elements has been proposed among conventional exhaust gas purification catalysts. However, such an exhaust gas purification catalyst has a problem in that the complex oxide itself containing the noble metal aggregates under the condition of about 1000 ° C., and the active point is reduced to reduce the purification performance. In addition, the exhaust gas purification catalyst having the characteristic formula LaxPdOy (X = 2, 4, y = 4, 7) / LnAlO 3 , which is a previous proposal by the present inventors, is also the same as that of LaxPdOy at a high temperature of about 1000 ° C. There is a problem that the active sites are reduced by aggregation and the activity is lowered.

本発明は、上記種々の事情に鑑みてなされたものであり、特に、高温(980℃以上)雰囲気に長時間曝露した後にも、被担持体に含まれるPdのPd2+状態からの還元を抑制し、浄化性能の劣化を防止した排ガス浄化触媒を提供することを目的としている。 The present invention has been made in view of the various circumstances described above, and in particular, suppresses the reduction of Pd contained in the supported body from the Pd 2+ state even after being exposed to a high temperature (980 ° C. or higher) atmosphere for a long time. It is an object of the present invention to provide an exhaust gas purification catalyst that prevents deterioration in purification performance.

本発明者等は、上記目的に沿って優れた浄化特性を発揮することのできる排ガス浄化触媒について、鋭意、研究を重ねた。その結果、担体を、前駆体塩のカルボン酸錯体重合物を焼成することにより作製したものとするとともに、被担持体を、希土類元素から選ばれた少なくとも1種と、原子番号がMnよりも大きな第一遷移元素(3d遷移元素)から選ばれた少なくとも1種(Fe,Co,Ni,Cu,Zn)とを複合化させて作製したPd系複合酸化物とすることにより、高温(980℃以上)雰囲気に長時間曝露された後にも、被担持体中のPdについて、Pd2+状態からの還元を抑制することができ、その結果、浄化性能の劣化を防止することができるとの知見を得た。このような知見の具体的根拠は、以下のとおりである。 The inventors of the present invention have earnestly researched an exhaust gas purification catalyst that can exhibit excellent purification characteristics in accordance with the above-mentioned purpose. As a result, the carrier is prepared by firing a carboxylic acid complex polymer of a precursor salt, and the supported body is at least one selected from rare earth elements, and the atomic number is larger than Mn. By using a Pd-based composite oxide prepared by combining at least one selected from the first transition element (3d transition element) (Fe, Co, Ni, Cu, Zn), a high temperature (980 ° C. or higher) ) After being exposed to the atmosphere for a long time, the knowledge that Pd in the supported body can be reduced from the Pd 2+ state and as a result, the purification performance can be prevented from deteriorating. It was. The specific grounds for such findings are as follows.

排ガス浄化触媒の担体を作製する際に、カルボン酸を含む硝酸塩水溶液を蒸発乾固させて、中間生成物としてカルボン酸錯体重合物を得る製造工程を採用した場合には、担体(例えば、LaAlO)が単相で生成する。また、上記中間生成物を経た製造工程を採用することにより、担体(例えば、LaAlO)にPd系複合酸化物を担持した場合には、担体の表面状態が、Pd系複合酸化物と相互作用し易い形態となる。以上の理由により、前駆体塩のカルボン酸錯体重合物を焼成して得た担体にPd系複合酸化物を担持した触媒においては、優れた低温活性が得られる。 When the production process of obtaining a carboxylic acid complex polymer as an intermediate product by evaporating and drying an aqueous solution of nitrate containing carboxylic acid when producing a carrier for an exhaust gas purification catalyst, a carrier (for example, LaAlO 3 ) Is produced in a single phase. In addition, by adopting the production process through the intermediate product, when a Pd-based composite oxide is supported on a support (for example, LaAlO 3 ), the surface state of the support interacts with the Pd-based composite oxide. It becomes a form easy to do. For these reasons, excellent low-temperature activity is obtained in a catalyst in which a Pd-based composite oxide is supported on a carrier obtained by firing a carboxylic acid complex polymer of a precursor salt.

また、上記のように得られた担体(例えば、LaAlO)上にPd系複合酸化物を担持するにあたり、Pd系複合酸化物に、原子番号がMnより大きな第一遷移元素(Fe,Co,Ni,Cu,Zn)を含有させた場合には、得られた排ガス浄化触媒を高温(980℃以上)雰囲気に長時間曝露しても、Pd系複合酸化物中のPdがPd2+状態からPd状態への還元され難い。このため、被担持体に上記第一遷移元素を含む排ガス浄化触媒は、長時間の高温雰囲気曝露後にも高活性を維持することができる。 Further, when supporting the Pd-based composite oxide on the support obtained as described above (for example, LaAlO 3 ), the Pd-based composite oxide has a first transition element (Fe, Co, In the case where Ni, Cu, Zn) is contained, even if the obtained exhaust gas purification catalyst is exposed to a high temperature (980 ° C. or higher) atmosphere for a long time, Pd in the Pd-based composite oxide changes from the Pd 2+ state to Pd. It is difficult to reduce to the zero state. For this reason, the exhaust gas purifying catalyst containing the first transition element in the support can maintain high activity even after being exposed to a high-temperature atmosphere for a long time.

さらに、上記Pd系複合酸化物は、高温において酸化物が不安定なPdと、酸化物が非常に安定な希土類元素と、酸化物が安定である、原子番号がMnより大きな第一遷移元素(3d遷移元素)とが酸素とともに複合化された化合物である。このため、このPd系複合酸化物では、Pdの酸化状態が安定化され、化合物表面でのPdの酸化状態は大部分でPd2+となり、排ガス浄化に好ましい状態になる。従って、これらの各種元素を組み合わせて得られた被担持体を備える排ガス浄化触媒は、優れた浄化性能を発揮することができる。本発明は、以上に示した具体的根拠に基づいてなされたものである。 Furthermore, the Pd-based composite oxide includes Pd, which has an unstable oxide at a high temperature, a rare earth element in which the oxide is very stable, and a first transition element having an atomic number larger than Mn, in which the oxide is stable. 3d transition element) and oxygen. Therefore, in this Pd-based composite oxide, the oxidation state of Pd is stabilized, and the oxidation state of Pd on the compound surface is mostly Pd 2+ , which is a favorable state for exhaust gas purification. Therefore, an exhaust gas purification catalyst including a supported body obtained by combining these various elements can exhibit excellent purification performance. The present invention has been made based on the specific grounds described above.

また、発明者等は、被担持体として、示性式がLnPd(1−X)MxO(Ln:希土類元素、M:Fe,Co,Ni,Cu,Zn)である酸化物や、示性式がLnPd(1−X)MxO(Ln:希土類元素、M:Fe,Co,Ni,Cu,Zn)である酸化物を用いることにより、高温(900℃以上)雰囲気に長時間曝露された後にも、酸化物中のPdがPd2+状態からPd状態への還元され難く、その結果浄化性能の劣化を特に高いレベルで防止することができるとの知見も得た。 Further, inventors have as an object carrier, rational formula is Ln 2 Pd (1-X) MxO 4 (Ln: rare earth element, M: Fe, Co, Ni , Cu, Zn) in which oxide or, By using an oxide having a formula of Ln 4 Pd (1-X) MxO 7 (Ln: rare earth element, M: Fe, Co, Ni, Cu, Zn), it can be used in a high temperature (900 ° C. or higher) atmosphere. It was also found that Pd in the oxide is difficult to be reduced from the Pd 2+ state to the Pd 0 state even after being exposed to time, and as a result, the deterioration of the purification performance can be prevented at a particularly high level.

本発明の排ガス浄化触媒は、前駆体塩のカルボン酸錯体重合物を焼成することにより得たLnAlO (Ln:希土類元素)からなる担体上に、希土類元素から選ばれた少なくとも1種と、原子番号がMnよりも大きな第一遷移元素から選ばれた少なくとも1種とを複合化させてなるPd系複合酸化物を担持してなり、前記Pd系複合酸化物が、示性式がLn Pd (1−X) MxO (Ln:希土類元素、M:Fe,Co,Ni,Cu,Zn)である酸化物及び示性式がLn Pd (1−X) MxO (Ln:希土類元素、M:Fe,Co,Ni,Cu,Zn)である酸化物のうちの少なくとも1種を含有し、前記Ln Pd (1−X) MxO 及び前記Ln Pd (1−X) MxO において、Xの範囲が、0<X<0.1であることを特徴としている
The exhaust gas purifying catalyst of the present invention comprises at least one selected from rare earth elements on a support made of LnAlO 3 (Ln: rare earth element) obtained by firing a carboxylic acid complex polymer of a precursor salt, and atoms. A Pd-based composite oxide obtained by compounding at least one selected from first transition elements having a number greater than Mn is supported, and the Pd-based composite oxide has a formula of Ln 2 Pd (1-X) MxO 4 (Ln: rare earth element, M: Fe, Co, Ni, Cu, Zn) and an oxide of Ln 4 Pd (1-X) MxO 7 (Ln: rare earth element, M: Fe, Co, Ni, Cu, and containing at least one of oxide is Zn), in the Ln 2 Pd (1-X) MxO 4 and the Ln 4 Pd (1-X) MxO 7 , X range is 0 <X <0 It is characterized in that it is 1.

さらに、発明者等は、担体がAl酸化物である場合(例えば、示性式がLnAlO(Ln:希土類元素))や、担体の結晶系が三方晶又は菱面体晶である場合には、担体の電気的不安定さが大きく、例えば、LaAlOに隣接しているPd系複合酸化物は、単独で存在するPd系複合酸化物に比べ電気的な揺らぎが大きくなっていることに着目した。この結果、担持されているPd系複合酸化物の表面においては、Pdの酸化状態は大部分でPd2+となり、つまり排ガスの浄化に好ましい状態となって、高い低温活性が得られる。なお、このような担体を備える排ガス浄化触媒は、1000℃程度の比較的高温な雰囲気に曝露された後でも、同様の浄化性能を維持することができる。以下の発明はこのような知見に鑑みてなされたものである。 Further, the inventors have described that when the support is an Al oxide (for example, the formula is LnAlO 3 (Ln: rare earth element)) or when the support crystal system is a trigonal or rhombohedral crystal, The electric instability of the carrier is large. For example, attention was paid to the fact that the Pd-based composite oxide adjacent to LaAlO 3 has a larger electrical fluctuation than the Pd-based composite oxide existing alone. . As a result, on the surface of the supported Pd-based composite oxide, the oxidation state of Pd is mostly Pd 2+ , that is, a favorable state for purification of exhaust gas, and high low-temperature activity is obtained. The exhaust gas purification catalyst provided with such a carrier can maintain the same purification performance even after being exposed to a relatively high temperature atmosphere of about 1000 ° C. The following invention has been made in view of such knowledge.

即ち、上述した排ガス浄化触媒においては、LnAlO が三方晶又は菱面体晶であることが極めて望ましい。
That is, in the exhaust gas purification catalyst described above, it is highly desirable that LnAlO 3 is a trigonal or rhombohedral crystal.

本発明の排ガス浄化触媒の最大の特徴は、高温において酸化物が不安定なPdと、酸化物が非常に安定な希土類元素と、酸化物が安定な、原子番号がMnより大きな第一遷移元素(3d遷移元素)とを酸素とともに複合化して得たPd系複合酸化物を、被担持体としている点である。このため、本発明の排ガス浄化触媒は、高温(980℃以上)雰囲気に長時間曝露された後にも、PdOの還元を抑制し、浄化性能の劣化を防止することができる。以下に、このような効果を含めた本発明の効果を、さらに詳細に説明する。   The most important features of the exhaust gas purification catalyst of the present invention are Pd, whose oxide is unstable at high temperature, a rare earth element whose oxide is very stable, and a first transition element whose atomic number is larger than Mn, where the oxide is stable. A Pd-based composite oxide obtained by combining (3d transition element) with oxygen is used as a supported body. For this reason, the exhaust gas purification catalyst of the present invention can suppress the reduction of PdO and prevent the deterioration of the purification performance even after being exposed to a high temperature (980 ° C. or higher) atmosphere for a long time. Below, the effect of this invention including such an effect is demonstrated in detail.

本発明の排ガス浄化触媒の担体としては、例えば、LnAlO(Ln:希土類元素)が挙げられるが、このLnAlOは、結晶系が三方晶又は菱面体晶であること、及びペロブスカイト構造の複合酸化物のBサイトがAlであることを特徴とするものである。ここで、三方晶とは、図1に示すように、理想的な単位格子からc軸方向に格子が変化し、さらにa軸とb軸との間の角度が120°である結晶系である。つまり、この結晶系は、理想的な立方晶のペロブスカイト構造から大きく歪みを生じたものであり、構成原子間の電子の存在状態が極めて不安定なものである。また、菱面体晶とは、図2に示すように、三方晶を異なる基本軸で表現した結晶系であり、三方晶と構造自体は同じである。従って、菱面体晶においても、構成原子間の電子の存在状態は極めて不安定となっている。さらに、担体であるLnAlO中のAl−O間の結合は共有結合性が強いため、通常イオン結合性が強いペロブスカイト構造の複合酸化物の結晶中に、なんらかの電気的偏りが生じている。これらの効果により、示性式がLnAlOであるペロブスカイト構造の複合酸化物は、排ガス浄化用触媒として周知のLaFeO等に比べ、電気的不安定さに富む。LnAlOのこのような性質により、LnAlOに隣接しているPd系複合酸化物は、単独で存在するPd系複合酸化物に比べ電気的な揺らぎが大きくなっている。この結果、担持されているPd系複合酸化物の表面におけるPdの酸化状態は大部分でPd2+となる。Pd系複合酸化物の表面において、Pdは、Pd2+とPd(金属状態)との2種類の酸化状態をとるが、Pd2+の方が排ガス浄化には高活性である。つまり、Pd系複合酸化物をLnAlOに担持した本発明の触媒においては、Pd系複合酸化物の表面でのPdの酸化状態が大部分でPd2+となっており、高活性である。また、本発明の触媒は、このような理由から、1000℃程度の高温雰囲気に長時間曝露された後でも、曝露前と同様に高い浄化性能を維持することができる。 Examples of the carrier for the exhaust gas purifying catalyst of the present invention include LnAlO 3 (Ln: rare earth element). The LnAlO 3 has a trigonal or rhombohedral crystal system and a complex oxidation of a perovskite structure. The B site of the product is Al. Here, the trigonal crystal is a crystal system in which the lattice changes from an ideal unit lattice in the c-axis direction and the angle between the a-axis and the b-axis is 120 °, as shown in FIG. . In other words, this crystal system is greatly distorted from an ideal cubic perovskite structure, and the existence state of electrons between constituent atoms is extremely unstable. Further, the rhombohedral crystal is a crystal system in which a trigonal crystal is expressed by different basic axes as shown in FIG. 2, and the structure itself is the same as that of the trigonal crystal. Therefore, even in rhombohedral crystals, the existence state of electrons between constituent atoms is extremely unstable. Furthermore, since the bond between Al—O in the carrier LnAlO 3 has a strong covalent bond, some electric bias is generated in the crystal of a complex oxide having a perovskite structure having a strong ionic bond. Due to these effects, a composite oxide having a perovskite structure whose formula is LnAlO 3 is rich in electrical instability compared to LaFeO 3 or the like well known as an exhaust gas purifying catalyst. Such properties of LnAlO 3, Pd-based composite oxide adjacent to LnAlO 3, the electrical fluctuation compared with the Pd-based composite oxide present alone is increased. As a result, the oxidation state of Pd on the surface of the supported Pd-based composite oxide is mostly Pd 2+ . On the surface of the Pd-based composite oxide, Pd takes two types of oxidation states, Pd 2+ and Pd 0 (metal state), and Pd 2+ is more active for exhaust gas purification. That is, in the catalyst of the present invention in which the Pd-based composite oxide is supported on LnAlO 3 , the oxidation state of Pd on the surface of the Pd-based composite oxide is mostly Pd 2+ and is highly active. Moreover, the catalyst of this invention can maintain the high purification | cleaning performance similarly to before exposure, even after being exposed to a 1000 degreeC high temperature atmosphere for a long time for such a reason.

次に、LnAlO上にPd系複合酸化物を担持した本発明の触媒においては、被担持体に、原子番号がMnより大きな第一遷移元素(3d遷移元素)を含有させることにより、高温雰囲気に長時間曝露した後でも、Pd系複合酸化物中のPdOのPd金属への還元を抑制することができる。この理由は以下のとおりである。即ち、La等の希土類元素は酸化物の状態でその形状を様々に変化させることができる。例えば、LaにPdを担持した触媒を高温雰囲気に曝露すると、PdとLaとの接触部からLaがPd粒子上に移動し、Pd粒子がLaに埋没した形状となり、さらには、Pd表面に微小なLaが移動する現象がみられる(Zhang et al., J. Phys. Chem., Vol. 100, No. 2, P. 744-754, 1996 参照)。このような現象を考慮すると、本発明の排ガス浄化触媒中、被担持体であるPd系複合酸化物においては、LnPd(1−X)MxO(Ln:希土類元素、M:Fe,Co,Ni,Cu,Zn)の表面に存在する希土類元素(例えばLa)が、上記文献のLaと類似した効果を発揮することにより、Laと、Pdと、原子番号がMnより大きな第一遷移元素とが酸素とともに複合化され、Pd系複合酸化物のPd金属への還元を抑制するものと推定される。このような効果により、本発明の排ガス浄化触媒においては、長時間の高温雰囲気への曝露後も高活性を維持することができる。 Next, in the catalyst of the present invention in which a Pd-based composite oxide is supported on LnAlO 3 , a high temperature atmosphere is obtained by allowing the supported material to contain a first transition element (3d transition element) having an atomic number larger than Mn. Even after being exposed to a long time, reduction of PdO in the Pd-based composite oxide to Pd metal can be suppressed. The reason for this is as follows. That is, the shape of a rare earth element such as La can be variously changed in an oxide state. For example, a catalyst supporting Pd on La 2 O 3 when exposed to high temperature atmosphere, La 2 O 3 from the contact portion between Pd and La 2 O 3 is moved on the Pd particles, the Pd particles La 2 O 3 In addition, there is a phenomenon in which fine La 2 O 3 moves to the surface of Pd (Zhang et al., J. Phys. Chem., Vol. 100, No. 2, P. 744-754). , 1996). In consideration of such a phenomenon, in the exhaust gas purifying catalyst of the present invention, in the Pd-based composite oxide which is a support, Ln 4 Pd (1-X) MxO 7 (Ln: rare earth element, M: Fe, Co , Ni, Cu, Zn) The rare earth element (for example, La) present on the surface of La, Pd, and the first transition element having an atomic number larger than that of Mn by exhibiting an effect similar to La in the above document. Are combined with oxygen to suppress the reduction of the Pd-based composite oxide to Pd metal. Due to such effects, the exhaust gas purifying catalyst of the present invention can maintain high activity even after exposure to a high temperature atmosphere for a long time.

また、本発明の排ガス浄化触媒の担体(例えば、LnAlO)を作製する際には、カルボン酸を含む硝酸塩水溶液を蒸発乾固させ作製した、カルボン酸錯体重合物を例えば800℃で焼成することにより、LnAlOが単相の状態で生成する。LnAlOを通常の方法、例えば固相反応法等で作製した場合には、1700℃で焼成しても単相のLnAlOは得られない(希土類の科学、足立吟也著、化学同人、p.564)。即ち、カルボン酸を用いることで、低温で単相のLnAlOを合成することが可能となり、担体の十分な比表面積が得られるとともに、担体表面を活性な状態で触媒として用いることができる。従って、本発明の態様により作製したLnAlOにPd系複合酸化物を担持した触媒は、十分な比表面積を有するとともに、LnAlOとPd系複合酸化物との間に強力な相互作用が得られるため、低温において高活性が実現される。 Further, when preparing the exhaust gas purifying catalyst carrier of the present invention (for example, LnAlO 3 ), the carboxylic acid complex polymer prepared by evaporating and drying a nitrate aqueous solution containing carboxylic acid is calcined at 800 ° C., for example. Thus, LnAlO 3 is produced in a single phase state. When LnAlO 3 is produced by a normal method such as a solid phase reaction method, a single-phase LnAlO 3 cannot be obtained even by firing at 1700 ° C. (Science of rare earths, written by Adachi Ginya, Chemical Dojin, p. .564). That is, by using a carboxylic acid, it is possible to synthesize single-phase LnAlO 3 at a low temperature, a sufficient specific surface area of the support can be obtained, and the support surface can be used as a catalyst in an active state. Therefore, the catalyst in which the Pd-based composite oxide is supported on the LnAlO 3 produced according to the embodiment of the present invention has a sufficient specific surface area and can provide a strong interaction between the LnAlO 3 and the Pd-based composite oxide. Therefore, high activity is realized at low temperatures.

さらに、本発明の触媒において被担持体として用いられるPd系複合酸化物は、酸化物が不安定なPdと、酸化物が非常に安定である希土類元素と、酸化物が安定な原子番号がMnより大きな第一遷移元素(3d元素)とが酸素とともに複合化された化合物である。Pdの代表的な酸化物であるPdOの表面においては、PdはPdとPd2+との2種類の酸化状態をとり得る。しかしながら、Pd系複合酸化物では、希土穎元素により酸化状態が安定化された結果、化合物の表面でのPdの酸化状態はPd2+の割合が多くなる。PdとPd2+とでは、Pd2+の方が高活性であるため、Pd系複合酸化物では、優れた浄化性能が実現される。 Furthermore, the Pd-based composite oxide used as the support in the catalyst of the present invention includes Pd where the oxide is unstable, a rare earth element where the oxide is very stable, and an atomic number where the oxide is stable is Mn. A compound in which a larger first transition element (3d element) is combined with oxygen. On the surface of PdO which is a typical oxide of Pd, Pd can take two kinds of oxidation states of Pd 0 and Pd 2+ . However, in the Pd-based composite oxide, the oxidation state is stabilized by the rare earth element, and as a result, the oxidation state of Pd on the surface of the compound increases the ratio of Pd 2+ . In Pd 0 and Pd 2+ , Pd 2+ is more active, and therefore, an excellent purification performance is realized with the Pd-based composite oxide.

図3(a)〜(c)は、担体上に担持された各種酸化物の還元状況を示す概念図である。即ち、図3(a)に示すように、被担持体としてPdOを使用した場合には、PdOの分解温度が800℃程度であるため、1000℃程度の条件下では、PdOはPdに還元されてしまい、排ガス浄化触媒として優れた性能を発揮することができない。これに対し、図3(b)に示すように、被担持体としてLaPdOを使用した場合には、LaPdOは1100℃においても酸化物の状態で安定して存在することができるため、1000℃程度の条件下では、Pdの還元は生じず、排ガス浄化触媒として優れた性能を発揮することができる。さらに、図3(c)に示すように、酸化物の構成元素として、Pdの他に、原子番号がMnよりも大きな第一遷移元素(Fe,Co,Ni,Cu,Zn)をPd系複合酸化物を用いた場合(図3(c)ではLaPd0.95Fe0.05)には、第一遷移元素と酸素との結合が強力なため、Pd系複合酸化物の構造破壊やPdのモビリティーが低下し、Pd系複合酸化物粒子同士の凝集が抑制される。このため、高温雰囲気に長時間曝露された後でも、各元素が所定の位置に留まることができ、耐久性のみならず、耐熱性をも向上させることができる。この耐熱性の向上は、高温において酸化物の形態が安定でないPdが酸化物が安定である希土類元素又は上記第一遷移元素(3d遷移元素)と複合化することに伴い、バルク内の結合が強化しために生ずるものである。 FIGS. 3A to 3C are conceptual diagrams showing the reduction status of various oxides supported on the support. That is, as shown in FIG. 3 (a), when PdO is used as the support, the decomposition temperature of PdO is about 800 ° C., so that PdO is reduced to Pd under conditions of about 1000 ° C. As a result, excellent performance as an exhaust gas purification catalyst cannot be exhibited. In contrast, as shown in FIG. 3B, when La 2 PdO 4 is used as the support, La 2 PdO 4 may exist stably in an oxide state even at 1100 ° C. Therefore, under the condition of about 1000 ° C., reduction of Pd does not occur, and excellent performance as an exhaust gas purification catalyst can be exhibited. Further, as shown in FIG. 3C, as a constituent element of the oxide, in addition to Pd, a first transition element (Fe, Co, Ni, Cu, Zn) having an atomic number larger than Mn is used as a Pd-based composite. When an oxide is used (La 2 Pd 0.95 Fe 0.05 O 4 in FIG. 3C), the bond between the first transition element and oxygen is strong, so the structure of the Pd-based composite oxide Destruction and mobility of Pd are reduced, and aggregation of Pd-based composite oxide particles is suppressed. For this reason, even after being exposed to a high temperature atmosphere for a long time, each element can remain in a predetermined position, and not only durability but also heat resistance can be improved. This improvement in heat resistance is due to the fact that Pd, whose oxide form is not stable at a high temperature, is combined with the rare earth element or the first transition element (3d transition element) in which the oxide is stable, and bonds in the bulk are reduced. It is for strengthening.

以下、本発明を実施例により、さらに詳細に説明する。
(発明例1)
<担体用複合酸化物の作製>
所定量の硝酸ランタン六水和物、及び硝酸アルミニウム九水和物をイオン交換水に溶解させ、混合水溶液を作製した。また、所定量のリンゴ酸をイオン交換水に溶解させ、リンゴ酸水溶液を作製した。次いで、これら2種類の水溶液を混合し、ホットプレートスターラに載せ、250℃で撹拝子を用いて撹拝しながら加熱し、水分を蒸発した後、分解乾固させ、乾固物を乳鉢で粉砕した。
Hereinafter, the present invention will be described in more detail with reference to examples.
(Invention Example 1)
<Preparation of complex oxide for carrier>
A predetermined amount of lanthanum nitrate hexahydrate and aluminum nitrate nonahydrate were dissolved in ion-exchanged water to prepare a mixed aqueous solution. A predetermined amount of malic acid was dissolved in ion-exchanged water to prepare an aqueous malic acid solution. Next, these two kinds of aqueous solutions are mixed, placed on a hot plate stirrer, heated while being stirred with a stirring element at 250 ° C., and after evaporating the water, it is decomposed and dried, and the dried product is dried in a mortar. Crushed.

さらに、粉砕物をアルミナ坩堝に移し、マッフル炉にて、2.5℃/minで350℃まで昇温し、350℃で3時間の熱処理を施した。これにより、リンゴ酸塩、硝酸根を除去した仮焼成体を作製した。この仮焼成体を乳鉢で15分間粉砕混合した後、再びアルミナ坩堝に入れ、マッフル炉にて、5℃/minで800℃まで昇温し、800℃で10時間の熱処理を施した。これにより、示性式がLaAlOの複合酸化物の粉末を得た。 Furthermore, the pulverized product was transferred to an alumina crucible, heated to 350 ° C. at 2.5 ° C./min in a muffle furnace, and subjected to heat treatment at 350 ° C. for 3 hours. Thereby, the temporary calcination body which removed malate and a nitrate radical was produced. The calcined body was pulverized and mixed for 15 minutes in a mortar, then placed in an alumina crucible again, heated to 800 ° C. at 5 ° C./min in a muffle furnace, and subjected to heat treatment at 800 ° C. for 10 hours. As a result, a composite oxide powder having the characteristic formula of LaAlO 3 was obtained.

<Pd系複合酸化物の担持>
所定量の硝酸パラジウム二水和物、硝酸ランタン六水和物及び硝酸鉄九水和物をイオン交換水に溶解させ、金属塩混合水溶液を作製した。また、所定量のリンゴ酸をイオン交換水に溶解させ、リンゴ酸水溶液を作製した。次いで、これら2種類の水溶液を混合したものと、上記したように得た所定量のLaAlO粉末とをナス型フラスコに入れ、ナス型フラスコをロータリーエバポレータで減圧しながら、60℃の湯浴中で蒸発乾固させ、マッフル炉にて、2.5℃/minで250℃まで昇温し、さらに5℃/minで750℃まで昇温し、750℃で3時間保持した。これにより、LaPd0.95Fe0.05をLaAlOに含浸担持した、LaPd0.95Fe0.05/LaAlOなる触媒粉末(発明例1)を得た。
<Supporting Pd-based composite oxide>
Predetermined amounts of palladium nitrate dihydrate, lanthanum nitrate hexahydrate, and iron nitrate nonahydrate were dissolved in ion-exchanged water to prepare a mixed metal salt aqueous solution. A predetermined amount of malic acid was dissolved in ion-exchanged water to prepare an aqueous malic acid solution. Next, a mixture of these two types of aqueous solutions and a predetermined amount of LaAlO 3 powder obtained as described above are placed in an eggplant-shaped flask, and the eggplant-shaped flask is decompressed with a rotary evaporator in a 60 ° C. hot water bath. The mixture was evaporated to dryness in a muffle furnace, heated to 250 ° C. at 2.5 ° C./min, further raised to 750 ° C. at 5 ° C./min, and held at 750 ° C. for 3 hours. Thus, to impregnation the La 2 Pd 0.95 Fe 0.05 O 3 in LaAlO 3, to obtain a La 2 Pd 0.95 Fe 0.05 O 4 / LaAlO 3 comprising catalyst powder (Invention Example 1).

(発明例2)
発明例1と同様の方法により、LaPd0.95Co0.05/LaAlOなる触媒粉末(発明例2)を得た。なお、本例では、発明例1で使用した硝酸鉄九水和物に替えて、硝酸コバルト九水和物を使用した。
(Invention Example 2)
A catalyst powder (Invention Example 2) of La 2 Pd 0.95 Co 0.05 O 4 / LaAlO 3 was obtained in the same manner as in Invention Example 1. In this example, cobalt nitrate nonahydrate was used in place of the iron nitrate nonahydrate used in Invention Example 1.

(発明例3)
発明例1と同様の方法により、LaPd0.95Ni0.05/LaAlOなる触媒粉末(発明例3)を得た。なお、本例では、発明例1で使用した硝酸鉄九水和物に替えて、硝酸ニッケル九水和物を使用した。
(Invention Example 3)
In the same manner as in Invention Example 1, a catalyst powder (Invention Example 3) of La 2 Pd 0.95 Ni 0.05 O 4 / LaAlO 3 was obtained. In this example, nickel nitrate nonahydrate was used in place of the iron nitrate nonahydrate used in Invention Example 1.

(比較例1)
発明例1と同様の方法により、Pd/Alなる触媒粉末(比較例1)を得た。
(Comparative Example 1)
A catalyst powder (Comparative Example 1) of Pd / Al 2 O 3 was obtained in the same manner as in Invention Example 1.

(比較例2)
発明例1と同様の方法により、Pd/LaAlOなる触媒粉末(比較例2)を得た。
(Comparative Example 2)
A catalyst powder (Comparative Example 2) of Pd / LaAlO 3 was obtained in the same manner as in Invention Example 1.

(比較例3)
発明例1の被担持体であるLaPd0.95Fe0.05の製造方法と同様にして、LaPdOなる触媒粉末(比較例3)を得た。
(Comparative Example 3)
A catalyst powder (Comparative Example 3) of La 4 PdO 7 was obtained in the same manner as in the production method of La 2 Pd 0.95 Fe 0.05 O 4 which is the support of Invention Example 1.

<活性評価1:被担持体に第一遷移元素を含有させたことによる浄化性能>
上記のように得られた各排ガス浄化触媒(発明例1〜3及び比較例1〜3)に対して、初期及び耐久処理後の活性評価を実施した。初期の活性評価は、空燃比が14.6相当のモデル排ガスを0.5秒周期で繰り返し(周期1Hz)各触媒に流通させ、単位時間及び単位体積あたりの流量を50000h−1相当として反応温度30〜400℃の間で行った。耐久処理は、980℃×20時間の時効処理とした。このような条件の下で、耐久処理後の評価を行った。表1に昇温試験条件を示すとともに、各活性評価の結果を表2,3に示す。即ち、表2には、初期触媒の昇温試験における、CO、HC、NOの50%浄化温度を示す。また、表3には、耐久処理後の触媒の昇温試験における、CO、HC、NOの50%浄化温度を示す。
<Activity evaluation 1: Purification performance by containing the first transition element in the support>
For each exhaust gas purification catalyst (Invention Examples 1 to 3 and Comparative Examples 1 to 3) obtained as described above, the activity evaluation after the initial treatment and the durability treatment was performed. In the initial activity evaluation, model exhaust gas having an air-fuel ratio of 14.6 is repeatedly passed through each catalyst in a cycle of 0.5 seconds (cycle: 1 Hz), and the reaction temperature is set such that the flow rate per unit time and unit volume is equivalent to 50000h- 1. It carried out between 30-400 degreeC. The durability treatment was an aging treatment at 980 ° C. × 20 hours. Under such conditions, the evaluation after the durability treatment was performed. Table 1 shows the temperature rise test conditions, and Tables 2 and 3 show the results of each activity evaluation. That is, Table 2 shows 50% purification temperatures of CO, HC, and NO in the initial catalyst temperature increase test. Table 3 shows the 50% purification temperature of CO, HC, NO in the temperature rise test of the catalyst after the endurance treatment.

Figure 0004204521
Figure 0004204521

Figure 0004204521
Figure 0004204521

Figure 0004204521
Figure 0004204521

表2,3によれば、本発明の範囲内にある発明例1〜3は、初期及び耐久処理後のいずれにおいても、CO、HC、NOの50%浄化温度が比較的低いことが判る。これに対し、本発明の範囲外にある比較例1〜3は、初期及び耐久処理後のいずれにおいても、CO、HC、NOの50%浄化温度が比較的高いことが判る。   According to Tables 2 and 3, it can be seen that Invention Examples 1 to 3 within the scope of the present invention have relatively low CO, HC and NO 50% purification temperatures both in the initial stage and after the endurance treatment. On the other hand, it can be seen that Comparative Examples 1 to 3 outside the scope of the present invention have a relatively high 50% purification temperature for CO, HC and NO both in the initial stage and after the endurance treatment.

このように、各発明例は、各比較例に比して、優れたCO、HC、NOの50%浄化温度を示すが、この結果を裏付けるため、Pd系複合酸化物のBサイトの組成が発明例1〜3の各被担持体と同じ複合酸化物(LaxPd0.95Fe0.05Oy、LaxPd0.95Co0.05Oy、及びLaxPd0.95Ni0.05Oy)が単相で生成していることを以下に確認し、これにより、被担持体に十分な比表面積が得られているとともに、その表面を活性な状態で触媒として用いることができることを実証する。即ち、図4は、Pd系複合酸化物のBサイトの組成が発明例1〜3の各被担持体と同じ複合酸化物(LaxPd0.95Fe0.05Oy、LaxPd0.95Co0.05Oy、及びLaxPd0.95Ni0.05Oy)と、Bサイトに第一遷移元素を含まない複合酸化物(LaxPdOy)とについて、XRDスペクトルを測定した結果を示すグラフである。図4によれば、Bサイトに第一遷移元素を含まない複合酸化物(LaxPdOy)のXRDスペクトルと同様に、各複合酸化物(LaxPd0.95Fe0.05Oy、LaxPd0.95Co0.05Oy、及びLaxPd0.95Ni0.05Oy)のXRDスペクトルには、原料を硝酸鉄九水和物、硝酸コバルト九水和物、又は硝酸ニッケル九水和物とした場合に通常の焼成過程で生成する、Fe、Co、NiOのピークがそれぞれみられない。このため、各複合酸化物中においては、Fe、Co、Niがそれぞれ完全にLaxPdOy内に固溶しているものと判断できる。従って、各複合酸化物(LaxPd0.95Fe0.05Oy、LaxPd0.95Co0.05Oy、及びLaxPd0.95Ni0.05Oy)は、全て単相の状態で生成されており、このため、被担持体に十分な比表面積が得られるとともに、その表面を活性な状態で触媒として用いることができる。従って、以上のような裏付けにより、上記各発明例1〜3の排ガス浄化触媒は、優れた浄化性能を示すものであるといえる。
As described above, each of the inventive examples shows an excellent 50% purification temperature for CO, HC and NO as compared with each comparative example. In order to support this result, the composition of the B site of the Pd-based composite oxide is The same composite oxide (LaxPd 0.95 Fe 0.05 Oy, LaxPd 0.95 Co 0.05 Oy, and LaxPd 0.95 Ni 0.05 Oy) as each supported body of Invention Examples 1 to 3 is a single phase. In the following, it is confirmed that a sufficient specific surface area is obtained in the supported body, and that the surface can be used as a catalyst in an active state. That is, FIG. 4, Pd-based same composite oxide with each of the carrier composition of the B site of the complex oxide is invention examples 1~3 (LaxPd 0.95 Fe 0.05 Oy, LaxPd 0.95 Co 0. 05 Oy, and the LaxPd 0.95 Ni 0.05 Oy), B site of the complex oxide without the first transition element for the (LaxPdOy), is a graph showing the result of measuring the XRD spectrum. According to FIG. 4, each composite oxide (LaxPd 0.95 Fe 0.05 Oy, LaxPd 0.95 Co 0 ) is similar to the XRD spectrum of the composite oxide (LaxPdOy) not containing the first transition element at the B site. .05 Oy, and LaxPd 0.95 Ni 0.05 Oy), the XRD spectrum shows that when the raw material is iron nitrate nonahydrate, cobalt nitrate nonahydrate, or nickel nitrate nonahydrate The peaks of Fe 2 O 3 , Co 2 O 3 , and NiO generated in the firing process are not observed. For this reason, it can be determined that Fe, Co, and Ni are completely dissolved in LaxPdOy in each composite oxide. Accordingly, each of the composite oxides (LaxPd 0.95 Fe 0.05 Oy, LaxPd 0.95 Co 0.05 Oy, and LaxPd 0.95 Ni 0.05 Oy) are all produced in a single phase state. For this reason, a sufficient specific surface area can be obtained for the support, and the surface can be used as a catalyst in an active state. Therefore, it can be said that the exhaust gas purifying catalysts of the above invention examples 1 to 3 show excellent purifying performance due to the above support.

<活性評価2:被担持体中の第一遷移元素の含有量の違いによる浄化性能>
次に、本発明の排ガス浄化触媒の構成要素である被担持体に含有される、原子番号がMnよりも大きな第一遷移元素の含有量好適範囲について調査した。担体をLaAlOとするとともに、被担持体をLaとPd複合酸化物と上記第一遷移元素(Ni)とを組み合わせたLaPd0.95Ni0.05及びLaPd0.80Ni0.20として、上記発明例1と同様の方法で、排ガス浄化触媒LaPd0.95Ni0.05/LaAlO及びLaPd0.80Ni0.20/LaAlOをそれぞれ得た。図5に、これらの浄化触媒についての、NOxの50%浄化温度と測定回数との関係を示す。なお、本例では、各測定の間にテストピースを常温まで冷まし、次の測定を行った。
<Activity evaluation 2: Purification performance by the difference in the content of the first transition element in the support>
Next, the preferred range of the content of the first transition element having an atomic number larger than Mn contained in the supported body that is a constituent element of the exhaust gas purification catalyst of the present invention was investigated. La 4 Pd 0.95 Ni 0.05 O 7 and La 4 Pd 0.80 in which the carrier is LaAlO 3 and the supported body is a combination of La, Pd composite oxide and the first transition element (Ni). As Ni 0.20 O 7 , exhaust gas purification catalysts La 4 Pd 0.95 Ni 0.05 O 7 / LaAlO 3 and La 4 Pd 0.80 Ni 0.20 O 7 / LaAlO 3 was obtained respectively. FIG. 5 shows the relationship between the NOx 50% purification temperature and the number of measurements for these purification catalysts. In this example, the test piece was cooled to room temperature during each measurement, and the following measurement was performed.

図5によれば、被担持体LaPd(1−X)NixOにおいて、X≧0.1の場合には、測定回数の増加に伴い、浄化性能が低下するが、X<0.1の場合には、測定回数のいかんに関わらず、優れた浄化性能を示すことが判る。従って、本発明の排ガス浄化触媒の被担持体に、示性式LaPd(1−X)NixOなる酸化物を使用する場合には、上記Xの範囲は0<X<0.1であることがより好適であることが実証された。なお、浄化性能に悪影響を及ぼすと考えられるLaNiOがXRD測定において完全に確認できないという理由により、極めて好ましいXの範囲は、0<X<0.083である。 According to FIG. 5, in the support La 4 Pd (1-X) NixO 7 , when X ≧ 0.1, the purification performance decreases as the number of measurements increases, but X <0.1. In this case, it can be seen that excellent purification performance is exhibited regardless of the number of measurements. Therefore, when an oxide of the formula La 4 Pd (1-X) Ni x O 7 is used for the support of the exhaust gas purification catalyst of the present invention, the range of X is 0 <X <0.1. It proved to be more suitable. In addition, because LaNiO 3 which is considered to have an adverse effect on the purification performance cannot be completely confirmed in the XRD measurement, the extremely preferable range of X is 0 <X <0.083.

本発明の排ガス浄化触媒は、近年、排ガス中の窒素酸化物(NOx)、炭化水素(HC)及び一酸化炭素(CO)を同時に効率よく浄化、低減させることが要求される、自動車等の内燃機関に適用することができる。   The exhaust gas purifying catalyst of the present invention is an internal combustion engine such as an automobile that is required to efficiently purify and reduce nitrogen oxide (NOx), hydrocarbon (HC) and carbon monoxide (CO) in exhaust gas at the same time in recent years. Applicable to institutions.

三方晶を示すモデル図である。It is a model figure which shows a trigonal crystal. 菱面体晶を示すモデル図である。It is a model figure which shows a rhombohedral crystal. 担体上に担持された各種酸化物の還元状況を示す概念図であり、(a)は被担持体がPdOの場合、(b)は被担持体がLaPdOの場合、及び(c)は被担持体がLaPd0.95Fe0.05の場合である。Is a conceptual diagram showing a reduction status of various oxide supported on a carrier, (a) shows the case the carrier is PdO, (b) if the carrier is La 2 PdO 3, and (c) Is the case where the support is La 2 Pd 0.95 Fe 0.05 O 3 . Pd系複合酸化物のBサイトの組成が発明例1〜3の各被担持体と同じ複合酸化物(LaxPd0.95Fe0.05Oy、LaxPd0.95Co0.05Oy、及びLaxPd0.95Ni0.05Oy)と、Bサイトに第一遷移元素を含まない複合酸化物(LaxPdOy)とについて、XRDスペクトルを測定した結果を示すグラフである。Composite oxides having the same composition of the B sites of the Pd-based composite oxides as the supported bodies of Invention Examples 1 to 3 (LaxPd 0.95 Fe 0.05 Oy, LaxPd 0.95 Co 0.05 Oy, and LaxPd 0 .95 Ni 0.05 Oy) and a complex oxide (LaxPdOy) containing no first transition element at the B site are graphs showing the results of XRD spectrum measurement. 各排ガス浄化触媒についての、NOxの50%浄化温度と測定回数との関係についての結果を示すグラフである。It is a graph which shows the result about the relationship between the NOx 50% purification temperature and the frequency | count of measurement about each exhaust gas purification catalyst.

Claims (2)

前駆体塩のカルボン酸錯体重合物を焼成することにより得たLnAlO (Ln:希土類元素)からなる担体上に、希土類元素から選ばれた少なくとも1種と、原子番号がMnよりも大きな第一遷移元素から選ばれた少なくとも1種とを複合化させてなるPd系複合酸化物を担持してなり、前記Pd系複合酸化物が、示性式がLn Pd (1−X) MxO (Ln:希土類元素、M:Fe,Co,Ni,Cu,Zn)である酸化物及び示性式がLn Pd (1−X) MxO (Ln:希土類元素、M:Fe,Co,Ni,Cu,Zn)である酸化物のうちの少なくとも1種を含有し、
前記Ln Pd (1−X) MxO 及び前記Ln Pd (1−X) MxO において、Xの範囲が、0<X<0.1であることを特徴とする排ガス浄化触媒。
On the support made of LnAlO 3 (Ln: rare earth element) obtained by firing the carboxylic acid complex polymer of the precursor salt, at least one selected from rare earth elements and the first having an atomic number larger than Mn and at least one selected from the transition elements consisting by composite Pd-based composite oxide Ri name carries, the Pd-based composite oxide, rational formula is Ln 2 Pd (1-X) MxO 4 (Ln: rare earth element, M: Fe, Co, Ni, Cu, Zn) and an oxide of Ln 4 Pd (1-X) MxO 7 (Ln: rare earth element, M: Fe, Co, Ni) , Cu, Zn) containing at least one of oxides that are
The exhaust gas purifying catalyst, wherein in the Ln 2 Pd (1-X) MxO 4 and the Ln 4 Pd (1-X) MxO 7 , the range of X is 0 <X <0.1 .
前記LnAlO (Ln:希土類元素)が三方晶又は菱面体晶であることを特徴とする請求項に記載の排ガス浄化触媒。
The exhaust gas purifying catalyst according to claim 1 , wherein the LnAlO 3 (Ln: rare earth element) is a trigonal or rhombohedral crystal.
JP2004200030A 2004-07-07 2004-07-07 Exhaust gas purification catalyst Expired - Fee Related JP4204521B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004200030A JP4204521B2 (en) 2004-07-07 2004-07-07 Exhaust gas purification catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004200030A JP4204521B2 (en) 2004-07-07 2004-07-07 Exhaust gas purification catalyst

Publications (2)

Publication Number Publication Date
JP2006021091A JP2006021091A (en) 2006-01-26
JP4204521B2 true JP4204521B2 (en) 2009-01-07

Family

ID=35794751

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004200030A Expired - Fee Related JP4204521B2 (en) 2004-07-07 2004-07-07 Exhaust gas purification catalyst

Country Status (1)

Country Link
JP (1) JP4204521B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5459927B2 (en) * 2006-07-07 2014-04-02 株式会社キャタラー Exhaust gas purification catalyst
WO2017130623A1 (en) 2016-01-28 2017-08-03 株式会社キャタラー Pd-SUPPORTING Zr-BASED COMPOSITE OXIDE

Also Published As

Publication number Publication date
JP2006021091A (en) 2006-01-26

Similar Documents

Publication Publication Date Title
US8461073B2 (en) Catalyst support and method of producing same
JP2004041867A (en) Exhaust gas purifying catalyst
US20090131250A1 (en) Purification catalyst for exhaust gas, production method therefor, and purification catalyst equipment for exhaust gas
JP6087784B2 (en) Oxygen storage / release material and exhaust gas purification catalyst containing the same
US20050153836A1 (en) Purification catalyst for exhaust gas, production method therefor, and purification catalyst device for exhaust gas
JP3843090B2 (en) Exhaust gas purification catalyst, method for producing the same, and exhaust gas purification catalyst device for vehicles
JP4204521B2 (en) Exhaust gas purification catalyst
JP4204487B2 (en) Exhaust gas purification catalyst, production method thereof, and exhaust gas purification catalyst device for vehicle
JP4157514B2 (en) Exhaust gas purification catalyst and vehicle exhaust gas purification apparatus equipped with the same
JP4868384B2 (en) Rare earth-noble metal composite material and rare earth-noble metal composite oxide
JP7158675B2 (en) Nitrogen oxide storage material, manufacturing method thereof, exhaust gas purification catalyst
JP4699375B2 (en) Exhaust gas purification catalyst and exhaust gas purification device
JP3843092B2 (en) Exhaust gas purification catalyst, method for producing the same, and exhaust gas purification catalyst device for vehicles
JP7125715B2 (en) Nitrogen oxide storage material, manufacturing method thereof, exhaust gas purification catalyst
JP2005199139A (en) Exhaust gas cleaning catalyst, its production method, and exhaust gas cleaning catalyst apparatus for vehicle
JP2010029772A (en) Compound oxide and exhaust gas cleaning catalyst containing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080704

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080709

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080903

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080929

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081014

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111024

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4204521

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111024

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121024

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131024

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees