JP4204173B2 - Sake production method using lactic acid bacteria - Google Patents

Sake production method using lactic acid bacteria Download PDF

Info

Publication number
JP4204173B2
JP4204173B2 JP2000135387A JP2000135387A JP4204173B2 JP 4204173 B2 JP4204173 B2 JP 4204173B2 JP 2000135387 A JP2000135387 A JP 2000135387A JP 2000135387 A JP2000135387 A JP 2000135387A JP 4204173 B2 JP4204173 B2 JP 4204173B2
Authority
JP
Japan
Prior art keywords
lactic acid
sake
acid bacteria
added
yeast
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000135387A
Other languages
Japanese (ja)
Other versions
JP2001314182A (en
Inventor
直孝 黒瀬
忠男 浅野
貞夫 川北
彰二 垂水
Original Assignee
宝ホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宝ホールディングス株式会社 filed Critical 宝ホールディングス株式会社
Priority to JP2000135387A priority Critical patent/JP4204173B2/en
Publication of JP2001314182A publication Critical patent/JP2001314182A/en
Application granted granted Critical
Publication of JP4204173B2 publication Critical patent/JP4204173B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Alcoholic Beverages (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、清酒の製造方法に関し、更に詳細には清酒製造において、乳酸菌を添加することを特徴とする清酒の製造方法に関する。
【0002】
【従来の技術】
清酒製造に乳酸を利用する清酒製造技術について、従来から生もと酒母又は山卸廃止もと(山廃もと)酒母を約30日の期間をかけて育成する中で、自然に発生する乳酸菌を利用する技術が使われてきた。また、醸造用乳酸を添加して育成される速醸もと酒母も広く用いられている。近年では、速醸もと酒母に、醸造用乳酸の代りに純粋培養した乳酸菌を添加する酒母(短期山廃酒母と称する)の育成方法が提案されている(特開昭49−94900号、特開昭61−58574号、特開昭64−74976号又は特開平11−46748号)。また、大型タンクで清酒製造を行う大手清酒メーカーでは、酒母を育成せずに培養酵母を添加して清酒を仕込む方法すなわち酵母仕込が主流になっているが、この仕込方法に関しては醸造用乳酸を添加する方法が取られ、乳酸菌を自然発生させたり、添加する技術は知られていない。
【0003】
しかしながら、上述の短期山廃酒母では、10日から14日にわたる酒母の育成期間が必要な上に、耐熱性乳酸菌を用いる場合は高温の仕込温度が必要であるという問題点がある。また製成酒の酸度が従来の一般的な酵母仕込で製造した清酒の2〜3倍の多酸酒となり、清酒本来の風味を損なう場合があった。
【0004】
一方、酒母を育成しない酵母仕込では、醸造期間は短縮されるが、雑菌汚染防止のために醸造用乳酸を添加する必要があり、得られた清酒の酒質も深みのない淡白なものであった。
【0005】
【発明が解決しようとする課題】
本発明は、上述した従来の短期山廃酒母の課題及び酵母仕込の課題を解決するべく、乳酸の代りに乳酸菌を添加する清酒製造における、醸造期間の短縮、及び固形酵母仕込における酒質の向上した清酒の製造方法を提供する。
【0006】
【課題を解決するための手段】
本発明は、酒母を育成しない清酒製造工程において、低温発酵性の乳酸菌を添加することを特徴とする清酒の製造方法に関する。
【0007】
本発明者らは、清酒に良い効果をもたらす乳酸菌を酒母の育成に利用するのではなく、酒母を育成しない酵母仕込に利用することを考えた。すなわち、低温発酵性の乳酸菌を水麹に添加して酵母仕込を行うことにより、醸造用乳酸の添加及び酒母の育成工程を省略することができ、しかも、通常の酸度を有する香味の良い清酒を製造できることを見出した。
【0008】
【発明の実施の形態】
以下に、本発明による清酒製造方法の好ましい実施形態について説明する。
まず、添加する乳酸菌について特に限定はされないが、次のようにして取得した乳酸菌を用いることが好ましい。
取得方法は、炭酸カルシウムを含有する乳酸菌用培地で15℃以下の低温で培養したときに、生育がはやく、炭酸カルシウムの溶解によるハロー形成の大きな、乳酸生成能の高い株を選択する方法である。一般に、このような性質を有する乳酸菌として、ラクトバチルス属〔例えばラクトバチルス・サケ(Lactobacillus sake)〕又はロイコノストック属〔例えばロイコノストック・メセンテロイデス(Leuconostoc mesenteroides)〕が知られており、これらは主として生もとや山廃もとの酒母やそれを使用している酒蔵から高頻度に分離される。菌株保存機関で保存されているこれらの2属に属するタイプストレインでも問題はない。また、添加する乳酸菌の形状としては、液状乳酸菌、乾燥乳酸菌などがあるが、特にこれらに限定されるものではない。
【0009】
次に清酒の製造方法については、酒母を育成しない仕込方法、例えば酵母仕込であれば、原料米の精白度、原料米のアルファー化処理方法、仕込配合などの製造方法を限定するものではない。また、使用する酵母の種類としては、協会601号、協会701号、協会901号、協会1001号などがあるが、特に限定されるものではなく、培養した酵母の形状としても液状、泥状、固形、乾燥などがあり、特に固形酵母が好ましいが限定されるものでもない。
【0010】
乳酸菌の添加時期については、特に限定はされないが、次のように初添工程時に添加することが好ましい。
まず乳酸菌を培養した培養液を清酒の酵母仕込における初添の水麹に添加し、固形酵母と掛米を投入して初添工程を終了する。その後、通常の踊り工程、仲添工程及び留添工程を経て、約20日間の発酵を行い、清酒を製造する。生成される清酒の乳酸含量は、調整することが可能である。例えば、添加する乳酸菌の菌数を増加させたり、乳酸菌を添加した水麹を15〜20℃で1〜3日間培養した後に固形酵母及び掛米を添加することで、乳酸含量の多い新しいタイプの清酒を製造することもできる。しかも、生もと系の乳酸菌を使用した場合は、生もとや山廃もと酒母を使用した清酒と同様な風味が得られる。
【0011】
また、本発明の製造方法を用いた清酒の有機酸組成において、クエン酸含量が従来の清酒より少なくなるという特徴が認められ、従来の生もと、山廃もとを使用した清酒の有機酸組成に近い酒質になることが確認された。
【0012】
【実施例】
以下、本発明を実施例により更に具体的に説明するが、本発明はこれら実施例に限定されない。
【0013】
実施例1
次のようにして低温で乳酸生成能の高い乳酸菌を分離、選択した。
まず、本件出願人が保有する米麹7.2gを清酒仕込水26mlに加え、15℃一定で7日間保持した。上清の総酸度が約4mlになっているのを確認した後、この上清をGYP寒天培地(2%グルコース、1%酵母エキス、1%ポリペプトン)に接種して、30℃で3日間培養し、白色からクリーム色のコロニーで、顕微鏡下で明らかに細菌であると認められた株を44株分離した。これら44株をラクトバチルス・サケに属するタイプストレインと共に1%炭酸カルシウムを含有したGYP寒天培地に接種し、4℃で14日間培養し、生育及び炭酸カルシウムの溶解に伴うハローがタイプストレインよりも大きい株を5株選択した。
【0014】
この選択株はいずれも桿状乳酸菌であり、グルコースからの主要生成物はDL型乳酸で、エタノール、 二酸化炭素を生成しないホモ発酵型の乳酸菌であった。選択株のうち以下の実施例に使用した株を選択株Aと称する。
本菌株は、Lactobacillus sp. Aと命名、表示され、工業技術院生命工学工業技術研究所にFERM P−17832として寄託されている。
【0015】
実施例2
生もと系乳酸菌のタイプストレインを対照に、選択株Aを実施例1で述べたGYP液体培地で、30℃、3日間培養した液128μlを水麹(米麹7.2g、汲水26ml)に添加して、15℃で静置培養したときの酸度の経時変化を表1に示す。
【0016】
【表1】

Figure 0004204173
【0017】
表1から明らかなように、選択株Aは15℃においては乳酸生成が良好で、乳酸を添加しない清酒仕込に適した菌株であることがわかる。
【0018】
実施例3
選択株Aを用いて表2に示す仕込配合で清酒製造試験を行った。
【0019】
【表2】
Figure 0004204173
【0020】
初添において、汲水と米麹を仕込んだ後、実施例2の方法で培養した選択株Aの培養液(汲水の0.5%、菌数として汲水1ml当り1×106 個)を加えた。その後15℃で、0、1、2及び3日間静置培養した後、固形酵母(協会701号)と掛米(α化米、セブンライス社製)を投入して初添を終了した。仲添以降は従来の方法に従った。比較例として、選択株Aの培養液の代りに醸造用乳酸0.23mlを添加して、すぐに固形酵母と掛米を投入した仕込を行った。品温は初添後15℃、仲添後11℃、留添後10℃で1日1℃ずつ上昇させ、最高品温は15℃に設定した。上槽は留後19日に遠心分離法によって行った。表3に上槽酒の成分分析結果を示す。
【0021】
【表3】
Figure 0004204173
【0022】
これらの結果からわかるように、初添の水麹に乳酸菌を汲水当り1×106個添加すれば、上槽酒の酸度が3ml以上の酸味の強い清酒となり、多酸型の新タイプ清酒が得られた。
【0023】
実施例4
選択株Aを用いて表4に示す仕込配合で清酒製造試験を行った。
【0024】
【表4】
Figure 0004204173
【0025】
初添において、汲水と米麹を仕込んだ後、実施例2の方法で培養した選択株Aの培養液を汲水の0.5%(菌数として汲水1ml当り1×106個)、0.05%(同1×105個)、0.005%(同1×104個)、及び0.0005%(同1×103個)加えた。その後直ちに固形酵母(協会701号)と掛米(α化米、セブンライス社製)を投入して初添を終了した。仲添以降は従来の方法に従った。比較例として、選択株Aの培養液の代りに醸造用乳酸0.58mlを添加して、固形酵母と掛米を投入した仕込を行った。品温は初添後15℃、仲添後11℃、留添後10℃で、その後1日1℃ずつ上昇させ、最高品温は15℃に設定した。上槽は留後19日に遠心分離法によって行った。表5に上槽酒の成分分析結果を示す。
【0026】
【表5】
Figure 0004204173
【0027】
この結果からわかるように、初添後の汲水1ml当り、選択株Aを1×105個以下で添加すれば、上槽酒の酸度が従来清酒とほぼ同等になることが明らかとなった。
【0028】
実施例5
選択株Aを用いて表4に示す仕込配合で清酒製造試験を行った。初添において汲水と米麹を仕込んだ後、実施例2の方法で培養した選択株Aの培養液を汲水の0.05%(菌数として汲水1ml当り1×105個)加えた。その後15℃で0及び2日間静置培養し、固形酵母(協会701号)と掛米(α化米、セブンライス社製)を投入して初添を終了した。仲添以降は従来の方法に従った。比較例として、選択株Aの培養液の代りに醸造用乳酸0.58mlを添加して、固形酵母と掛米を投入した仕込を行った。品温は初添後15℃、仲添後11℃、留添後10℃で1日1℃ずつ上昇させ、最高品温は15℃に設定した。上槽は留後19日に遠心分離法によって行った。表6に上槽酒の成分分析結果を示す。有機酸分析は高速液体クロマトグラフィー法、低沸点香気成分分析はヘッドスペースガスクロマトグラフィー法を用いて行った。
【0029】
【表6】
Figure 0004204173
【0030】
この結果からわかるように、初添後の汲水1ml当り、選択株Aを1×105個以下で添加し、培養日数をとらずにすぐに酵母と掛米を投入して初添を終了すれば、上槽酒の酸度が従来清酒とほぼ同等になることが明らかとなった。また、このときの上槽酒の乳酸及びリンゴ酸含量は比較例の従来清酒の濃度よりも少し低く、また、クエン酸含量が極めて少なくなっていた。次にこれらの上槽酒の官能検査を行った。官能検査はパネラー10名で行い、三段階(1:良、2:普通、3:不良)で評価した平均値を表7に示す。
【0031】
【表7】
Figure 0004204173
【0032】
官能検査の結果は、初添時に乳酸菌を添加し培養日数をとらなかった方が高い評価を得た。また、乳酸菌を添加した清酒は、全体的に軽快で味に幅のある酒質になっていた。
【0033】
なお、乳酸菌はアルコール濃度が一定濃度(約16%)に達する留後10日までには死滅しており、上槽酒の酸度の上昇は初添から留後4日頃までの醪中での乳酸菌菌数に依存していることが明らかとなった。
【0034】
【発明の効果】
本発明による清酒の製造方法によれば、生もと系酒母や短期山廃酒母を使用する清酒製造方法に比べて、大きな仕込期間短縮を実現することができ、生産効率が大幅に向上する。
また、本発明による清酒の製造方法によれば、無添加志向の社会的要請に応えて、醸造用乳酸を添加することなく、低温発酵性の乳酸菌の力で乳酸を生成し、雑菌の醪中での増殖を抑えることが可能となる。更には、従来の通常清酒と同等の酸度に調整することが可能であり、乳酸やリンゴ酸がやや少なく、クエン酸含量が低い、軽快で味に幅のある新タイプの清酒が得られる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing sake, and more particularly to a method for producing sake, wherein lactic acid bacteria are added in sake production.
[0002]
[Prior art]
About the sake production technology that uses lactic acid for sake production, lactic acid bacteria that naturally occur in the course of cultivating raw mothers or dairy abolishers (Yamazoumoto) over about 30 days The technology that uses has been used. In addition, quick brewers and sake mothers that are grown by adding lactic acid for brewing are also widely used. In recent years, a method for growing a liquor mother (referred to as a short-term mountain abolished liquor mother) in which pure cultivated lactic acid bacteria are added in place of brewing lactic acid has been proposed (Japanese Patent Laid-Open No. 49-94900, Special JP-A 61-58574, JP-A 64-74976 or JP 11-46748). In addition, major sake manufacturers that produce sake in large tanks use the method of adding cultured yeast and cultivating sake without growing a liquor mother, that is, yeast preparation, which is mainly used for brewing lactic acid. There is no known technique for spontaneously generating or adding lactic acid bacteria.
[0003]
However, the short-term mountain waste liquor described above has a problem that a growing period of the liquor for 10 to 14 days is required and a high preparation temperature is required when using heat-resistant lactic acid bacteria. In addition, the acidity of the sake is a multi-acid liquor that is 2 to 3 times that of sake produced by conventional general yeast preparation, and the original flavor of sake may be impaired.
[0004]
On the other hand, brewing time is shortened with yeast preparations that do not grow a liquor mother, but it is necessary to add lactic acid for brewing to prevent contamination with germs, and the sake quality of the obtained sake is not deep and light. It was.
[0005]
[Problems to be solved by the invention]
In order to solve the above-mentioned problems of conventional short-term mountain waste liquor mothers and yeast preparation, the present invention shortens the brewing period in sake production by adding lactic acid bacteria instead of lactic acid, and improves the quality of sake in the solid yeast preparation. A method for producing refined sake is provided.
[0006]
[Means for Solving the Problems]
[Technical Field] The present invention relates to a method for producing sake, wherein a low-temperature fermentable lactic acid bacterium is added in a sake production process without growing a liquor mother.
[0007]
The present inventors considered using lactic acid bacteria that have a good effect on sake not for cultivating brewers but for preparing yeast that does not cultivate brewers. That is, by adding yeast with low-temperature fermentable lactic acid bacteria, the addition of lactic acid for brewing and the process of growing a liquor mother can be omitted, and a sake with a good flavor having a normal acidity can be obtained. We found that it can be manufactured.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Below, preferable embodiment of the sake manufacturing method by this invention is described.
First, the lactic acid bacterium to be added is not particularly limited, but it is preferable to use a lactic acid bacterium obtained as follows.
The acquisition method is a method of selecting a strain that grows quickly and has a large halo formation due to dissolution of calcium carbonate and has a high lactic acid-producing ability when cultured at a low temperature of 15 ° C. or lower in a medium for lactic acid bacteria containing calcium carbonate. . In general, Lactobacillus genus [for example, Lactobacillus sake] or leuconostoc [for example Leuconostoc mesenteroides] is known as a lactic acid bacterium having such properties, Mainly separated from raw and mountain abandoned mothers and sake breweries that use them. There is no problem even with the type strains belonging to these two genera preserved by the strain preservation agency. Moreover, examples of the shape of the lactic acid bacterium to be added include liquid lactic acid bacterium and dry lactic acid bacterium, but are not particularly limited thereto.
[0009]
Next, with respect to the method for producing sake, there is no limitation on the production method such as the whitening degree of the raw rice, the alpha-treating method of the raw rice, the preparation blending, etc., as long as the preparation method does not grow the brewer, for example, yeast preparation. Moreover, as a kind of yeast to be used, there are Association No. 601, Association No. 701, Association No. 901, Association No. 1001, etc., but it is not particularly limited, and the shape of cultured yeast is liquid, mud, There are solid, dried, etc., and solid yeast is particularly preferred, but is not limited.
[0010]
The addition timing of lactic acid bacteria is not particularly limited, but is preferably added during the initial addition step as follows.
First, the culture solution in which the lactic acid bacteria are cultured is added to the initial syrup of the sake brewer's yeast, and the solid yeast and the rice cake are added to complete the initial addition process. Then, it undergoes fermentation for about 20 days through a normal dance process, an intermediate process and a detention process to produce sake. The lactic acid content of the sake produced can be adjusted. For example, by increasing the number of lactic acid bacteria to be added, or by cultivating varicella to which lactic acid bacteria have been added at 15 to 20 ° C. for 1 to 3 days, and adding solid yeast and rice, a new type with a high lactic acid content Sake can also be produced. In addition, when raw lactic acid bacteria are used, a flavor similar to that of sake using raw raw, mountain waste and liquor can be obtained.
[0011]
In addition, in the organic acid composition of sake using the production method of the present invention, it was recognized that the citric acid content was lower than that of conventional sake. It was confirmed that the quality of liquor was close to the composition.
[0012]
【Example】
EXAMPLES Hereinafter, although an Example demonstrates this invention further more concretely, this invention is not limited to these Examples.
[0013]
Example 1
Lactic acid bacteria having a high ability to produce lactic acid at a low temperature were separated and selected as follows.
First, 7.2 g of rice bran held by the applicant was added to 26 ml of sake brewing water and kept at a constant 15 ° C. for 7 days. After confirming that the total acidity of the supernatant was about 4 ml, this supernatant was inoculated on GYP agar medium (2% glucose, 1% yeast extract, 1% polypeptone) and cultured at 30 ° C. for 3 days. 44 strains of white to creamy colonies that were clearly recognized as bacteria under a microscope were isolated. These 44 strains were inoculated into a GYP agar medium containing 1% calcium carbonate together with type strain belonging to Lactobacillus salmon, cultured at 4 ° C for 14 days, and the halo accompanying growth and dissolution of calcium carbonate was larger than type strain Five strains were selected.
[0014]
All of these selected strains were rod-shaped lactic acid bacteria, and the main product from glucose was DL-type lactic acid, and homofermentative lactic acid bacteria that did not produce ethanol or carbon dioxide. Among the selected strains, the strain used in the following examples is referred to as a selected strain A.
This strain is Lactobacillus sp. It is named and displayed as A, and is deposited as FERM P-17832 at the Institute of Biotechnology, National Institute of Advanced Industrial Science and Technology.
[0015]
Example 2
In contrast to the raw strain of lactic acid bacteria, the selected strain A was cultured in the GYP liquid medium described in Example 1 at 30 ° C. for 3 days, 128 μl of the syrup (7.2 g of rice bran, 26 ml of pumped water) Table 1 shows the time course of acidity when the mixture was added to the above and incubated at 15 ° C.
[0016]
[Table 1]
Figure 0004204173
[0017]
As can be seen from Table 1, the selected strain A shows good lactic acid production at 15 ° C. and is a strain suitable for the sake preparation without adding lactic acid.
[0018]
Example 3
Using the selected strain A, a sake production test was conducted with the charge composition shown in Table 2.
[0019]
[Table 2]
Figure 0004204173
[0020]
In the first addition, after adding the pumped water and rice bran, the culture solution of the selected strain A cultured by the method of Example 2 (0.5% of the pumped water, 1 × 10 6 per 1 ml of the pumped water as the number of bacteria) Was added. Then, after static culture at 15 ° C. for 0, 1, 2, and 3 days, solid yeast (Association No. 701) and rice cake (α-modified rice, manufactured by Seven Rice Co., Ltd.) were added to complete the initial addition. After the intermediary, the conventional method was followed. As a comparative example, 0.23 ml of lactic acid for brewing was added instead of the culture solution of the selected strain A, and immediately charged with solid yeast and rice. The product temperature was raised by 1 ° C. per day at 15 ° C. after the initial addition, 11 ° C. after the intermediate addition, and 10 ° C. after the distillation, and the maximum product temperature was set at 15 ° C. The upper tank was centrifuged 19 days after the distillation. Table 3 shows the component analysis results of the upper tank sake.
[0021]
[Table 3]
Figure 0004204173
[0022]
As can be seen from these results, if 1 × 10 6 lactic acid bacteria are added to the water tank of the first addition per pumped water, the acidity of the upper liquor becomes 3 ml or more, and the acidity of the sake is strong. was gotten.
[0023]
Example 4
Using the selected strain A, a sake production test was conducted with the charge composition shown in Table 4.
[0024]
[Table 4]
Figure 0004204173
[0025]
In the initial addition, after adding the pumped water and rice bran, the culture solution of the selected strain A cultured by the method of Example 2 is 0.5% of the pumped water (the number of bacteria is 1 × 10 6 per 1 ml of pumped water). 0.05% (1 × 10 5 pieces), 0.005% (1 × 10 4 pieces), and 0.0005% (1 × 10 3 pieces). Immediately thereafter, solid yeast (Association No. 701) and kake rice (α-modified rice, manufactured by Seven Rice Co., Ltd.) were added to complete the initial addition. After the intermediary, the conventional method was followed. As a comparative example, 0.58 ml of lactic acid for brewing was added in place of the culture broth of the selected strain A, and charging was performed by adding solid yeast and rice. The product temperature was 15 ° C. after the initial addition, 11 ° C. after the intermediate addition, 10 ° C. after the distillation, and then increased by 1 ° C. per day, and the maximum product temperature was set to 15 ° C. The upper tank was centrifuged 19 days after the distillation. Table 5 shows the component analysis results of the upper tank sake.
[0026]
[Table 5]
Figure 0004204173
[0027]
As can be seen from this result, it was clarified that the acidity of the upper tank liquor was almost the same as that of conventional sake if the selected strain A was added at 1 × 10 5 or less per 1 ml of pumped water after the initial addition. .
[0028]
Example 5
Using the selected strain A, a sake production test was conducted with the charge composition shown in Table 4. After preparing the pumped water and rice bran in the initial addition, 0.05% of the selected strain A culture solution cultured by the method of Example 2 (1 × 10 5 per 1 ml of pumped water) is added. It was. Thereafter, static culture was carried out at 15 ° C. for 0 and 2 days, and solid yeast (Association No. 701) and rice cake (α-modified rice, manufactured by Seven Rice Co., Ltd.) were added to complete the initial addition. After the intermediary, the conventional method was followed. As a comparative example, 0.58 ml of lactic acid for brewing was added in place of the culture broth of the selected strain A, and charging was performed by adding solid yeast and rice. The product temperature was raised by 1 ° C. per day at 15 ° C. after the initial addition, 11 ° C. after the intermediate addition, and 10 ° C. after the distillation, and the maximum product temperature was set at 15 ° C. The upper tank was centrifuged 19 days after the distillation. Table 6 shows the component analysis results of the upper tank sake. Organic acid analysis was performed by high performance liquid chromatography, and low boiling point aroma component analysis was performed by headspace gas chromatography.
[0029]
[Table 6]
Figure 0004204173
[0030]
As can be seen from this result, the selected strain A was added at 1 × 10 5 or less per 1 ml of the pumped water after the initial addition, and the initial addition was completed by immediately adding the yeast and the rice without taking the culture days. As a result, it became clear that the acidity of the upper sake was almost the same as that of conventional sake. At this time, the lactic acid and malic acid contents of the upper liquor were slightly lower than the concentration of the conventional sake of the comparative example, and the citric acid content was extremely low. Next, a sensory test of these upper tank sake was performed. The sensory test was performed by 10 panelists, and Table 7 shows the average values evaluated in three stages (1: good, 2: normal, 3: poor).
[0031]
[Table 7]
Figure 0004204173
[0032]
The result of the sensory test was highly evaluated when lactic acid bacteria were added at the time of initial addition and the number of days of culture was not taken. In addition, the sake with the addition of lactic acid bacteria was generally light and had a wide range of taste.
[0033]
The lactic acid bacteria died by the 10th day after the distillation when the alcohol concentration reached a certain level (about 16%), and the increase in acidity of the upper tank liquor was caused by the lactic acid bacteria in the cage from the first addition to around 4 days after the retention. It became clear that it was dependent on the number of bacteria.
[0034]
【The invention's effect】
According to the method for producing sake according to the present invention, compared with the method for producing sake using a raw sake mother or a short-term mountain waste sake mother, a large shortening of the preparation period can be realized, and the production efficiency is greatly improved.
In addition, according to the method for producing sake according to the present invention, in response to social demands without additives, lactic acid is produced by the power of low-temperature fermentable lactic acid bacteria without adding lactic acid for brewing, It becomes possible to suppress the proliferation in the. Furthermore, it is possible to adjust the acidity to the same level as that of conventional ordinary sake, and there is obtained a new type of sake that is light and has a wide range of taste, with slightly less lactic acid and malic acid, and a low citric acid content.

Claims (3)

酒母を育成しない清酒製造において、低温発酵性の乳酸菌を添加することを特徴とする清酒の製造方法。A method for producing sake, wherein low temperature fermentable lactic acid bacteria are added in sake production without growing a liquor. 請求項に記載の乳酸菌がラクトバチルス属及び/又はロイコノストック属である清酒の製造方法。A method for producing sake, wherein the lactic acid bacterium according to claim 1 is Lactobacillus and / or Leuconostoc. 請求項1又は2に記載の清酒製造方法において、酵母仕込を行うことを特徴とする清酒の製造方法。The method for producing sake according to claim 1 or 2 , wherein yeast is charged.
JP2000135387A 2000-05-09 2000-05-09 Sake production method using lactic acid bacteria Expired - Lifetime JP4204173B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000135387A JP4204173B2 (en) 2000-05-09 2000-05-09 Sake production method using lactic acid bacteria

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000135387A JP4204173B2 (en) 2000-05-09 2000-05-09 Sake production method using lactic acid bacteria

Publications (2)

Publication Number Publication Date
JP2001314182A JP2001314182A (en) 2001-11-13
JP4204173B2 true JP4204173B2 (en) 2009-01-07

Family

ID=18643473

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000135387A Expired - Lifetime JP4204173B2 (en) 2000-05-09 2000-05-09 Sake production method using lactic acid bacteria

Country Status (1)

Country Link
JP (1) JP4204173B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5550418B2 (en) * 2009-03-31 2014-07-16 宝酒造株式会社 Sake production method and sake
JP5728700B2 (en) * 2010-03-30 2015-06-03 山形県 Manufacturing method of new taste sake using MLF fermentation
CN108546612B (en) * 2018-02-27 2021-06-18 会稽山绍兴酒股份有限公司 Method for improving volatile ester content of finished yellow wine
JP6592732B2 (en) * 2018-03-30 2019-10-23 株式会社 林本店 Sake mother production method by parallel growth of lactic acid bacteria and yeast

Also Published As

Publication number Publication date
JP2001314182A (en) 2001-11-13

Similar Documents

Publication Publication Date Title
US4867992A (en) Natural coffee flavor by fermentation
JP2876006B1 (en) Green tea fermented product and its use food and drink
CN111248409A (en) Low-salt thick broad-bean sauce fermentation method
JPH1175828A (en) Bifidobacterium breve and fermented soybean milk by using the same
JP4204173B2 (en) Sake production method using lactic acid bacteria
JP4900746B2 (en) Aroma component high productivity yeast
KR20080082945A (en) Preparation of fermented garlic extract and composition containing the same
KR102028683B1 (en) Novel acetobacter pasteurianus strain capable of acetic acid fermentation and manufacturing method of fermented vinegar using it
CN100491520C (en) Method for culturing micro-organisms in reducing conditions obtained from gas stream
JP2004215644A (en) Thyrosol-producing mutant yeast strain having high productivity, and method for producing fermented alcoholic beverage using the yeast
KR102243418B1 (en) Novel acetic acid bacteria and process for preparing Kombucha beverages using the same
JP3337098B2 (en) Fermented acidic whey product and method for producing the same
JP3525115B2 (en) Sake and its production method
JP3300814B2 (en) Sake mother and sake manufacturing method
CN101070521A (en) Fermenting agent, its preparing method and use
CH682155A5 (en)
JPH0783706B2 (en) How to improve the quality of alcoholic beverages
EP1151128A1 (en) A fermentation process for preparing erythritol using mother liquor produced from purification process of palatinose
JP4008539B2 (en) New yeast with high organic acid production and its use
JP2009240293A (en) NEW MALO-LACTIC FERMENTATION LACTOBACILLUS ACTING UNDER LOW-TEMPERATURE AND LOW-pH CONDITION, FOOD AND DRINK PRODUCED BY USING THE SAME AND METHOD FOR PRODUCING THE SAME
JP3865324B2 (en) New yeast and its use
JPH02291293A (en) Production of ethyl-alpha-glucoside
JP2598689B2 (en) Lactic acid bacteria for malolactic fermentation
JPH01257476A (en) Bifidobacterium-breve and food and drink
JPS625591B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070507

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080416

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080613

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081014

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081014

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111024

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4204173

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111024

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141024

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term