JP4203188B2 - Method for producing temperature-sensitive discolorable acrylic synthetic fiber - Google Patents

Method for producing temperature-sensitive discolorable acrylic synthetic fiber Download PDF

Info

Publication number
JP4203188B2
JP4203188B2 JP20358199A JP20358199A JP4203188B2 JP 4203188 B2 JP4203188 B2 JP 4203188B2 JP 20358199 A JP20358199 A JP 20358199A JP 20358199 A JP20358199 A JP 20358199A JP 4203188 B2 JP4203188 B2 JP 4203188B2
Authority
JP
Japan
Prior art keywords
thermochromic
color
temperature
fiber
pigment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP20358199A
Other languages
Japanese (ja)
Other versions
JP2001032131A (en
Inventor
義明 小野
直哉 石村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pilot Ink Co Ltd
Original Assignee
Pilot Ink Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pilot Ink Co Ltd filed Critical Pilot Ink Co Ltd
Priority to JP20358199A priority Critical patent/JP4203188B2/en
Publication of JP2001032131A publication Critical patent/JP2001032131A/en
Application granted granted Critical
Publication of JP4203188B2 publication Critical patent/JP4203188B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Artificial Filaments (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は感温変色性アクリル系合成繊維の製造方法に関する。詳細には、熱変色性顔料をアクリロニトリル系重合体中に分散状態に含有させ、繊維形態となした感温変色性アクリル系合成繊維の製造方法に関する。
【0002】
【従来の技術】
従来より、繊維に熱変色機能を付与させる手段として、繊維の表面に熱変色性顔料をバインダー樹脂に分散状態に固着させた熱変色層により被覆するもの(特開昭61−179389号公報、特開昭62−156355号公報等)、ポリエステル、ポリアミド、ポリオレフィン等の熱可塑性の繊維形成性重合体中に熱変色性顔料を溶融ブレンドして溶融紡糸により一体的に形成させるもの(特開平3−227402号公報、特開平3−161511号公報等)がある。
【0003】
【発明が解決しようとする課題】
ところで、アクリル系合成繊維にあっては、アクリロニトリル系重合体の熱的特性により、熱変色性顔料を一体的に溶融ブレンドして溶融紡糸により繊維を形成することができないので、後加工により繊維表面に前記した熱変色層を形成することにより熱変色機能を付与することを余儀なくされていた。
従って、アクリル繊維自体の風合が損なわれる上、溶融ブレンドにより溶融紡糸された系に比べ、洗濯強度、擦過強度、耐光堅牢性等の持久性の面で劣ることを免れなかった。
一方、溶融紡糸による系にあっては、熱変色性顔料が繊維形成性ポリマーとの溶融ブレンド、或いは溶融紡糸過程で高熱、高圧が負荷されるので、熱変色性顔料の熱劣化を起こす場合があり、一般の繊維製品に適用可能な高分子量の高融点の繊維形成性ポリマーの適用が阻害され、繊維強度等の耐久性を実用的に満足させることが困難であった。
本発明者らは、前記した不具合を解消するため、鋭意検討を進め、アクリル系繊維のもつ風合や、繊維特性を損なうことなく、熱変色性機能を持続して有効に発現させる感温変色性アクリル系合成繊維の製造方法を提供しようとするものである。
【0004】
【課題を解決するための手段】
本発明は、(イ)電子供与性呈色性有機化合物、(ロ)電子受容性化合物、及び(ハ)前記両者の呈色反応の生起温度を決める反応媒体をマイクロカプセルに内包した、平均粒子径0.5〜30μmの熱変色性顔料が、アクリロニトリル系重合体を溶解させた無機塩濃厚水溶液中に、前記重合体に対し0.5〜40重量%の割合で分散状態にブレンドされてなる紡糸原液により湿式紡糸することを特徴とする感温変色性アクリル系合成繊維の製造方法を要件とする。
更には、無機塩濃厚水溶液は、ロダン塩を主成分として含有する濃厚水溶液であることを要件とする。
【0005】
前記熱変色性顔料は、(イ)電子供与性呈色性有機化合物、(ロ)前記化合物を呈色させる電子受容性化合物、及び(ハ)前記両者の呈色反応の生起温度を決める反応媒体の必須三成分を含む、従来より公知のものが有効であり、具体的には、本出願人が提案した、特公昭51−44706号公報、特公昭51−44707号公報、特公平1−29398号公報等に記載のものが利用できる。前記は所定の温度(変色点)を境としてその前後で変色し、変色点以上の温度域で消色状態、変色点未満の温度域で発色状態を呈し、前記両状態のうち常温域では特定の一方の状態しか存在しえない。即ち、もう一方の状態は、その状態が発現するのに要した熱又は冷熱が適用されている間は維持されるが、前記熱又は冷熱の適用がなくなれば常温域で呈する状態に戻る、ヒステリシス幅が比較的小さい特性(ΔH=1〜7℃)を有する加熱消色型(A)を挙げることができ、特にΔHが3℃以下の系〔特公平1−29398号公報に示す、3℃以下のΔT値(融点−曇点)を示す脂肪酸エステルを(ハ)成分として適用〕によるものは、変色点を境に温度変化に鋭敏に感応して高感度の加熱消色性を示し、目的に応じて効果的に適用できる(図5参照)。
【0006】
又、本出願人が提案した特公平4−17154号公報、特開平7−179777号公報、特開平7−33997号公報、特開平8−39936号公報等に記載されている大きなヒステリシス特性(ΔH=8〜50℃)を示す、即ち、温度変化による着色濃度の変化をプロットした曲線の形状が、温度を変色温度域より低温側から上昇させていく場合と逆に変色温度域より高温側から下降させていく場合とで大きく異なる経路を辿って変色し、t以下の低温域での発色状態、又はt以上の高温域での消色状態が、特定温度域〔t〜tの間の温度域(実質的二相保持温度域〕で記憶保持できる色彩記憶保持型熱変色性組成物(B)も適用できる(図6参照)。
尚、前記実質的二相保持温度域は、常温域(例えば、15〜35℃)を含むものが汎用的であるが、前記温度範囲に特定されない。
【0007】
又、加熱発色型(C)の組成物として、消色状態からの加熱により発色する、本出願人の提案(特開平11−129623号公報、特開平11−5973号公報)による、(ロ)電子受容性化合物として、炭素数3乃至18の直鎖又は側鎖アルキル基を有する特定のアルコキシフェノール化合物を適用した系を挙げることができる。
【0008】
前記した三つのタイプ(A、B、C)の熱変色性組成物を含む顔料を目的に応じて選択して適用することにより、多様な変色形態を有する感温変色性アクリル系合成繊維を提供できる。
【0009】
前記熱変色性顔料は、鮮明な発色性、高発色濃度、均質性、分散安定性、耐薬品性等の面から(イ)、(ロ)、(ハ)の三成分をマイクロカプセルに内包させたものが有効である。
熱変色性顔料の平均粒子径〔(長径+短径)/2〕は、0.5μm〜30μmの範囲、好ましくは、0.5〜15μm、更に好ましくは、0.5〜10μmの範囲にあることが、変色の鋭敏性、持久性、加工適性等の面で有効である。
粒子径が30μmを越える系にあっては、繊維形成過程における均質な分散性に欠け、安定した品質の熱変色性を示す繊維を形成し難い。
0.5μm未満の系にあっては、水性媒体中に懸濁した状態でマイクロカプセル化した熱変色性顔料が得られるとしても、濾別又は遠心分離等の手段によるカプセル化顔料の単離に難がある上、強度的に不充分である。
【0010】
マイクロカプセル形態の顔料は、真円形断面のものの適用を拒まないが、非円形断面形状を有するもの、更に具体的には外面の少なくとも一部に窪みを有する非真円形状の熱変色性顔料(図1〜図4参照)を効果的に適用することができる。
前記熱変色性顔料は、非真円形態の偏平状の顔料であるので圧力や熱の負荷に対して、適宜に弾性変形して応力を緩和できるため、カプセル壁膜の破壊に対して抑制効果を果たす。即ち、加熱過程にあってはカプセルの熱膨脹、収縮に応じて壁膜が弾性変形して、カプセル壁膜の破壊の抑制効果を果たし、内包の可逆熱変色性組成物を保護して所期の熱変色機能を保持させる強靱なカプセル形態の熱変色性顔料として効果的に機能する。
又、本発明のカプセル化された熱変色性顔料は、可逆熱変色性組成物/壁膜=7/1〜1/1(重量比)の範囲にあることが望ましい。熱変色性組成物の比率が前記範囲より大になると壁膜の厚みが肉薄となり過ぎ、内包した熱変色性組成物の保護機能の低下がみられる。一方、壁膜の比率が前記範囲より大になると発色濃度の低下を余儀なくされ、好ましくない。
【0011】
前記可逆熱変色性組成物をカプセルに内包させる手段としては、界面重合法、界面重縮合法、インサイチュー法、コアセルベート法等、公知のカプセル化方法が適用されるが、本発明の前記した要件を満たす粒子径範囲及び外形状の熱変色性顔料を得るためには、凝集、合一化が生じ難い界面重合法又は界面重縮合法が好適に用いられる。更に、カプセル化終了後、カプセル懸濁液を所望に応じて水で希釈し、夾雑物及び粗大粒子をフィルター類を用いて濾別することにより、不要な粗大粒子が除去される。
【0012】
前記熱変色性顔料は、繊維を形成するアクリロニトリル系重合体に対し、0.5〜40重量%の割合でブレンドされる。0.5重量%未満では、鮮明な熱変色性を示さない。一方、40重量%を越えると消色時における色残りが発生しがちであり、好適には1〜20重量%の範囲である。
【0013】
発明感温変色性アクリル系合成繊維の製造方法は、(イ)電子供与性呈色性有機化合物、(ロ)電子受容性化合物、及び(ハ)前記両者の呈色反応の生起温度を決める反応媒体をマイクロカプセルに内包した、平均粒子径0.5〜30μmの熱変色性顔料が、アクリロニトリル系重合体を溶解させた無機塩濃厚水溶液中に、前記重合体に対し0.5〜40重量%の割合で分散状態にブレンドされてなる紡糸原液により湿式紡糸することを要件とする。
前記無機塩濃厚水溶液としては、ロダンソーダ、ロダンカリウム、ロダンアンモン及びロダンカルシウム等のロダン塩の濃厚水溶液、塩化亜鉛、塩化リチウム等無機塩の濃厚水溶液を挙げることができる。これらの無機塩類は、熱変色性顔料の変色機能を劣化させることなく、アクリロニトリル系重合体の良好な溶媒として作用する。又、紡糸ノズルより吐出されたフィラメント状物を凝固させる凝固浴としては、従来より汎用の水もしくは濃度20%以下の上記無機塩の水溶液が好適である。
尚、前記紡糸原液は、前記重合体の重合度に応じて配合量を適性な特性の紡糸液が得られるよう調整されるが、通常、30℃で40〜200ポイズ程度の粘性を有するものが有効である。
アクリロニトリル系重合体としては、ポリアクリロニトリル又はアクリロニトリルと共重合し得る化合物との共重合体及びポリ塩化ビニル等の第2成分を含むものが挙げられ、アクリロニトリルを50重量%以上、好ましくは80重量%以上含有するものが好ましい。アクリロニトリルと共重合して本発明の実施に有効なアクリロニトリル共重合生成物を生じる化合物としては、例えば、アクリル酸メチル、アクリル酸エチル、メタクリル酸メチルなどのアクリル酸又はメタクリル酸のエステル類、アクリルアミド及びメタクリルアミド及びこれらのアルキル置換生成物及び窒素置換生成物、2−ビニルピリジン、2−メチル−5−ビニルピリジン等のビニルピリジン類、スチレン及びそれらのアルキル置換生成物或いはさらに塩化ビニル、塩化ビニリデン、臭化ビニル、臭化ビニデン、青化ビニリデン等の単量体を挙げることができるが、必ずしもこれらに限定されない。
通常、単一重合体アクリロニトリル又は共重合体アクリロニトリルの分子量(平均分子量)は15000〜150000の範囲(汎用的には25000〜80000)から適宜に選ばれる。
本発明における紡糸原液の組成は、アクリロニトリル系重合体5〜30重量%(好適には約10〜20重量%)、ロダン塩又は塩化亜鉛30〜60重量%の紡糸原液において熱変色性顔料をポリマーに対して0.5〜40重量%(好適には1〜20重量%)を分散させることができる。さらに、一般顔料や光輝性材料等を添加できる。
前記紡糸原液を45〜75℃で紡糸ノズルより、希薄ロダン塩水溶液等の凝固液中に押出し、凝固させ、公知の水洗、延伸、熱処理、乾燥、更に捲縮処理、油剤処理等の工程を経て繊維となす。
熱変色性顔料として、マイクロカプセル形態の顔料を適用する、紡糸原液の調製時に耐性を有すると共に易分散性であり、なかでも、非円形断面形状を有する顔料は、紡糸過程や延伸による繊維形成過程にあって、圧力や高熱が負荷されるが、自らの弾性変形により応力が緩和され、加えて繊維化時に長手方向に当該マイクロカプセル顔料自体が配向し易い特性と相まってマイクロカプセルが破壊されることがなく、所期の熱変色機能を満たす繊維を得ることができる。
本発明における繊維径は100μm以下、好適には30μm以下であり、汎用の非熱変色性アクリル繊維と同様な処理により、トウ、ステープル、その他所望の繊維形態となして実用に供することができる。
尚、前記湿式紡糸において、30μm以下の繊維径を得るためには、d<D≦20d(但し、dは顔料の粒子径、Dは繊維径を示す)の関係を満たすとき、連続的且つ安定的に繊維形成ができることを見出した。
【0014】
【発明の実施の形態】
感温変色性アクリル系合成繊維は、特定粒子径の熱変色性顔料の特定量をアクリロニトリル系重合体を含む無機塩濃厚水溶液中に分散させた紡糸原液を用い、紡糸ノズルから凝固液中に吐出させ、公知の手段により延伸等の後処理を施し、繊維形態となすことによって得られる。
尚、実施例では、マイクロカプセル形態の顔料のうち、図1〜図4に例示の形態を適用しているが、これらの形態の混合或いは円形状断面の形態のものであってもよく、本発明は実施例に限定されない。
【0015】
【実施例】
以下に実施例を示す。尚、実施例中の部は重量部である。
【0016】
実施例1
アクリロニトリル90部、アクリル酸メチル9.8部、メタリルスルホン酸ソーダ0.2部のモノマー組成で重合して得られたアクリロニトリル系共重合体10部を50重量%濃度のロダンソーダ水溶液89部に溶解した。
前記アクリロニトリル系共重合体溶液99部に、(イ)3−(2−エトキシ−4−ジエチルアミノフェニル)−3−(1−エチル−2−メチルインドール−3−イル)−4−アザフタリド1部、(ロ)1,1−ビス−(4−ヒドロキシフェニル)−2−メチルプロパン5部、(ハ)セチルアルコール25部、カプリン酸ステアリル25部からなる可逆熱変色性組成物をエポキシ樹脂皮膜のマイクロカプセルに内包した可逆熱変色性顔料(消色温度t:約33℃、発色温度t:約28℃、発色時青色、消色時無色、平均粒子径:3μm、図1の断面形状、可逆熱変色性組成物/壁膜=5.6/1.0)1部を加え、均一に分散することにより、可逆熱変色性顔料1重量%、アクリロニトリル系共重合体10重量%、ロダンソーダ44.5重量%、水44.5重量%からなる紡糸原液を調製した。
前記紡糸原液を孔径0.04mmの紡糸ノズルを用いて−2℃、15重量%濃度のロダンソーダ水溶液中に吐出し、湿式紡糸した後、さらに、従来公知の条件で水洗、延伸、乾燥緻密化、捲縮処理、熱処理及び油剤処理等を施して繊維直径20μmの感温変色性アクリル系合成繊維を得た。
この繊維は室温(25℃)で青色を呈しており、約33℃以上の温度に加温することにより無色となる、加熱消色型の熱変色特性(図5参照)を有し、この状態で室温(25℃)に放置したところ約28℃で再び青色を呈した。
この色変化は繰り返し行うことができた。
【0017】
実施例2
アクリロニトリル88部、メタクリル酸メチル12部のモノマー組成で重合して得られたアクリロニトリル系共重合体10部を60重量%濃度の塩化亜鉛水溶液89部に溶解した。
前記アクリロニトリル系共重合体溶液99部に、(イ)1,2−ベンツ−6−ジエチルアミノフルオラン3部、(ロ)2,2−ビス−(4−ヒドロキシフェニル)プロパン5部、(ハ)ミリスチルアルコール25部、ミリスチン酸デシル25部からなる可逆熱変色性組成物をエポキシ樹脂皮膜のマイクロカプセルに内包した可逆熱変色顔料(消色温度t:約15℃、発色温度t:約10℃、発色時ピンク色、消色時無色、平均粒子径:5μm、図2の断面形状、可逆熱変色性組成物/壁膜=5.8/1.0)1部を加え、均一に分散することにより、可逆熱変色性顔料1重量%、アクリロニトリル系共重合体10重量%、塩化亜鉛53.4重量%、水35.6重量%からなる紡糸原液を調製した。
前記紡糸原液を孔径0.06mmの紡糸ノズルを用いて−2℃、15重量%濃度の塩化亜鉛水溶液中に吐出し、湿式紡糸した後、さらに、従来公知の条件で水洗、延伸、乾燥緻密化、捲縮処理、熱処理及び油剤処理等を施して繊維直径30μmの感温変色性アクリル系合成繊維を得た。
この繊維は室温(25℃)で無色であり、約10℃以下の温度に冷却することによりピンク色となる、加熱消色型の熱変色特性(図5参照)を有し、この状態で室温(25℃)に放置したところ約15℃で再び無色となった。
この色変化は繰り返し行うことができた。
【0018】
実施例3
アクリロニトリル91部、アクリル酸メチル6.5部、N−メチロールアクリルアミド2.5部のモノマー組成で重合して得られたアクリロニトリル系共重合体10部を50重量%濃度のロダンソーダ水溶液89部に溶解した。前記アクリロニトリル系共重合体溶液99部に、(イ)1,3−ジメチル−6−ジエチルアミノフルオラン3部、(ロ)1,1−ビス−(4−ヒドロキシフェニル)−2−エチルヘキサン5部、(ハ)ステアリン酸ネオペンチル50部からなる可逆熱変色性組成物をエポキシ樹脂皮膜のマイクロカプセルに内包した可逆熱変色性色彩記憶性顔料(消色温度t:約32℃、発色温度t:約15℃、着色時橙色、消色時無色、平均粒子径:2μm、図3の断面形状、可逆熱変色性組成物/壁膜=5.8/1.0)1部を加え、均一に分散することにより、可逆熱変色性色彩記憶性顔料1重量%、アクリロニトリル系共重合体10重量%、ロダンソーダ44.5重量%、水44.5重量%からなる紡糸原液を調製した。
前記紡糸原液を孔径0.04mmの紡糸ノズルを用いて−2℃、15重量%濃度のロダンソーダ水溶液中に吐出し、湿式紡糸した後、さらに、従来公知の条件で水洗、延伸、乾燥緻密化、捲縮処理、熱処理及び油剤処理等を施して繊維直径15μmの感温変色性アクリル系合成繊維を得た。
室温(25℃)で消色状態にある前記繊維を約15℃以下に冷却すると橙色に着色し、この着色状態は再び室温(25℃)に加温しても保持することができた。さらに、橙色の着色状態からの加温により、約32℃で消色し、この状態は、再び約15℃以下に冷却するまで保持することができ、色彩記憶保持型の熱変色特性(図6)を示した。
このように、前記繊維は常温域で色彩記憶性を有しており、この色変化は繰り返し行うことができた。
【0019】
実施例4
実施例1の紡糸原液100部に対して、非熱変色性着色剤として、ピンク色顔料の水分散体〔商品名:SANDYE SUPER PINK F5B、顔料分:約14重量%、山陽色素株式会社製〕0.05部を加え、均一に分散した紡糸原液を孔径0.04mmの紡糸ノズルを用いて−2℃、15重量%濃度のチオシアン酸ナトリウム水溶液中に吐出し、湿式紡糸した後、さらに、従来公知の条件で水洗、延伸、乾燥緻密化、捲縮処理、熱処理及び油剤処理等を施して繊維直径20μmの感温変色性アクリル系合成繊維を得た。
この繊維は室温(25℃)で紫色を呈しており、約33℃以上の温度に加温することによりピンク色となり、この状態で室温(25℃)に放置したところ約28℃で再び紫色を呈した。
この色変化は繰り返し行うことができた。
【0020】
実施例5
(イ)3−〔2−エトキシ−4−(N−エチルアニリノ)フェニル〕−3−(1−エチル−2−メチルインドール−3−イル)−4−アザフタリド1.5部、(ロ)p−n−ノニルオキシフェノール6.0部、p−n−オクチルオキシフェノール4.0部、(ハ)n−ドコサン30.0部を前記実施例1の(イ)、(ロ)、(ハ)の各成分に替えて適用し、実施例1と同様にして熱変色性顔料(平均粒子径:3μm、図4の断面形状、可逆熱変色性組成物/壁膜=2.8/1.0)を得、実施例1と同様にして感温変色性アクリル系合成繊維を得た。
前記熱変色性顔料は、25℃の室温では消色状態(無色)であり、加熱を始めると33℃(T)付近から発色し始め、43℃(T)で青色の発色状態となり、次いで降温過程で32℃(T)まで発色状態を維持し、更に温度が降下すると少しずつ消色し、27℃(T)で完全に消色状態となる、加熱発色型熱変色特性(図7参照)を有し、前記繊維は前記変色特性を有していた。
この色変化は繰り返し行うことができた。
【0021】
【発明の効果】
本発明の感温変色性アクリル系合成繊維の製造方法によって得られる感温変色性アクリル系合成繊維は、特定粒子径の熱変色性顔料の特定量を繊維中に分散状態に含有させてなるものであるから、表面に熱変色性顔料をバインダー樹脂により固着させた系に比べて、耐洗濯性、耐擦過性、耐光性等の持久性を満たすと共にアクリル系繊維の特性である、風合、嵩高性その他の繊維特性が損なわれることもなく、実用性を満たす。汎用のアクリル繊維と同様な繊維特性を有し、衣料分野、カーペット、毛布、カーテン等、ぬいぐるみ等の玩具分野等に適用される。
熱変色性顔料として、マイクロカプセル形態の顔料を適用するため、紡糸原液の調製時に耐性を有し、分散性もよく、更には、紡糸過程、熱処理過程にあっても有効であり、なかでも、非円形断面形状を有している系のものにあっては、外圧による弾性変形性に富み、ブレンド工程での圧力や、繊維化工程における圧力の負荷に対して、自らの弾性変形により圧力が緩和され、加えて繊維化時に長手方向に当該マイクロカプセル顔料自体が配向し易い特性と相まってマイクロカプセルが破壊される危険性がなく、所期の熱変色機能を損なうことなく有効に発現させる。
【図面の簡単な説明】
【図1】 本発明の感温変色性アクリル系合成繊維に適用する熱変色性顔料の一例を示す、(イ)外観、及び(ロ)断面の拡大説明図である。
【図2】 本発明の感温変色性アクリル系合成繊維に適用する熱変色性顔料の他の例を示す、(イ)外観、及び(ロ)断面の拡大説明図である。
【図3】 本発明の感温変色性アクリル系合成繊維に適用する熱変色性顔料の他の例を示す、(イ)外観、及び(ロ)断面の拡大説明図である。
【図4】 本発明の感温変色性アクリル系合成繊維に適用する熱変色性顔料の他の例を示す、(イ)外観、及び(ロ)断面の拡大説明図である。
【図5】 加熱消色型の熱変色性組成物の変色挙動を示すグラフである。
【図6】 色彩記憶保持型の熱変色性組成物の変色挙動を示すグラフである。
【図7】 加熱発色型の熱変色性組成物の変色挙動を示すグラフである。
【符号の説明】
1 熱変色性顔料
11 熱変色性組成物
12 壁膜
13 窪み
加熱消色型可逆熱変色性組成物の完全発色温度
加熱消色型可逆熱変色性組成物の発色開始温度
加熱消色型可逆熱変色性組成物の消色開始温度
加熱消色型可逆熱変色性組成物の完全消色温度
加熱発色型可逆熱変色性組成物の発色開始温度
加熱発色型可逆熱変色性組成物の完全発色温度
加熱発色型可逆熱変色性組成物の消色開始温度
加熱発色型可逆熱変色性組成物の完全消色温度
ΔH 加熱消色型可逆熱変色性組成物のヒステリシス幅
ΔH 色彩記憶保持型可逆熱変色性組成物のヒステリシス幅
ΔH 加熱発色型可逆熱変色性組成物のヒステリシス幅
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method of manufacturing a thermochromic acrylic synthetic textiles. In particular, the thermochromic pigment is contained in a dispersed state in the acrylonitrile polymer, a method of manufacturing a thermochromic acrylic synthetic textiles that without the fibrous form.
[0002]
[Prior art]
Conventionally, as a means for imparting a thermochromic function to the fiber, the surface of the fiber is coated with a thermochromic layer in which a thermochromic pigment is fixed in a dispersed state in a binder resin (Japanese Patent Laid-Open No. 61-179389, specially disclosed). No. 62-156355), a thermoplastic fiber-forming polymer such as polyester, polyamide, polyolefin, and the like, and a thermochromic pigment is melt-blended and integrally formed by melt spinning (Japanese Patent Laid-open No. Hei 3- No. 227402, JP-A-3-161511, and the like.
[0003]
[Problems to be solved by the invention]
By the way, in the case of acrylic synthetic fibers, the thermal properties of the acrylonitrile polymer make it impossible to melt and blend thermochromic pigments integrally and form fibers by melt spinning. In other words, it was necessary to provide a thermochromic function by forming the thermochromic layer described above.
Accordingly, the texture of the acrylic fiber itself is impaired, and it is inevitable that the durability of the washing strength, scratch strength, light fastness and the like is inferior to that of a melt-spun system by melt blending.
On the other hand, in a system by melt spinning, a thermochromic pigment is melt blended with a fiber-forming polymer, or high heat and high pressure are applied in the melt spinning process, which may cause thermal degradation of the thermochromic pigment. In addition, the application of high-molecular-weight, high-melting fiber-forming polymers that can be applied to general fiber products is hindered, and it has been difficult to practically satisfy durability such as fiber strength.
In order to solve the above-mentioned problems, the present inventors proceeded with intensive studies, and the temperature-sensitive discoloration that continuously and effectively expresses the thermochromic function without impairing the texture and fiber properties of acrylic fibers. it is intended to provide a method for manufacturing a sexual acrylic synthetic textiles.
[0004]
[Means for Solving the Problems]
The present invention relates to ( a) an electron-donating color-forming organic compound, (b) an electron-accepting compound, and (c) an average particle in which a reaction medium that determines the temperature at which the color reaction of the both occurs is contained in a microcapsule. A thermochromic pigment having a diameter of 0.5 to 30 μm is blended in a dispersed state at a ratio of 0.5 to 40% by weight with respect to the polymer in a concentrated aqueous solution of an inorganic salt in which an acrylonitrile polymer is dissolved. A method for producing a thermochromic acrylic synthetic fiber characterized by wet spinning with a spinning dope is a requirement.
Furthermore, inorganic salts concentrated aqueous solution is a requirement that it is a concentrated aqueous solution containing thiocyanate salt as a main component.
[0005]
The thermochromic pigment comprises (a) an electron-donating color-forming organic compound, (b) an electron-accepting compound that colors the compound, and (c) a reaction medium that determines the occurrence temperature of the color reaction of both. Those known in the art including the essential three components are effective. Specifically, Japanese Patent Publication No. 51-44706, Japanese Patent Publication No. 51-44707, Japanese Patent Publication No. 1-29398 proposed by the present applicant. Can be used. The above color changes before and after a predetermined temperature (discoloration point), exhibits a decolored state at a temperature range above the discoloration point, and develops a color state at a temperature range below the discoloration point. Only one of the states can exist. That is, the other state is maintained while the heat or cold necessary to develop the state is applied, but when the heat or cold is not applied, the state returns to the state exhibited in the normal temperature range. A heat-erasable type (A) having a characteristic having a relatively small width (ΔH A = 1 to 7 ° C.) can be mentioned, and in particular, a system in which ΔH A is 3 ° C. or less [shown in Japanese Patent Publication No. 1-292998 A fatty acid ester having a ΔT value (melting point-cloud point) of 3 ° C. or lower is applied as the component (c)], which is sensitive to temperature changes at the color change point and exhibits high sensitivity to heat decolorization. It can be effectively applied according to the purpose (see FIG. 5).
[0006]
In addition, the large hysteresis characteristics (ΔH described in Japanese Patent Publication No. 4-17154, Japanese Patent Application Laid-Open No. 7-179777, Japanese Patent Application Laid-Open No. 7-33997, Japanese Patent Application Laid-Open No. 8-39936, etc. proposed by the present applicant. B = 8 to 50 ° C.), that is, the shape of the curve plotting the change in color density due to the temperature change is higher than the color change temperature range, contrary to the case where the temperature is raised from the lower temperature side than the color change temperature range. The color changes by following a path that differs greatly from the case of descending from the lower temperature range, and the color development state at a low temperature range of t 1 or lower or the decolored state at a high temperature range of t 4 or higher is a specific temperature range [t 2 to t A color memory retention type thermochromic composition (B) capable of storing and retaining in a temperature range between 3 (substantially two-phase retention temperature range) is also applicable (see FIG. 6).
The substantially two-phase holding temperature range includes a normal temperature range (for example, 15 to 35 ° C.), but is not limited to the temperature range.
[0007]
According to the proposals of the present applicant (Japanese Patent Laid-Open Nos. 11-129623 and 11-5973) that develop color by heating from a decolored state as the composition of the heat-coloring type (C), (b) Examples of the electron accepting compound include a system to which a specific alkoxyphenol compound having a linear or side chain alkyl group having 3 to 18 carbon atoms is applied.
[0008]
A temperature-sensitive color-changing acrylic synthetic fiber having various color-changing forms is provided by selecting and applying a pigment containing the above-described three types (A, B, C) of the thermochromic composition according to the purpose. it can.
[0009]
The thermochromic pigment contains three components (a), (b), and (c) in a microcapsule from the standpoints of vivid color development, high color density, homogeneity, dispersion stability, chemical resistance, and the like. ash of it is effective.
The average particle size [(major axis + minor axis) / 2] of the thermochromic pigment is in the range of 0.5 μm to 30 μm, preferably 0.5 to 15 μm, more preferably 0.5 to 10 μm. Is effective in terms of color change sensitivity, endurance, processability, and the like.
In a system having a particle diameter of more than 30 μm, it is difficult to form a fiber exhibiting stable quality thermochromic properties due to lack of homogeneous dispersibility in the fiber forming process.
In a system of less than 0.5 μm , even if a thermochromic pigment microencapsulated in a suspended state in an aqueous medium is obtained, the encapsulated pigment can be isolated by means such as filtration or centrifugation. There are difficulties and strength is insufficient.
[0010]
Microencapsulated form of Pigment does not refuse the application of those true circular cross section, having a non-circular cross-sectional shape, a non-circular shape of the thermochromic pigment further having a recess in at least a part of the specific outer surface (See FIGS. 1 to 4) can be effectively applied.
Since the thermochromic pigment is a non-circular flat pigment, it can be elastically deformed and relieve stress appropriately under pressure and heat load, so it has an effect of suppressing capsule wall membrane destruction. Fulfill. That is, during the heating process, the wall membrane elastically deforms in response to the thermal expansion and contraction of the capsule, thereby preventing the capsule wall membrane from being destroyed, protecting the reversible thermochromic composition of the capsule and It effectively functions as a thermochromic pigment in the form of a tough capsule that retains the thermochromic function.
Further, encapsulated thermochromic Pigments of the present invention is preferably in the range of reversible thermochromic composition / wall membrane = 7 / 1-1 / 1 (weight ratio). When the ratio of the thermochromic composition is larger than the above range, the thickness of the wall film becomes too thin, and the protective function of the encapsulated thermochromic composition is reduced. On the other hand, when the ratio of the wall film is larger than the above range, the color density is inevitably lowered, which is not preferable.
[0011]
As a means for encapsulating the reversible thermochromic composition in a capsule, a known encapsulation method such as an interfacial polymerization method, an interfacial polycondensation method, an in situ method, a coacervate method, or the like is applied. In order to obtain a thermochromic pigment having a particle size range and an outer shape satisfying the above conditions, an interfacial polymerization method or an interfacial polycondensation method that hardly causes aggregation or coalescence is preferably used. Furthermore, after completion of the encapsulation, unnecessary coarse particles are removed by diluting the capsule suspension with water as desired, and filtering out impurities and coarse particles using filters.
[0012]
The thermochromic pigment is blended at a ratio of 0.5 to 40% by weight with respect to the acrylonitrile polymer forming the fiber. If it is less than 0.5% by weight, no sharp thermochromic property is exhibited. On the other hand, if it exceeds 40% by weight, a color residue at the time of decoloring tends to occur, and it is preferably in the range of 1 to 20% by weight.
[0013]
The method for producing a thermochromic acrylic synthetic fiber of the present invention determines (i) an electron-donating color-forming organic compound, (b) an electron-accepting compound, and (c) an occurrence temperature of the color reaction of both. A thermochromic pigment having an average particle size of 0.5 to 30 μm encapsulating the reaction medium in microcapsules is 0.5 to 40 wt% with respect to the polymer in a concentrated inorganic salt solution in which an acrylonitrile-based polymer is dissolved. It is a requirement to perform wet spinning with a spinning dope blended in a dispersed state at a rate of%.
Examples of the concentrated aqueous salt solution include concentrated aqueous solutions of rhodan salts such as rhodium soda, rhodan potassium, rhodanammon and rhodium calcium, and concentrated aqueous solutions of inorganic salts such as zinc chloride and lithium chloride. These inorganic salts act as a good solvent for the acrylonitrile polymer without deteriorating the color changing function of the thermochromic pigment. As the coagulation bath for coagulating the filament-like material discharged from the spinning nozzle, conventional water or an aqueous solution of the above inorganic salt having a concentration of 20% or less is suitable.
The spinning dope is adjusted so that a spinning solution having suitable characteristics can be obtained according to the degree of polymerization of the polymer, but usually has a viscosity of about 40 to 200 poise at 30 ° C. It is valid.
Examples of the acrylonitrile-based polymer include those containing a second component such as polyacrylonitrile or a copolymer that can be copolymerized with acrylonitrile and polyvinyl chloride, and acrylonitrile is 50% by weight or more, preferably 80% by weight. What contains above is preferable. Examples of the compound that is copolymerized with acrylonitrile to produce an acrylonitrile copolymer product effective in the practice of the present invention include acrylic acid or methacrylic acid esters such as methyl acrylate, ethyl acrylate, and methyl methacrylate, acrylamide, and the like. Methacrylamide and their alkyl-substituted products and nitrogen-substituted products, vinylpyridines such as 2-vinylpyridine, 2-methyl-5-vinylpyridine, styrene and their alkyl-substituted products or even vinyl chloride, vinylidene chloride, Monomers such as vinyl bromide, vinylidene bromide, and vinylidene bromide can be exemplified, but are not necessarily limited thereto.
Usually, the molecular weight (average molecular weight) of the single polymer acrylonitrile or the copolymer acrylonitrile is appropriately selected from the range of 15,000 to 150,000 (generally 25,000 to 80,000).
In the present invention, the composition of the spinning stock solution is a polymer containing a thermochromic pigment in a spinning stock solution of 5 to 30% by weight (preferably about 10 to 20% by weight) of an acrylonitrile polymer, 30 to 60% by weight of rhodan salt or zinc chloride. 0.5 to 40% by weight (preferably 1 to 20% by weight) can be dispersed. Furthermore, general pigments, glittering materials and the like can be added.
The spinning dope is extruded from 45 to 75 ° C. through a spinning nozzle into a coagulating liquid such as a dilute rhodan salt aqueous solution, solidified, and subjected to known water washing, stretching, heat treatment, drying, and further steps such as crimping and oil treatment. Fiber and eggplant.
As thermochromic pigment, applying the pigment in microencapsulated form, it is easily dispersible and has a resistance at the time of preparation of the spinning dope, inter alia, pigments having a non-circular cross-sectional shape, the fiber formation by spinning process and drawing In the process, pressure and high heat are applied, but the stress is relieved by its own elastic deformation, and in addition, the microcapsules are destroyed due to the property that the microcapsule pigment itself is easily oriented in the longitudinal direction during fiberization. And a fiber satisfying the desired thermochromic function can be obtained.
The fiber diameter in the present invention is 100 μm or less, preferably 30 μm or less, and can be put into practical use in the form of tow, staple or other desired fibers by the same treatment as general-purpose non-thermochromic acrylic fibers.
In the wet spinning, in order to obtain a fiber diameter of 30 μm or less, when satisfying the relationship d <D ≦ 20d (where d is the particle diameter of the pigment and D is the fiber diameter), the fiber spinning is continuous and stable. It was found that fiber formation was possible.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Thermosensitive color-changing acrylic synthetic fibers use a spinning stock solution in which a specific amount of thermochromic pigment with a specific particle size is dispersed in an inorganic salt-concentrated aqueous solution containing an acrylonitrile polymer, and is discharged from the spinning nozzle into the coagulation liquid. And after-treatment such as stretching by a known means to obtain a fiber form.
In the examples, among the pigments in the form of microcapsules, the forms illustrated in FIGS. 1 to 4 are applied, but these forms may be mixed or in the form of a circular cross section. The invention is not limited to the examples.
[0015]
【Example】
Examples are shown below. In addition, the part in an Example is a weight part.
[0016]
Example 1
10 parts of an acrylonitrile copolymer obtained by polymerization with a monomer composition of 90 parts of acrylonitrile, 9.8 parts of methyl acrylate, and 0.2 part of sodium methallyl sulfonate are dissolved in 89 parts of a 50% strength by weight aqueous rhodium soda solution. did.
In 99 parts of the acrylonitrile copolymer solution, 1 part of (i) 3- (2-ethoxy-4-diethylaminophenyl) -3- (1-ethyl-2-methylindol-3-yl) -4-azaphthalide, (B) A reversible thermochromic composition comprising 5 parts of 1,1-bis- (4-hydroxyphenyl) -2-methylpropane, (c) 25 parts of cetyl alcohol, and 25 parts of stearyl caprate is converted into a micro-layer of epoxy resin film. Reversible thermochromic pigment encapsulated (discoloration temperature t 4 : about 33 ° C., color development temperature t 1 : about 28 ° C., blue color at color development, colorless at color disappearance, average particle size: 3 μm, cross-sectional shape of FIG. Add 1 part of reversible thermochromic composition / wall film = 5.6 / 1.0) and disperse uniformly to obtain 1% by weight of reversible thermochromic pigment, 10% by weight of acrylonitrile copolymer, rhodium soda 44 .5 The amount%, to prepare a spinning solution consisting of 44.5 wt% water.
The spinning dope is discharged into a rhodan soda aqueous solution at −2 ° C. and a concentration of 15% by weight using a spinning nozzle having a pore diameter of 0.04 mm, wet spinning, and further washed with water, stretched, dried and densified under conventionally known conditions, A temperature-sensitive color-changing acrylic synthetic fiber having a fiber diameter of 20 μm was obtained by crimping, heat treatment and oil treatment.
This fiber has a blue color at room temperature (25 ° C.) and has a heat-discoloring type thermochromic property (see FIG. 5), which becomes colorless when heated to a temperature of about 33 ° C. or higher. And left at room temperature (25 ° C.), it turned blue again at about 28 ° C.
This color change could be repeated.
[0017]
Example 2
10 parts of an acrylonitrile copolymer obtained by polymerization with a monomer composition of 88 parts of acrylonitrile and 12 parts of methyl methacrylate were dissolved in 89 parts of a 60 wt% aqueous zinc chloride solution.
99 parts of the acrylonitrile copolymer solution were mixed with (a) 1,2-benz-6-diethylaminofluorane (3 parts), (b) 2,2-bis- (4-hydroxyphenyl) propane (5 parts), (c) Reversible thermochromic pigment in which a reversible thermochromic composition composed of 25 parts of myristyl alcohol and 25 parts of decyl myristate is encapsulated in microcapsules of an epoxy resin film (discoloration temperature t 4 : about 15 ° C., color development temperature t 1 : about 10 1 ° C., pink when developing, colorless when decolored, average particle size: 5 μm, cross-sectional shape of FIG. 2, reversible thermochromic composition / wall film = 5.8 / 1.0) 1 part is added and dispersed uniformly As a result, a spinning dope comprising 1% by weight of reversible thermochromic pigment, 10% by weight of acrylonitrile copolymer, 53.4% by weight of zinc chloride, and 35.6% by weight of water was prepared.
The spinning solution is discharged into a zinc chloride aqueous solution at −2 ° C. and 15% by weight using a spinning nozzle having a pore diameter of 0.06 mm, wet-spun, and further washed with water, stretched, and dried and densified under conventionally known conditions. Then, a crimping treatment, a heat treatment, an oil agent treatment, and the like were performed to obtain a thermochromic acrylic synthetic fiber having a fiber diameter of 30 μm.
This fiber is colorless at room temperature (25 ° C.) and has a heat-discoloring type thermochromic property (see FIG. 5), which becomes pink when cooled to a temperature of about 10 ° C. or less. When left at (25 ° C.), it became colorless again at about 15 ° C.
This color change could be repeated.
[0018]
Example 3
10 parts of an acrylonitrile copolymer obtained by polymerization with a monomer composition of 91 parts of acrylonitrile, 6.5 parts of methyl acrylate, and 2.5 parts of N-methylolacrylamide were dissolved in 89 parts of a 50% strength by weight aqueous rhodium soda solution. . In 99 parts of the acrylonitrile copolymer solution, 3 parts of (ii) 1,3-dimethyl-6-diethylaminofluorane, 5 parts of (ro) 1,1-bis- (4-hydroxyphenyl) -2-ethylhexane (C) Reversible thermochromic color memory pigment in which a reversible thermochromic composition comprising 50 parts of neopentyl stearate is encapsulated in an epoxy resin film microcapsule (discoloration temperature t 4 : about 32 ° C., color development temperature t 1 : About 15 ° C., orange when colored, colorless when decolored, average particle diameter: 2 μm, cross-sectional shape of FIG. 3, reversible thermochromic composition / wall film = 5.8 / 1.0) 1 part is added and uniform To prepare a spinning dope comprising 1% by weight of reversible thermochromic color memory pigment, 10% by weight of acrylonitrile copolymer, 44.5% by weight of rhodium soda, and 44.5% by weight of water.
The spinning dope is discharged into a rhodan soda aqueous solution at −2 ° C. and a concentration of 15% by weight using a spinning nozzle having a pore diameter of 0.04 mm, wet spinning, and further washed with water, stretched, dried and densified under conventionally known conditions, A temperature-sensitive color-changing acrylic synthetic fiber having a fiber diameter of 15 μm was obtained by crimping, heat treatment and oil treatment.
When the fiber in a decolored state at room temperature (25 ° C.) was cooled to about 15 ° C. or less, it was colored orange, and this colored state could be maintained even when heated to room temperature (25 ° C.) again. Further, the color is erased at about 32 ° C. by heating from the orange colored state, and this state can be maintained until it is cooled to about 15 ° C. or less again. )showed that.
As described above, the fiber has color memory in the normal temperature range, and this color change can be repeatedly performed.
[0019]
Example 4
An aqueous dispersion of a pink pigment as a non-thermochromic colorant with respect to 100 parts of the spinning stock solution of Example 1 (trade name: SANDY SUPER PINK F5B, pigment content: about 14% by weight, manufactured by Sanyo Dye Co., Ltd.) After adding 0.05 part and uniformly dispersing the spinning stock solution into a 15% by weight sodium thiocyanate aqueous solution at −2 ° C. using a spinning nozzle with a pore diameter of 0.04 mm, and after wet spinning, Washing, stretching, drying densification, crimping, heat treatment, oil treatment and the like were performed under known conditions to obtain a thermochromic acrylic synthetic fiber having a fiber diameter of 20 μm.
This fiber has a purple color at room temperature (25 ° C.) and becomes pink when heated to a temperature of about 33 ° C. or higher. When left in this state at room temperature (25 ° C.), the fiber becomes purple again at about 28 ° C. Presented.
This color change could be repeated.
[0020]
Example 5
(I) 3- [2-Ethoxy-4- (N-ethylanilino) phenyl] -3- (1-ethyl-2-methylindol-3-yl) -4-azaphthalide (1.5 parts), (b) p- 6.0 parts of n-nonyloxyphenol, 4.0 parts of pn-octyloxyphenol, and 30.0 parts of (c) n-docosane are obtained from (a), (b) and (c) of Example 1 above. Applied in place of each component, and thermochromic pigment (average particle size: 3 μm, cross-sectional shape of FIG. 4, reversible thermochromic composition / wall film = 2.8 / 1.0) in the same manner as in Example 1. In the same manner as in Example 1, a temperature-sensitive color-changing acrylic synthetic fiber was obtained.
The thermochromic pigment is in a decolored state (colorless) at a room temperature of 25 ° C., starts to develop color from around 33 ° C. (T 1 ) when heating is started, and becomes a blue colored state at 43 ° C. (T 2 ), Next, the color development state is maintained up to 32 ° C. (T 3 ) in the temperature lowering process, and when the temperature further decreases, the color disappears little by little, and the color disappears completely at 27 ° C. (T 4 ). And the fiber had the discoloration characteristics.
This color change could be repeated.
[0021]
【The invention's effect】
The thermochromic acrylic synthetic fiber obtained by the method for producing the thermochromic acrylic synthetic fiber of the present invention is one in which a specific amount of a thermochromic pigment having a specific particle diameter is contained in a dispersed state in the fiber. Therefore, compared to a system in which a thermochromic pigment is fixed to the surface with a binder resin, it satisfies the durability such as washing resistance, scratch resistance, light resistance and the characteristics of acrylic fiber, texture, Bulkiness and other fiber characteristics are not impaired, and practicality is satisfied. It has the same fiber characteristics as general-purpose acrylic fibers, and is applied to the toy field such as garments, carpets, blankets, curtains, and stuffed animals.
As thermochromic pigments, to apply the pigment in microencapsulated form, resistant during the preparation of the spinning dope may be dispersible, further, the spinning process is effective even in the heat treatment process, among others, The system having a non-circular cross-sectional shape is rich in elastic deformability due to external pressure, and the pressure due to its own elastic deformation against the pressure in the blending process and the pressure in the fiberizing process. In addition, there is no risk of the microcapsules being destroyed in combination with the property that the microcapsule pigment itself is easily oriented in the longitudinal direction at the time of fiberization, and it is effectively expressed without impairing the desired thermochromic function.
[Brief description of the drawings]
BRIEF DESCRIPTION OF DRAWINGS FIG. 1 is an enlarged explanatory view of (a) appearance and (b) cross section showing an example of a thermochromic pigment applied to a thermochromic acrylic synthetic fiber of the present invention.
FIG. 2 is an enlarged explanatory view of (a) the appearance and (b) the cross section showing another example of the thermochromic pigment applied to the thermochromic acrylic synthetic fiber of the present invention.
FIG. 3 is an enlarged explanatory view of (a) appearance and (b) cross section showing another example of a thermochromic pigment applied to the thermochromic acrylic synthetic fiber of the present invention.
FIG. 4 is an enlarged explanatory view of (a) the appearance and (b) the cross section showing another example of the thermochromic pigment applied to the thermochromic acrylic synthetic fiber of the present invention.
FIG. 5 is a graph showing the discoloration behavior of a heat-decolorable thermochromic composition.
FIG. 6 is a graph showing the discoloration behavior of a color memory retention type thermochromic composition.
FIG. 7 is a graph showing the discoloration behavior of a heat coloring type thermochromic composition.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Thermochromic pigment 11 Thermochromic composition 12 Wall film 13 Indentation t 1 Complete color development temperature of reversible thermochromic composition by heating decolorization type t 2 Color development start temperature of reversible thermochromic composition by heating decolorization type t 3 Decolorization start temperature of the heat decoloring type reversible thermochromic composition t 4 Complete decoloration temperature of the heat decoloring type reversible thermochromic composition T 1 Color development start temperature of the heat decoloring type reversible thermochromic composition T 2 heating complete decoloring temperature [Delta] H a heat decolorizable decoloring starting temperature T 4 heating-color forming reversible thermochromic composition of the complete coloring temperature T 3 heat-coloring type reversible thermal discoloration composition coloring type reversible thermal discoloration composition Hysteresis width of the reversible thermochromic composition ΔH B Hysteresis width of the B color memory retention type reversible thermochromic composition ΔH C Hysteresis width of the C color development type reversible thermochromic composition

Claims (2)

(イ)電子供与性呈色性有機化合物、(ロ)電子受容性化合物、及び(ハ)前記両者の呈色反応の生起温度を決める反応媒体をマイクロカプセルに内包した、平均粒子径0.5〜30μmの熱変色性顔料が、アクリロニトリル系重合体を溶解させた無機塩濃厚水溶液中に、前記重合体に対し0.5〜40重量%の割合で分散状態にブレンドされてなる紡糸原液により湿式紡糸することを特徴とする感温変色性アクリル系合成繊維の製造方法。(B) an electron donating color-forming organic compound, (b) an electron-accepting compound, and (c) an average particle size of 0.5 encapsulated in a microcapsule that determines the temperature at which the color reaction of both occurs. ˜30 μm thermochromic pigment is wetted by a spinning stock solution in which an inorganic salt concentrated aqueous solution in which an acrylonitrile polymer is dissolved is blended in a dispersed state at a ratio of 0.5 to 40% by weight with respect to the polymer. A method for producing a temperature-sensitive color-changing acrylic synthetic fiber characterized by spinning. 無機塩濃厚水溶液は、ロダン塩を主成分として含有する濃厚水溶液である請求項1記載の感温変色性アクリル系合成繊維の製造方法。The method for producing a thermochromic acrylic synthetic fiber according to claim 1, wherein the concentrated inorganic salt aqueous solution is a concentrated aqueous solution containing rhodan salt as a main component.
JP20358199A 1999-07-16 1999-07-16 Method for producing temperature-sensitive discolorable acrylic synthetic fiber Expired - Fee Related JP4203188B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20358199A JP4203188B2 (en) 1999-07-16 1999-07-16 Method for producing temperature-sensitive discolorable acrylic synthetic fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20358199A JP4203188B2 (en) 1999-07-16 1999-07-16 Method for producing temperature-sensitive discolorable acrylic synthetic fiber

Publications (2)

Publication Number Publication Date
JP2001032131A JP2001032131A (en) 2001-02-06
JP4203188B2 true JP4203188B2 (en) 2008-12-24

Family

ID=16476477

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20358199A Expired - Fee Related JP4203188B2 (en) 1999-07-16 1999-07-16 Method for producing temperature-sensitive discolorable acrylic synthetic fiber

Country Status (1)

Country Link
JP (1) JP4203188B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030087566A1 (en) * 2001-10-23 2003-05-08 Polymer Group, Inc. Meltspun thermochromic fabrics

Also Published As

Publication number Publication date
JP2001032131A (en) 2001-02-06

Similar Documents

Publication Publication Date Title
US6444313B1 (en) Thermochromic acrylic synthetic fiber, its processed article, and process for producing thermochromic acrylic synthetic fiber
JP4786850B2 (en) Fine particle composition and production thereof
US6749935B2 (en) Temperature-sensitive color-changeable composite fiber
JPS62206082A (en) Production of fluffy body
JP4203188B2 (en) Method for producing temperature-sensitive discolorable acrylic synthetic fiber
JPH04202811A (en) Photochromic conjugate fiber
JP2004137614A (en) Multicolor thermochromic fiber
JP2595107B2 (en) Thermochromic composite fiber
EP1221500A1 (en) Thermochromic acrylic synthetic fiber, its processed article, and process for producing thermochromic acrylic synthetic fiber
US5429871A (en) Reversibly color-changing shaped material and process for producing the same
JP2001123323A (en) Temperature-sensitive discolorable multi-colored acrylic synthetic fiber and method for producing the same
JP2001055623A (en) Thermosensitive color-changing synthetic acrylic fiber processed product
JP4112389B2 (en) Temperature-sensitive discolorable composite
JP2002242017A (en) Alternately color-changeable wig
JP4362183B2 (en) Thermochromic fabric
JPH0827653A (en) Thermally color-changing nonwoven fabric
JPH0121999Y2 (en)
JPS62184114A (en) Thermocolor acrylic fiber
JP2001003225A (en) Temperature-sensitive discoloring fiber and its production
JP2003213549A (en) Reversible thermally allochroic knitting string
JPS6342937A (en) Temperature-sensitive color changeable cloth
JPH0473211A (en) Thermochromic polyvinyl alcohol fiber and production thereof
CA1146712A (en) Hollow acrylonitrile polymer fiber
CA2330090A1 (en) Thermochromic acrylic synthetic fiber, its processed article, and process for producing thermochromic acrylic synthetic fiber
JP2003278044A (en) Reversibly thermochromic chenille yarn

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060425

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080527

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080629

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081007

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081010

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111017

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111017

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141017

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees