JP4203030B2 - Power system step-out separation method and apparatus - Google Patents

Power system step-out separation method and apparatus Download PDF

Info

Publication number
JP4203030B2
JP4203030B2 JP2005045713A JP2005045713A JP4203030B2 JP 4203030 B2 JP4203030 B2 JP 4203030B2 JP 2005045713 A JP2005045713 A JP 2005045713A JP 2005045713 A JP2005045713 A JP 2005045713A JP 4203030 B2 JP4203030 B2 JP 4203030B2
Authority
JP
Japan
Prior art keywords
phase angle
angle difference
threshold value
separation
power system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005045713A
Other languages
Japanese (ja)
Other versions
JP2006238526A (en
Inventor
真一 桑折
謙市 後藤
保博 田口
和也 小俣
祐二 石原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Tohoku Electric Power Co Inc
Original Assignee
Toshiba Corp
Tohoku Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tohoku Electric Power Co Inc filed Critical Toshiba Corp
Priority to JP2005045713A priority Critical patent/JP4203030B2/en
Publication of JP2006238526A publication Critical patent/JP2006238526A/en
Application granted granted Critical
Publication of JP4203030B2 publication Critical patent/JP4203030B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)

Description

本発明は、送電線の故障などの外乱により一部の発電機に脱調現象が発生したとき、脱調現象が他の発電機に波及することを防止するため、系統分離を実施する電力系統の脱調分離方法及び装置に関する。   The present invention relates to a power system that performs system separation in order to prevent a step-out phenomenon from spreading to other generators when a step-out phenomenon occurs in some generators due to a disturbance such as a fault in a transmission line. The present invention relates to a step-out separation method and apparatus.

系統分離により脱調現象の拡大を防止するシステムとしては、脱調分離リレーや系統安定化装置がある。   Examples of systems that prevent the expansion of the step-out phenomenon by system separation include a step-out separation relay and a system stabilization device.

前者の脱調分離リレーは、電力系統内の送電線毎に設置され、監視対象とする送電線に脱調ローカスが入ったかどうかを監視し、脱調ローカスが入った場合には、監視対象の送電線を遮断することにより脱調現象の波及を防止している。   The former step-out separation relay is installed for each transmission line in the power system, and monitors whether the out-of-step locus has entered the monitoring target transmission line. The transmission line is cut off to prevent the step-out phenomenon from spreading.

ここで、脱調ローカスが入った状態とは、2台の発電機が送電線を介して結ばれている単純2機系統で説明すると、脱調が進展し発電機間の位相角差が拡大して、180度になり、送電線の中間点で電圧が零となる状態を言う。   Here, when the out-of-step locus is in a simple two-machine system in which two generators are connected via a transmission line, the step-out progresses and the phase angle difference between the generators increases. Then, it means 180 degrees, and the voltage becomes zero at the midpoint of the transmission line.

一方、後者の系統安定化装置としては、次のようなシステムのものがある(例えば、非特許文献1)。   On the other hand, the latter system stabilizing device includes the following system (for example, Non-Patent Document 1).

このシステムは、対象系統に発生する特定の一つの脱調モードを対象とし、対象系統を2台の発電機からなるモデル(2機系統モデル、脱調する発電機を含む分離系統とその影響を受ける健全系統)として考え、それぞれを代表する電気所の母線電圧位相を時々刻々と計測すると共に、両者間の位相角差を算出し、その位相角差が予め設定したしきい値を超過する場合、脱調発生と判定し、予め設定した一ヶ所固定の系統分離を実施して脱調現象の波及を防止する。
電気学会電力技術研究会資料、「基幹系統安定化リレーシステムの開発・実用化」,PE−89−51,P161−170,(1989)
This system targets one specific step-out mode that occurs in the target system, and the target system is a model consisting of two generators (two-machine model, separated system including the out-of-step generator and its effect). When the bus voltage phase of each representative electric station is measured momentarily and the phase angle difference between the two is calculated and the phase angle difference exceeds a preset threshold Then, it is determined that a step-out has occurred, and a fixed system separation is performed at a preset position to prevent the step-out phenomenon from spreading.
IEEJ Power Technology Study Group, “Development and Practical Use of Core System Stabilization Relay System”, PE-89-51, P161-170, (1989)

前述した脱調分離リレーにおいては、対象系統において、複数の脱調モードが発生する場合や、脱調現象が複雑で脱調ローカスが入る送電線が多岐にわたる場合などは、複数の送電線にそれぞれ脱調分離リレーを設置する必要がある。更に、対象系統がループ系統であると、脱調モードによっては脱調ローカスが多数の送電線に入り、次々と脱調分離リレーが動作して結果的に電力系統が細分化され、運転継続できない状況になることがある。また、脱調ローカスが入ったことを検出する、つまり、送電線両端の位相角差が180度以上の状態で送電線の遮断を行うため、電力系統全体で見ると脱調はかなり進展した状態になっており、できればこれより早期に系統分離を実施した方が安定化効果は高くなる。   In the step-out separation relay described above, when multiple out-of-step modes occur in the target system, or when the out-of-step phenomenon is complicated and there are a wide variety of transmission lines containing out-of-step locus, It is necessary to install a step-out separation relay. Furthermore, if the target system is a loop system, depending on the step-out mode, the step-out locus enters a large number of transmission lines, the step-out separation relays operate one after another, and as a result, the power system is subdivided and the operation cannot be continued. It can be a situation. In addition, because it detects that the out-of-step locus has entered, that is, the transmission line is cut off when the phase angle difference between both ends of the transmission line is 180 degrees or more, the step-out has progressed considerably when viewed from the entire power system. If possible, the stabilization effect will be higher if the system is separated earlier than this.

系統安定化装置の場合には、特定の一つの脱調モード(脱調現象)を対象とし、2機系統モデル(脱調する系統と健全な系統)での脱調判定であるため、複数の脱調モードが発生する電力系統には適用できない。   In the case of the system stabilization device, since it is a step-out determination in a two-machine system model (step-out system and sound system) for a specific one step-out mode (step-out phenomenon), It cannot be applied to the power system where the step-out mode occurs.

本発明は、上記のような課題を解決するため、電力系統の広域の複数地点の位相角を用いて各地点間の位相角差を求め、この位相角差から脱調発電機群の抽出と発生した脱調モードの推定を行い、その推定結果から、発生した脱調モードに適した系統分離を実施することにより、系統構成や脱調モードの数に制約を受けることなく、且つ早期に系統分離を実施することができる電力系統の脱調分離方法及び装置を提供することを目的とする。   In order to solve the above-mentioned problems, the present invention obtains a phase angle difference between each point using phase angles of a plurality of points in a wide area of the power system, and extracts a step-out generator group from the phase angle difference. By estimating the generated out-of-step mode and performing system separation suitable for the generated out-of-step mode based on the estimation result, the system configuration and the number of out-of-step modes are not limited, and the system It is an object of the present invention to provide a power system step-out separation method and apparatus capable of performing separation.

本発明は、上記の目的を達成するため、次のような方法及び装置により電力系統の脱調分離を実施する。   In order to achieve the above object, the present invention performs step-out separation of a power system by the following method and apparatus.

請求項1に対応する発明は、同期する複数の発電機が送電線により連系してなる電力系統の送電線故障などの外乱により一部の発電機が脱調したとき、この脱調現象が他の発電機に波及しないように系統分離を行う電力系統の脱調分離方法において、電力系統内の予め定められた電気所の母線電圧位相角を時々刻々と測定して電力系統の広域の位相情報を入手し、これらの位相情報から各電気所間の位相角差を算出して、各位相角差と予め設定した第1のしきい値とをそれぞれ比較し、前記第1のしきい値を超過する位相角差がある場合には脱調発生と判定し、次に各位相角差のうち前記第1のしきい値を超過して脱調発生と判定されたもの以外の位相角差と前記第1のしきい値よりも小さく設定した第2のしきい値とをそれぞれ比較し、前記第2のしきい値を超過する位相角差がある場合には脱調発生と判定し、前記第1のしきい値を超過した位相角差及び前記第2のしきい値を超過した位相角差から脱調発電機群を抽出し、この抽出された脱調発電機群の組合せから脱調モードを推定して最適な系統分離を実施する。 In the invention corresponding to claim 1, when some of the generators step out due to a disturbance such as a transmission line failure in a power system in which a plurality of synchronized generators are interconnected by a transmission line, this step-out phenomenon occurs. In the power system step-out separation method that separates the system so that it does not spread to other generators, the bus voltage phase angle of a predetermined electric power station in the power system is measured every moment, and the phase of the wide area of the power system is measured. to obtain information, those to calculate the phase angle difference between each substation from the phase information, and a first preset threshold and the phase angle difference compared respectively, said first threshold value If there is a phase angle difference exceeding the phase difference, it is determined that a step-out has occurred, and then, among the phase angle differences, phase angle differences other than those that have been determined to have caused the step-out by exceeding the first threshold value And a second threshold value set smaller than the first threshold value, respectively, Phase angle is determined that the step-out occurs if there is a phase angle difference, in excess of the first phase angle difference and said second threshold exceeds a threshold that exceeds the second threshold The out-of-step generator group is extracted from the difference, and the out-of-step mode is estimated from the combination of the extracted out-of-step generator group, and optimum system separation is performed.

請求項2に対応する発明は、同期する複数の発電機が送電線により連系してなる電力系統の送電線故障などの外乱により一部の発電機が脱調したとき、この脱調現象が他の発電機に波及しないように系統分離を行う電力系統の脱調分離装置において、電力系統内の予め定められた電気所の母線電圧位相角を時々刻々と測定して電力系統の広域の位相情報を入手する位相情報入手手段と、この位相情報入手手段により入手された各電気所間の位相角差を算出する位相角差演算手段と、この位相角差演算手段により算出された各位相角差と予め設定した第1のしきい値とをそれぞれ比較して、前記第1のしきい値を超過する位相角差がある場合には脱調発生と判定し、次に各位相角差のうち前記第1のしきい値を超過して脱調発生と判定されたもの以外の位相角差と前記第1のしきい値よりも小さく設定した第2のしきい値とをそれぞれ比較し、前記第2のしきい値を超過する位相角差がある場合には脱調発生と判定し、前記第1のしきい値を超過した位相角差及び前記第2のしきい値を超過した位相角差から脱調発電機群を抽出して、その脱調発電機群の組合せから脱調モードを推定する脱調モード判定手段と、この脱調モード判定手段により推定された脱調モードをもとに系統分離を実施する系統分離手段とを備える。 In the invention corresponding to claim 2, when some of the generators step out due to a disturbance such as a power transmission line failure in a power system in which a plurality of generators synchronized with each other are connected by the transmission line, this step-out phenomenon occurs. In a power system step-out separation device that separates the system so that it does not spread to other generators, the bus voltage phase angle of a predetermined electric power station in the power system is measured momentarily, and the phase of the wide area of the power system is measured. Phase information obtaining means for obtaining information, phase angle difference calculating means for calculating a phase angle difference between each electric station obtained by the phase information obtaining means, and each phase angle calculated by the phase angle difference calculating means by comparing the first threshold value set in advance and the difference respectively, said determining that step-out occurs if the first is the phase angle difference exceeds the threshold, then each phase angle difference Of which the first threshold is exceeded and it is determined that step-out has occurred. A phase angle difference other than the above is compared with a second threshold value set smaller than the first threshold value, and if there is a phase angle difference exceeding the second threshold value, the step-out is stepped out. It is determined that the out-of-step generator group is extracted, and the out-of-step generator group is extracted from the phase angle difference exceeding the first threshold value and the phase angle difference exceeding the second threshold value. A step-out mode determination unit that estimates a step-out mode from the combination and a system separation unit that performs system separation based on the step-out mode estimated by the step-out mode determination unit.

本発明による電力系統の脱調分離方法及び装置は、最初の脱調有りを検出した時点で脱調モードを推定できるため、遅れて脱調する発電機群の有無を確認するためのタイマが不要となるので、系統分離を早期に行うことが可能となり、安定化効果の向上を図ることができる。 The power system step-out separation method and apparatus according to the present invention can estimate the step-out mode when the first step-out is detected, so there is no need for a timer to confirm the presence or absence of the generator group that is stepped out later. Therefore, system separation can be performed at an early stage, and the stabilization effect can be improved.

以下本発明の実施形態について図面を参照して説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1は本発明の第1の実施形態を示す電力系統の脱調分離装置の構成説明図である。   FIG. 1 is an explanatory diagram of the configuration of the power system step-out separation apparatus according to the first embodiment of the present invention.

まず、本発明が適用される電力系統の概略構成について述べると、103は広範囲に分散して存在する複数の発電所で、各発電所の発電機101から出力される電力が送電線104により相互に連系された複数の電気所(変電所又は開閉所)102に送電され、さらに各電気所102より負荷105に電力が供給される電力系統100が形成されている。   First, a schematic configuration of an electric power system to which the present invention is applied will be described. Reference numeral 103 denotes a plurality of power plants dispersed in a wide range. Electric power output from the power generator 101 of each power plant is mutually transmitted by a transmission line 104. A power system 100 is formed in which power is transmitted to a plurality of electrical stations (substations or switching stations) 102 connected to each other and power is supplied from each electrical station 102 to a load 105.

本実施形態では、このような電力系統100全体を監視する中央監視所に脱調分離装置1を設置し、送電線104の事故によりいずれかの発電機101に脱調現象が発生した場合、その発電機に繋がる送電線を他の健全な送電線から分離するものである。   In the present embodiment, when the step-out separation device 1 is installed at such a central monitoring station that monitors the entire power system 100, and a step-out phenomenon occurs in any of the generators 101 due to an accident in the transmission line 104, The transmission line connected to the generator is separated from other healthy transmission lines.

この脱調分離装置1は、系統情報入手部2、位相角差演算部3、脱調モード判定部4、系統分離点選定部5及び制御出力部6から構成されている。   The step-out separation apparatus 1 includes a system information acquisition unit 2, a phase angle difference calculation unit 3, a step-out mode determination unit 4, a system separation point selection unit 5, and a control output unit 6.

上記系統情報入手部2は、図示するように電力系統内の予め決められた電気所で検出され、且つ通信系を介して伝送される母線電圧位相を時々刻々と取込んで測定する。   The system information acquisition unit 2 captures and measures the bus voltage phase detected at a predetermined electric station in the power system and transmitted via the communication system as shown in the drawing.

位相角演算部3は、系統情報入手部2で測定された母線電圧位相を用いて各電気所間の位相角差を算出する。   The phase angle calculation unit 3 calculates the phase angle difference between the electrical stations using the bus voltage phase measured by the system information acquisition unit 2.

脱調モード判定部4は、位相角差演算部3により算出された各位相角差と予め設定したしきい値とをそれぞれ比較し、しきい値を超えると脱調発生と判定し、判定後も一定時間、系統情報入手部2による電圧位相の測定、位相角差演算部3による位相角差の算出及び前述のしきい値との比較処理を繰返し行った後、しきい値を超過した位相角差から脱調発電機群を抽出し、その組合せから脱調モードを推定する。   The step-out mode determination unit 4 compares each phase angle difference calculated by the phase angle difference calculation unit 3 with a preset threshold value, and determines that step-out has occurred when the threshold value is exceeded. After a certain period of time, the voltage phase measurement by the system information acquisition unit 2, the calculation of the phase angle difference by the phase angle difference calculation unit 3, and the comparison process with the above threshold value are repeated, and then the phase exceeding the threshold value The step-out generator group is extracted from the angle difference, and the step-out mode is estimated from the combination.

系統分離点選定部5は、脱調モードに応じた最適な系統分離点を決定する。   The system separation point selection unit 5 determines an optimum system separation point according to the step-out mode.

制御出力部6は、系統分離点の選定結果に基いて電力系統の予定の箇所に設置された系統分離装置に系統分離指令を通信系を介して出力する。   The control output unit 6 outputs a system separation command via a communication system to a system separation device installed at a planned location of the power system based on the selection result of the system separation point.

一方、本実施形態の脱調分離装置1を運用する前に、事前設定システム10として安定度特性把握手段11、位相角検出点選定手段12、脱調モード・系統分離点選定手段13より得られる整定値14を脱調モード判定部4及び系統分離点選定部5に与える。   On the other hand, before operating the step-out separation apparatus 1 of the present embodiment, the preset system 10 is obtained from the stability characteristic grasping means 11, the phase angle detection point selection means 12, and the step-out mode / system separation point selection means 13. The set value 14 is given to the step-out mode determination unit 4 and the system separation point selection unit 5.

上記安定度特性把握手段11では、対象系統の安定度特性を把握し、対象系統で発生する脱調モードを整理すると共に、本装置が対象にする脱調モードを決定する。   The stability characteristic grasping means 11 grasps the stability characteristic of the target system, arranges the step-out mode generated in the target system, and determines the step-out mode targeted by the present apparatus.

例えば、図2に示すような電力系統を対象とした場合には、まず対象系統の過渡安定度特性を把握するため、故障点・故障様相をパラメータに過渡安定度シミュレーションを繰返し実行して、本系統で発生する脱調パターンを確認する。   For example, when the power system as shown in FIG. 2 is targeted, first, in order to grasp the transient stability characteristics of the target system, the transient stability simulation is repeatedly executed using the failure point / failure parameters as parameters. Check the step-out pattern that occurs in the grid.

図3は脱調パターンを整理した結果の一例を示すもので、図2の電力系統においては脱調パターン(脱調モード)が5パターンあり、脱調モードBと呼ぶケースは、図2の発電機群GAと記載した四角で囲むエリア内の発電機群及び発電機群GBと記載したエリア内の発電機群が一体となって脱調するという意味である。 FIG. 3 shows an example of the result of arranging the step-out patterns. In the electric power system of FIG. 2, there are five steps-out patterns (step-out modes). generator group generator groups and within the area described as the generator group G B in the area boxed described with machine group G a is the sense of loss of synchronism together.

次に位相角検出点設定手段12では、対象とする全ての脱調モードが検出できるように位相角検出点を選定する。具体的には、各脱調発電機群のエリア内のどこか一箇所の電気所の母線を位相検出点として選出するとともに、脱調しない発電機群のエリア(脱調の影響を受ける健全系統)からも位相角検出点を選出する。   Next, the phase angle detection point setting means 12 selects a phase angle detection point so that all target step-out modes can be detected. Specifically, one of the electric power generation buses in each out-of-step generator group area is selected as a phase detection point, and the generator group area that is not out of step (healthy system affected by out-of-step ) To select the phase angle detection point.

例えば、図3の脱調パターンに基づき、図2に示すように発電機群GA、発電機群GB、…、発電機群GEといったように脱調発電機群が分類される場合、発電機群GAはそのエリア内のA変電所を、発電機群GBはそのエリア内のB発電所を位相角検出点として選定している。脱調しない発電機のエリアの位相角検出点は、健全系統内のいずれの電気所でも良いが、図2ではF発電所とG変電所の2箇所としている。 For example, based on the step-out pattern in Fig. 3, the generator group G A as shown in FIG. 2, the generator group G B, ..., if the step-out generator group is classified as such a generator group G E, the a substation of the generator group G a is in the area, the generator group G B is selected the B power plant in the area as the phase angle detection point. The phase angle detection points in the generator area that does not step out may be any electrical station in the healthy system, but in FIG. 2, there are two F power stations and G substations.

脱調モード・系統分離点選定13では、下記条件のもと、各脱調モードに応じた系統分離点を選定する。   In step-out mode / system separation point selection 13, a system separation point corresponding to each step-out mode is selected under the following conditions.

必要条件:脱調する発電機群が全て分離系統側に含まれる系統分離点とする。       Necessary condition: System separation point where all generator groups to be stepped out are included on the separated system side.

周波数条件:前記必要条件に当てはまる分離点が複数ある場合は、需給アンバランス
が小さくなる(遮断する送電線の潮流合計が最も小さい)分離点とする。
Frequency condition: When there are multiple separation points that meet the above requirements, supply and demand imbalance
The separation point becomes smaller (the total tidal current of the transmission lines to be cut off is the smallest).

電圧条件:前記必要条件に当てはまる分離点が複数ある場合は、系統分離を実施し
た場合に、送電線や機器の耐電圧を超過する電圧上昇、あるいは問題と
となる電圧低下が発生しない分離点とする。
Voltage condition: If there are multiple separation points that meet the above requirements, system separation is performed.
Voltage rise exceeding the withstand voltage of transmission lines and equipment, or
A separation point where no voltage drop occurs.

なお、周波数条件及び電圧条件は、電力系統の運用管理者の必要に応じて考慮し、周波数条件により周波数を考慮した系統分離を、電圧条件により電圧を考慮した系統分離を行うことができる。例えば、図4は系統分離点の選定結果の一例で、前記条件を考慮し、脱調モードAは系統分離点としてL1,L2,L3送電線を選定し、脱調モードBはL2,L3,L4送電線を選定している。   Note that the frequency condition and the voltage condition can be considered as necessary by the operation manager of the power system, and the system separation considering the frequency according to the frequency condition can be performed and the system separation considering the voltage according to the voltage condition can be performed. For example, FIG. 4 shows an example of the result of selection of the system separation point. Considering the above conditions, the step-out mode A selects L1, L2, and L3 transmission lines as the system separation point, and the step-out mode B includes L2, L3, and L3. L4 transmission line is selected.

以上の作業を本装置の運用開始前に行い、図3に示すような脱調発電機群と脱調モードの関係、図4に示すような脱調モードと系統分離点の関係を求めて、この関係を本装置に予め設定(整定値14)しておくことにより、本装置では複数の脱調モードに対応し、且つ脱調モードの推定と脱調モードに適した系統分離点の選定が行える。   The above work is performed before the start of operation of the present apparatus, and the relationship between the step-out generator group and the step-out mode as shown in FIG. 3, the relationship between the step-out mode and the system separation point as shown in FIG. By setting this relationship in this device in advance (settling value 14), this device can handle a plurality of step-out modes and can select a system separation point suitable for the step-out mode. Yes.

なお、脱調モードの推定方法及び脱調モードに適した系統分離点の選定方法の詳細については後述する。   Details of the method for estimating the step-out mode and the method for selecting the system separation point suitable for the step-out mode will be described later.

次に電力系統の脱調分離装置1を構成する各部の作用について説明する。   Next, the operation of each part constituting the out-of-step separating apparatus 1 for the power system will be described.

まず、系統情報入手部2では、前述のように決定した位相角検出点(電気所)の母線電圧位相15を時々刻々と測定し、伝送系を介して入手する。   First, the system information obtaining unit 2 measures the bus voltage phase 15 at the phase angle detection point (electrical station) determined as described above, and obtains it via the transmission system.

位相角演算部3では、各電気所(位相角検出点)間の位相角差を求める。例えば、図2の電力系統では、A電気所(位相角検出点A)の位相角をθA、B電気所(位相角検出点B)の位相角をθBとすると、A,B電気所間の位相角差は次の通り求められる。 The phase angle calculation unit 3 obtains a phase angle difference between each electric station (phase angle detection point). For example, in the electric power system of FIG. 2, assuming that the phase angle of the A electric station (phase angle detection point A) is θ A and the phase angle of the B electric station (phase angle detection point B) is θ B , The phase angle difference between them is obtained as follows.

θAB=|θA−θB| …… (1)
図2に示す電力系統のように位相角検出点が7電気所(C,D,E,F,G電気所の各位相角をθCDEFGとする)の場合、(1)式と同様に各電気所間の位相角差を求め、図5に示すようなマトリックスを作成する。
θ AB = | θ A −θ B | (1)
As in the power system shown in FIG. 2, the phase angle detection points are 7 electrical stations (the phase angles of C, D, E, F, and G electrical stations are θ C , θ D , θ E , θ F , and θ G ). ), The phase angle difference between the electrical stations is obtained in the same manner as in the equation (1), and a matrix as shown in FIG. 5 is created.

脱調モード判定部4では、前述のように算出した位相角差を用いて、脱調発電機群の抽出と脱調モードの推定を行う。   The step-out mode determination unit 4 uses the phase angle difference calculated as described above to extract the step-out generator group and estimate the step-out mode.

図6は脱調モード判定部4の処理フローを示す図で、この図を参照しながら脱調モード判定部4の作用を説明する。   FIG. 6 is a diagram showing a processing flow of the step-out mode determination unit 4, and the operation of the step-out mode determination unit 4 will be described with reference to this figure.

図6において、脱調検出ステップ(S41)では、(2)式のように各位相角差と脱調判定しきい値θαとを比較して、θαを超過していなければ安定と判定し、超過している場合には脱調有りと判定する。脱調有りと判定した後も一定時間Tsは、図1の系統情報入手部2、位相角差演算部3、脱調モード判定部4の処理を繰返し、他にθαを超過する位相角差がないかどうかを確認する。 In FIG. 6, in the step-out detection step (S41), each phase angle difference is compared with the step-out determination threshold value θ α as shown in equation (2), and if it does not exceed θ α , it is determined that the phase is stable. However, if it exceeds, it is determined that there is a step-out. Predetermined time Ts after it is determined that there out-the system information acquisition unit 2 of FIG. 1, the phase angle difference computing unit 3, repeats the processing of step-out mode determination unit 4, the phase angle difference exceeds the other theta alpha Check if there is any.

θAB<θα ならば、安定と判定
θAB≧θα ならば、脱調有りと判定
……(2)
例えば、図7に示すように位相角差が変化した場合、図8は、θα=180度、Ts=100msとしたときの判定結果の一例で、送電線事故が発生してから0.90秒でθAG,θGAが、0.95秒でθBG,θGBがθαを超過している。この結果より、発電機群GAとGG(G変電所に近い発電機群)、発電機群GBとGGが脱調と判定され、図8の対応箇所に脱調有り(×)が記憶される。その他の位相角差はθαを超過していないので安定(○)が記憶される。
If θ ABα, it is judged as stable.If θ AB ≧ θ α, it is judged that there is a step-out.
(2)
For example, when the phase angle difference changes as shown in FIG. 7, FIG. 8 shows an example of the determination result when θ α = 180 degrees and Ts = 100 ms. Θ AG and θ GA in seconds, and θ BG and θ GB exceed θ α in 0.95 seconds. From this result, it is determined that the generator groups G A and G G (the generator group close to the G substation) and the generator groups G B and G G are out of step, and there is a step out (×) in the corresponding part of FIG. Is memorized. Other phase angle difference stability (○) are stored so does not exceed the theta alpha.

次に脱調グループ判定ステップ(S42)では、脱調有りと判定された位相角差について、差を取った両検出点のうち、どちらの検出点の発電機群が脱調しているのか判断するとともに、発生している脱調モードを推定する。具体的には、脱調有りと判定された位相角差について、差を取った両検出点の位相角の単位時間における変化分Δθ/Δt(=周波数Δf)を求め、これを比較してその値が大きい方の検出点の発電機群が脱調していると判断する。これにより、脱調している発電機群が分かるので、脱調発電機群の組合せと、予め設定した脱調発電機群と脱調モードの関係を用いて脱調モードを推定する。   Next, in the step-out group determination step (S42), it is determined which of the detection points out of the detected points where the difference has been detected is out of phase with respect to the phase angle difference determined to have step-out. At the same time, the generated step-out mode is estimated. Specifically, with respect to the phase angle difference determined to have step-out, the change Δθ / Δt (= frequency Δf) in the unit time of the phase angle of both detection points where the difference was taken is obtained and compared to It is determined that the generator group at the detection point with the larger value is out of phase. As a result, the out-of-step generator group is known, and therefore the out-of-step mode is estimated using the combination of the out-of-step generator group and the relationship between the preset out-of-step generator group and the out-of-step mode.

例えば、図9は脱調グループ判定結果の一例で、脱調検出の結果、θAG,θGA,θBG,θGBが脱調有りと判定されているので、θAG,θGAの両検出点のΔθA/Δt,ΔθG/Δt,θBG,θGBの両検出点のΔθB/Δt,ΔθG/Δtを求めて比較し、θAG,θGAは検出点A(A変電所)の方(ΔθA/Δt=30度)が大きく、θBG,θGBは検出点B(B発電所)の方(ΔθB/Δt=25度)が大きいので、検出点Aが含まれる発電機群GAと検出点Bが含まれる発電機群GBは脱調していると判断される。これにより、脱調している発電機群が分かるので、図3に示す脱調発電機群と脱調モードの関係から、発生している脱調モードは、発電機群GA,GBが脱調する脱調モードBと推定できる。 For example, FIG. 9 shows an example of a step-out group determination result. As a result of step-out detection, θ AG , θ GA , θ BG , and θ GB are determined to have step-out, so both θ AG and θ GA are detected. Δθ A / Δt, Δθ G / Δt, θ BG , θ GB of both detection points Δθ B / Δt, Δθ G / Δt are obtained and compared, and θ AG and θ GA are detected at detection point A (A substation ) Is larger (Δθ A / Δt = 30 degrees), and θ BG and θ GB are larger in the detection point B (B power plant) (Δθ B / Δt = 25 degrees), so the detection point A is included. generator group G B that contains the detection point B and the generator group G a is judged to be out of step. Thus, since the generator group has lost synchronism is found, the relation of out-generator unit and the step-out mode shown in FIG. 3, step-out mode has occurred, the generator group G A, is G B It can be estimated that the step-out mode B is out of step.

次に系統分離点選定部5では、前述のように推定した脱調モード、予め設定した脱調モードと脱調モードに適した系統分離点の関係から、系統分離点を選定する。   Next, the system separation point selection unit 5 selects a system separation point based on the step-out mode estimated as described above, and the relationship between the preset step-out mode and the system separation point suitable for the step-out mode.

例えば、発電機群GAとGBの脱調で、脱調モードBと推定した場合、図4に示すような脱調モードと系統分離点の関係から、L2,L3,L4送電線を系統分離点と決定する。 For example, when the out-of-step mode B is estimated by step-out of the generator groups G A and G B , the L2, L3, and L4 transmission lines are connected to the system from the relationship between the step-out mode and the system separation point as shown in FIG. Determine the separation point.

制御出力部6は、系統分離点選定部5で選定した送電線のしゃ断を実施する。   The control output unit 6 cuts off the transmission line selected by the system separation point selection unit 5.

このように第1の実施形態によれば、従来の系統安定化装置に比べ、複数の脱調モードを対象にでき、また脱調モードに応じた系統分離を行うことができる。また、広域位相情報を用いることにより脱調分離リレーに比べて早期の脱調検出と系統分離が行えるので、安定化効果の向上を図ることができる。更に、系統分離点の選定条件に周波数条件や電圧条件を加えることにより、周波数と電圧を考慮した系統分離が行えるので、系統分離後の主系統及び分離系統の安定運転維持能力を向上させることができる。   As described above, according to the first embodiment, a plurality of step-out modes can be targeted as compared with the conventional system stabilizing device, and the system separation according to the step-out mode can be performed. Moreover, since step-out detection and system separation can be performed earlier than in the step-out separation relay by using the wide-area phase information, the stabilization effect can be improved. Furthermore, by adding frequency conditions and voltage conditions to the system separation point selection conditions, system separation can be performed in consideration of frequency and voltage, so that the stable operation maintenance ability of the main system and the separated system after system separation can be improved. it can.

次に本発明による電力系統の脱調分離装置の第2の実施形態について説明する。   Next, a second embodiment of the power system step-out separation apparatus according to the present invention will be described.

本実施形態では、第1の実施形態で述べた図1の脱調モード判定部4において、脱調発生を判定する際に、予め設定した第1のしきい値と各位相角差とを比較し、第1のしきい値を超過する場合には脱調発生と判定し、次に予め設定した第1のしきい値よりも小さく設定した第2のしきい値と各位相角差とを比較して、第1又は第2のしきい値を超過した位相角差から脱調発電機群を抽出する。   In the present embodiment, when the step-out mode determination unit 4 in FIG. 1 described in the first embodiment determines the occurrence of step-out, the first threshold value set in advance is compared with each phase angle difference. If the first threshold value is exceeded, it is determined that step-out has occurred, and then the second threshold value set smaller than the first threshold value set in advance and each phase angle difference are determined. In comparison, the step-out generator group is extracted from the phase angle difference exceeding the first or second threshold.

なお、事前設定システム10、系統情報入手部2、位相角差演算部3、系統分離点選定部5及び制御出力部6は第1の実施形態と同じなので、ここではその説明を省略する。   Note that the presetting system 10, the system information acquisition unit 2, the phase angle difference calculation unit 3, the system separation point selection unit 5, and the control output unit 6 are the same as those in the first embodiment, and thus description thereof is omitted here.

図10は、本発明の第2の実施形態における脱調モード判定部4の処理フローを示す図であり、以下この図を参照しながら脱調モード判定部4の作用について述べる。   FIG. 10 is a diagram showing a processing flow of the step-out mode determination unit 4 in the second embodiment of the present invention, and the operation of the step-out mode determination unit 4 will be described below with reference to this figure.

図10において、脱調検出ステップ(S41)では、第1の実施形態と同じく、各位相角差と第1の脱調判定しきい値θα1とを比較して、しきい値θα1を超過していなければ安定と判定し、図1の系統情報入手部2、位相角差演算部3及び脱調モード判定部4での処理を繰返す。 In FIG. 10, in the step-out detection step (S41), as in the first embodiment, each phase angle difference is compared with the first step-out determination threshold value θ α1, and the threshold value θ α1 is exceeded. If it has not, it determines with it being stable, and repeats the process in the system | strain information acquisition part 2, the phase angle difference calculating part 3, and the step-out mode determination part 4 of FIG.

第1の脱調判定しきい値θα1を超過している場合には脱調有りと判定し、次に脱調有りと判定された以外の位相角差について第2の脱調判定しきい値θα2と比較して、このしきい値θα2を超過している場合には、これも脱調有りと判定する。この場合、θα1>θα2の関係で設定し、両者の値を近い数値とすることで、θα1を超過して脱調と判定された検出点を含む発電機群と、同じ様相で進展脱調している他の発電機群も見つけることができる。 If the first step-out determination threshold value θα1 is exceeded, it is determined that there is step-out, and then the second step-out determination threshold value for the phase angle difference other than that determined as having step-out. compared to theta [alpha] 2, if you exceed this threshold theta [alpha] 2 is also judged that there is out-of. In this case, set in the relationship of θ α1 > θ α2 , and by making both values close to each other, it progresses in the same manner as the generator group including the detection point that is determined to be out of step by exceeding θ α1 You can also find other generator groups that are out of step.

例えば、図7に示すように位相角差が変化した場合、図11(a),(b)は、θα1=180度、θα2=150度としたときの判定結果の一例で、送電線事故が発生してから0.90秒でθAG,θGAがθα1を超過し、この結果、発電機群GAとGG(G変電所に近い発電機群)が脱調と判定され、図11(a)の対応箇所に脱調有り(×)が記憶される。その他の位相角差は、θα1を超過していないので安定(○)が記憶される。 For example, when the phase angle difference changes as shown in FIG. 7, FIGS. 11A and 11B are examples of determination results when θ α1 = 180 degrees and θ α2 = 150 degrees. In 0.90 seconds after the accident occurred, θ AG and θ GA exceeded θ α1, and as a result, the generator groups G A and G G (the generator group close to the G substation) were determined to be out of step. The presence of step-out (x) is stored in the corresponding part of FIG. Since the other phase angle differences do not exceed θ α1 , stability (◯) is stored.

次に、θα2を超過する位相角差があるので、θα1を超過していない位相角差、つまり、θAG,θGA以外の位相角差(図11(b)のハッチング部)についてθα2と比較して、θBG,θGBがθα2を超過し、この結果、発電機群GBとGGも脱調と判定され、図11(b)の対応箇所に脱調有り(×)が記憶される。 Next, since there is a phase angle difference that exceeds θ α2 , a phase angle difference that does not exceed θ α1 , that is, a phase angle difference other than θ AG and θ GA (hatched portion in FIG. 11B) is θ. Compared with α2 , θ BG and θ GB exceed θ α2, and as a result, the generator groups G B and G G are also determined to be out of step, and there is a step out at the corresponding location in FIG. ) Is stored.

脱調グループ判定(S42)では第1の実施形態と同様に脱調有りと判定された位相角差について、差を取った両検出点のうち、どちらの検出点の発電機群が脱調しているか判断するとともに、発生している脱調モードを推定する。これは第1の実施形態と同様なので説明は省略する。   In the out-of-step group determination (S42), the generator group at which detection point out of the two detection points obtained for the phase angle difference determined to be out of step is stepped out as in the first embodiment. And the occurrence of the step-out mode is estimated. Since this is the same as in the first embodiment, a description thereof will be omitted.

第2の実施形態によれば、最初の脱調有りを検出した時点で脱調モードを推定できるため、第1の実施形態のように遅れて脱調する発電機群の有無を確認するためのタイマTSが不要となるので、系統分離を早期に行うことが可能となり、安定化効果の向上を図ることができる。   According to the second embodiment, the step-out mode can be estimated at the time when the first step-out is detected, so that it is possible to confirm the presence or absence of the generator group that steps out with a delay as in the first embodiment. Since the timer TS is not necessary, system separation can be performed at an early stage, and the stabilization effect can be improved.

次に本発明による電力系統の脱調分離装置の第3の実施形態について図12を参照して説明する。第1の実施形態で述べた図1の電力系統の脱調分離装置と同一部分には同一符号を付してその説明を省略し、ここでは異なる点について述べる。   Next, a third embodiment of the power system step-out separation apparatus according to the present invention will be described with reference to FIG. The same parts as those in the step-out separation apparatus for the power system of FIG.

第3の実施形態では、図12に示すように位相角差演算部3で時々刻々と算出した位相角差を記憶し、その記憶した位相角差を用いて近い将来時点の位相角差を予測し、これを脱調モード判定部4に与える位相角差予測部7を設ける構成とするものである。   In the third embodiment, as shown in FIG. 12, the phase angle difference calculated every moment by the phase angle difference calculation unit 3 is stored, and the phase angle difference at the near future time is predicted using the stored phase angle difference. In addition, a phase angle difference prediction unit 7 that provides this to the step-out mode determination unit 4 is provided.

次に位相角差予測部7の作用を図13に示す処理フローを参照しながら説明する。   Next, the operation of the phase angle difference prediction unit 7 will be described with reference to the processing flow shown in FIG.

位相角差予測部7では、図13に示すように位相角差演算部3で算出した各位相角差を現在及び過去に算出したものを記憶する位相角差保存ステップ(S71)によりメモリに記憶しておき、このメモリに記憶した位相角差を用いて予測式作成ステップ(S72)により将来時点の位相角差を予測する予測式を作成し、この予測式を使って位相角差予測ステップS73により将来時点の位相角差を予測する。   As shown in FIG. 13, the phase angle difference prediction unit 7 stores the phase angle differences calculated by the phase angle difference calculation unit 3 in the memory in the phase angle difference storing step (S71) for storing the current and past calculated values. In addition, a prediction formula for predicting a phase angle difference at a future time is generated by a prediction formula creation step (S72) using the phase angle difference stored in the memory, and a phase angle difference prediction step S73 is performed using this prediction formula. To predict the phase angle difference in the future.

脱調モード判定部4では、その位相角差予測値を用いて前述同様に脱調発生の判定と脱調発電機群の抽出を行う。   The step-out mode determination unit 4 uses the phase angle difference prediction value to determine the occurrence of step-out and extract the group of step-out generators as described above.

なお、予測式及びその作成方法は、従来の系統安定化装置で使われている方法を用いても良い。一例として、(3)式のような2次の予測式を考え、係数kを現在及び過去の位相角差データを使い、最小二乗法により求めて、将来時点の位相角差δ(t)(例えば、250ms先の位相角差)を予測する。   Note that the prediction formula and the creation method thereof may be a method used in a conventional system stabilizing device. As an example, consider a quadratic prediction equation such as equation (3), and use the current and past phase angle difference data to determine the coefficient k by the least squares method to obtain the phase angle difference δ (t) ( For example, a phase angle difference of 250 ms ahead) is predicted.

予測式の一例:δ(t)=k0+k1・t+k2・t2 …… (3)
ここで、k0,k1,k2は最小二乗法により算出する。
An example of the prediction formula: δ (t) = k 0 + k 1 · t + k 2 · t 2 (3)
Here, k 0 , k 1 , and k 2 are calculated by the least square method.

このように第3の実施形態によれば、予測した将来時点の位相角差を使って脱調検出することにより、早期に脱調を検出できるため、結果的に系統分離を早く行うことが可能となり、安定化効果を向上させることができる。   As described above, according to the third embodiment, the step-out can be detected early by detecting the step-out using the predicted phase angle difference at the future time point, so that the system separation can be performed early as a result. Thus, the stabilization effect can be improved.

本発明による電力系統の脱調分離装置の第1の実施形態を示す構成図。The block diagram which shows 1st Embodiment of the out-of-step separation apparatus of the electric power system by this invention. 同実施形態の脱調分離装置が適用される電力系統と位相検出点の一例を示す図。The figure which shows an example of the electric power system with which the step-out separation apparatus of the embodiment is applied, and a phase detection point. 図2に示す電力系統において、脱調発電機と脱調モードの関係の一例を示す図。The figure which shows an example of the relationship between a step-out generator and a step-out mode in the electric power system shown in FIG. 同実施形態において、脱調モードと系統分離点の関係の一例を示す図。The figure which shows an example of the relationship between a step-out mode and a system | strain separation point in the embodiment. 同実施形態において、位相角差演算部で求める位相角差をマトリックス状に表現した図。The figure which expressed the phase angle difference calculated | required by the phase angle difference calculating part in the matrix form in the same embodiment. 同実施形態における脱調モード判定部の処理フローを示す図。The figure which shows the processing flow of the step-out mode determination part in the embodiment. 同実施形態において、位相角差の変化を示す図。The figure which shows the change of a phase angle difference in the same embodiment. 同実施形態において、脱調検出における脱調有り時の判定結果の一例を示す図。The figure which shows an example of the determination result at the time of step-out in step-out detection in the same embodiment. 同実施形態において、脱調グループ判定における判定結果の一例を示す図。The figure which shows an example of the determination result in a step-out group determination in the same embodiment. 本発明による電力系統の脱調分離装置の第2の実施形態を示す構成図。The block diagram which shows 2nd Embodiment of the out-of-step separation apparatus of the electric power system by this invention. 同実施形態において、脱調検出における脱調有り時の判定結果の一例を示す図。The figure which shows an example of the determination result at the time of step-out in step-out detection in the same embodiment. 本発明による電力系統の脱調分離装置の第3の実施形態を示す構成図。The block diagram which shows 3rd Embodiment of the out-of-step separation apparatus of the electric power system by this invention. 同実施形態における位相角予測部の処理フローを示す図。The figure which shows the processing flow of the phase angle estimation part in the embodiment.

符号の説明Explanation of symbols

1…脱調分離装置、2…系統情報入手部、3…位相角差演算部、4…脱調モード判定部、5…系統分離点選定部、6…制御出力部、7…位相角差予測部、10…事前設定システム、11…安定度特性把握手段、12…位相角検出点選定手段、13…脱調モード・系統分離点選定手段、14…整定値、15…位相角情報、16…系統分離指令   DESCRIPTION OF SYMBOLS 1 ... Step-out separation apparatus, 2 ... System information acquisition part, 3 ... Phase angle difference calculating part, 4 ... Step-out mode determination part, 5 ... System separation point selection part, 6 ... Control output part, 7 ... Phase angle difference prediction , 10 ... Pre-setting system, 11 ... Stability characteristic grasping means, 12 ... Phase angle detection point selecting means, 13 ... Step-out mode / system separation point selecting means, 14 ... Setting value, 15 ... Phase angle information, 16 ... System separation command

Claims (2)

同期する複数の発電機が送電線により連系してなる電力系統の送電線故障などの外乱により一部の発電機が脱調したとき、この脱調現象が他の発電機に波及しないように系統分離を行う電力系統の脱調分離方法において、
電力系統内の予め定められた電気所の母線電圧位相角を時々刻々と測定して電力系統の広域の位相情報を入手し、
これらの位相情報から各電気所間の位相角差を算出して、各位相角差と予め設定した第1のしきい値とをそれぞれ比較し、前記第1のしきい値を超過する位相角差がある場合には脱調発生と判定し、次に各位相角差のうち前記第1のしきい値を超過して脱調発生と判定されたもの以外の位相角差と前記第1のしきい値よりも小さく設定した第2のしきい値とをそれぞれ比較し、前記第2のしきい値を超過する位相角差がある場合には脱調発生と判定し、前記第1のしきい値を超過した位相角差及び前記第2のしきい値を超過した位相角差から脱調発電機群を抽出し、この抽出された脱調発電機群の組合せから脱調モードを推定して最適な系統分離を実施する
ことを特徴とする電力系統の脱調分離方法。
When some generators step out due to disturbances such as power transmission line faults in the power system where multiple synchronized generators are linked by transmission lines, this step-out phenomenon will not spread to other generators. In the step-out separation method of the power system for performing system separation,
Obtain the phase information of a wide area of the power system by measuring the bus voltage phase angle of a predetermined electric station in the power system every moment,
To calculate the phase angle difference between the substation from these phase information, and a first preset threshold and the phase angle difference compared respectively, the phase angle exceeds the first threshold value If there is a difference, it is determined that a step-out has occurred, and then, among the phase angle differences, the phase angle difference other than the one that has exceeded the first threshold and has been determined to have step-out, and the first A second threshold value set smaller than the threshold value is respectively compared, and if there is a phase angle difference exceeding the second threshold value, it is determined that a step-out has occurred, and the first threshold value is determined. A step-out generator group is extracted from the phase angle difference exceeding the threshold value and the phase angle difference exceeding the second threshold value, and the step-out mode is estimated from the combination of the extracted step-out generator groups. A step-out separation method for electric power systems, characterized in that optimal system separation is performed.
同期する複数の発電機が送電線により連系してなる電力系統の送電線故障などの外乱により一部の発電機が脱調したとき、この脱調現象が他の発電機に波及しないように系統分離を行う電力系統の脱調分離装置において、電力系統内の予め定められた電気所の母線電圧位相角を時々刻々と測定して電力系統の広域の位相情報を入手する位相情報入手手段と、
この位相情報入手手段により入手された各電気所間の位相角差を算出する位相角差演算手段と、
この位相角差演算手段により算出された各位相角差と予め設定した第1のしきい値とをそれぞれ比較して、前記第1のしきい値を超過する位相角差がある場合には脱調発生と判定し、次に各位相角差のうち前記第1のしきい値を超過して脱調発生と判定されたもの以外の位相角差と前記第1のしきい値よりも小さく設定した第2のしきい値とをそれぞれ比較し、前記第2のしきい値を超過する位相角差がある場合には脱調発生と判定し、前記第1のしきい値を超過した位相角差及び前記第2のしきい値を超過した位相角差から脱調発電機群を抽出して、その脱調発電機群の組合せから脱調モードを推定する脱調モード判定手段と、
この脱調モード判定手段により推定された脱調モードをもとに系統分離を実施する系統分離手段と
を備えたことを特徴とする電力系統の脱調分離装置。
When some generators step out due to disturbances such as power transmission line faults in the power system where multiple synchronized generators are linked by transmission lines, this step-out phenomenon will not spread to other generators. A phase information obtaining means for obtaining phase information in a wide area of the power system by measuring a bus voltage phase angle of a predetermined electric station in the power system every moment in a step-out separation device for a power system for performing system separation; ,
A phase angle difference calculating means for calculating a phase angle difference between the electrical stations obtained by the phase information obtaining means;
Each phase angle difference calculated by the phase angle difference calculating means is compared with a first threshold value set in advance, and if there is a phase angle difference exceeding the first threshold value, the phase angle difference is removed. Next, the phase angle difference is set to be smaller than the first threshold value and the phase angle difference other than the phase angle difference that has exceeded the first threshold value and is determined to be out of step. Each of the second threshold values is compared, and if there is a phase angle difference exceeding the second threshold value, it is determined that step-out has occurred, and the phase angle exceeding the first threshold value is determined. A step-out mode determining means for extracting a step-out generator group from the difference and the phase angle difference exceeding the second threshold, and estimating a step-out mode from the combination of the step-out generator group;
A power system step-out separation apparatus comprising: system separation means for performing system separation based on the step-out mode estimated by the step-out mode determination means.
JP2005045713A 2005-02-22 2005-02-22 Power system step-out separation method and apparatus Expired - Fee Related JP4203030B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005045713A JP4203030B2 (en) 2005-02-22 2005-02-22 Power system step-out separation method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005045713A JP4203030B2 (en) 2005-02-22 2005-02-22 Power system step-out separation method and apparatus

Publications (2)

Publication Number Publication Date
JP2006238526A JP2006238526A (en) 2006-09-07
JP4203030B2 true JP4203030B2 (en) 2008-12-24

Family

ID=37045590

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005045713A Expired - Fee Related JP4203030B2 (en) 2005-02-22 2005-02-22 Power system step-out separation method and apparatus

Country Status (1)

Country Link
JP (1) JP4203030B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4679499B2 (en) * 2006-12-12 2011-04-27 三菱電機株式会社 System stabilization control system
CA2748458C (en) * 2008-12-25 2014-06-03 Mitsubishi Electric Corporation Phase-control switchgear and phase-control method for switchgear
JP5294993B2 (en) * 2009-05-29 2013-09-18 中国電力株式会社 Power system stabilizer
JP2011083077A (en) * 2009-10-05 2011-04-21 Mitsubishi Electric Corp System for separation control of electric power system
JP7490422B2 (en) 2020-04-02 2024-05-27 株式会社東芝 Frequency Stabilization System

Also Published As

Publication number Publication date
JP2006238526A (en) 2006-09-07

Similar Documents

Publication Publication Date Title
Yan et al. PMU-based monitoring of rotor angle dynamics
US9798342B2 (en) Detection and correction of fault induced delayed voltage recovery
JP7219542B2 (en) POWER SYSTEM CONTROL DEVICE, POWER SYSTEM CONTROL SYSTEM, POWER SYSTEM CONTROL METHOD AND POWER SYSTEM CONTROL PROGRAM
Larsson et al. Real-time voltage stability assessment of transmission corridors
CA2911753A1 (en) Methods and apparatus for detection of transient instability and out-of-step conditions by state deviation
JP2001268794A (en) Method and equipment for inspecting stability of power transmission network
JP4203030B2 (en) Power system step-out separation method and apparatus
CN110783945A (en) Method for locating phase faults in microgrid
US11467200B2 (en) Method and device for identifying the location of a fault in an electrical power distribution network
CN110783946A (en) Method for locating phase faults in microgrid
Voima et al. Adaptive protection scheme for smart grids
Novosel et al. Benefits of synchronized-measurement technology for power-grid applications
CN105186467A (en) Distributed power fault analysis method and protection system
KR100872273B1 (en) Real time transient stability criterion and protection method of fault propagation using time synchronized measurement signal in power systems
JP2010161865A (en) System and method for protecting ground of distribution system and program
CN107067126B (en) Thermal stability key power transmission channel identification method based on power flow transfer ratio
CN113285452B (en) Method for prejudging transient instability of power system and generating generator tripping control strategy
JP2011083077A (en) System for separation control of electric power system
CN109387724A (en) Based on the lateral modified synchronous capacitor method for diagnosing faults of vertical analysis
Zhang Improving real-time fault analysis and validating relay operations to prevent or mitigate cascading blackouts
JP6960263B2 (en) System operation support devices and methods in the power system, and wide area monitoring protection control system
JP5677264B2 (en) Power failure recovery support method and power failure recovery support system
Azriyenni et al. Backpropagation neural network modeling for fault location in transmission line 150 kV
Maki et al. Methods for assessing the protection impacts of distributed generation in network planning activities
Velez et al. Multiple swing transient stability assessment with phasor measurements

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070326

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080520

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080722

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081007

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081009

R150 Certificate of patent or registration of utility model

Ref document number: 4203030

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111017

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111017

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121017

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131017

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees