JP4202966B2 - Ultrasonic diagnostic equipment - Google Patents

Ultrasonic diagnostic equipment Download PDF

Info

Publication number
JP4202966B2
JP4202966B2 JP2004139685A JP2004139685A JP4202966B2 JP 4202966 B2 JP4202966 B2 JP 4202966B2 JP 2004139685 A JP2004139685 A JP 2004139685A JP 2004139685 A JP2004139685 A JP 2004139685A JP 4202966 B2 JP4202966 B2 JP 4202966B2
Authority
JP
Japan
Prior art keywords
liver
contour line
approximate curve
tomographic image
curve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004139685A
Other languages
Japanese (ja)
Other versions
JP2005319080A (en
Inventor
賢 村下
典義 松下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Aloka Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aloka Co Ltd filed Critical Aloka Co Ltd
Priority to JP2004139685A priority Critical patent/JP4202966B2/en
Publication of JP2005319080A publication Critical patent/JP2005319080A/en
Application granted granted Critical
Publication of JP4202966B2 publication Critical patent/JP4202966B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、生体内に送信された超音波の反射波を受信し、これに基づき超音波断層画像を得る超音波診断装置に関する。   The present invention relates to an ultrasonic diagnostic apparatus that receives an ultrasonic reflected wave transmitted into a living body and obtains an ultrasonic tomographic image based on the reflected wave.

生体内に送信された超音波の反射波を受信し、この反射波に基づき超音波断層画像を得る超音波診断装置が知られ、被験者の負担が少ないことから各種の検査、診断に用いられている。このような検査、診断の一つに肝機能の診断がある。肝臓は、その機能が低下するのに対応して肝実質部の均質性、肝表面の滑らかさ、肝辺縁の鋭さ、肝内脈管像の明瞭さが失われていく。験者は、これらの状態を肝臓の断層画像より得て、また他の検査の結果などを勘案して診断を行っている。なお、前記の肝辺縁とは、ヒトであれば、ヒトが立った状態で下側の縁の部分に相当する。   An ultrasonic diagnostic apparatus that receives an ultrasonic reflected wave transmitted into a living body and obtains an ultrasonic tomographic image based on the reflected wave is known, and is used for various examinations and diagnoses because the burden on the subject is small. Yes. One of such tests and diagnoses is liver function diagnosis. As the function of the liver decreases, the homogeneity of the liver parenchyma, the smoothness of the liver surface, the sharpness of the liver margin, and the clarity of the intravascular image of the liver are lost. The examiner obtains these states from a tomographic image of the liver and makes a diagnosis in consideration of the results of other examinations. Note that the liver margin corresponds to the lower edge portion of a human when the human is standing.

下記特許文献1には、超音波断層画像の肝実質部の変化に基づく肝機能の診断について開示されている。   Patent Document 1 below discloses a diagnosis of liver function based on a change in the liver parenchyma of an ultrasonic tomographic image.

特開2001−238884号公報Japanese Patent Laid-Open No. 2001-23884

前記特許文献1には、肝実質部の変化に基づく肝機能の検査、診断について開示があるが、肝機能の診断は上述したように肝実質部の均一性の他、肝表面の滑らかさ、肝辺縁の鋭さ、肝内脈管像の明瞭さなどを勘案して験者がその経験に基づき診断をしている。前記特許文献1には、肝実質部の均一性以外の観察対象については何ら開示されていない。   Patent Document 1 discloses the examination and diagnosis of liver function based on changes in the liver parenchyma, but the diagnosis of liver function includes the uniformity of the liver parenchyma as described above, the smoothness of the liver surface, Considering the sharpness of the liver margin and the clarity of intravascular images, the examiner makes a diagnosis based on the experience. Patent Document 1 does not disclose any observation object other than the uniformity of the liver parenchyma.

本発明は、肝機能の検査、診断に関し、特許文献1とは別の特徴事項を対象とした評価を行い診断を支援する超音波診断装置を提供する。   The present invention relates to an examination and diagnosis of liver function, and provides an ultrasonic diagnostic apparatus that supports evaluation by performing evaluations on characteristic items different from Patent Document 1.

本発明の超音波診断装置は、肝臓の超音波断層画像を得る断層画像取得手段と、前記断層画像において、肝臓表面の凹凸の不整の程度を示す値を算出する不整度算出手段とを有している。   The ultrasonic diagnostic apparatus of the present invention includes a tomographic image acquisition unit that obtains an ultrasonic tomographic image of the liver, and an irregularity calculation unit that calculates a value indicating the degree of irregularities on the surface of the liver in the tomographic image. ing.

前記不整度算出手段は、肝臓表面を表す輪郭線の所定区間における近似曲線を算出し、この近似曲線と前記輪郭線の差に基づき不整の程度を算出するものとすることができる。   The irregularity calculation means may calculate an approximate curve in a predetermined section of a contour line representing the liver surface, and calculate the degree of irregularity based on a difference between the approximate curve and the contour line.

また、不整の程度の算出対象となる前記輪郭線の所定区間は、背中側の肝臓表面の一部区間とすることができる。   Further, the predetermined section of the contour line, which is a calculation target of the degree of irregularity, can be a partial section of the liver surface on the back side.

また、背中側の肝臓表面の一部を含む領域の画像において、最も長いエッジを前記輪郭線の所定区間とすることができる。   In the image of the region including a part of the liver surface on the back side, the longest edge can be set as the predetermined section of the contour line.

また、背中側の肝臓表面の一部を含む領域の画像において、所定長さ以上のエッジの内、肝臓の中央に最も近いエッジを前記輪郭線の所定区間とすることができる。   Further, in an image of a region including a part of the liver surface on the back side, an edge closest to the center of the liver among edges having a predetermined length or longer can be set as a predetermined section of the contour line.

また、前記不整の程度を示す値は、前記近似曲線と前記輪郭線に挟まれた部分の面積を前記近似曲線の長さで割って正規化した値とすることができる。   Further, the value indicating the degree of irregularity may be a value obtained by normalizing the area of the portion sandwiched between the approximate curve and the outline by dividing the length of the approximate curve.

また、前記近似曲線は2次曲線とすることができる。   The approximate curve may be a quadratic curve.

また、前記超音波断層画像上に、前記近似曲線を描き、この近似曲線と輪郭線とにより挟まれた部分に色を与えた画像を提供することができる。   Further, it is possible to provide an image in which the approximate curve is drawn on the ultrasonic tomographic image and a color is given to a portion sandwiched between the approximate curve and the contour line.

本発明により、肝臓表面の凹凸の不整の程度を数値化することにより、肝機能の診断の指標を提供することができる。   According to the present invention, an index for diagnosing liver function can be provided by quantifying the degree of irregularities on the surface of the liver.

以下、本発明の実施形態を、図面に従って説明する。図1は、ヒトの肝臓10の概略の外観を示した図である。図1は、ヒトが立った状態のときの向きに描かれており、紙面手前側がヒトの正面、紙面奥が背面、紙面上が上方である。肝臓の下側の縁の部分(図1に符号12で示す縁)は、特に肝辺縁と呼ばれる。超音波断層画像を得る際には、超音波探触子を肋骨の下から、やや上方に向けて当接させて画像を得る。図1では、紙面手前側のやや下方から上方に向けて探触子を当てて断層画像を得る。図1の一点鎖線14における断層画像が図2に示されている。図2において、真上が超音波探触子の位置であり、よって図2の上側がヒトの正面側の面、下側が背中側の面となっている。また、前述した肝辺縁は右端となる。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a diagram showing a schematic appearance of a human liver 10. FIG. 1 is drawn in a direction when a human is standing, with the front side of the paper being the front of the human, the back of the paper being the back, and the top of the paper being the top. The portion of the lower edge of the liver (the edge indicated by reference numeral 12 in FIG. 1) is particularly called the liver margin. When obtaining an ultrasonic tomographic image, the image is obtained by bringing the ultrasonic probe into contact with the rib from below the rib slightly upward. In FIG. 1, a tomographic image is obtained by applying a probe from a slightly lower side toward the upper side on the front side of the drawing. A tomographic image taken along one-dot chain line 14 in FIG. 1 is shown in FIG. In FIG. 2, the position directly above is the position of the ultrasound probe, and therefore, the upper side of FIG. 2 is the front side surface of the human and the lower side is the back side surface. In addition, the aforementioned liver margin is the right end.

正常な肝臓表面は凹凸がなく平滑であるが、肝細胞が壊れて硬くなる繊維化が進むにつれて、凹凸が生じる。この凹凸の不整の程度は、繊維化の程度と相関があり、症状の進行の程度を示している。超音波断層画像上にもこの凹凸が現れ、特に背中側、図2に示す画像においては下側の辺に凹凸が良く表れる。図2の画像においては、下側の辺に比較的大きな凹凸が現れているのが分かる。この辺の所定の区間、すなわち背中側の肝臓表面16を表している曲線の近似曲線を求め、これらの曲線に挟まれた部分に基づき凹凸の程度を表す値を算出する。例えば、前記の曲線に挟まれた部分の面積を、近似曲線の長さで割った値などを用いることができる。このような値により、肝臓の病変の進行状況が推測できるようになる。   The normal liver surface is smooth with no irregularities, but irregularities occur as the fibrosis that hardens and breaks down the hepatocytes progresses. The degree of irregularities of the irregularities correlates with the degree of fibrosis and indicates the degree of progression of symptoms. This unevenness also appears on the ultrasonic tomographic image, and in particular, the unevenness appears well on the back side, in the lower side in the image shown in FIG. In the image of FIG. 2, it can be seen that relatively large irregularities appear on the lower side. An approximate curve of a curve representing the predetermined section of this side, that is, the liver surface 16 on the back side is obtained, and a value representing the degree of unevenness is calculated based on a portion sandwiched between these curves. For example, a value obtained by dividing the area of the portion sandwiched between the curves by the length of the approximate curve can be used. Such a value makes it possible to estimate the progress of the liver lesion.

以下、肝臓表面の凹凸の数値化の手法について、詳細に説明する。図3は、肝臓表面の凹凸の定量化処理に関連する機能ブロック図である。超音波探触子20は、送受信部22に制御されて生体内に超音波を送信し、またこれの反射波を受信し、受信信号に変換する。受信信号は、送受信部よりデジタルスキャンコンバータ(DSC)24に送られ、ここで超音波断層画像が形成される。超音波断層画像に基づき肝臓表面の凹凸の不整の程度を示す不整度を、不整度算出手段27にて算出する。形成された超音波断層画像は、例えば図2のような画像となる。肝臓の断層画像中、凹凸が良く表れる背中側の表面16に関心領域26の設定を、関心領域設定部28が行う。関心領域26は、病変による凹凸が良く表れている部分を含み、さほど表れない部分を除くように設定することが好ましい。前述のように、超音波断層画像においては、背中側の面に凹凸が良く表れるので、ここに関心領域26を設定することが好ましく、さらに図2に示すように、背中側の表面の内、やや肝辺縁12寄りの部分に設定することがより好ましい。関心領域の設定は、験者が画面上の関心領域26の位置、大きさを数値で直接入力したり、またはポインティングデバイスなどにより入力することで設定することができ、験者は表示された断層画像を見て、領域の調節を行う。   Hereinafter, the method of digitizing the unevenness of the liver surface will be described in detail. FIG. 3 is a functional block diagram related to the quantification processing of the unevenness of the liver surface. The ultrasonic probe 20 is controlled by the transmission / reception unit 22 to transmit an ultrasonic wave into the living body, receives a reflected wave thereof, and converts it into a reception signal. The received signal is sent from the transmission / reception unit to the digital scan converter (DSC) 24, where an ultrasonic tomographic image is formed. An irregularity indicating the degree of irregularities on the surface of the liver is calculated by the irregularity calculation means 27 based on the ultrasonic tomographic image. The formed ultrasonic tomographic image is, for example, an image as shown in FIG. The region-of-interest setting unit 28 sets the region of interest 26 on the surface 16 on the back side where unevenness appears well in the tomographic image of the liver. It is preferable that the region of interest 26 is set so as to include a portion where unevenness due to a lesion appears well, and exclude a portion where it does not appear so much. As described above, in the ultrasonic tomographic image, since unevenness appears well on the surface on the back side, it is preferable to set the region of interest 26 here, and as shown in FIG. It is more preferable to set the portion slightly closer to the liver margin 12. The region of interest can be set by the examiner directly inputting the position and size of the region of interest 26 on the screen numerically or by inputting with a pointing device or the like. The examiner can display the displayed tomographic image. Look and adjust the area.

次に、表面を抽出するために各処理を行う。まず、メディアン処理部30でメディアン処理を行いノイズを排除する。具体的には、3×3の画素の輝度値の中央値を中心画素の輝度値とする処理を行う。これにより、突発的に大きなピークなどを除去することができる。次に、二値化処理部32にて画像の二値化を行う。二値化の際のしきい値は、あらかじめ定められた値を用いることもでき、また験者が任意に、例えば画像を見ながら設定するようにしてもよい。そして、ノイズ除去部34にて、二値化処理において発生したノイズなどの除去を行う。   Next, each process is performed to extract the surface. First, the median processing unit 30 performs median processing to eliminate noise. Specifically, a process is performed in which the central value of the luminance values of the 3 × 3 pixels is set to the luminance value of the central pixel. Thereby, a big peak etc. can be removed suddenly. Next, the binarization processing unit 32 binarizes the image. As the threshold value for binarization, a predetermined value may be used, or the examiner may arbitrarily set the threshold value while viewing the image, for example. The noise removing unit 34 removes noise generated in the binarization process.

ノイズが除去された二値化画像に対してエッジ検出部36にてエッジ、すなわち二値の境界線の検出を行う。エッジ検出は、公知のフィルタを用いて行うことができる。図4には、関心領域26中の検出されたエッジが示されている。検出されたエッジ中、最長のエッジを肝臓の背中側の表面16として選ぶ。最長エッジの検出については、図5に示す輪郭線検出部38に関する、より詳しい機能ブロック図を用いて説明する。また、図6は、エッジ検出部36で検出したエッジに関する処理を説明するための図であり、エッジの例を挙げて各処理の段階で画像がどのように変化するかを示している。   The edge detection unit 36 detects an edge, that is, a binary boundary line, from the binarized image from which noise has been removed. Edge detection can be performed using a known filter. In FIG. 4, the detected edges in the region of interest 26 are shown. Among the detected edges, the longest edge is selected as the surface 16 on the back side of the liver. The detection of the longest edge will be described with reference to a more detailed functional block diagram relating to the contour detection unit 38 shown in FIG. FIG. 6 is a diagram for explaining processing related to the edge detected by the edge detection unit 36, and illustrates how an image changes in each processing stage by giving an example of an edge.

図5に示すように、エッジ検出部36で検出された全てのエッジを輪郭線検出部38のエッジフレーム用メモリ40に記憶する。この状態が図6(a)に示されている。次に、ラベリング処理部42にてラベリング処理を行い、一本のエッジごとに分離する。そして、ラベリングされた状態をラベル画像用フレームメモリ44に記憶する。ラベリング処理を行った状態が図6(b)に示される。次に、各ラベルの個数検出部46で各ラベルごとの個数を検出し、輪郭線および端点座標検出部48にて最も多いラベルのエッジ、すなわち最長のエッジを肝臓断面の輪郭線として検出し、またその端点座標を検出する。図6(b)においては、ラベル「10」が付されたエッジが最長であり、このエッジが輪郭線用フレームメモリ50に、図6(c)に示すように記憶される。   As shown in FIG. 5, all the edges detected by the edge detection unit 36 are stored in the edge frame memory 40 of the contour line detection unit 38. This state is shown in FIG. Next, the labeling processing unit 42 performs a labeling process to separate each edge. Then, the labeled state is stored in the label image frame memory 44. FIG. 6B shows a state where the labeling process has been performed. Next, the number detection unit 46 for each label detects the number of each label, and the contour line and end point coordinate detection unit 48 detects the most label edge, that is, the longest edge as the contour line of the liver cross section, The end point coordinates are detected. In FIG. 6B, the edge with the label “10” is the longest, and this edge is stored in the contour frame memory 50 as shown in FIG.

肝臓の輪郭線が検出されると、次に、この輪郭線の二つの端点のそれぞれのY座標が等しくなるように、回転処理部52にて当該輪郭線を回転移動させる。図6(d)に、この状態が示されている。図6(d)のエッジ(輪郭線)の形状は、図6(c)のエッジの形状と一見異なるように見えるが、図6(c)の下から3番目の画素と、6番目の画素がそれぞれ左、右に突出している特徴が、図6(d)においても、左から3番目、6番目の画素が上、下に突出している形状に反映されており、同一の画像であることが理解できる。   When the contour line of the liver is detected, the rotation processing unit 52 rotates the contour line so that the Y coordinates of the two end points of the contour line are equal. FIG. 6D shows this state. Although the shape of the edge (contour line) in FIG. 6D seems to be different from the shape of the edge in FIG. 6C, the third pixel and the sixth pixel from the bottom in FIG. 6 are reflected in the shape in which the third and sixth pixels from the left protrude upward and downward in FIG. 6D, and the same image is projected. Can understand.

回転処理されたエッジ(輪郭線)は、輪郭線用グラフメモリ54に記憶される。この輪郭線の例が曲線A(以下輪郭線Aと記す)として、図7(a)に示されている。なお、これに続く図7(b),(c)は、輪郭線Aを所定の処理を行うことによって得られた図である。この輪郭線Aに対してメディアン処理部56にてメディアン処理を行い、急峻なピークを除去し、輪郭線用グラフメモリ58に記憶する。メディアン処理が行われた輪郭線Bの例が図7(b)に示されている。また、輪郭線用グラフメモリ58は、先の輪郭線用グラフメモリ54と同一のものでもよく、メディアン処理後の輪郭線Bを、輪郭線Aに対し上書きしてもよい。そして、メディアン処理された輪郭線Bを近似する、Y軸に平行な軸を有する2次曲線Cを、近似曲線作成部60にて最小二乗法により求め、これを近似曲線用グラフメモリ62に記憶する。この2次曲線Cを図7(c)に示す。   The edge (contour line) subjected to the rotation processing is stored in the contour line graph memory 54. An example of this contour line is shown in FIG. 7A as a curve A (hereinafter referred to as contour line A). FIGS. 7B and 7C subsequent to this are views obtained by performing a predetermined process on the contour line A. FIG. The contour line A is subjected to median processing by the median processing unit 56 to remove a steep peak and store it in the contour line graph memory 58. An example of the contour line B subjected to the median process is shown in FIG. The contour line graph memory 58 may be the same as the previous contour line graph memory 54, and the contour line B after the median processing may be overwritten on the contour line A. Then, a quadratic curve C having an axis parallel to the Y-axis that approximates the median-processed contour line B is obtained by the least-square method in the approximate curve creation unit 60 and stored in the approximate curve graph memory 62. To do. This quadratic curve C is shown in FIG.

次に、同一のX座標を有する輪郭線Bと2次曲線Cの、Y座標の差分(絶対値)を輪郭線Bの一端から、他端まで積分する。この積分値は、輪郭線Bと2次曲線Cに挟まれた部分(図中斜線で示す部分)の面積に相当する。この積分値が小さいということは輪郭線Bが近似曲線である2次曲線に近く滑らかであることを示し、逆に大きいということは表面の凹凸が大きいことを示している。したがって、この積分値に基づき、肝臓表面の性状の評価ができる。また、切り出した輪郭線AまたはBの長さが変わると、積分の区間が変わるので、これを正規化すると評価がしやすくなる。そこで、正規化部66を設け、輪郭線Bまたは2次曲線Cの長さで割って、正規化を行う。この正規化された値を、肝臓表面の凹凸の程度を示す不整度とすることができる。   Next, the difference (absolute value) of the Y coordinate between the contour line B and the quadratic curve C having the same X coordinate is integrated from one end of the contour line B to the other end. This integrated value corresponds to the area of the portion (the portion indicated by the slanted line in the figure) sandwiched between the contour line B and the quadratic curve C. A small integral value indicates that the contour line B is close to a quadratic curve that is an approximate curve and is smooth, and conversely, a large value indicates that the surface has large irregularities. Therefore, based on this integrated value, the properties of the liver surface can be evaluated. In addition, if the length of the cut outline A or B changes, the integration interval changes. Therefore, if this is normalized, it becomes easier to evaluate. Therefore, a normalization unit 66 is provided, and normalization is performed by dividing by the length of the contour line B or the quadratic curve C. This normalized value can be used as an irregularity indicating the degree of unevenness on the liver surface.

また、2次曲線Cと輪郭線Bとで挟まれた部分について、図2に示す超音波断層画像に重畳した画像を提供する。例えば、図8に示すように、CRTなどの表示画面上に、超音波断層画像に上記の挟まれた部分を他の部分から区別できるように表示する。例えば、超音波断層画像は白黒画像であるので、この部分に色を付ければ、凹凸の様子を明瞭に示すことができる。   Further, an image superimposed on the ultrasonic tomographic image shown in FIG. 2 is provided for the portion sandwiched between the secondary curve C and the contour line B. For example, as shown in FIG. 8, the portion sandwiched in the ultrasonic tomographic image is displayed on a display screen such as a CRT so that it can be distinguished from other portions. For example, since the ultrasonic tomographic image is a black and white image, it is possible to clearly show the unevenness by coloring this portion.

上述した実施形態において、輪郭線検出部38は、最長のエッジを肝臓断面の輪郭線として抽出したが、他の方法を採ることもできる。例えば、所定値以上または長さの順に所定本の比較的長いエッジを選び、このうち最も肝臓の実質部側のエッジを輪郭線とすることもできる。肝実質部は比較的均質な組織であり、ここに長いエッジが表れることは少ない。したがって、比較的長いエッジであり、肝臓の中心に最も近いものが、肝臓の表面を表す輪郭線と推定できる。実質部側のエッジを判定するには、例えば各エッジの画像の重心を求め、この重心と図2などに示す超音波画像の中心との距離の最も短いものとすることができる。また、験者が超音波断層画像を見ながら、肝臓の中心とする点を入力し、この入力された中心とエッジの重心距離に基づき求めても良い。   In the embodiment described above, the contour line detection unit 38 extracts the longest edge as the contour line of the liver cross section, but other methods may be employed. For example, a predetermined number of relatively long edges can be selected in the order of a predetermined value or more or the length, and the most substantial edge of the liver can be used as the contour line. The liver parenchyma is a relatively homogeneous tissue, and long edges rarely appear here. Therefore, a relatively long edge and the one closest to the center of the liver can be estimated as a contour line representing the surface of the liver. In order to determine the edge on the substantial side, for example, the center of gravity of the image of each edge is obtained, and the distance between this center of gravity and the center of the ultrasonic image shown in FIG. Alternatively, the examiner may input a point as the center of the liver while looking at the ultrasonic tomographic image, and obtain it based on the center-of-gravity distance between the input center and the edge.

また、所定値以上または長さの順に所定本数の比較的長いエッジを画面上に表示し、験者が選択して輪郭線を決定するようにしても良い。この場合の輪郭線検出部38は、験者からの入力を受け付けて、この入力に従ったエッジを輪郭線とする。   Alternatively, a predetermined number of relatively long edges may be displayed on the screen in the order of the predetermined value or more, or the length may be selected by the examiner to determine the contour line. In this case, the contour line detection unit 38 receives an input from the examiner and sets an edge according to this input as a contour line.

また、上述の実施形態においては近似曲線として2次曲線を用いたが、3次など高次の曲線で近似することも可能である。例えば、図9(a)に示すように、肝辺縁12に近い部分に関心領域26を設定した場合は、2次曲線で良く近似することができるが、図9(b)のように肝辺縁12より比較的離れた部位に関心領域26’を設定した場合は、3次曲線で近似することが好ましくなる。N次曲線のうち、何次の曲線を選ぶかは、例えば験者が入力して設定するようにできる。   In the above-described embodiment, a quadratic curve is used as the approximate curve, but it is also possible to approximate with a higher order curve such as a third order. For example, as shown in FIG. 9A, when the region of interest 26 is set near the liver margin 12, it can be well approximated by a quadratic curve, but as shown in FIG. When the region of interest 26 ′ is set at a site relatively far from the edge 12, it is preferable to approximate with a cubic curve. For example, the examiner can input and set the order of the N-order curve.

また、近似曲線は、さらに比較的大きいウインドウにて平滑化処理、メディアン処理を行い取得してもよい。例えば、図7(b)に示すメディアン処理された輪郭線Bに対して、より大きなウインドウを設定して平滑化処理またはメディアン処理を行うようにすることができる。図10では、250ポイントからなる曲線Bに対して前後61ポイントのウインドウを設定して平滑化処理を行った曲線Dが示されている。この場合には、近似曲線作成部60は、平滑化処理またはメディアン処理を実行する回路となる。なお、平滑化またはメディアン処理は、図7(a)に示す曲線Aを直接処理するようにしてもよい。   Further, the approximate curve may be obtained by performing smoothing processing and median processing on a relatively large window. For example, a smoothing process or a median process can be performed by setting a larger window with respect to the contour line B subjected to the median process illustrated in FIG. FIG. 10 shows a curve D obtained by performing a smoothing process by setting a window of 61 points before and after the curve B having 250 points. In this case, the approximate curve creation unit 60 is a circuit that executes a smoothing process or a median process. In the smoothing or median processing, the curve A shown in FIG.

このような平滑化等により近似曲線を得る場合には、例えば肝臓断面の輪郭線全周にわたって凹凸の評価をすることができる。図11は、肝臓断面全周に対して平滑化処理により近似曲線を求め、この近似曲線と肝臓の輪郭線とに挟まれた部分に対して図8の場合と同様に色を付すなどして周囲との区別をした表示例を示す図である。   In the case of obtaining an approximate curve by such smoothing or the like, for example, the unevenness can be evaluated over the entire outline of the outline of the liver cross section. In FIG. 11, an approximate curve is obtained by smoothing the entire circumference of the liver cross section, and the portion sandwiched between the approximate curve and the outline of the liver is colored in the same manner as in FIG. It is a figure which shows the example of a display distinguished from the circumference | surroundings.

図12は、図3に示す近似曲線作成部60と近似曲線用グラフメモリ62を、他の構成で置き換えた例を示す図である。図3の構成と同様の構成については同一符号を付し説明を省略する。この構成例は、近似曲線をN次曲線とする場合と、平滑化により得る場合とを、験者が選択可能とした例である。輪郭線に基づきN次曲線作成部160Aでは、所定次数の曲線で近似曲線を得て、これをN次曲線用グラフメモリ162Aに記憶する。一方、グラフ平滑化部160Bにおいても輪郭線を平滑化して近似曲線を得て、平滑化用グラフメモリ162Bに記憶する。験者は、二つのメモリ162A,Bのいずれに記憶された近似曲線を用いるか選択し、この選択に応じて選択部163が一方の近似曲線を差分加算部64に送り出す。   FIG. 12 is a diagram illustrating an example in which the approximate curve creation unit 60 and the approximate curve graph memory 62 illustrated in FIG. 3 are replaced with other configurations. The same components as those in FIG. 3 are denoted by the same reference numerals and description thereof is omitted. This configuration example is an example in which the examiner can select a case where the approximate curve is an Nth-order curve and a case where the approximate curve is obtained by smoothing. Based on the contour line, the Nth-order curve creation unit 160A obtains an approximate curve with a curve of a predetermined order, and stores this in the Nth-order curve graph memory 162A. On the other hand, the graph smoothing unit 160B also smoothes the contour line to obtain an approximate curve, and stores it in the smoothing graph memory 162B. The examiner selects which of the two memories 162A and 162B uses the approximate curve, and the selection unit 163 sends one approximate curve to the difference addition unit 64 in accordance with this selection.

上述の実施形態において、肝臓表面の凹凸を評価するのに輪郭線と近似曲線の差分を用いたが、正負のある状態で(すなわち絶対値をとる前の)差分値を二乗し、これを曲線全長にわたって積分するようにしても良い。   In the above-described embodiment, the difference between the contour line and the approximate curve is used to evaluate the unevenness of the liver surface, but the difference value is squared in a positive or negative state (that is, before taking the absolute value), and this is expressed as a curve. You may make it integrate over a full length.

ヒトの肝臓の外観を示す図である。It is a figure which shows the external appearance of a human liver. 肝臓の超音波断層画像の例を示す図である。It is a figure which shows the example of the ultrasonic tomographic image of a liver. 肝臓の表面の凹凸の定量化処理に係る機能ブロック図である。It is a functional block diagram which concerns on the quantification process of the unevenness | corrugation of the surface of a liver. 図2の超音波断層画像から画像のエッジ部分を抽出した様子を示す図である。It is a figure which shows a mode that the edge part of the image was extracted from the ultrasonic tomographic image of FIG. 図3の機能ブロック図の一部を詳細に示す図である。It is a figure which shows a part of functional block diagram of FIG. 3 in detail. 輪郭線検出部38および回転処理部52の処理を説明するための図である。It is a figure for demonstrating the process of the outline detection part 38 and the rotation process part 52. FIG. 肝臓断面の輪郭線と、この輪郭線の近似曲線の一例を示す図である。It is a figure which shows an example of the outline of a liver cross section, and the approximate curve of this outline. 肝臓の超音波断層画像に、凹凸を明瞭に示す表示を行った例を示す図である。It is a figure which shows the example which performed the display which shows an unevenness | corrugation clearly on the ultrasonic tomographic image of a liver. 設定される関心領域の違いにより近似曲線の適切な次数が変わる例を示す図である。It is a figure which shows the example from which the suitable degree of an approximated curve changes with the difference of the region of interest set. 輪郭線の平滑化により得られた近似曲線の一例を示す図である。It is a figure which shows an example of the approximated curve obtained by the smoothing of an outline. 肝臓断面の全周にわたって凹凸を明瞭に示す表示を行った例を示す図である。It is a figure which shows the example which performed the display which shows an unevenness | corrugation clearly over the perimeter of a liver cross section. 図3の機能ブロック図の一部を置き換えるブロックを示す図である。It is a figure which shows the block which replaces a part of functional block diagram of FIG.

符号の説明Explanation of symbols

10 肝臓、12 肝辺縁、16 背中側の肝臓表面、26 関心領域、27 不整度算出部。   10 liver, 12 liver margin, 16 dorsal liver surface, 26 region of interest, 27 irregularity calculator.

Claims (6)

肝臓の超音波断層画像を得る断層画像取得手段と、
前記断層画像において、肝臓表面を表す輪郭線の所定区間における近似曲線を算出し、この近似曲線と前記輪郭線の差に基づき肝臓表面の凹凸の不整の程度を示す値を算出する不整度算出手段と、
を有し、
前記不整の程度を示す値は、前記近似曲線と前記輪郭線に挟まれた部分の面積を前記近似曲線の長さで割って正規化した値であることを特徴とする超音波診断装置。
A tomographic image acquisition means for obtaining an ultrasonic tomographic image of the liver;
In the tomographic image, an imperfection degree calculating means for calculating an approximate curve in a predetermined section of a contour line representing the liver surface and calculating a value indicating the degree of irregularity of the liver surface based on a difference between the approximate curve and the contour line. When,
Have
The ultrasonic diagnostic apparatus according to claim 1, wherein the value indicating the degree of irregularity is a value obtained by dividing an area of a portion sandwiched between the approximate curve and the outline by a length of the approximate curve .
肝臓の超音波断層画像を得る断層画像取得手段と、
前記断層画像において、肝臓表面を表す輪郭線の所定区間における近似曲線を算出し、この近似曲線と前記輪郭線の差に基づき肝臓表面の凹凸の不整の程度を示す値を算出する不整度算出手段と、
を有し、
前記超音波断層画像上に、前記近似曲線を描き、この近似曲線と輪郭線とにより挟まれた部分に色を与えた画像を提供することを特徴とする超音波診断装置。
A tomographic image acquisition means for obtaining an ultrasonic tomographic image of the liver;
In the tomographic image, an imperfection degree calculating means for calculating an approximate curve in a predetermined section of a contour line representing the liver surface and calculating a value indicating the degree of irregularity of the liver surface based on a difference between the approximate curve and the contour line. When,
Have
An ultrasonic diagnostic apparatus characterized by providing an image in which the approximate curve is drawn on the ultrasonic tomographic image and a color is given to a portion sandwiched between the approximate curve and an outline .
請求項1または2に記載の超音波診断装置において、不整の程度の算出対象となる前記輪郭線の所定区間は、背中側の肝臓表面の一部区間であることを特徴とする超音波診断装置。 The ultrasonic diagnostic apparatus according to claim 1, wherein the predetermined section of the contour that is a calculation target of the degree of irregularity is a partial section of the liver surface on the back side. . 請求項3に記載の超音波診断装置において、背中側の肝臓表面の一部を含む領域の画像において、最も長いエッジを前記輪郭線の所定区間とすることを特徴とする超音波診断装置。   The ultrasonic diagnostic apparatus according to claim 3, wherein a longest edge is set as a predetermined section of the contour line in an image of a region including a part of a liver surface on the back side. 請求項3に記載の超音波診断装置において、背中側の肝臓表面の一部を含む領域の画像において、所定長さ以上のエッジの内、肝臓の中央に最も近いエッジを前記輪郭線の所定区間とすることを特徴とする超音波診断装置。   The ultrasonic diagnostic apparatus according to claim 3, wherein, in an image of a region including a part of the liver surface on the back side, an edge closest to the center of the liver among edges having a predetermined length or longer is defined as a predetermined section of the contour line. An ultrasonic diagnostic apparatus. 請求項1〜5のいずれか1項に記載の超音波診断装置において、前記近似曲線は2次曲線であることを特徴とする超音波診断装置。The ultrasonic diagnostic apparatus according to claim 1, wherein the approximate curve is a quadratic curve.
JP2004139685A 2004-05-10 2004-05-10 Ultrasonic diagnostic equipment Expired - Fee Related JP4202966B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004139685A JP4202966B2 (en) 2004-05-10 2004-05-10 Ultrasonic diagnostic equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004139685A JP4202966B2 (en) 2004-05-10 2004-05-10 Ultrasonic diagnostic equipment

Publications (2)

Publication Number Publication Date
JP2005319080A JP2005319080A (en) 2005-11-17
JP4202966B2 true JP4202966B2 (en) 2008-12-24

Family

ID=35466800

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004139685A Expired - Fee Related JP4202966B2 (en) 2004-05-10 2004-05-10 Ultrasonic diagnostic equipment

Country Status (1)

Country Link
JP (1) JP4202966B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9265479B2 (en) 2010-01-14 2016-02-23 Kabushiki Kaisha Toshiba Ultrasonic diagnosis apparatus and ultrasonic image processing apparatus

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6235583B2 (en) * 2012-07-11 2017-11-22 ユニバーシティー オブ ミシシッピ メディカル センター Method for detecting and staging liver fibrosis from image acquisition data
JP5747878B2 (en) * 2012-07-25 2015-07-15 コニカミノルタ株式会社 Image processing apparatus and program
JP6133038B2 (en) * 2012-10-23 2017-05-24 ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー Image processing method, apparatus, and program
US10760899B2 (en) 2015-12-25 2020-09-01 Rakuten, Inc. Shape discrimination device, shape discrimination method and shape discrimination program

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9265479B2 (en) 2010-01-14 2016-02-23 Kabushiki Kaisha Toshiba Ultrasonic diagnosis apparatus and ultrasonic image processing apparatus

Also Published As

Publication number Publication date
JP2005319080A (en) 2005-11-17

Similar Documents

Publication Publication Date Title
JP5576782B2 (en) Image processing apparatus, image processing method, and image processing program
Loizou A review of ultrasound common carotid artery image and video segmentation techniques
Loizou et al. Snakes based segmentation of the common carotid artery intima media
Loizou et al. Quality evaluation of ultrasound imaging in the carotid artery based on normalization and speckle reduction filtering
CN109846513B (en) Ultrasonic imaging method, ultrasonic imaging system, image measuring method, image processing system, and medium
US6154560A (en) System and method for staging regional lymph nodes using quantitative analysis of endoscopic ultrasound images
TWI473598B (en) Breast ultrasound image scanning and diagnostic assistance system
CN109788939B (en) Method and system for enhancing visualization and selection of representative ultrasound images by automatically detecting B-lines and scoring images of ultrasound scans
US10194783B2 (en) Image processing apparatus, image processing method, and computer-readable recording medium for determining abnormal region based on extension information indicating state of blood vessel region extending in neighborhood of candidate region
JP6544648B2 (en) Osteoporosis diagnostic support device
WO2008044466A1 (en) Image processing device, image processing method, and image processing program
US8989467B2 (en) Image processing apparatus, method and computer readable recording medium for detecting abnormal area based on difference between pixel value and reference surface
JP2006110341A (en) Apparatus and method for analyzing tissue class along tubular structure
US11284855B2 (en) Ultrasound needle positioning system and ultrasound needle positioning method utilizing convolutional neural networks
KR20160118037A (en) Apparatus and method for detecting lesion from medical image automatically
CN112568933B (en) Ultrasonic imaging method, apparatus and storage medium
JP4077716B2 (en) Endoscope insertion direction detection device
JP4202966B2 (en) Ultrasonic diagnostic equipment
Khan et al. Semiautomatic quantification of carotid plaque volume with three-dimensional ultrasound imaging
JP5935061B2 (en) Osteoporosis diagnosis support device, osteoporosis diagnosis support program, and bone density change site identification method
WO2017073197A1 (en) Ultrasonic diagnostic device and method
JP2010158279A (en) Ocular-fundus image analyzing system and ocular-fundus image analyzing program
CN107767386B (en) Ultrasonic image processing method and device
Loizou et al. Atherosclerotic carotid plaque segmentation
JP5651412B2 (en) Image processing apparatus, program, and image processing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060105

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080807

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080812

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080905

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081007

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081009

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111017

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131017

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees