JP4202807B2 - Method and apparatus for generating carbon particles - Google Patents

Method and apparatus for generating carbon particles Download PDF

Info

Publication number
JP4202807B2
JP4202807B2 JP2003110469A JP2003110469A JP4202807B2 JP 4202807 B2 JP4202807 B2 JP 4202807B2 JP 2003110469 A JP2003110469 A JP 2003110469A JP 2003110469 A JP2003110469 A JP 2003110469A JP 4202807 B2 JP4202807 B2 JP 4202807B2
Authority
JP
Japan
Prior art keywords
opening
heating furnace
furnace body
end side
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003110469A
Other languages
Japanese (ja)
Other versions
JP2004315275A (en
Inventor
信一郎 小嶋
祐二 小原
Original Assignee
祐二 小原
信一郎 小嶋
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 祐二 小原, 信一郎 小嶋 filed Critical 祐二 小原
Priority to JP2003110469A priority Critical patent/JP4202807B2/en
Publication of JP2004315275A publication Critical patent/JP2004315275A/en
Application granted granted Critical
Publication of JP4202807B2 publication Critical patent/JP4202807B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Carbon And Carbon Compounds (AREA)

Description

【0001】
【発明が属する技術分野】
本発明は、主として、炭素極板を作るのに用いる炭素を、できるだけ純粋でかつ単結晶の粒子の形態として生成する炭素粒子の生成手段に関するものである。
【0002】
【従来の技術】
例えば、炭素極板を形成するための原材料としての炭素を得るための手段としては、従前にあっては、炭化水素の有機化合物を燃やして生成する煤を集めて得るようにしている。
【0003】
また、材料を溶液とし、この溶液を融点以上に加熱して、これを冷却することで、結晶を生成する手段がある。
【0004】
【発明が解決しようとする課題】
従前の手段は、炭化水素の有機化合物を燃やして生成する煤を集める手段にあっては、得られる炭素粒子が、不純物を多く含み、しかも、結晶構造が不均一で、性能が素材の炭素の結晶構造により左右される炭素極板を成形する素材としては適応しない問題がある。
【0005】
また、材料を溶液とし、これを融点以上に加熱して緩冷却することで結晶を生成する手段にあっては、結晶生成前の溶液を、融点以下の温度に急激に降下させると、材料の偏析や異質な流界が生じることから、溶液を、結晶生成時まではその材料の融点もしくはそれ以上の温度に保持せしめておくことが必要なことで、結晶生成のための冷却に時間を要し、高品質の単結晶の粒子の量産ができない問題がある。
【0006】
本発明は、従前手段に生じている上述の問題を解消して、炭素極板の素材として適応する純粋で高品質の炭素粉粒を、量産し得る新たな手段を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明は、上述の目的を達成するために、種々の試行錯誤を重ねて得られた知見に基づいて完成したものである。
【0008】
即ち、炭素極板の素材とするための炭素を、できるだけ純粋な形態として得られるようにするには、炭化水素の有機化合物を、溶液にしないで、固形のままでも、例えばアルゴンガスなどの不活性ガスの雰囲気に保持せしめた加熱炉内に、容積比において10倍程度の量の不活性ガスと共に送り込み、アーク放電などにより高温に加熱して、熱分解させれば、気化し易い有機炭化水素化合物中の水素および不純物が、ガス化して不活性ガスの中にとり込まれて飛散し放出され、融点の高い炭素だけが、有形の炭素粉粒となって残るようになること、そして、この生成してくる炭素分子の粉粒を誘導管により取り出すことで、純度の高い炭素粉粒を連続して生成し得ることが判ってきた。
【0009】
また、これにより得られる純度の高い炭素粉粒が、加熱炉内における熱分解の際の加熱により、高温に昇温し、かつ、その昇温により高圧に加圧された状態となっていることから、これを、その圧力で導管内に押し込み、その導管の周囲に巻き付けた誘導コイルによって、導管内を誘導し、冷媒が循環するジャケット内に通して、急速に冷却して、降温、降圧させたところ結晶が生成されて、ミクロン単位の粒子状の結晶に生成されてくること、さらに、この急速に降温、降圧させた炭素粒子を、冷媒が循環するジャケットで囲まれて常温・常圧程度に保持された放冷室内に送り込んで放置することで、ミリ単位の単結晶に生長してくることが判った。
【0010】
そして、このことから、本発明においては、請求項1に記載した有機の炭化水素化合物を、固形状態において、加熱炉内に不活性ガスの雰囲気において、アーク放電器によるアーク発生および電子銃による電子の放射により、数千度乃至1万数千度程度の高温に昇温させて熱分解せしめて、炭化水素化合物中の水素および含まれる不純物をガス化させて不活性ガス中に取り込ませて、融点の高い炭素を有形の粉粒状に残し、これを、導管により加熱炉の外に導き出し、冷媒を用いた冷却器により急速に冷却して、降温および降圧させてミクロン単位の粒子に結晶させ、次いで、常温・常圧に保持せしめた放冷室に送り込んで放冷して、ミリ単位の単結晶に生長させ、これを放冷室から取り出すことを特徴とする炭素粉粒の生成方法を提起するものである。
【0011】
また、これに併せて、請求項2に記載した炉体を耐火炉材で筒状に成形した加熱炉1と、下端側が加熱炉1の炉体10の内部空間の略中心部位に位置して開口20し、上端側が加熱炉1の上方に位置する材料供給筒2と、上端側の開口31が前記材料供給筒2の下端の開口20の下方においてその開口20に対向し、下端側が炉体10の外に導き出される炭素粒排出用の導管3と、炉体10外部の電源に接続させて、加熱炉1内において前記材料供給筒2の下端の開口20と排出用の導管3の上端側の開口31との対向部位の周囲に配設するアーク発生器4の電極40…41…と、加熱炉1内に電子を打ち込むよう炉体10に組付ける電子銃5と、加熱炉1内に材料と共に不活性ガスを送給するよう材料供給筒2に沿わせて設ける不活性ガスの配管6とからなる炭素粉粒の生成装置を提起するものである。
【0012】
さらに、この炭素粉粒の生成手段を実施するための装置として、請求項3に記載した、炉体を耐火炉材で筒状に成形した加熱炉1と、下端側が加熱炉1の炉体10の内部空間の略中心部位に位置して開口20し、上端側が加熱炉1の上方に位置する材料供給筒2と、上端側の開口31が前記材料供給筒2の下端の開口20の下方においてその開口20に対向し、下端側が炉体10の外に導き出される炭素粒排出用の導管3と、炉体10外部の電源に接続させて、加熱炉1内において前記材料供給筒2の下端の開口20と排出用の導管3の上端側の開口31との対向部位の周囲に配設するアーク発生器4の電極40…41…と、加熱炉1内に電子を打ち込むよう炉体10に組付ける電子銃5と、加熱炉1内に材料と共に不活性ガスを送給するよう材料供給筒2に沿わせて設ける不活性ガスの配管6と、前記導管3の下流側を冷媒が循環するジャケット80内に通過させて、その導管3内を流動する炭素粒子を急速に冷却する冷却器8と、その冷却器8のジャケット80から出る前記導管3の下流側の出口3aに接続して、その出口3aから流出する炭素粒子を放冷する冷媒が循環するジャケット90で囲われた放冷室9とからなる炭素粉粒の生成装置を提起するものである。
【0013】
【発明の実施の形態】
次に本発明手段の実施の態様を、図面に随い実施例について詳述する。
図1は、有機質の炭化水素化合物を原料としてこれを高温で熱分解し、その炭化水素化合物中の炭素と水素とを分離させ、気化し易い水素および含有する微量の不純物をガス化させ、気化しにくい融点の高い炭素を粉末状に生成するための加熱炉を示す。
【0014】
加熱炉1は、それの炉体10を、耐火煉瓦などの耐火材により構築して、筒状に形成している。
【0015】
炉体10は、それの内部空間が高温に耐える加熱室を構成するようになればよく、その形状は任意に設計してよいものであるが、図示する実施例にあっては、炉体10の内部空間に供給する熱量の外部に対する放散を少なくするために、その炉体10の内壁面の形状を、上部の開放口11の内径が底部の炉床12の直径より狭い、倒立したすり鉢状乃至コーン状をなす円筒形に形成している。
【0016】
2は、加熱炉1の炉体10の内部空間に有機の炭化水素化合物を投入して供給するための材料供給筒で、円筒状の筒体に形成してあり、それの下端側を、炉体10の上部の開放口11から挿し込み、その下端側の開口20が、平面視において炉体10の内部空間の略軸心部位を占め、縦断した側面視において上下の略中間に位置する部位を占めて下向に向け開放する状態に配位して、適宜のサポート21により、この状態に支架し、これの上端側の開放口22から、材料の炭化水素化合物を液状または固形の状態として投入して供給するようにする。
【0017】
このとき、この材料供給筒2の下端側を挿入する炉体10の上部の開放口11は、その材料供給筒2の下端側の外周面との間に、外部に連通する間隙として開放し、そこから、材料供給筒2を介して炉体10の内部に供給する炭化水素化合物の材料の熱分解の際に生じてくる炭化水素化合物中の水素および不純物の気化ガスならびに材料の供給の際に材料と共に炉体10の内部空間に送り込む不活性ガスが、この材料供給筒2の下端側の外周面と炉体10の上部の開放口11の口縁との間に形成される間隙を介して炉体10の外部に排出されていくようにしている。
【0018】
3は前記材料供給筒2により炉体10の内部空間に供給される炭化水素化合物の材料の熱分解により生じてくる炭素粉粒を受け入れて、炉体10の外部に導き出す導管で、上端部を漏斗部30に形成して、それの拡径する開口31が、前記材料供給筒2の下端側の開口20に近接する下方において、その開口20と上下に対向するように、炉体10の内部空間の軸心部位を占め、この漏斗状の上端部に接続する主体部32が、前記材料供給筒2よりも大径に形成されて、炉体10の内部空間の軸心部位を下方に延び、その下端側は炉床12を下方に貫通した後、側方に屈曲して、炉体10の外部に延出する小径部33に形成してある。
【0019】
4は、前述の材料供給筒2を介して炉体10内に供給する炭化水素化合物の材料を熱分解させるための高熱を炉体10内に発生させるアーク発生器で、実質的に材料の供給口となる前述の材料供給筒2の下口の開口20と前記導管3の上口となる開口31との対向部位の周囲、およびその近辺の材料供給筒2の外周および導管3の外周を取り囲む部位に、上下に多段に並列するように配設してある。
【0020】
各アーク発生器4は、一対に対向する陽極40と陰極41とを、図2にあるように、平面視において、前述の材料供給筒2の外周および導管3の外周を取りまく環状に配設することで構成してあり、それら各陽極40および陰極41には、炉体10内部に配設したプラス側の配線42およびマイナス側の配線43がそれぞれ接続していて、これらの配線42・43を電源に接続して、高圧電流を供給することで、陽極40と陰極41との間にアーク放電を行わせ、これにより、炉体10の内部空間に、高温の熱を発生させるようにしている。
【0021】
このとき、アーク発生器4に供給する高圧電流は、5000〜6000V程度の電圧でよく、これにより、アーク発生器4の陽極40および陰極41で囲まれた炉体10の内部空間の軸心部位の温度は、時には2万度Cに近い高温に昇温するようになる。炉体10の内部空間を加熱する温度は、高温である程度望ましいが、数千度C乃至6千度C程度の温度で充分である。
【0022】
5は、炉体10内の高温の加熱を、一層効果的にするため、炉体10の内部空間に電子を打ち込む電子銃で、炉体10の適宜位置に、先端から放射する電子が炉体10の内部空間の軸心部位に向けて打ち出されるように装設してある。
【0023】
6は材料供給筒2により炉体10内に材料の炭化水素化合物を投入して供給するときに、その材料と共に炉体10内にアルゴンガス等の不活性ガスを供給するための配管で、材料供給筒2の内壁面に沿うよう配設してあり、それの下流側の端部は、材料供給筒2の下端側の開口20の付近に開口し、上流側は、不活性ガスが充填されたボンベ60に弁61を介して接続させてある。
【0024】
7は、加熱炉1を設置する際にそれの周囲を囲うよう構築した室で、気密を保持する隔壁70で建屋状に構成してあり、前述の材料供給筒2は、それの上位端側を、この室7の天井壁71の上方に突出させて、この室7の天井壁71の上面側において材料供給の操作が行われるようにしてあり、また、不活性ガスを供給する配管6に接続するボンベ60および弁61も、この天井壁71の上面側に配設してある。
【0025】
また、この室7には、炉体10内での炭化水素化合物の熱分野により生成される水素および不純物の気化ガスならびに炉体10内に供給する不活性ガスが、炉体10の上部の開放口11から室7内に排出されてくるのを、外部に引き出すための引き口72が設けてあり、これに、吸引ポンプまたは排風機73が弁74を介して接続させている。
【0026】
このように構成する炭素粉粒の生成装置Aを用いて行う炭素粉粒の生成は、材料とする炭化水素化合物としては、例えば、松やになどのなるべく純粋なものを選び、これを固形のまま粉末状とするか、または、溶媒に溶解させるか加熱により溶融した状態として供給する。
【0027】
そして、このとき、炉体10内には、供給する材料に対し容積比において10倍程度の不活性ガスを送り込む。
【0028】
これにより供給した炭化水素化合物は、不活性ガスで満たされた雰囲気において、アーク発生器4によるアーク放電、および電子銃5からの電子の打ち込みにより高熱に保持されている炉心部で熱分解されて、それにより発生する気化し易い水素分子のガスおよび不純物のガスが、不活性ガスに取り込まれて、その不活性ガスと共に炉体10内から飛散・放出していき、融点の炭素分子だけが、固形の炭素粉粒となって残り、これが、導管3の上口である漏斗部30内に落下し、熱分解の際に高熱の昇温により生ずる圧力で導管3内に押し込まれ、その導管3の炉体10の外部に突出する下流側に導かれ、そこから取り出されるようになる。
【0029】
この炭素粉粒を炉体10の外部への誘導は、導管3の側方に屈曲する下流側の小径部33の回りを囲う断熱材34の外周に、磁力線誘導コイルaを巻き付けて、この磁気コイルへの通電による磁力により導管3内の炭素粉粒を、下流側に流動させるよう誘導するようにしてよく、このようにすることは生成する炭素粉粒の炉体10外への取り出しに有効である。
【0030】
このようにして取り出される炭素粉粒は、原材料とした炭化水素化合物から、水素および不純物が、ガス化して不活性ガス中に取り込まれて除かれ、炭素分子だけが固形の粉粒となって残ることで、生成される炭素粉粒であるから、殆ど純粋な炭素であり、著しく純度の高いものとなる。
【0031】
次に図3は、上述した加熱炉1に、冷却器8と放冷室9とを組み合わせることで、生成する炭素粉粒を、炭素の結晶を単結晶に生長させて、結晶構造が均一に揃う炭素粒として取り出せるようにした炭素粉粒の生成装置を示している。
【0032】
同図において1は前述した加熱炉、8はこの加熱炉1で高熱の加熱処理により生成してくる炭素粉粒を、高熱に加熱された状態のまま取り出して、これを急速に冷却するための冷却器、9は冷却器8により冷却し降温させた炭素粉粒を、さらに、常温・常圧において放冷する放冷室を示している。
【0033】
加熱炉1は、図1および図2により説明した加熱炉であり、同様に構成しているが、それに組み込まれる導管3の下端側の側方へ屈曲する小径部33は、下流側に向け少し上向きの勾配として、その下流側を、加熱炉1に隣接させて配設する冷却器8の、冷媒を循環させるジャケット80の底部に突入させるようにしている。
【0034】
冷却器8は、図4にあるように、冷媒を循環させるジャケット80を、同心円状の内外の隔壁81・82により、平面視において円筒状に形成してあり、この円筒状のジャケット80の内部に、前述の導管3の下流側の延長部35を、蛇管状に成形して装入し、その延長部35の端部が、ジャケット80の上端側の外周面から突出してくるようにしている。
【0035】
そして、この冷却器8の外周には、底面側と上面側には、前述の磁力線誘導コイルaを、それぞれ渦巻状に成形して配設し、胴周壁の外周には、磁力線誘導コイルaをコイル状に巻き付けるように配設しておいて、それへの通電により生成される磁力線により、蛇管状に巻かれた導管3の延長部35を、炭素粉粒が誘導されて流動していくようにしてある。
【0036】
この冷却器による炭素粉粒の冷却は、加熱炉1内から導管3の側方へ屈曲する下流側に流出してくる数千度C〜5千度Cに加熱された状態にある炭素粉粒が、冷媒が循環するジャケット80内に配設した蛇管状の導管3の延長部35内を流動して、その延長部35の下流側の端部から出たところで、約5百度C程度の温度に降下してくるように冷却する。
【0037】
この冷却器8による急冷で、炭素粉粒は、炭素が結晶してくることで、ミクロン単位の炭素粒子となってくる。
【0038】
そして、この冷却器8を経た炭素粉粒は、冷却器8に隣接して配設しておく放冷室9内に放出され、そこに放置されて放冷される。
【0039】
放冷室9は、純炭素板により形成した室91の外周を、冷媒を循環させる内外の隔壁よりなるジャケット90で囲い、かつ、そのジャケット90内に絶縁した磁力線誘導コイルaを、前述の冷却器8のジャケット80と同様に、底面側と上面側とにあっては、渦巻状に成形して配設し胴部の外周には、コイル状に巻き付け配設し、胴部の下端に寄る部位に、冷却器8のジャケット80内の蛇管状の導管3の延長部35の下流側の端部を接続して開口し、天井部には、室91内に投入され炭素粉粒の取出口92を開口させた構成のものである。
【0040】
そして、この放冷室9は、それの室91内の温度が、ジャケット90内に循環させる冷媒・ブラインによる冷却で常温に保持され、また、外部に開放する取出口92により常圧に保持されるようにしてある。
【0041】
冷却器8を経て急速に冷却されることで、炭素の結晶が生成された炭素粉粒は、この常温・常圧に保持された放冷室9に送給されて数時間放冷されることにより炭素の結晶が単結晶に生長していき、ミリ単位の炭素粒子となってくる。このとき、単結晶への生長は、放冷室9を磁力線誘導コイルaで囲うときは、磁力線の影響で炭素粉粒が流動することでさらに進むようになる。図3において、bは冷却室8を囲う建屋、cは放冷室9を囲う建屋を示す。
【0042】
【発明の効果】
以上説明したように、本発明手段によれば、炭素極板を形成する素材とする炭素粉粒を、純度の高い炭素として、連続して生成できる。
【0043】
また、この純度の高い炭素粉粒を、結晶構造が均一に揃った単結晶の粒子として得られるようになる。
【図面の簡単な説明】
【図1】本発明手段の実施に用いる加熱炉の縦断正面図である。
【図2】同上の横断平面図である。
【図3】本発明手段に用いる炭素粉粒の生成装置の全体の縦断した正面図である。
【図4】同上装置の部分の平面図である。
【符号の説明】
A…生成装置、a…誘導コイル、b・c…建屋、1…加熱炉、10…炉体、11…開放口、12…炉床、2…材料供給筒、20…開口、21…サポート、22…開放口、3…導管、3a…出口、30…漏斗部、31…開口、32…主体部、33…小径部、34…断熱材、35…延長部、4…アーク発生器、40…陽極・41…陰極、42・43…配線、5…電子銃、6…配管、60…ボンベ、61…弁、7…室、70…隔壁、71…天井壁、72…引き口、73…排風機、74…弁、8…冷却器、80…ジャケット、81・82…隔壁、9…放冷室、90…ジャケット、91…室、92…取出口。
[0001]
[Technical field to which the invention belongs]
The present invention mainly relates to a means for producing carbon particles for producing carbon used for making a carbon electrode plate as pure as possible and in the form of single crystal particles.
[0002]
[Prior art]
For example, as a means for obtaining carbon as a raw material for forming a carbon electrode plate, conventionally, soot produced by burning a hydrocarbon organic compound is collected and obtained.
[0003]
In addition, there is a means for generating crystals by using the material as a solution, heating the solution to a melting point or higher, and cooling the solution.
[0004]
[Problems to be solved by the invention]
The conventional means is to collect soot produced by burning hydrocarbon organic compounds, and the resulting carbon particles are rich in impurities, have a non-uniform crystal structure, and have a performance that is similar to that of the raw material carbon. There is a problem that it is not suitable as a material for forming a carbon electrode plate that depends on the crystal structure.
[0005]
In addition, in the means for forming a crystal by heating the material to a melting point or higher and slowly cooling it, if the solution before the crystal formation is rapidly lowered to a temperature below the melting point, Since segregation and extraneous flow boundaries occur, it is necessary to keep the solution at the melting point of the material or higher until the crystal is formed. However, there is a problem that high-quality single crystal particles cannot be mass-produced.
[0006]
An object of the present invention is to provide a new means capable of mass-producing pure and high-quality carbon particles that can be used as a material for a carbon electrode plate by solving the above-mentioned problems occurring in conventional means. .
[0007]
[Means for Solving the Problems]
The present invention has been completed based on knowledge obtained through various trials and errors in order to achieve the above-described object.
[0008]
In other words, in order to obtain carbon as a raw material for the carbon plate in the purest possible form, the hydrocarbon organic compound is not in solution but in solid form, such as argon gas. Organic hydrocarbons that are easy to vaporize if they are sent into a heating furnace maintained in an active gas atmosphere together with an inert gas of about 10 times the volume ratio, heated to high temperature by arc discharge, etc., and thermally decomposed. Hydrogen and impurities in the compound are gasified, taken into the inert gas, scattered and released, and only the high melting point carbon remains as tangible carbon particles, and this generation It has been found that high-purity carbon powder particles can be continuously produced by taking out the carbon particle particles from the induction tube.
[0009]
Also, the high purity carbon particles obtained by this are heated to a high temperature by heating during thermal decomposition in a heating furnace and are in a state of being pressurized to a high pressure by the temperature rising. From this, the pressure is pushed into the conduit by the induction coil, and the induction coil wound around the conduit guides the inside of the conduit, passes through the jacket through which the refrigerant circulates, cools rapidly, lowers the temperature and lowers the pressure. As a result, crystals are formed into micron-sized particulate crystals, and the rapidly cooled and depressurized carbon particles are surrounded by a jacket in which the refrigerant circulates at room temperature and normal pressure. It was found that it grew into a single crystal in millimeters by sending it to the cooling chamber held in the chamber and leaving it to stand.
[0010]
From this, in the present invention, the organic hydrocarbon compound described in claim 1 is solidified in an inert gas atmosphere in a heating furnace, and an arc is generated by an arc discharger and an electron is generated by an electron gun. more radiate the, warmed to a high temperature of several thousands degrees to 10,000 several thousand degrees allowed pyrolysis, impurities contained hydrogen and the hydrocarbon compounds incorporated into an inert gas by gasifying Thus, carbon having a high melting point is left in a tangible powder form, which is led out of the furnace by a conduit, rapidly cooled by a cooler using a refrigerant, and cooled and reduced in pressure to be crystallized into micron particles. And then cooling it by sending it to a cooling chamber kept at room temperature and normal pressure, allowing it to grow into a single crystal in millimeters, and taking it out of the cooling chamber. Raise Than is.
[0011]
In addition to this, the heating furnace 1 in which the furnace body described in claim 2 is formed into a cylindrical shape with a refractory furnace material, and the lower end side is located at a substantially central portion of the internal space of the furnace body 10 of the heating furnace 1. The material supply cylinder 2 having an opening 20 and having an upper end located above the heating furnace 1 and an opening 31 on the upper end side face the opening 20 below the opening 20 at the lower end of the material supply cylinder 2, and the lower end side of the furnace body 10 is connected to a power source outside the furnace body 10, and is connected to a power source outside the furnace body 10, so that the opening 20 at the lower end of the material supply tube 2 and the upper end side of the discharge conduit 3 are connected. Electrodes 40... 41 of the arc generator 4 disposed around a portion facing the opening 31 of the metal, an electron gun 5 assembled to the furnace body 10 so as to inject electrons into the heating furnace 1, and the heating furnace 1. Inert gas provided along the material supply cylinder 2 so as to feed the inert gas together with the material It is intended to raise the generator of carbon powder particles consisting of a pipe 6.
[0012]
Furthermore, as an apparatus for carrying out the means for generating the carbon particle, the heating furnace 1 in which the furnace body is formed into a cylindrical shape with a refractory furnace material, and the furnace body 10 of which the lower end side is the heating furnace 1 are described. The material supply cylinder 2 whose upper end side is located above the heating furnace 1 and the upper end side opening 31 are located below the lower end opening 20 of the material supply cylinder 2. Opposite to the opening 20, the lower end side is connected to a carbon particle discharge conduit 3 led out of the furnace body 10 and a power source outside the furnace body 10, so that the lower end of the material supply tube 2 is heated in the heating furnace 1. The electrodes 40... 41 of the arc generator 4 disposed around the facing portion between the opening 20 and the opening 31 on the upper end side of the discharge conduit 3, and the furnace body 10 are assembled so as to inject electrons into the heating furnace 1. The inert gun is sent along with the material to the electron gun 5 to be attached and the heating furnace 1 The inert gas pipe 6 provided along the material supply tube 2 and the downstream side of the conduit 3 are passed through a jacket 80 through which a refrigerant circulates, and the carbon particles flowing in the conduit 3 are rapidly cooled. The cooler 8 is connected to the outlet 3a on the downstream side of the conduit 3 coming out of the jacket 80 of the cooler 8, and is surrounded by a jacket 90 through which a refrigerant for cooling the carbon particles flowing out from the outlet 3a circulates. An apparatus for generating carbon powder composed of the cooling chamber 9 is proposed.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Next, embodiments of the means of the present invention will be described in detail with reference to the drawings.
FIG. 1 shows an organic hydrocarbon compound as a raw material, which is thermally decomposed at a high temperature to separate carbon and hydrogen in the hydrocarbon compound, thereby gasifying hydrogen that is easily vaporized and a small amount of impurities contained therein. The heating furnace for producing | generating the carbon with high melting | fusing point which is hard to convert into powder form is shown.
[0014]
The heating furnace 1 has a furnace body 10 made of a refractory material such as a refractory brick and formed into a cylindrical shape.
[0015]
The furnace body 10 only needs to form a heating chamber whose internal space can withstand high temperatures, and the shape of the furnace body 10 may be arbitrarily designed. In the illustrated embodiment, the furnace body 10 In order to reduce the amount of heat supplied to the interior space, the inner wall surface of the furnace body 10 has an inverted mortar shape in which the inner diameter of the upper opening 11 is smaller than the diameter of the bottom furnace floor 12. It is formed in a cylindrical shape with a cone shape.
[0016]
2 is a material supply cylinder for introducing and supplying an organic hydrocarbon compound into the internal space of the furnace body 10 of the heating furnace 1, which is formed in a cylindrical cylinder, and the lower end side of the material supply cylinder is A portion that is inserted through the opening 11 at the top of the body 10 and whose opening 20 on the lower end side occupies a substantially axial center portion of the internal space of the furnace body 10 in a plan view, and is located approximately in the middle in the vertical direction in a side view Is placed in a state of being opened downward, and is supported in this state by an appropriate support 21, and the hydrocarbon compound of the material is made into a liquid or solid state from the opening 22 on the upper end side thereof. To supply.
[0017]
At this time, the upper opening 11 of the furnace body 10 into which the lower end side of the material supply cylinder 2 is inserted is opened as a gap communicating with the outside between the lower end side outer peripheral surface of the material supply cylinder 2 and From there, when supplying the vaporized gas of hydrogen and impurities in the hydrocarbon compound and the material generated during the thermal decomposition of the material of the hydrocarbon compound supplied into the furnace body 10 via the material supply cylinder 2 The inert gas fed into the interior space of the furnace body 10 together with the material passes through a gap formed between the outer peripheral surface on the lower end side of the material supply cylinder 2 and the opening edge 11 of the upper opening 11 of the furnace body 10. The gas is discharged outside the furnace body 10.
[0018]
3 is a conduit for receiving carbon particles generated by thermal decomposition of the hydrocarbon compound material supplied to the internal space of the furnace body 10 by the material supply cylinder 2 and leading it to the outside of the furnace body 10. The inside of the furnace body 10 is formed in the funnel portion 30 so that the opening 31 whose diameter is enlarged is close to the opening 20 on the lower side close to the opening 20 on the lower end side of the material supply cylinder 2. A main body portion 32 that occupies the axial center portion of the space and is connected to the funnel-shaped upper end portion is formed to have a larger diameter than the material supply cylinder 2 and extends downward in the axial center portion of the internal space of the furnace body 10. The lower end side is formed in a small-diameter portion 33 that penetrates the furnace floor 12 downward, bends laterally, and extends to the outside of the furnace body 10.
[0019]
4 is an arc generator that generates high heat in the furnace body 10 for pyrolyzing the hydrocarbon compound material supplied into the furnace body 10 via the material supply cylinder 2 described above. Surrounding the periphery of the portion facing the opening 20 of the lower opening of the material supply cylinder 2 serving as the mouth and the opening 31 serving as the upper opening of the conduit 3, and the outer periphery of the material supply cylinder 2 and the outer periphery of the conduit 3 in the vicinity thereof. In the part, it arrange | positions so that it may be parallel in multiple stages up and down.
[0020]
As shown in FIG. 2, each arc generator 4 has a pair of opposing anodes 40 and cathodes 41 arranged in an annular shape surrounding the outer periphery of the material supply cylinder 2 and the outer periphery of the conduit 3 in plan view. Each of the anode 40 and the cathode 41 is connected to a plus-side wiring 42 and a minus-side wiring 43 arranged inside the furnace body 10, respectively. By connecting to a power source and supplying a high-voltage current, arc discharge is performed between the anode 40 and the cathode 41, thereby generating high-temperature heat in the internal space of the furnace body 10. .
[0021]
At this time, the high voltage current supplied to the arc generator 4 may be a voltage of about 5000 to 6000 V, and thereby, the axial center portion of the internal space of the furnace body 10 surrounded by the anode 40 and the cathode 41 of the arc generator 4. The temperature of is sometimes raised to a high temperature close to 20,000 degrees C. The temperature for heating the internal space of the furnace body 10 is desirable to some extent at a high temperature, but a temperature of about several thousand degrees C to 6,000 degrees C is sufficient.
[0022]
Reference numeral 5 denotes an electron gun for injecting electrons into the internal space of the furnace body 10 in order to make heating at a high temperature inside the furnace body 10 more effective. 10 is installed so as to be driven out toward the axial center of the internal space.
[0023]
6 is a pipe for supplying an inert gas such as argon gas into the furnace body 10 together with the material when the material hydrocarbon compound is charged and supplied into the furnace body 10 by the material supply cylinder 2. It is arranged along the inner wall surface of the supply cylinder 2, the downstream end thereof opens near the opening 20 on the lower end side of the material supply cylinder 2, and the upstream side is filled with an inert gas. The cylinder 60 is connected via a valve 61.
[0024]
7 is a room constructed so as to surround the heating furnace 1 when it is installed, and is configured in a building shape with a partition wall 70 that maintains airtightness. Is projected above the ceiling wall 71 of the chamber 7 so that the material supply operation is performed on the upper surface side of the ceiling wall 71 of the chamber 7 and the pipe 6 for supplying the inert gas is provided. The cylinder 60 and the valve 61 to be connected are also provided on the upper surface side of the ceiling wall 71.
[0025]
Further, in this chamber 7, hydrogen and impurities vaporized gas generated by the thermal field of the hydrocarbon compound in the furnace body 10 and an inert gas supplied into the furnace body 10 are opened at the top of the furnace body 10. A suction port 72 is provided for drawing out the gas discharged from the port 11 into the chamber 7 to the outside, and a suction pump or a wind exhauster 73 is connected to this through a valve 74.
[0026]
Carbon particle generation performed using the carbon particle generation apparatus A configured as described above is performed by selecting as pure a hydrocarbon compound as a material as possible, for example, pine or the like, and powdering it as a solid. Or dissolved in a solvent or supplied as a molten state by heating.
[0027]
At this time, an inert gas having a volume ratio of about 10 times the material to be supplied is fed into the furnace body 10.
[0028]
The hydrocarbon compound supplied thereby is thermally decomposed in the core portion maintained at a high temperature by an arc discharge by the arc generator 4 and an electron injection from the electron gun 5 in an atmosphere filled with an inert gas. The gas of hydrogen molecules and the gas of impurities that are easily vaporized thereby are taken into the inert gas and scattered and discharged from the furnace body 10 together with the inert gas, and only the carbon molecules having the melting point are Solid carbon particles remain and fall into the funnel portion 30 which is the upper opening of the conduit 3, and are pushed into the conduit 3 by the pressure generated by the high temperature rise during the thermal decomposition. It is led to the downstream side protruding outside the furnace body 10 and is taken out therefrom.
[0029]
The carbon particles are guided to the outside of the furnace body 10 by winding a magnetic field line induction coil a around the outer periphery of the heat insulating material 34 surrounding the small diameter portion 33 on the downstream side bent to the side of the conduit 3. The carbon particles in the conduit 3 may be guided to flow downstream by the magnetic force generated by energizing the coil, and this is effective for taking out the generated carbon particles out of the furnace body 10. It is.
[0030]
The carbon particles thus taken out from the hydrocarbon compound used as a raw material are hydrogenated and impurities gasified and removed by being taken into the inert gas, leaving only carbon molecules as solid particles. Thus, since the carbon particles are produced, it is almost pure carbon and has extremely high purity.
[0031]
Next, FIG. 3 shows that the heating furnace 1 described above is combined with the cooler 8 and the cooling chamber 9 so that the generated carbon powder grows into a single crystal, and the crystal structure becomes uniform. The carbon particle production | generation apparatus which enabled it to take out as a uniform carbon particle is shown.
[0032]
In the figure, 1 is the heating furnace described above, and 8 is a carbon powder produced by high-temperature heat treatment in the heating furnace 1 to take out the carbon particles heated to high heat and cool it rapidly. A cooler 9 is a cool chamber in which the carbon powder cooled by the cooler 8 and cooled down is further cooled at normal temperature and normal pressure.
[0033]
The heating furnace 1 is the heating furnace described with reference to FIGS. 1 and 2 and is configured in the same manner, but the small-diameter portion 33 that bends to the side on the lower end side of the conduit 3 incorporated in the heating furnace 1 slightly toward the downstream side. As the upward gradient, the downstream side is made to enter the bottom of the jacket 80 for circulating the refrigerant in the cooler 8 disposed adjacent to the heating furnace 1.
[0034]
In the cooler 8, as shown in FIG. 4, a jacket 80 for circulating the refrigerant is formed in a cylindrical shape in plan view by concentric inner and outer partition walls 81 and 82, and the inside of the cylindrical jacket 80 is The extension 35 on the downstream side of the conduit 3 is formed in a serpentine shape and is inserted so that the end of the extension 35 protrudes from the outer peripheral surface on the upper end side of the jacket 80. .
[0035]
And on the outer periphery of the cooler 8, the above-mentioned magnetic field line induction coil a is formed in a spiral shape on the bottom surface side and the upper surface side, respectively, and the magnetic field line induction coil a is disposed on the outer periphery of the trunk peripheral wall. It is arranged so as to be wound in a coil shape, and the carbon particles are induced to flow through the extension 35 of the conduit 3 wound in a serpentine shape by the magnetic lines of force generated by energizing the coil. It is.
[0036]
The cooling of the carbon particles by the cooler is performed in a state where the carbon particles are heated to several thousand degrees C to 5,000 degrees C and flow downstream from the heating furnace 1 to the side of the conduit 3. However, when the refrigerant flows through the extension 35 of the serpentine tube 3 disposed in the jacket 80 through which the refrigerant circulates and exits from the downstream end of the extension 35, the temperature is about 5 hundred degrees C. Cool down to descend.
[0037]
By the rapid cooling by the cooler 8, the carbon powder particles become carbon particles in units of microns as the carbon crystallizes.
[0038]
Then, the carbon powder particles that have passed through the cooler 8 are discharged into a cooling chamber 9 disposed adjacent to the cooler 8, and are left to cool down.
[0039]
The cooling chamber 9 surrounds the outer periphery of the chamber 91 formed of a pure carbon plate with a jacket 90 made of inner and outer partition walls for circulating the refrigerant, and the magnetic field line induction coil a insulated in the jacket 90 is cooled by the cooling described above. Similar to the jacket 80 of the vessel 8, the bottom surface and the top surface are formed in a spiral shape and disposed around the outer periphery of the body portion in a coiled manner and approach the lower end of the body portion. The downstream end of the extension portion 35 of the serpentine tubular conduit 3 in the jacket 80 of the cooler 8 is connected to the portion and opened, and the ceiling portion is put into the chamber 91 and is taken out of the carbon particles. In this configuration, 92 is opened.
[0040]
The cooling chamber 9 is maintained at a normal temperature by cooling with a refrigerant / brine circulated in the jacket 90 and at a normal pressure by an outlet 92 opened to the outside. It is made to do.
[0041]
The carbon particles in which carbon crystals are generated by being rapidly cooled through the cooler 8 are fed to the cooling chamber 9 maintained at room temperature and normal pressure and allowed to cool for several hours. As a result, carbon crystals grow into single crystals and become carbon particles in millimeters. At this time, the growth of the single crystal further proceeds when the cool powder chamber 9 is surrounded by the magnetic field line induction coil a and the carbon powder particles flow under the influence of the magnetic field lines. In FIG. 3, b indicates a building that surrounds the cooling chamber 8, and c indicates a building that surrounds the cooling chamber 9.
[0042]
【The invention's effect】
As described above, according to the means of the present invention, carbon powder particles used as a material for forming the carbon electrode plate can be continuously generated as high-purity carbon.
[0043]
In addition, the high-purity carbon powder particles can be obtained as single-crystal particles having a uniform crystal structure.
[Brief description of the drawings]
FIG. 1 is a longitudinal front view of a heating furnace used for implementing the means of the present invention.
FIG. 2 is a cross-sectional plan view of the above.
FIG. 3 is a longitudinal front view of the whole carbon powder generating apparatus used in the means of the present invention.
FIG. 4 is a plan view of a portion of the apparatus.
[Explanation of symbols]
A ... generator, a ... induction coil, b · c ... building, 1 ... heating furnace, 10 ... furnace body, 11 ... open port, 12 ... hearth, 2 ... material supply cylinder, 20 ... opening, 21 ... support, 22 ... Opening port, 3 ... Conduit, 3a ... Outlet, 30 ... Funnel part, 31 ... Opening, 32 ... Main part, 33 ... Small diameter part, 34 ... Thermal insulation, 35 ... Extension part, 4 ... Arc generator, 40 ... Anode 41 ... Cathode 42 ... 43 Wiring 5 ... Electron gun 6 ... Piping 60 ... Cylinder 61 ... Valve 7 ... Chamber 70 ... Bulkhead 71 ... Ceiling wall 72 ... Drawer 73 ... Exhaust Air blower, 74 ... valve, 8 ... cooler, 80 ... jacket, 81/82 ... partition wall, 9 ... cooling room, 90 ... jacket, 91 ... chamber, 92 ... take-out port.

Claims (3)

有機の炭化水素化合物を、固形状態において、加熱炉内に不活性ガスの雰囲気において、アーク放電器によるアーク発生および電子銃による電子の放射により、数千度乃至1万数千度程度の高温に昇温させて熱分解せしめて、炭化水素化合物中の水素および含まれる不純物をガス化させて不活性ガス中に取り込ませて、融点の高い炭素を有形の粉粒状に残し、これを、導管により加熱炉の外に導き出し、冷媒を用いた冷却器により急速に冷却して、降温および降圧させてミクロン単位の粒子に結晶させ、次いで、常温・常圧に保持せしめた放冷室に送り込んで放冷して、ミリ単位の単結晶に生長させ、これを放冷室から取り出すことを特徴とする炭素粉粒の生成方法。The organic hydrocarbon compound, in solid state, in an atmosphere of inert gas into the heating furnace, and more radiate the electron by the arc generation and the electron gun according to an arc discharger thousands times to 10,000 several thousand degrees of It is heated to a high temperature and pyrolyzed, and hydrogen in the hydrocarbon compound and impurities contained therein are gasified and incorporated into an inert gas, leaving high melting point carbon in a tangible powder form, It is led out of the heating furnace by a conduit, rapidly cooled by a cooler using a refrigerant, cooled and reduced in pressure to crystallize into micron-sized particles, and then sent to a cooling room kept at normal temperature and normal pressure. A method for producing carbon particles, wherein the method is allowed to cool at room temperature to grow into a single crystal in millimeters, and is taken out of the cooling chamber. 炉体を耐火炉材で筒状に成形した加熱炉1と、下端側が加熱炉1の炉体10の内部空間の略中心部位に位置して開口20し、上端側が加熱炉1の上方に位置する材料供給筒2と、上端側の開口31が前記材料供給筒2の下端の開口20の下方においてその開口20に対向し、下端側が炉体10の外に導き出される炭素粒排出用の導管3と、炉体10外部の電源に接続させて、加熱炉1内において前記材料供給筒2の下端の開口20と排出用の導管3の上端側の開口31との対向部位の周囲に配設するアーク発生器4の電極40…41…と、加熱炉1内に電子を打ち込むよう炉体10に組付ける電子銃5と、加熱炉1内に材料と共に不活性ガスを送給するよう材料供給筒2に沿わせて設ける不活性ガスの配管6とからなる炭素粉粒の生成装置。  A heating furnace 1 in which a furnace body is formed into a cylindrical shape with a refractory furnace material, and a lower end side is located at a substantially central portion of the internal space of the furnace body 10 of the heating furnace 1 and an opening 20 is formed, and an upper end side is located above the heating furnace 1 The material supply tube 2 and the upper end side opening 31 face the opening 20 below the lower end opening 20 of the material supply tube 2 and the lower end side is led out of the furnace body 10. And connected to a power source external to the furnace body 10 and disposed in the heating furnace 1 around a portion facing the opening 20 at the lower end of the material supply tube 2 and the opening 31 at the upper end side of the discharge conduit 3. Electrodes 40... 41 of the arc generator 4, an electron gun 5 that is assembled to the furnace body 10 so as to drive electrons into the heating furnace 1, and a material supply cylinder that feeds an inert gas together with the material into the heating furnace 1. 2 is an apparatus for generating carbon powder particles. 炉体を耐火炉材で筒状に成形した加熱炉1と、下端側が加熱炉1の炉体10の内部空間の略中心部位に位置して開口20し、上端側が加熱炉1の上方に位置する材料供給筒2と、上端側の開口20が前記材料供給筒2の下端の開口20の下方においてその開口20に対向し、下端側が炉体10の外に導き出される炭素粒排出用の導管3と、炉体10外部の電源に接続させて、加熱炉1内において前記材料供給筒2の下端の開口20と排出用の導管3の上端側の開口31との対向部位の周囲に配設するアーク発生器4の電極40…41…と、加熱炉1内に電子を打ち込むよう炉体10に組付ける電子銃5と、加熱炉1内に材料と共に不活性ガスを送給するよう材料供給筒2に沿わせて設ける不活性ガスの配管6と、前記導管3の下流側を冷媒が循環するジャケット80内に通過させて、その導管3内を流動する炭素粒子を急速に冷却する冷却器8と、その冷却器8のジャケット80から出る前記導管3の下流側の出口3aに接続して、その出口3aから流出する炭素粒子を放冷する冷媒が循環するジャケット90で囲われた放冷室9とからなる炭素粉粒の生成装置。  A heating furnace 1 in which a furnace body is formed into a cylindrical shape with a refractory furnace material, and a lower end side is located at a substantially central portion of the internal space of the furnace body 10 of the heating furnace 1 and an opening 20 is formed, and an upper end side is located above the heating furnace 1 The material supply cylinder 2 and the opening 20 on the upper end side face the opening 20 below the opening 20 at the lower end of the material supply cylinder 2 and the carbon particle discharge conduit 3 whose lower end side is led out of the furnace body 10. And connected to a power source external to the furnace body 10 and disposed in the heating furnace 1 around a portion facing the opening 20 at the lower end of the material supply tube 2 and the opening 31 at the upper end side of the discharge conduit 3. Electrodes 40... 41 of the arc generator 4, an electron gun 5 that is assembled to the furnace body 10 so as to drive electrons into the heating furnace 1, and a material supply cylinder that feeds an inert gas together with the material into the heating furnace 1. 2 along the pipe 6 of the inert gas provided along the line 2 and the downstream side of the conduit 3 A cooler 8 that rapidly passes through the annular jacket 80 and cools the carbon particles flowing in the conduit 3, and an outlet 3 a downstream of the conduit 3 that exits the jacket 80 of the cooler 8. An apparatus for generating carbon particles comprising a cooling chamber 9 surrounded by a jacket 90 through which a refrigerant for cooling the carbon particles flowing out from the outlet 3a circulates.
JP2003110469A 2003-04-15 2003-04-15 Method and apparatus for generating carbon particles Expired - Fee Related JP4202807B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003110469A JP4202807B2 (en) 2003-04-15 2003-04-15 Method and apparatus for generating carbon particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003110469A JP4202807B2 (en) 2003-04-15 2003-04-15 Method and apparatus for generating carbon particles

Publications (2)

Publication Number Publication Date
JP2004315275A JP2004315275A (en) 2004-11-11
JP4202807B2 true JP4202807B2 (en) 2008-12-24

Family

ID=33471318

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003110469A Expired - Fee Related JP4202807B2 (en) 2003-04-15 2003-04-15 Method and apparatus for generating carbon particles

Country Status (1)

Country Link
JP (1) JP4202807B2 (en)

Also Published As

Publication number Publication date
JP2004315275A (en) 2004-11-11

Similar Documents

Publication Publication Date Title
KR100483886B1 (en) Plasma reaction apparatus
JP5823375B2 (en) Plasma reactor and nanopowder synthesis process
US20120269696A1 (en) Method and Installation for the Manufacture of Carbon Nanotubes
JP2002504057A (en) Method and apparatus for producing fullerenes
KR101400883B1 (en) Manufacturing apparatus of high purity mox nano structure and method of manufacturing the same
CN108408716B (en) Carbon nanotube preparation system
JPH069236A (en) Preparation and manufacturing device for silicon dioxide glass ingot article of optical grade
JP4604728B2 (en) Method for producing silicon carbide single crystal
JP4202807B2 (en) Method and apparatus for generating carbon particles
CN105950878B (en) A kind of effective apparatus and method for removing impurity in uranium metal
CN112830492A (en) Device and method for preparing silicon carbide powder
WO2020087723A1 (en) Silicon carbide single crystal growth device
CN207244047U (en) A kind of high density sapphire crystal quick process units of high purity aluminium oxide crystal block
JPS6246184A (en) Baking furnace for continuously manufacturing long-sized carbon article
JP6598368B2 (en) Manufacturing method of silicon carbide sintered body raw material, and manufacturing method of silicon carbide single crystal
CN110950341B (en) Silicon carbide powder and preparation method and device thereof
CN109179402B (en) Energy-saving graphite high-temperature expansion furnace system
KR100985676B1 (en) zinc oxide powder manufacturing apparatus and method
CN116007373B (en) Nuclear reactor core melt smelting device and smelting method
RU169047U1 (en) PLASMA PLANT FOR PROCESSING REFRIGERANT SILICATE-CONTAINING MATERIALS
JPWO2011013161A1 (en) Method and apparatus for producing biomass carbon black using biomass as raw material
CN116553527B (en) Industrial synthesis device for single-walled carbon nanotubes
CN215984001U (en) Auxiliary constant-temperature-rise sintering furnace
KR100839020B1 (en) Method and equipment for production of magnesium oxide nanopowder
CN206814401U (en) A kind of polycrystalline silicon reducing furnace

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050304

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080422

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080610

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080916

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081009

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111017

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111017

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111017

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111017

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111017

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121017

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121017

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121017

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121017

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121017

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121017

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121017

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131017

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees