JP4201330B2 - Sintering method for sintered composites - Google Patents

Sintering method for sintered composites Download PDF

Info

Publication number
JP4201330B2
JP4201330B2 JP2003094587A JP2003094587A JP4201330B2 JP 4201330 B2 JP4201330 B2 JP 4201330B2 JP 2003094587 A JP2003094587 A JP 2003094587A JP 2003094587 A JP2003094587 A JP 2003094587A JP 4201330 B2 JP4201330 B2 JP 4201330B2
Authority
JP
Japan
Prior art keywords
inner member
green compact
sintering
sintered
outer member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003094587A
Other languages
Japanese (ja)
Other versions
JP2004300511A (en
Inventor
一夫 浅香
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Powdered Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Powdered Metals Co Ltd filed Critical Hitachi Powdered Metals Co Ltd
Priority to JP2003094587A priority Critical patent/JP4201330B2/en
Publication of JP2004300511A publication Critical patent/JP2004300511A/en
Application granted granted Critical
Publication of JP4201330B2 publication Critical patent/JP4201330B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Powder Metallurgy (AREA)

Description

【0001】
【発明が属する技術分野】
本発明は、内外部材を嵌め合わせて焼結により接合する焼結接合方法に関し、特に内外部材が外部材の焼結収縮を利用して接合する場合に好適な焼結複合体の焼結接合方法に関するものである。
【0002】
【従来の技術】
この種の焼結接合方法は、焼結工程で内外部材を接合するため機械的接合より簡易で製造費的に有利となる。この接合方法では、内外部材が外部材の焼結収縮を利用することがあり、図5(a)のごとく内部材20と外部材25とが面接合である場合において、接合力を高めようとして、焼結による収縮(シリンケージ)が大きい外部材用圧粉体を採用すると、外部材25が長さ方向にも収縮するため、外部材25は長さ方向の中間部が内部材20と密着接合され、両端25a,25aが内部材20の対応部に密着せずに拡径し易くなり、接合強度が不充分となる。これは、焼結素材構成として焼結(焼結温度から室温まで冷却した)後の寸法が圧粉体寸法に対して約0.3%以上に収縮する態様に発生し易い。下記特許文献1は、図6の構成により前述のような問題を解消したものである。同(a)は焼結前を示し、(b)は焼結後の焼結複合体を示している。この接合特徴は、内部材21が外部材26の両端内周に対応した大径部21a,21bと、間の径小部21cと、径小部21cと各大径部21a,21bとの間のなだらかな連結部21dとを形成している。そして、内部材21を外部材用圧粉体26Aに嵌め合わせて焼結する過程で、圧粉体26Aの内周面が内部材21の造形された外周面形状に対応した形状に変形しながら、内部材外周面に焼結接合されることにより、未接合部分が極力生じないようにし接合強度を充足させる。
【0003】
【特許文献1】
特許第3318213号公報(第2〜3頁、図1〜図5)
【0004】
【発明が解決しようとする課題】
上記文献1の焼結接合方法では、図5(a)における外部材端部の拡径を抑えて内外部材の接合強度をそれなり強くできるが、内部材への加工が複雑となり、接合強度が径小部と大径部との間の段差寸法、連結部の傾斜角等の設定等により変動し易い。また、図5(b)に挙げたように、内部材22が外周に筒内と連通する凹溝23を有し、外部材27が凹溝23を覆うような形態だと適用困難になり、通常は外部材27が圧粉体焼結過程で凹溝23に逃げるよう収縮し、外部材両端が同(a)と同様に内部材22と密着しなくなり、接合不完全で、凹溝23が流体通路になる場合には隙間ができて流体漏れ要因となる。従って、焼結複合体の普及や量産性からは、接合用に施される内部材の加工をより簡略化したり、内部材が外部材で閉じられた通路用凹溝を有する態様にも有効となり、しかも強固な接合強度を確保可能にしなければならない。
【0005】
本発明は以上のような背景から工夫されたものである。その目的は、焼結による外部材の収縮を利用した焼結接合方法を対象とし、接合面が単純な平板状、接合面の途中に凹溝(環状又は周回溝)を有する態様、何れにも適用容易にして汎用性に優れ、かつ、接合強度を向上できるようにすることにある。
【0006】
【課題を解決するための手段】
上記目的を達成するため本発明は、図1の例で特定すると、内部材10及び外部材15を嵌め合わせて焼結により接合する焼結複合体1の焼結接合方法において、前記外部材15が圧縮成形された筒形の圧粉体15Aを焼結したものであるとともに、焼結による寸法収縮率が0.3〜0.8%となるものであり、前記圧粉体15Aの両端接合面と対応した前記内部材10の箇所に逃げ用段差10aを設定し、前記圧粉体15Aの筒内に前記内部材10を嵌め合わせて、前記圧粉体15Aの焼結による寸法収縮により、前記外部材15の両端15a側が前記内部材10の段差10a縁部をそれぞれ包み込むよう変形することを特徴としている。
【0007】
以上の焼結接合方法では、外部材用圧粉体の両端接合面が内部材の対応段差に位置し非拘束状態となっているので、焼結により収縮するときに前記段差つまり内側へ自由に変形し、該内側変形により段差縁部を外から包み込むよう内部材へ食い込む。この結果、接合強度は、外部材の両端における段差縁部への食い込みに比例して増大し、内部材軸方向の引き離し(抜去)に要する力を高くできる。また、この方法では、内部材が前記段差を外周の両端又は外周の途中に形成している構成(図1,図2)、外周の途中に通路用の凹溝を形成している構成(図4)でも適用できる。加えて、内部材が外部材より短い態様において、前記段差を内部材の両端面で構成(図3)するよう各部の寸法を設定して段差加工を省略できることもある。このため、本発明方法は、内部材への加工が簡単であり、適用可能な焼結複合体が広く形状的に規制され難い利点がある。
【0008】
【発明の実施の形態】
次に、本発明方法を図面を参照しながら詳述する。図1〜図4は本発明方法を適用した4つの焼結複合体構成を示している。各図において、(a)は外部材用圧粉体の筒内に内部材を嵌め合わせた焼結前の状態を模式的に示し、(b)は焼結後の焼結複合体を模式的に示している。以下の説明では、焼結複合体例を図1〜図4により明らかにした後、具体的な焼結接合方法の要領に言及する。
【0009】
(焼結複合体)本発明の焼結接合方法は、外部材用圧粉体が筒内に内部材を嵌め合わせた状態で焼結されて、各図の(b)に例示されるごとく内外部材を専ら外部材の焼結収縮により接合一体化して形成される焼結複合体に適用される。ここで、外部材は、粉末冶金分野で使用されている各種の混合粉を圧縮形成した圧粉体、または低温で予備焼結したものである。圧粉体や予備焼結体としての焼結寸法収縮率が少なくとも0.3%以上であることが好ましい。該寸法収縮をさせる場合は、例えば、低密度圧粉体、微粉が多い圧粉体、焼結により液相がでる圧粉体を参考にし、目標収縮率に近づけるようにする。内部材は、鋼材ないしは溶製材、焼結材、圧粉体を問わない。要は、焼結により外部材との間で相対的に寸法膨張する(例えば、内部材用圧粉体であれば、外部材用圧粉体の焼結寸法収縮率より小さくなる)関係にあればよい。
【0010】
(基本例)図1の焼結複合体1は、内部材10と外部材15とが略同じ長さで、内外部材が外観上も一体化されるような形態である。この場合、内部材10は筒形でもよく、更に一方又は両方の端面に径小の延長部を有していてもよい。このような形態では、内部材10と外部材用圧粉体15Aとが長さ寸法が略同じため、内部材10の両端外周が圧粉体15Aの両端接合面と対応する。従って、内部材10の両端外周には、圧粉体15Aの両端接合面と非接触となる一段径小にした段差10aが形成される。この段差10aは、前記径小の延長部を有する態様だと、内部材10と該延長部との間の段差により、つまり内部材10の大径部を同図の長さ寸法に設定するようにしても差し支えない。以上の両部材は、圧粉体15Aの筒内に内部材10を嵌め合わせて焼結される。すると、圧粉体15Aが寸法収縮して、外部材15の両端15a側が内部材10の段差10a縁部をそれぞれ包み込むよう変形する。冷却後に得られる焼結複合体1は、内外部材の接合強度がその両端15aの変形による食い込み量に比例して強固となる。
【0011】
図2の焼結複合体2は、内部材11が外部材16よりも長く、外部材16が内部材11の外周長手方向の任意の位置に装着されるような形態である。この場合、内部材11は、筒形であったり、一方又は両方の端面に径小の延長部を有していてもよい。このような形態では、外部材用圧粉体16Aの両端が内部材11の外周面に面対向するため、内部材11の外周のうち、前記面対向する周囲に環状段差11aが設けられている。この段差11aは、圧粉体16Aの両端がそれぞれ溝幅内に余裕を持って収まる、つまり圧粉体16Aの両端接合面が非拘束状態となるよう形成される。以上の両部材は、上記と同様に、圧粉体16Aの筒内に内部材11が嵌め合わせて焼結されると、圧粉体16Aが寸法収縮して、外部材16の両端16a側が内部材11の段差11a縁部をそれぞれ包み込むよう変形する。焼結複合体2としては、内外部材の接合強度がその変形による食い込み量に応じ増大される。
【0012】
(変形例)図3の焼結複合体3は、図1に対して内部材12が外部材17の筒内に収まるような形態である。この場合、内部材12は筒形でもよく、更に一方又は両方の端面に径小の延長部を有していてもよい。このような形態では、内部材12の両端が圧粉体17Aの両端接合面より内側に位置して上記した各段差に相当する仮想段差の存在により発明の段差用加工を必要としない。そして、両部材は、圧粉体17Aの筒内に内部材12を嵌め合わせて焼結されると、圧粉体17Aが寸法収縮して、外部材17の両端17a側が内部材12の端面縁部をそれぞれ包み込むよう変形する。冷却後に得られる焼結複合体3は、内外部材の接合強度がその両端17aの変形による食い込み量に比例して増大されることになる。
【0013】
これに対し、図4の焼結複合体4は、図2に対し内部材13が筒形で、かつ、外周に環状の通路用凹溝14及び凹溝14と筒内とを連通している貫通孔15を有しているような形態である。この場合、内部材13は、一方又は両方の端面に延長部を有していてもよい。このような形態では、外部材用圧粉体18Aの両端が内部材11の外周面に面対向するため、内部材13の外周のうち、前記面対向する周囲に環状段差13aがそれぞれ設けられる。この段差13aは、圧粉体18Aの両端がそれぞれ溝幅内に余裕を持って収まる、つまり圧粉体18Aが焼結時に凹溝14側へ若干変形する変形量を考慮した寸法で形成される。そして、両部材は、上記と同様に、圧粉体18Aの筒内に内部材13が嵌め合わせて焼結されると、圧粉体18Aが寸法収縮して、外部材18の中間部が凹溝14側へ変形し、かつ、両端18a側が内部材13の対応段差13a縁部をそれぞれ包み込むよう変形する。このため、焼結複合体4としては、内外部材の接合強度がその変形による食い込み量に応じ増大される。
【0014】
(実施例)以上の発明焼結接合方法の実施例を図1と図4の形態により説明する。
(1)、図1において、重量比で(1.5%Mo合金粉末に2%Ni粉末を付着拡散した合金鉄粉)+0.6%黒鉛の混合粉を用意し、その混合粉を圧粉体密度6.8g/cm になるよう圧縮成形した。内部材10は、内部材用圧粉体として、重量比で鉄粉+1.5%銅末+0.6%黒鉛粉末からなる混合粉を用意し、その混合粉を圧粉体密度6.5g/cm になるよう圧縮成形した。そして、内部材10を圧粉体15Aの筒内に嵌め合わせて、1130℃還元性ガス雰囲気中で焼結した。この外部材15の寸法収縮率(焼結による収縮)は約0.3%であった。なお、比較例としては、内部材10に段差10aを設けないものを使用し、それ以外は同じものを使用すると共に同じ条件で焼結した。実施例及び比較例は各30個作製した。そして、外部材を固定した状態で内部材に負荷を加えて、両部材の接合が破壊されるときの荷重により評価した。この結果、接合強度は、実施例の方が比較例よりも2.5倍以上強くなり発明の有効性が確認された。
【0015】
(2)、図4において、外部材用圧粉体18Aは、重量比で銅粉+10%錫粉に設定し、所定粒径に混合粉砕したものを用意し、その混合粉を圧粉体密度6.0g/cm になるよう圧縮成形した。内部材13は、S45C鋼材の筒部材を用いて図4(a)のごとく外周に環状の通路用凹溝14及び貫通孔15を形成し、又、溝幅が3〜4mmの環状段差13aを形成した。そして、内部材13を圧粉体18Aの筒内に嵌め合わせて、780℃還元性ガス雰囲気中で焼結した。この外部材18の寸法収縮率(焼結による収縮)は約0.8%であった。なお、比較例としては、内部材13に段差13aを設けないものを使用し、それ以外は同じものを使用すると共に同じ条件で焼結した。実施例及び比較例は各30個作製した。そして、外部材を固定した状態で内部材に負荷を加えて、両部材の接合が破壊されるときの荷重により評価した。この結果、接合強度は、実施例の方が比較例よりも2倍以上強くなり発明の有効性が確認された。なお、内部材13の筒一端側を閉じて他端側より水圧を加えて液漏れを調べた結果、水圧100kgf/cm以上になると、比較例のものは外部材18と凹溝14との間から水漏れが認められたが、実施例のものは水漏れが一切認められなかった。
【0016】
以上のように、本発明は請求項で特定する要件を充足している範囲で種々変形ないしは展開可能なものである。その一例として、外部材は筒形であればよく、外周囲にフランジ部や突片等を有していてもよいものである。
【0017】
【発明の効果】
以上説明したとおり、本発明の焼結接合方法は、内外部材が外部材の焼結収縮を利用して接合する形態において、内外部材の接合面が単純な平面状、内部材外周に凹溝を有している場合にも、外部材用圧粉体の両端接合面が焼結により収縮するときに内部材の段差縁部を外から包み込むよう内部材へ食い込んで、両部材の密着接合を確実化して接合力を増大できる。また、文献1の方法に比べて、内部材の加工が極めて簡単で量産性に好適となること、内部材外周に凹溝を有している態様でも適用可能なため汎用性があること、外部材両端の接合力を特に増大するため確実性に優れていること等の利点を有している。
【図面の簡単な説明】
【図1】 本発明方法を適用した第1形態を焼結前後の状態で示す模式図である。
【図2】 本発明方法を適用した第2形態を焼結前後の状態で示す模式図である。
【図3】 上記第1形態の変形例を焼結前後の状態で示す模式図である。
【図4】 上記第2形態の変形例を焼結前後の状態で示す模式図である。
【図5】 従来の問題を説明するための模式図である。
【図6】 焼結接合方法の従来例を焼結前後の状態で示す模式図である。
【符号の説明】
1〜4…焼結複合体
10〜13…内部材
14…凹溝
15…貫通孔
10a,11a,13a…逃げ用段差
15〜18…外部材
15A〜18A…外部材用圧粉体
15a〜18a…両端
[0001]
[Technical field to which the invention belongs]
The present invention relates to a sintering joining method in which inner and outer members are fitted together and joined by sintering, and in particular, a sintered composite joining method for a sintered composite suitable when inner and outer members are joined by utilizing the sintering shrinkage of outer members. It is about.
[0002]
[Prior art]
This type of sintered joining method is simpler and more advantageous in terms of manufacturing cost than mechanical joining because the inner and outer members are joined in the sintering process. In this joining method, the inner and outer members may utilize the sintering shrinkage of the outer member, and when the inner member 20 and the outer member 25 are surface joined as shown in FIG. If the outer member 25 is compressed in the length direction when the green compact for the outer member is used, the outer member 25 is in close contact with the inner member 20 in the length direction. The both ends 25a, 25a are easily bonded to each other without being in close contact with the corresponding portion of the inner member 20, and the bonding strength is insufficient. This is likely to occur in a mode in which the size after sintering (cooled from the sintering temperature to room temperature) as the sintered material structure shrinks to about 0.3% or more with respect to the green compact size. The following Patent Document 1 solves the above-described problem by the configuration of FIG. (A) shows the state before sintering, and (b) shows the sintered composite after sintering. This joining feature is that the inner member 21 has a large diameter portion 21a, 21b corresponding to the inner circumference of both ends of the outer member 26, a small diameter portion 21c, a small diameter portion 21c, and the large diameter portions 21a, 21b. A gentle connecting portion 21d is formed. Then, in the process of fitting and sintering the inner member 21 to the outer member green compact 26A, the inner peripheral surface of the green compact 26A is deformed into a shape corresponding to the outer peripheral surface shape of the inner member 21 formed. By being sintered and joined to the outer peripheral surface of the inner member, unjoined portions are prevented from being generated as much as possible, and the joining strength is satisfied.
[0003]
[Patent Document 1]
Japanese Patent No. 3318213 (Pages 2 to 3, FIGS. 1 to 5)
[0004]
[Problems to be solved by the invention]
In the sintered joining method of the above-mentioned document 1, it is possible to moderately increase the joining strength of the inner and outer members by suppressing the diameter expansion of the outer member end in FIG. 5 (a), but the processing to the inner member becomes complicated, and the joining strength becomes smaller. Fluctuation easily occurs depending on the step size between the small portion and the large diameter portion, the inclination angle of the connecting portion, and the like. Further, as shown in FIG. 5B, the inner member 22 has a concave groove 23 communicating with the inside of the cylinder on the outer periphery, and the outer member 27 is in a form that covers the concave groove 23, it becomes difficult to apply. Normally, the outer member 27 contracts so as to escape into the groove 23 during the green compact sintering process, and both ends of the outer member do not adhere to the inner member 22 in the same manner as in FIG. In the case of a fluid passage, a gap is formed and becomes a cause of fluid leakage. Therefore, from the widespread use and mass productivity of sintered composites, it is effective to simplify the processing of the inner member applied for joining, or to have a groove for passage closed by the outer member. Moreover, it must be possible to ensure a strong bonding strength.
[0005]
The present invention has been devised from the above background. The purpose is for a sintered joining method that utilizes the shrinkage of the outer member due to sintering, the joining surface is a simple flat plate, and any aspect having a concave groove (annular or circular groove) in the middle of the joining surface. It is to make it easy to apply and to have excellent versatility and to improve the bonding strength.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, the present invention is specified in the example of FIG. 1, in the sintered joining method of the sintered composite 1 in which the inner member 10 and the outer member 15 are fitted and joined by sintering, the outer member 15. Is obtained by sintering a cylindrical green compact 15A that has been compression-molded and has a dimensional shrinkage ratio of 0.3 to 0.8% due to sintering. By setting a relief step 10a at the location of the inner member 10 corresponding to the surface, fitting the inner member 10 into the cylinder of the green compact 15A, and dimensional shrinkage due to sintering of the green compact 15A, The both ends 15a of the outer member 15 are deformed so as to wrap around the edges of the step 10a of the inner member 10, respectively.
[0007]
In the above-mentioned sintering joining method, both end joining surfaces of the green compact for the outer member are located at the corresponding step of the inner member and are in an unrestrained state. It deforms and bites into the inner member so as to wrap the step edge from the outside by the inner deformation. As a result, the bonding strength increases in proportion to the biting into the edge of the step at both ends of the outer member, and the force required for the separation (extraction) in the axial direction of the inner member can be increased. Further, in this method, the inner member has a configuration in which the step is formed at both ends of the outer periphery or in the middle of the outer periphery (FIGS. 1 and 2), and a configuration in which a groove for passage is formed in the middle of the outer periphery (FIG. 4) is also applicable. In addition, in an aspect in which the inner member is shorter than the outer member, the steps may be omitted by setting the dimensions of each part so that the step is configured by both end faces of the inner member (FIG. 3). For this reason, the method of the present invention has an advantage that the processing of the inner member is simple and the applicable sintered composite is not widely regulated in shape.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Next, the method of the present invention will be described in detail with reference to the drawings. 1 to 4 show four sintered composite structures to which the method of the present invention is applied. In each figure, (a) schematically shows the state before sintering in which the inner member is fitted in the cylinder of the outer member green compact, and (b) schematically shows the sintered composite after sintering. It shows. In the following description, after clarifying examples of the sintered composite body with reference to FIGS.
[0009]
(Sintered composite) The sintered joining method of the present invention is such that the green compact for the outer member is sintered in a state where the inner member is fitted in the cylinder, and the inner and outer surfaces are illustrated as shown in FIG. The present invention is applied to a sintered composite formed by joining and integrating the members exclusively by sintering shrinkage of the outer member. Here, the outer member is a green compact obtained by compression-forming various mixed powders used in the field of powder metallurgy, or is pre-sintered at a low temperature. It is preferable that the sintered dimensional shrinkage ratio as a green compact or a pre-sintered body is at least 0.3% or more. When the dimensional shrinkage is performed, for example, a low-density green compact, a green compact with a lot of fine powder, and a green compact in which a liquid phase is produced by sintering are referred to, and are brought close to the target shrinkage rate. The inner member may be a steel material, a melted material, a sintered material, or a green compact. In short, there is a relationship in which dimensional expansion relative to the outer member is caused by sintering (for example, if the green compact for the inner member is smaller than the sintered dimensional shrinkage rate of the green compact for the outer member). That's fine.
[0010]
(Basic Example) The sintered composite body 1 in FIG. 1 has a configuration in which the inner member 10 and the outer member 15 have substantially the same length, and the inner and outer members are integrated in appearance. In this case, the inner member 10 may have a cylindrical shape, and may further have a small-diameter extension on one or both end faces. In such a form, the inner member 10 and the outer member green compact 15A have substantially the same length, and therefore the outer circumferences of both ends of the inner member 10 correspond to the both-end joint surfaces of the green compact 15A. Accordingly, a step 10a having a small diameter is formed on the outer periphery of both ends of the inner member 10 so as to be in non-contact with the both-end joint surface of the green compact 15A. If the step 10a has the small diameter extension portion, the step between the inner member 10 and the extension portion, that is, the large diameter portion of the inner member 10 is set to the length dimension shown in FIG. But it doesn't matter. Both the above members are sintered by fitting the inner member 10 in the cylinder of the green compact 15A. Then, the green compact 15A shrinks in size and deforms so that both ends 15a of the outer member 15 wrap around the edge of the step 10a of the inner member 10, respectively. In the sintered composite 1 obtained after cooling, the joining strength of the inner and outer members becomes stronger in proportion to the amount of biting due to the deformation of both ends 15a.
[0011]
The sintered composite 2 in FIG. 2 is configured such that the inner member 11 is longer than the outer member 16 and the outer member 16 is mounted at an arbitrary position in the outer peripheral longitudinal direction of the inner member 11. In this case, the inner member 11 may have a cylindrical shape or may have a small diameter extension portion on one or both end faces. In such a form, since both ends of the green compact 16A for the outer member face the outer peripheral surface of the inner member 11, an annular step 11a is provided around the outer surface of the inner member 11 facing the surface. . The step 11a is formed so that both ends of the green compact 16A are accommodated within the groove width, that is, both end joint surfaces of the green compact 16A are in an unconstrained state. Similarly to the above, when the inner member 11 is fitted into the cylinder of the green compact 16A and sintered, the green compact 16A shrinks in size and the both ends 16a side of the outer member 16 are inside. It deform | transforms so that the level | step difference 11a edge part of the material 11 may be wrapped, respectively. In the sintered composite 2, the bonding strength of the inner and outer members is increased according to the amount of biting due to the deformation.
[0012]
(Modification) The sintered composite 3 of FIG. 3 has a configuration in which the inner member 12 is accommodated in the cylinder of the outer member 17 with respect to FIG. In this case, the inner member 12 may be cylindrical, and may further have a small-diameter extension on one or both end faces. In such a form, the both ends of the inner member 12 are located on the inner side of the both end joint surfaces of the green compact 17A, and the presence of the virtual steps corresponding to the steps described above does not require the step processing according to the invention. Then, when both members are sintered by fitting the inner member 12 into the cylinder of the green compact 17A, the green compact 17A shrinks in size, and both ends 17a side of the outer member 17 are the end face edges of the inner member 12. Deform to wrap each part. In the sintered composite 3 obtained after cooling, the joining strength of the inner and outer members is increased in proportion to the amount of biting due to the deformation of both ends 17a.
[0013]
On the other hand, in the sintered composite 4 of FIG. 4, the inner member 13 is cylindrical with respect to FIG. 2, and the annular groove 14 and the groove 14 communicate with the inside of the cylinder on the outer periphery. It is a form which has the through-hole 15. In this case, the inner member 13 may have an extension on one or both end faces. In such a form, both ends of the outer member green compact 18A face the outer peripheral surface of the inner member 11, so that an annular step 13a is provided on the outer periphery of the inner member 13 around the surface facing each other. The step 13a is formed with a dimension that takes into account the amount of deformation in which both ends of the green compact 18A fit within the groove width, that is, the green compact 18A slightly deforms toward the concave groove 14 during sintering. . In the same manner as described above, when the inner member 13 is fitted into the cylinder of the green compact 18A and sintered, the green compact 18A shrinks in size and the intermediate portion of the outer member 18 is recessed. The groove 14 is deformed, and the both ends 18a are deformed so as to wrap around the edge of the corresponding step 13a of the inner member 13, respectively. For this reason, as for the sintered composite 4, the joint strength of the inner and outer members is increased according to the amount of biting caused by the deformation.
[0014]
(Embodiment) An embodiment of the above-described sintered joining method will be described with reference to FIGS.
(1) In FIG. 1, a mixed powder of weight ratio (alloy iron powder in which 2% Ni powder is adhered and diffused to 1.5% Mo alloy powder) + 0.6% graphite is prepared, and the mixed powder is compacted. Compression molding was performed so that the body density was 6.8 g / cm 3 . The inner member 10 is prepared as a green compact for the inner member by preparing a mixed powder composed of iron powder + 1.5% copper powder + 0.6% graphite powder in a weight ratio, and the mixed powder has a green compact density of 6.5 g / and compression molded so as to be cm 3. Then, the inner member 10 was fitted into the cylinder of the green compact 15A and sintered in a 1130 ° C. reducing gas atmosphere. The dimensional shrinkage ratio (shrinkage due to sintering) of the outer member 15 was about 0.3%. In addition, as a comparative example, what used the inner member 10 which does not provide the level | step difference 10a was used, and other than that used the same thing, and sintered on the same conditions. Thirty examples and comparative examples were produced. Then, a load was applied to the inner member in a state where the outer member was fixed, and the evaluation was performed based on the load when the joining of both members was broken. As a result, the bonding strength was 2.5 times or more stronger in the example than in the comparative example, confirming the effectiveness of the invention.
[0015]
(2) In FIG. 4, the green compact 18A for the outer member is prepared by setting the weight ratio to copper powder + 10% tin powder and mixing and pulverizing to a predetermined particle diameter. It compression-molded so that it might be 6.0 g / cm < 3 >. As shown in FIG. 4A, the inner member 13 is formed with annular passage grooves 14 and through holes 15 on the outer periphery using a cylindrical member of S45C steel, and an annular step 13a having a groove width of 3 to 4 mm. Formed. Then, the inner member 13 was fitted into the cylinder of the green compact 18A and sintered in a reducing gas atmosphere at 780 ° C. The dimensional shrinkage ratio (shrinkage due to sintering) of the outer member 18 was about 0.8%. In addition, as a comparative example, what used the inner member 13 which does not provide the level | step difference 13a was used, and other than that used the same thing, and sintered on the same conditions. Thirty examples and comparative examples were produced. Then, a load was applied to the inner member in a state where the outer member was fixed, and the evaluation was performed based on the load when the joint between both members was broken. As a result, the bonding strength of the example was twice or more stronger than that of the comparative example, confirming the effectiveness of the invention. In addition, as a result of closing the cylinder one end side of the inner member 13 and applying water pressure from the other end side to examine liquid leakage, when the water pressure is 100 kgf / cm 2 or more, the comparative example is that of the outer member 18 and the groove 14. Water leakage was observed from the beginning, but no leakage was observed in the examples.
[0016]
As described above, the present invention can be variously modified or developed as long as the requirements specified in the claims are satisfied. As an example, the outer member may be a cylindrical shape, and may have a flange portion, a projecting piece, or the like on the outer periphery.
[0017]
【The invention's effect】
As described above, the sintered joining method of the present invention is a form in which the inner and outer members are joined by utilizing the sintering shrinkage of the outer member, and the joining surface of the inner and outer members is a simple flat surface, and the inner member outer periphery has a concave groove. Even if it has, when the joint surface of both ends of the compact for outer member shrinks due to sintering, it bites into the inner member so as to wrap the step edge of the inner member from the outside, making sure that both members are in close contact To increase the bonding force. Also, compared to the method of Document 1, the processing of the inner member is extremely simple and suitable for mass productivity, and it is applicable to an aspect having a concave groove on the outer periphery of the inner member, so that it has versatility. Since the joining force at both ends of the material is particularly increased, it has advantages such as excellent reliability.
[Brief description of the drawings]
FIG. 1 is a schematic view showing a first embodiment to which a method of the present invention is applied before and after sintering.
FIG. 2 is a schematic view showing a second embodiment to which the method of the present invention is applied before and after sintering.
FIG. 3 is a schematic view showing a modification of the first embodiment before and after sintering.
FIG. 4 is a schematic diagram showing a modification of the second embodiment before and after sintering.
FIG. 5 is a schematic diagram for explaining a conventional problem.
FIG. 6 is a schematic view showing a conventional example of a sintering joining method before and after sintering.
[Explanation of symbols]
1 to 4 ... Sintered composites 10 to 13 ... Inner member 14 ... Groove 15 ... Through holes 10a, 11a, 13a ... Escape steps 15 to 18 ... Outer members 15A to 18A ... Outer member green compacts 15a to 18a ... both ends

Claims (1)

内部材及び外部材を嵌め合わせて焼結により接合する焼結複合体の焼結接合方法において、
前記外部材が圧縮成形された筒形の圧粉体を焼結したものであるとともに、焼結による寸法収縮率が0.3〜0.8%となるものであり
前記圧粉体の両端接合面と対応した前記内部材の箇所に逃げ用段差を設定し、前記圧粉体の筒内に前記内部材を嵌め合わせて、前記圧粉体の焼結による寸法収縮により、前記外部材の両端側が前記内部材の段差縁部をそれぞれ包み込むよう変形することを特徴とする焼結複合体の焼結接合方法。
In the sintered joining method of the sintered composite, in which the inner member and the outer member are fitted and joined by sintering,
The outer member is obtained by sintering a cylindrical green compact that is compression-molded, and the dimensional shrinkage due to sintering is 0.3 to 0.8% .
Dimensional shrinkage due to sintering of the green compact by setting a relief step at the location of the inner member corresponding to the joint surface of both ends of the green compact, and fitting the inner member into the cylinder of the green compact By the above, the both ends of the outer member are deformed so as to wrap around the step edges of the inner member, respectively.
JP2003094587A 2003-03-31 2003-03-31 Sintering method for sintered composites Expired - Fee Related JP4201330B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003094587A JP4201330B2 (en) 2003-03-31 2003-03-31 Sintering method for sintered composites

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003094587A JP4201330B2 (en) 2003-03-31 2003-03-31 Sintering method for sintered composites

Publications (2)

Publication Number Publication Date
JP2004300511A JP2004300511A (en) 2004-10-28
JP4201330B2 true JP4201330B2 (en) 2008-12-24

Family

ID=33407113

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003094587A Expired - Fee Related JP4201330B2 (en) 2003-03-31 2003-03-31 Sintering method for sintered composites

Country Status (1)

Country Link
JP (1) JP4201330B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006118041A (en) * 2004-09-21 2006-05-11 Hitachi Powdered Metals Co Ltd Sintering joining method for sintered composite

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021115936A1 (en) 2020-07-08 2022-01-13 Transportation Ip Holdings, Llc PISTON COOLING NOZZLE
USD965029S1 (en) 2020-09-11 2022-09-27 Transportation Ip Holdings, Llc Piston cooling jet

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006118041A (en) * 2004-09-21 2006-05-11 Hitachi Powdered Metals Co Ltd Sintering joining method for sintered composite
JP4514681B2 (en) * 2004-09-21 2010-07-28 日立粉末冶金株式会社 Sintering method for sintered composites

Also Published As

Publication number Publication date
JP2004300511A (en) 2004-10-28

Similar Documents

Publication Publication Date Title
JPS5813603B2 (en) Joining method of shaft member and its mating member
US7847460B2 (en) Yoke-integrated bonded magnet and magnet rotator for motor using the same
JPH08504886A (en) Sintered article
JP4201330B2 (en) Sintering method for sintered composites
CN108097973A (en) A kind of sintered powder material preparation method
JP5960001B2 (en) Machine parts made of iron-based sintered metal and manufacturing method thereof
US20170005553A1 (en) Manufacturing method of rotor and rotor
JP2017017920A (en) Rotor manufacturing method and rotor
CN104550969A (en) Combined sintering and connecting method of ends of power metallurgy camshaft
JP2002333023A (en) Method of manufacturing sintered sliding bearing
CN106984803A (en) Method for producing porous shaped bodies
WO2001094058A1 (en) Composite structural body, method of manufacturing the structural body, and motor
JP3183469B2 (en) Manufacturing method of composite sintered parts
JPS59155660A (en) Hollow cam shaft and manufacture thereof
JPS6043405A (en) Production of cam shaft consisting of sintered alloy
JP3746330B2 (en) Method for powder compression molding of cross-sectional bow-shaped magnetic material
JP2713225B2 (en) Metal forming method and metal coating method using micro ball material
JP4514681B2 (en) Sintering method for sintered composites
JPH03240901A (en) Manufacture of sintered oil-containing bearing
JPH02167867A (en) Ceramic joined body
JPS5993803A (en) Composite sintering and forging method
JPS629798A (en) Metal die for compressing powder body
US9870862B2 (en) Method of making non-rectangular magnets
JPS61155269A (en) Diffusion sinter bonding method
JP3765694B2 (en) Cemented carbide sleeve roll

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050927

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080604

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080730

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081006

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081006

R150 Certificate of patent or registration of utility model

Ref document number: 4201330

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111017

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121017

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131017

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees