JP4198168B2 - Reactor vessel thermal load relaxation device - Google Patents

Reactor vessel thermal load relaxation device Download PDF

Info

Publication number
JP4198168B2
JP4198168B2 JP2006264217A JP2006264217A JP4198168B2 JP 4198168 B2 JP4198168 B2 JP 4198168B2 JP 2006264217 A JP2006264217 A JP 2006264217A JP 2006264217 A JP2006264217 A JP 2006264217A JP 4198168 B2 JP4198168 B2 JP 4198168B2
Authority
JP
Japan
Prior art keywords
vessel
reactor vessel
thermal load
temperature
stress
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006264217A
Other languages
Japanese (ja)
Other versions
JP2007206052A (en
Inventor
直人 笠原
昌教 安藤
Original Assignee
独立行政法人 日本原子力研究開発機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 独立行政法人 日本原子力研究開発機構 filed Critical 独立行政法人 日本原子力研究開発機構
Priority to JP2006264217A priority Critical patent/JP4198168B2/en
Publication of JP2007206052A publication Critical patent/JP2007206052A/en
Application granted granted Critical
Publication of JP4198168B2 publication Critical patent/JP4198168B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Furnace Details (AREA)
  • Heat Treatment Of Articles (AREA)

Description

本発明は原子炉容器の冷却材液面近傍の熱応力緩和、原子炉容器温度成層化界面近傍の熱応力緩和等に利用できる原子炉容器の熱荷重緩和装置に関する。   The present invention relates to a thermal load relaxation device for a reactor vessel that can be used for thermal stress relaxation in the vicinity of the coolant level of the reactor vessel, thermal stress relaxation in the vicinity of the reactor vessel temperature stratification interface, and the like.

高速増殖炉の原子炉容器は、上端を100℃以下に保つ必要があるコンクリート壁により支持され、炉心上部プレナムに550℃以上の高温冷却材を有することから、冷却材液面から上端支持部の間に鉛直方向の大きな温度勾配が生じる。特に、起動時においては昇温と液位上昇が同時進行することから勾配が厳しくなる。この結果、温度勾配の変曲点となる炉壁液面近傍部に原理的に高い熱応力が発生する。   The reactor vessel of the fast breeder reactor is supported by a concrete wall whose upper end needs to be kept at 100 ° C. or lower, and has a high temperature coolant of 550 ° C. or higher in the upper plenum of the core. A large vertical temperature gradient occurs between them. In particular, at the time of start-up, since the temperature rise and the liquid level rise proceed simultaneously, the gradient becomes severe. As a result, a high thermal stress is generated in principle in the vicinity of the furnace wall liquid surface, which is the inflection point of the temperature gradient.

これに対し、従来の熱荷重緩和方策は、液位制御装置による液位上昇の防止、炉壁冷却装置による炉壁の一様冷却、および薄肉化による曲げ応力の低減であった。また、冷却材液面の下方の原子炉容器壁から容器蓋直下まで原子炉容器と協同して断熱空間を形成するライナー部を設け、断熱空間内に遮熱材を充填して液面近傍の温度勾配を緩和するものも提案されている(特許文献1)。
特開昭57−80594号公報
On the other hand, conventional thermal load mitigation measures have been prevention of liquid level rise by the liquid level control device, uniform cooling of the furnace wall by the furnace wall cooling device, and reduction of bending stress due to thinning. In addition, a liner part that forms a heat insulation space is provided in cooperation with the reactor vessel from the reactor vessel wall below the coolant liquid level to directly below the vessel lid, and the heat insulation material is filled in the heat insulation space so that it is near the liquid level. Some have also been proposed that relieve the temperature gradient (Patent Document 1).
JP 57-80594 A

このように、従来の熱荷重緩和方策は、液位制御装置による液位上昇の防止、炉壁冷却装置による炉壁の一様冷却、および薄肉化による曲げ応力の低減であり、液位制御装置と炉壁冷却装置は物量増加によるコスト高を招き、薄肉化は他の破損モードの制限から限界があった。また、上記特許文献1においても物量増加によるコスト高を招くことになる。 As described above, the conventional thermal load mitigation measures are prevention of liquid level rise by the liquid level control device, uniform cooling of the furnace wall by the furnace wall cooling device, and reduction of bending stress due to thinning. However, the furnace wall cooling device incurs high costs due to an increase in the amount of material, and the thinning has a limit due to limitations of other failure modes. Also in Patent Document 1, the cost increases due to an increase in the quantity.

本発明は、上記課題を解決しようとするもので、確実な動作を図るとともに、建設コストに有意な影響を与えずに、応力の発生要因である熱荷重自体を緩和し、原子炉の安全性の向上、プラントの経済性の向上を図ることを目的とする。
そのために本発明は、外側に空間を介在させてガードベッセルが設置された原子炉容器内の冷却材の液面近傍における前記原子炉容器の熱荷重を緩和する装置において、前記ガードベッセルを原子炉容器より良熱伝導性の材料で構成し、液面下部の炉壁からの輻射熱で前記ガードベッセルを加熱し、液面上部の炉壁を前記ガードベッセルからの輻射熱で加熱することを特徴とする。
また、本発明は、前記良熱伝導性の材料は高クロム系鋼であることを特徴とする。
The present invention is intended to solve the above-mentioned problems, and while ensuring reliable operation, the thermal load itself, which is the cause of stress, is alleviated without significantly affecting the construction cost, and the safety of the reactor The purpose is to improve the efficiency of the plant and the economy of the plant.
Therefore, the present invention provides an apparatus for relaxing the thermal load of the reactor vessel in the vicinity of the coolant level in the reactor vessel in which a guard vessel is installed with a space outside, and the guard vessel is installed in the reactor. It is composed of a material having better heat conductivity than the container, and the guard vessel is heated by radiant heat from the furnace wall at the lower part of the liquid level, and the furnace wall at the upper part of the liquid level is heated by radiant heat from the guard vessel. .
Further, the present invention is characterized in that the high thermal conductivity material is high chromium steel.

本発明によれば、ガードベッセル壁を原子炉容器より良熱伝導性の材料で構成し、液面下部の炉壁からの輻射熱でガードベッセルを加熱し、液面上部の炉壁をガードベッセルからの輻射熱で加熱するようにしたので、新たに付加する部材なしに冷却材液面近傍の熱荷重を緩和することができ、建設コストに影響を与えず、非接触かつ静的構造物であるため確実に動作させることができる。   According to the present invention, the guard vessel wall is made of a material having better thermal conductivity than the reactor vessel, the guard vessel is heated by radiant heat from the lower reactor wall, and the upper reactor wall is removed from the guard vessel. Because it is heated by radiant heat, it is possible to relieve the thermal load near the coolant level without adding a new member, and it is a non-contact and static structure that does not affect the construction cost. It can be operated reliably.

以下、本発明の実施の形態について説明する。
図1は原子炉容器液面近傍の応力低減を行う熱荷重緩和装置の実施の形態の例を示す図である。
原子炉容器1の壁外面には、冷却材が万一漏洩した場合にこれを受け止めるためのガードベッセル2が設置され、原子炉容器壁とガードベッセルとの間の約150mm幅のアニュラス空間3には、原子炉容器の保護のために不活性ガスが満たされ、ガードベッセルの外壁には断熱材8が設けられてコンクリート温度を上げないようにしている。冷却材液面9より上部の原子炉容器内壁には断熱材10が設けられて高温の冷却材と断熱されているためこの部分の炉壁は低温状態にある。したがって、冷却材液面より下部の高温炉壁と冷却材液面より上部の低温炉壁では鉛直方向に温度分布が発生して熱応力の発生原因となる。本実施形態では、原子炉容器壁の外側に、冷却材液面の上下に亘る範囲に良熱伝導性の材料、例えば長時間安定な黒鉛等からなる熱伝導部材を配置したもので、この例では熱伝導部材として熱伝導板20を非接触で設置して原子炉容器壁鉛直方向の伝熱を促進して熱応力を緩和することを特徴としている。
Embodiments of the present invention will be described below.
FIG. 1 is a diagram showing an example of an embodiment of a thermal load relaxation device that reduces stress in the vicinity of the reactor vessel liquid surface.
A guard vessel 2 is installed on the outer surface of the reactor vessel 1 in order to catch the coolant if it leaks. Annulus space 3 having a width of about 150 mm between the reactor vessel wall and the guard vessel is provided in the reactor vessel 1. Is filled with an inert gas to protect the reactor vessel, and a heat insulating material 8 is provided on the outer wall of the guard vessel so as not to raise the concrete temperature. Since the heat insulating material 10 is provided on the inner wall of the reactor vessel above the coolant level 9 and is insulated from the high temperature coolant, this portion of the reactor wall is in a low temperature state. Accordingly, a temperature distribution is generated in the vertical direction on the high temperature furnace wall below the coolant level and the low temperature furnace wall above the coolant level, which causes generation of thermal stress. In this embodiment, on the outside of the reactor vessel wall, a heat conductive member made of a material with good heat conductivity, for example, graphite that is stable for a long time, is disposed in the range extending above and below the coolant level. Then, the heat conduction plate 20 is installed in a non-contact manner as a heat conduction member to promote heat transfer in the reactor vessel wall vertical direction and relieve thermal stress.

熱伝導板20は図示するように、ガードベッセル等の原子炉容器外の構造物から支持する。例えば、熱伝導板の寸法は厚さ30mm程度、長さ1500mm程度とし、設置位置は原子炉容器壁から板表面までの距離を60mm程度、鉛直方向位置は液面上部の板長さより液面下部の板長さを長くし、例えば液面上部の板長さ500mm、液面下部の板長さ1000mm程度となるようにする。   As shown in the figure, the heat conduction plate 20 is supported from a structure outside the reactor vessel such as a guard vessel. For example, the dimensions of the heat conduction plate are about 30 mm thick and about 1500 mm long, the installation position is about 60 mm from the reactor vessel wall to the plate surface, and the vertical position is lower than the plate length above the liquid level. For example, the plate length at the upper part of the liquid level is set to about 500 mm and the plate length at the lower part of the liquid level is set to about 1000 mm.

図2は原子炉容器冷却材液面近傍の熱荷重緩和の原理説明図であり、図2(a)は熱伝導板無しの場合、図2(b)は熱伝導板有りの場合の図である。
前述したように、高速増殖炉の原子炉容器は、コンクリート構造物に支持されることから上端を100℃以下に保つ必要がある。起動時には内包する冷却材の温度が200℃から550℃まで昇温するため、その過程で生じる鉛直方向の局所的温度勾配により炉壁に高い熱応力が発生する。すなわち、原子炉容器の起動時の温度分布を成り行きまかせにした場合(図2(a))、高温の冷却材に接した接液部と低温のガス空間部の昇温終了時の急激な温度勾配(温度の折れ曲がり部)が発生し、昇温終了時に液面近傍炉壁外面(図2(a)のS点)に最大応力が生ずる。これを緩和するため、図2(b)に示すように、液面下部の高温炉壁からの輻射熱で熱伝導板を加熱し、熱伝導板から液面上部の低温炉壁を輻射加熱することにより、応力の要因となっている鉛直方向の温度勾配を小さくする。その結果、最大応力発生位置Sにおける温度勾配は、最大応力発生時刻Tにおいて滑らかになり、熱荷重が緩和される。本実施形態では、簡素な熱伝導板を付加するだけであるので安価な上、非接触かつ静的構造物であるため確実に動作することが特徴である。
FIG. 2 is a diagram for explaining the principle of thermal load relaxation in the vicinity of the reactor vessel coolant level. FIG. 2 (a) shows a case without a heat conduction plate, and FIG. 2 (b) shows a case with a heat conduction plate. is there.
As described above, since the reactor vessel of the fast breeder reactor is supported by the concrete structure, it is necessary to keep the upper end at 100 ° C. or lower. Since the temperature of the coolant contained in the reactor rises from 200 ° C. to 550 ° C. at the time of startup, a high thermal stress is generated on the furnace wall due to a local temperature gradient in the vertical direction generated in the process. That is, when the temperature distribution at startup of the reactor vessel is randomized (FIG. 2 (a)), the rapid temperature at the end of temperature rise in the wetted part in contact with the high temperature coolant and the low temperature gas space part A gradient (bending portion of temperature) occurs, and a maximum stress is generated on the outer surface of the furnace wall near the liquid level (S point in FIG. 2A) at the end of the temperature rise. In order to alleviate this, as shown in FIG. 2B, the heat conduction plate is heated by radiant heat from the high temperature furnace wall at the lower part of the liquid surface, and the low temperature furnace wall at the upper part of the liquid surface is radiantly heated from the heat conduction plate. Thus, the temperature gradient in the vertical direction, which is a factor of stress, is reduced. As a result, the temperature gradient at the maximum stress generation position S becomes smooth at the maximum stress generation time T, and the thermal load is relaxed. In the present embodiment, since a simple heat conduction plate is only added, it is inexpensive and is characterized by a reliable operation because it is a non-contact and static structure.

図3は輻射による等価熱伝達係数と使用温度との関係を示す図である。
平行平面間の輻射伝熱の大きさは数1式で表される。
FIG. 3 is a diagram showing the relationship between the equivalent heat transfer coefficient due to radiation and the operating temperature.
The magnitude of the radiant heat transfer between the parallel planes is expressed by Equation 1.

Figure 0004198168
Figure 0004198168

ただし、ε1 、ε2 は材料に依存する射出率(受熱量に対する輻射熱量の比)で、ステンレス製の炉壁と、高クロム系鋼、例えば12Cr鋼では0.1以上、黒鉛の場合は0.8以上の値である。また、σはステファンボルツマン定数である。ステンレス製の炉壁と黒鉛の熱伝導板を想定し、熱伝導板の効果を小さめに見積もる射出率の最小値ε1 =0.1、ε2 =0.8を数1式に代入し、等価熱伝達係数heqとT(℃)=T1 =T2 (均熱状態)の関係を計算すると図3のようになる。図3において、横軸は炉壁、熱伝導板(黒鉛)の温度(T)、縦軸は等価熱伝達係数(heq)で、炉壁および熱伝導板の温度が高温になるにつれ急激に熱伝達係数が増加し、600℃近傍では輻射加熱によりガス強制循環熱伝達(5W/m2 K程度)に近い熱伝達が行われることが予想できる。 However, ε 1 and ε 2 are the injection rate (ratio of the amount of radiant heat to the amount of heat received) depending on the material, 0.1 or more for stainless steel furnace walls and high chromium steels such as 12Cr steel, and in the case of graphite The value is 0.8 or more. Further, σ is a Stefan Boltzmann constant. Assuming a stainless steel furnace wall and a graphite heat conduction plate, substituting the minimum injection rate values ε 1 = 0.1 and ε 2 = 0.8 to estimate the effect of the heat conduction plate to be smaller, FIG. 3 shows the relationship between the equivalent heat transfer coefficient h eq and T (° C.) = T 1 = T 2 (soaking state). In FIG. 3, the horizontal axis is the temperature (T) of the furnace wall and the heat conduction plate (graphite), and the vertical axis is the equivalent heat transfer coefficient (h eq ). The heat transfer coefficient increases, and it can be expected that heat transfer close to gas forced circulation heat transfer (about 5 W / m 2 K) is performed by radiant heating in the vicinity of 600 ° C.

原子炉容器液面近傍熱応力の熱伝導板による熱荷重緩和の効果を検証するため、熱伝導板無し、熱伝導板有りの場合について、原子炉起動時に生じる最大応力を有限要素法を用いた数値実験により求めて比較した。   In order to verify the effect of thermal load relaxation by the heat conduction plate of the thermal stress near the reactor vessel liquid surface, the finite element method was used to determine the maximum stress generated at the time of reactor start-up for the case without the heat conduction plate and with the heat conduction plate. They were obtained by numerical experiments and compared.

ここでは熱伝導板として黒鉛または12Cr鋼を使用した場合の解析を行った。ただし、黒鉛は結晶構造により熱伝導率が大きく異なるため、熱伝導板の効果が過少評価となる小さめの熱伝導率を用いることとした。ステンレス製の炉壁物性値一覧を表1に示す。   Here, analysis was performed when graphite or 12Cr steel was used as the heat conduction plate. However, since the thermal conductivity of graphite varies greatly depending on the crystal structure, it was decided to use a smaller thermal conductivity that underestimates the effect of the thermal conductive plate. A list of stainless steel furnace wall physical properties is shown in Table 1.

Figure 0004198168
Figure 0004198168

また、熱伝導板物性値(黒鉛)を表2に、熱伝導板物性値(12Cr鋼)を表3にそれぞれ示す。 In addition, Table 2 shows the heat conduction plate physical properties (graphite) and Table 3 shows the heat conduction plate physical properties (12Cr steel).

Figure 0004198168
Figure 0004198168

Figure 0004198168
Figure 0004198168

また、射出率も小さめの値を仮定し、ステレス製の炉壁と12Cr鋼で0.1、黒鉛で0.8を表4のように使用した。 Assuming that the injection rate was a small value, 0.1 was used for the stainless steel wall and 12Cr steel and 0.8 for the graphite as shown in Table 4.

Figure 0004198168
Figure 0004198168

荷重条件は、原子炉起動時にかかる熱荷重を模擬して、内部ナトリウム温度を200℃から600℃まで上昇させて解析を行った。昇温速度は200℃から400℃までを毎時15℃、400℃から600℃までを毎時20℃とした。また、ナトリウム温度の上昇に伴う液面の上昇を考慮した。ナトリウム液面の上昇は200℃から400℃の上昇区間で880mm、以後400℃から600℃の区間で350mmそれぞれ上昇することとした。解析モデルの作成には有限要素解析用メッシュ生成プログラムFEMAP v7.1を用い、解析ツールには汎用非線形構造システムFINAS v14を用いた。   The load conditions were analyzed by increasing the internal sodium temperature from 200 ° C. to 600 ° C. by simulating the thermal load applied at the time of reactor startup. The rate of temperature increase was 200 ° C. to 400 ° C. at 15 ° C./hour and 400 ° C. to 600 ° C. at 20 ° C./hour. In addition, the rise in liquid level accompanying the rise in sodium temperature was taken into account. The rise of the sodium liquid level was 880 mm in the rising section from 200 ° C. to 400 ° C., and then 350 mm in the section from 400 ° C. to 600 ° C. A finite element analysis mesh generation program FEMAP v7.1 was used to create the analysis model, and a general-purpose nonlinear structural system FINAS v14 was used as the analysis tool.

図1を基に作成した解析メッシュを図4に、熱伝導板部分を拡大した解析メッシュを図5に示す。また、解析に用いた要素の一覧を表5に示す。   FIG. 4 shows an analysis mesh created based on FIG. 1, and FIG. 5 shows an analysis mesh obtained by enlarging the heat conduction plate portion. Table 5 shows a list of elements used for the analysis.

Figure 0004198168
Figure 0004198168

図6は解析の結果得られた熱伝導板の有無による発生応力の違いを示す図で、横軸は発生応力Sn(MPa)、縦軸は軸方向座標(mm)であり、熱伝導板による応力緩和方策の無いケース、黒鉛熱伝導板を施したケース、12Cr鋼熱伝導板を施したケースの3パターンの解析結果を示している。
解析結果は強度設計の指標として使用される炉壁外表面の応力強さ範囲(Sn)を算出し示した。計算結果より熱伝導板の射出率と熱伝導率の違いによりSnが変動することが分かる。熱伝導板として射出の良好な黒鉛を用いた解析から得られた結果は、熱伝導板を考慮しないケースに比べ、Snの最大値が約590MPaから約430MPaへと約27%減少している。また、熱伝導板として12Cr鋼を用いた解析結果では、Snの最大値が約500MPaと約15%減少することが確認された。このことから、熱伝導板を使用した簡素な設備により、炉壁に生じる熱応力を有意に緩和させられることが検証できた。
FIG. 6 is a diagram showing the difference in generated stress depending on the presence or absence of a heat conducting plate obtained as a result of analysis. The horizontal axis represents the generated stress Sn (MPa), the vertical axis represents the axial coordinate (mm), and the heat conducting plate The analysis results of three patterns of a case without a stress relaxation measure, a case with a graphite heat conduction plate, and a case with a 12Cr steel heat conduction plate are shown.
The analysis results calculated and indicated the stress intensity range (Sn) of the outer wall of the furnace wall used as an index for strength design. From the calculation results, it can be seen that Sn varies depending on the difference between the injection rate and the thermal conductivity of the heat conductive plate. The result obtained from the analysis using graphite with good injection as the heat conduction plate shows that the maximum value of Sn is reduced by about 27% from about 590 MPa to about 430 MPa as compared with the case not considering the heat conduction plate. In addition, in the analysis result using 12Cr steel as the heat conduction plate, it was confirmed that the maximum value of Sn was reduced by about 15% to about 500 MPa. From this, it was verified that the thermal stress generated in the furnace wall can be significantly relieved by simple equipment using a heat conduction plate.

次に新たに部材を付加することなく材料の変更のみで原子炉容器の熱荷重を緩和する例を説明する。
図7は原子炉容器液面近傍の応力低減を行う熱荷重緩和装置の実施の形態の他の例を示す図である。
通常、ガードベッセルは原子炉容器と同じ材料で作られるが、本実施形態ではガードベッセル2の材料を原子炉容器より熱伝導性が良好な材料に変更してガードベッセル2を熱伝導部材とし、ガードベッセルが炉壁と輻射によって熱的に結合して原子炉容器壁鉛直方向の伝熱を促進し、液面近傍の熱応力を緩和することを特徴としており、原子炉容器の構成は熱伝導板がない点を除いて図1の場合と同じである。
Next, an example will be described in which the thermal load of the reactor vessel is alleviated only by changing the material without adding a new member.
FIG. 7 is a view showing another example of the embodiment of the thermal load relaxation device for reducing the stress in the vicinity of the reactor vessel liquid surface.
Normally, the guard vessel is made of the same material as the reactor vessel. However, in this embodiment, the material of the guard vessel 2 is changed to a material having better thermal conductivity than the reactor vessel, and the guard vessel 2 is used as a heat conduction member. The guard vessel is thermally coupled to the reactor wall by radiation and promotes heat transfer in the vertical direction of the reactor vessel wall, reducing the thermal stress near the liquid level. It is the same as the case of FIG. 1 except that there is no plate.

図8は本実施形態の原子炉容器冷却材液面近傍の熱荷重緩和の原理説明図であり、図8(a)はガードベッセル無しの場合、図8(b)は良熱伝導材ガードベッセル有りの場合の図である。
図2で説明したと同様に、起動時には内包する冷却材の温度が200℃から550℃まで昇温するため、その過程で生じる鉛直方向の局所的温度勾配により炉壁に高い熱応力が発生し(図8(a))、高温の冷却材に接した接液部と低温のガス空間部の昇温終了時の急激な温度勾配(温度の折れ曲がり部)によって、昇温終了時に液面近傍炉壁外面(図8(a)のS点)に最大応力が生ずる。これを緩和するため、図8(b)に示すように、液面下部の高温炉壁からの輻射熱で良熱伝導材ガードベッセルを加熱し、良熱伝導材ガードベッセルから液面上部の低温炉壁を輻射加熱することにより、応力の要因となっている鉛直方向の温度勾配を小さくする。その結果、最大応力発生位置Sにおける温度勾配は、最大応力発生時刻Tにおいて滑らかになり、熱荷重が緩和される。本実施形態では、新たに付加する部材は一切なく、建設コストに影響を与えず、非接触かつ静的構造物であるため確実に動作することが特徴である。
FIG. 8 is a diagram for explaining the principle of thermal load relaxation in the vicinity of the reactor vessel coolant level according to this embodiment. FIG. 8A shows a case without a guard vessel, and FIG. 8B shows a good heat conduction material guard vessel. It is a figure in the case of existence.
As described with reference to FIG. 2, since the temperature of the coolant contained is raised from 200 ° C. to 550 ° C. at the time of start-up, a high thermal stress is generated on the furnace wall due to a local temperature gradient in the vertical direction generated in the process. (FIG. 8 (a)), a furnace near the liquid surface at the end of the temperature rise due to a rapid temperature gradient (temperature bent portion) at the end of the temperature rise in the wetted part in contact with the high temperature coolant and the low temperature gas space Maximum stress is generated on the outer wall surface (point S in FIG. 8A). In order to alleviate this, as shown in FIG. 8 (b), the good thermal conductive material guard vessel is heated by radiant heat from the high temperature furnace wall at the lower part of the liquid level, and the low temperature furnace at the upper part of the liquid level from the good thermal conductive material guard vessel. By radiantly heating the walls, the vertical temperature gradient that causes stress is reduced. As a result, the temperature gradient at the maximum stress generation position S becomes smooth at the maximum stress generation time T, and the thermal load is relaxed. The present embodiment is characterized in that there is no member to be newly added, the construction cost is not affected, and it operates reliably because it is a non-contact and static structure.

図9は輻射による等価熱伝達係数と使用温度との関係を示す図(図3に対応)で、横軸は炉壁、ガードベッセル(高クロム系鋼、例えば12Cr鋼)の温度(T)、縦軸は等価熱伝達係数(heq)である。
本実施形態では原子炉容器壁と12Cr鋼製ガードベッセルの射出率を小さめに仮定し、数1式にε1 =0.1、ε2 =0.1を代入し、等価熱伝達係数heqとT(℃)=T1 =T2 (均熱状態)の関係を計算したものであり、炉壁およびガードベッセル(高クロム系鋼、例えば12Cr鋼)の温度が高温になるにつれ急激に熱伝達係数が増加し、600℃近傍ではガードベッセルを通しての輻射加熱により良好な熱伝達が行われることが予想できる。
FIG. 9 is a diagram showing the relationship between the equivalent heat transfer coefficient due to radiation and the operating temperature (corresponding to FIG. 3), and the horizontal axis is the temperature (T) of the furnace wall, guard vessel (high chromium steel, for example, 12Cr steel), The vertical axis represents the equivalent heat transfer coefficient (h eq ).
In the present embodiment, the injection rate of the reactor vessel wall and the 12Cr steel guard vessel is assumed to be small, and ε 1 = 0.1 and ε 2 = 0.1 are substituted into Equation 1, and the equivalent heat transfer coefficient h eq And T (° C.) = T 1 = T 2 (soaking state), and the heat is rapidly increased as the temperature of the furnace wall and guard vessel (high chromium steel, for example, 12Cr steel) increases. The transfer coefficient increases, and it can be expected that good heat transfer is performed by radiant heating through the guard vessel in the vicinity of 600 ° C.

特別な熱応力緩和措置を施さない簡素な316FR 鋼製容器とガードベッセルからなる原子炉構造を対象とし、ガードベッセルによる輻射加熱を考慮しない場合、原子炉容器と同じ316FR 鋼製ガードベッセルが存在した場合、良熱伝導材である12Cr鋼製ガードベッセルが存在した場合について、原子炉起動時に600℃まで昇温した場合の生じる最大応力の違いを数値実験により求めて比較した。   For a reactor structure consisting of a simple 316FR steel vessel and guard vessel without special thermal stress relaxation measures, the same 316FR steel guard vessel as the reactor vessel existed when radiation heating by the guard vessel was not considered. In this case, the difference in the maximum stress generated when the temperature was raised to 600 ° C. at the time of starting the reactor was compared and obtained by a numerical experiment in the case where a 12Cr steel guard vessel, which is a good heat conductive material, was present.

解析に使用した炉壁物性値は表1に示したもの、ガードベッセルの良熱伝導材の物性値は表2(12Cr鋼)に示したものであり、不確定性のある射出率については熱応力緩和の効果を小さめに見積もるため、ε1 =0.1、ε2 =0.1を使用した。荷重条件、解析モデルの作成、解析ツールは熱伝導板の場合と同じである。 The properties of the furnace wall used in the analysis are shown in Table 1. The properties of the good heat conduction material of the guard vessel are shown in Table 2 (12Cr steel). In order to estimate the effect of stress relaxation slightly, ε 1 = 0.1 and ε 2 = 0.1 were used. The load conditions, analysis model creation, and analysis tools are the same as for the heat conduction plate.

図7を基に作成した解析メッシュを図10に、液面近傍部分を拡大した解析メッシュを図11に示す。   An analysis mesh created based on FIG. 7 is shown in FIG. 10, and an analysis mesh obtained by enlarging the vicinity of the liquid surface is shown in FIG.

図12は解析の結果得られた発生応力の違いを示す図(図6に対応)で、横軸は発生応力Sn(MPa)、縦軸は軸方向座標(mm)であり、ガードベッセルによる輻射加熱を考慮しないケース、ガードベッセルの材質を12Cr鋼としたケース、316FR 鋼としたケースの3パターンの解析結果を示している。
解析結果はそれぞれ設計における強度評価の指標となる応力強さ範囲(Sn)の炉壁外表面に沿った鉛直方向分布に従って示した。ガードベッセルとして12Cr鋼を用いた場合は、ガードベッセルによる輻射加熱を考慮しないケースに比べ、Snの最大値が約590MPaから約519MPaへと約12%減少している。また、ガードベッセルの材質に316FR 鋼を用いた解析結果では、Snの最大値が約562MPaと約4.7%減少することが分かった。このことから、ガードベッセルの材料を通常材から良熱伝導材に変更することによって、顕著な熱荷重緩和を達成できることが確認された。
FIG. 12 is a diagram showing the difference in generated stress obtained as a result of the analysis (corresponding to FIG. 6). The horizontal axis is the generated stress Sn (MPa), the vertical axis is the axial coordinate (mm), and the radiation by the guard vessel is shown. Three patterns of analysis results are shown: a case not considering heating, a case where the guard vessel material is 12Cr steel, and a case where the material is 316FR steel.
The analysis results are shown in accordance with the vertical distribution along the outer surface of the furnace wall in the stress intensity range (Sn), which is an index for strength evaluation in the design. When 12Cr steel is used as the guard vessel, the maximum value of Sn is reduced by about 12% from about 590 MPa to about 519 MPa, compared to the case where radiation heating by the guard vessel is not considered. The analysis results using 316FR steel as the material for the guard vessel showed that the maximum value of Sn was reduced by about 4.7% to about 562 MPa. From this, it was confirmed that significant thermal load relaxation can be achieved by changing the material of the guard vessel from a normal material to a good heat conductive material.

本発明によれば、新たに付加する部材なしに冷却材液面近傍の熱荷重を緩和することができ、建設コストに影響を与えず、非接触かつ静的構造物であるため確実に動作させることができるので、産業上の利用可能性は極めて大きい。   According to the present invention, it is possible to relieve the thermal load in the vicinity of the coolant liquid level without a member to be newly added, without affecting the construction cost, and since it is a non-contact and static structure, it can be operated reliably. Therefore, the industrial applicability is extremely large.

原子炉容器液面近傍の応力低減を行う熱荷重緩和装置の実施の形態の例を示す図である。It is a figure which shows the example of embodiment of the thermal load relaxation apparatus which performs the stress reduction of the nuclear reactor container liquid surface vicinity. 原子炉容器冷却材液面近傍の熱荷重緩和の原理説明図である。It is a principle explanatory view of thermal load relaxation near the reactor vessel coolant level. 輻射による等価熱伝達係数と使用温度との関係を示す図である。It is a figure which shows the relationship between the equivalent heat transfer coefficient by radiation, and use temperature. 解析メッシュを示す図である。It is a figure which shows an analysis mesh. 熱伝導板部分を拡大した解析メッシュを示す図である。It is a figure which shows the analysis mesh which expanded the heat conductive board part. 解析の結果得られた熱伝導板の有無による発生応力の違いを示す図である。It is a figure which shows the difference in the generated stress by the presence or absence of the heat conductive board obtained as a result of the analysis. 原子炉容器液面近傍の応力低減を行う熱荷重緩和装置の実施の形態の他の例を示す図である。It is a figure which shows the other example of embodiment of the thermal load relaxation apparatus which performs the stress reduction of the nuclear reactor container liquid surface vicinity. 原子炉容器冷却材液面近傍の熱荷重緩和の原理説明図である。It is a principle explanatory view of thermal load relaxation near the reactor vessel coolant level. 輻射による等価熱伝達係数と使用温度との関係を示す図である。It is a figure which shows the relationship between the equivalent heat transfer coefficient by radiation, and use temperature. 解析メッシュを示す図である。It is a figure which shows an analysis mesh. 液面近傍部分を拡大した解析メッシュ図である。It is the analysis mesh figure which expanded the liquid surface vicinity part. 解析の結果得られた発生応力の違いを示す図である。It is a figure which shows the difference in the generated stress obtained as a result of analysis.

符号の説明Explanation of symbols

1…原子炉容器、2…ガードベッセル、3…アニュラス空間、8、10…断熱材、9…冷却材液面、20…熱伝導板。 DESCRIPTION OF SYMBOLS 1 ... Reactor vessel, 2 ... Guard vessel, 3 ... Annulus space, 8, 10 ... Thermal insulation, 9 ... Coolant liquid level, 20 ... Heat conduction board.

Claims (2)

外側に空間を介在させてガードベッセルが設置された原子炉容器内の冷却材の液面近傍における前記原子炉容器の熱荷重を緩和する装置において、
前記ガードベッセルを原子炉容器より良熱伝導性の材料で構成し、液面下部の炉壁からの輻射熱で前記ガードベッセルを加熱し、液面上部の炉壁を前記ガードベッセルからの輻射熱で加熱することを特徴とする原子炉容器の熱荷重緩和装置。
In the apparatus for relaxing the thermal load of the reactor vessel in the vicinity of the liquid level of the coolant in the reactor vessel in which a guard vessel is installed with a space on the outside,
The guard vessel is made of a material having better thermal conductivity than the reactor vessel, the guard vessel is heated by radiant heat from the furnace wall at the lower part of the liquid level, and the furnace wall at the upper part of the liquid level is heated by the radiant heat from the guard vessel. A thermal load relaxation device for a nuclear reactor vessel, characterized in that:
前記良熱伝導性の材料は高クロム系鋼であることを特徴とする請求項1記載の原子炉容器の熱荷重緩和装置。 2. The thermal load relaxation device for a nuclear reactor vessel according to claim 1, wherein the high thermal conductivity material is high chromium steel.
JP2006264217A 2006-09-28 2006-09-28 Reactor vessel thermal load relaxation device Expired - Fee Related JP4198168B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006264217A JP4198168B2 (en) 2006-09-28 2006-09-28 Reactor vessel thermal load relaxation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006264217A JP4198168B2 (en) 2006-09-28 2006-09-28 Reactor vessel thermal load relaxation device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2003057147A Division JP3909700B2 (en) 2003-03-04 2003-03-04 Reactor vessel thermal load relaxation device

Publications (2)

Publication Number Publication Date
JP2007206052A JP2007206052A (en) 2007-08-16
JP4198168B2 true JP4198168B2 (en) 2008-12-17

Family

ID=38485628

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006264217A Expired - Fee Related JP4198168B2 (en) 2006-09-28 2006-09-28 Reactor vessel thermal load relaxation device

Country Status (1)

Country Link
JP (1) JP4198168B2 (en)

Also Published As

Publication number Publication date
JP2007206052A (en) 2007-08-16

Similar Documents

Publication Publication Date Title
Ju et al. Global and local elastic-plastic stress analysis of coke drum under thermal-mechanical loadings
Chou et al. Effects of fracture toughness curves of ASME Section XI–Appendix G on a reactor pressure vessel under pressure–temperature limit operation
Lim et al. A numerical-experimental analysis of qualification assessment for mono-block plasma-facing component with flat heat sink
JP4198168B2 (en) Reactor vessel thermal load relaxation device
JP3909700B2 (en) Reactor vessel thermal load relaxation device
Sarkar et al. Investigation of cumulative fatigue damage through sequential low cycle fatigue and high cycle fatigue cycling at high temperature for a type 316LN stainless steel: life-prediction techniques and associated mechanisms
Zhang et al. On the constitutive model of nitrogen-containing austenitic stainless steel 316LN at elevated temperature
Avrithi et al. A reliability-based approach for low-cycle fatigue design of class 2 and 3 nuclear piping
Zych Modification of the simplified method of crack control included in EN 1992‐3
Price et al. Potential guidelines for design and fitness for purpose for carbon steel components subject to repeated thermal shock
Siegele et al. Failure assessment of RPV nozzle under loss of coolant accident
Annor-Nyarko et al. Integrity Evaluation of a Reactor Pressure Vessel Based on a Sequential Abaqus‐FRANC3D Simulation Method
Mishra et al. Progressive deformation behaviour of thin cylindrical shell under cyclic temperature variation using Combined Hardening Chaboche Model
Lu et al. AP1000 shield building dynamic response for different water levels of PCCWST subjected to seismic loading considering FSI
Shen et al. A Simplified Fatigue Assessment Method for ASME VIII-2
Jhung et al. Critical crack depth diagram of reactor vessel for pressurized thermal shock
Garud et al. An Approach for a Statistical Evaluation of Uncertainty in Assessing Fatigue Usage Including Environmental Effects
Kim et al. Two-Dimensional Axisymmetric Thermostructural Analysis of APR1400 Reactor Vessel Lower Head for Full-Core Meltdown Accident
Fu et al. Plastic Strain Correction in Fatigue Analysis of Nuclear Power Plant Equipment
Behseta et al. Ratcheting assessment of a fixed tube sheet heat exchanger subject to in phase pressure and temperature cycles
Karditsas Analysis of irradiation creep and the structural integrity of fusion in-vessel components
Sahoo et al. CFD analysis of heat transfer in hexagonal subchannels of super fast reactor in upward flow
Deo et al. In-vessel retention analysis for a typical PHWR
de Curieres et al. Residual life assessment of steam generators with alloy 600 TT tubing: methods and application
Kim et al. Application of fracture mechanical assessment to in-wall shield ribs in ITER vacuum vessel

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080926

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080930

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121010

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131010

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees