JP4197806B2 - Scanning optical system and focus position adjusting method thereof - Google Patents

Scanning optical system and focus position adjusting method thereof Download PDF

Info

Publication number
JP4197806B2
JP4197806B2 JP18742399A JP18742399A JP4197806B2 JP 4197806 B2 JP4197806 B2 JP 4197806B2 JP 18742399 A JP18742399 A JP 18742399A JP 18742399 A JP18742399 A JP 18742399A JP 4197806 B2 JP4197806 B2 JP 4197806B2
Authority
JP
Japan
Prior art keywords
light beam
scanned
detection means
scanning
scanning direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP18742399A
Other languages
Japanese (ja)
Other versions
JP2001013435A (en
Inventor
広道 厚海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP18742399A priority Critical patent/JP4197806B2/en
Publication of JP2001013435A publication Critical patent/JP2001013435A/en
Application granted granted Critical
Publication of JP4197806B2 publication Critical patent/JP4197806B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Mechanical Optical Scanning Systems (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、デジタル式電子写真複写機、レーザープリンタ等の画像書込光学系に適用可能な光走査装置に関するもので、画像形成装置、計測器、検査装置等に適用可能なものである。
【0002】
【従来の技術】
近年、デジタル複写機やレーザープリンタなどにおいて形成画像の高密度化が進んでおり、それに伴い被走査面である感光体面上でのビームスポット径は小径化が望まれている。しかし、ビームスポット径を30μm位に絞ると、焦点深度は1mm程度しかとれないため、部品精度や組み付け精度が厳しく要求されるようになってきている。そこで光ビームの結像状態を検知して焦点位置を調整する方法が種々提案されている。
【0003】
特許第2761723号公報や特開平10−20225号公報において提案されている光走査装置がその例で、光ビームの結像状態を検知する検知手段が、画像領域外で被走査面と光学的に略等価な面に配置されている。
【0004】
【発明が解決しようとする課題】
しかしながら、実際の走査光学系では画像領域外では像面湾曲が劣化していることが多いため、焦点位置が被走査面と光学的に略等価な位置からずれていることが多い。また、設計上、検知手段位置での像面湾曲量を小さく抑えたとしても、実際の使用時には部品公差や部品の組み付け公差等の累積によって像面湾曲が劣化し、画像領域内での焦点位置と検知手段位置とでは焦点位置がずれることがある。そのため、検知手段位置に焦点位置を合わせても、画像領域内で最適な焦点位置になるとは限らない。
【0005】
また、画像領域内外ともに、主走査方向と副走査方向での焦点位置は一致しているとは限らない。仮に主走査方向において焦点位置を最適化しても、副走査方向の焦点位置が最適であるとは限らないし、副走査方向において焦点位置を最適化しても、主走査方向の焦点位置が最適であるとは限らないなどの問題がある。
【0006】
本発明は以上のような従来技術の問題点を解消するためになされたもので、走査光学系により走査される光ビームの結像状態を検知する検知手段を、実際の像面湾曲に合わせて配置することにより、画像領域内での焦点位置を最適な位置に調整することができる走査光学系を提供することを目的とする。
【0007】
【課題を解決するための手段】
上記の目的を達成するために、本願請求項1記載の発明は、光ビームを放射する光源と、この光源からの光ビームを偏向して被走査面上に集光させる走査光学系と、この走査光学系により走査される光ビームの結像状態を検知する検知手段と、被走査面上の光ビームの焦点位置を調整する調整手段とを備えた光走査装置において、上記検知手段は、画像領域外に位置するとともに被走査面と光学的に略等価な位置から光軸方向にずらされて画像領域内での像面湾曲を小さく抑制した状態におけるビームウェスト位置の軌跡上に配置され、上記調整手段は、上記検知手段の検知結果に基づいて検知手段位置に光ビームの焦点位置を合わせるように調整することを特徴とする。
【0008】
請求項2記載の発明は、光ビームを放射する光源と、この光源からの光ビームを偏向して被走査面上に集光させる走査光学系と、この走査光学系により走査される光ビームの結像状態を検知する検知手段と、被走査面上の光ビームの焦点位置を調整する調整手段とを備えた光走査装置において、上記検知手段は、画像領域外に位置するとともに被走査面と光学的に略等価な位置から光軸方向と走査方向にずらされて画像領域内での像面湾曲を小さく抑制した状態におけるビームウェスト位置の軌跡上に配置され、上記調整手段は、上記検知手段の検知結果に基づいて検知手段位置に光ビームの焦点位置を合わせるように調整することを特徴とする。
【0009】
請求項3記載の発明は、請求項1または2記載の光走査装置において、検知手段を同期検知手段と兼ねさせたことを特徴とする。
請求項4記載の発明は、請求項3記載の光走査装置において、検知手段の移動量に応じて走査方向の画像の書き出しタイミングを補正することを特徴とする。
【0010】
請求項5記載の発明は、請求項2記載の光走査装置において、調整手段を、主走査方向、副走査方向の少なくとも一方向において独立に焦点位置調整可能にしたことを特徴とする。
【0011】
【発明の実施の形態】
図1は本発明の実施の形態を示す。図1において、符号1は光ビームを放射する光源を示しており、光源1から出射される光ビームの進行方向に向かって順にカップリングレンズ2、補正レンズ3、補正レンズ4、ポリゴンミラーからなる偏向器5が配置されている。光源1からの光ビームは偏向器の回転駆動によりその反射面によって偏向され、偏向光の進路上には、結像素子6が配置され、結像素子6を透過した光ビームの進路上には、被走査面としての感光体ドラム7の表面が位置している。偏向器5と結像素子6とで、光源1からの光ビームを偏向して被走査面上に集光させる走査光学系を構成している。
【0012】
上記補正レンズ3は主走査方向にのみパワーを持ち、主走査方向の焦点位置を調整する光学素子である。補正レンズ4は副走査方向にのみパワーを持ち、副走査方向の焦点位置を調整する光学素子である。補正レンズ3、4として例えばシリンドリカルレンズを用いることができる。符号11、12はそれぞれ補正レンズ3、4を光軸方向に移動させる移動機構を示す。これらの移動機構11、12は制御部13によって制御される。符号10は、走査光学系により走査される光ビームの結像状態を検知する手段を示し、感光体ドラム7の側方、すなわち上記被走査面の画像領域外に配置されている。制御部13は、検知手段10からの検出信号をもとに補正レンズ3、4を光軸方向に移動させる量を演算する演算部を有し、演算結果に基づいて移動機構11、12を制御するものである。移動機構11、12は、適宜の機構を採用可能で、例えば送りねじ機構、あるいはカム機構等を用い、送りねじの回転量、あるいはカムの回転角度を制御することによって補正レンズ3、4の移動量を調整することができる。
【0013】
次に、図2、図3、図4を用いて、請求項1にかかる発明について説明する。前述の特許第2761723号公報や特開平10−20225号公報において提案されている従来の光走査装置では、光ビームの結像状態を検知する検知手段が、画像領域外で被走査面と光学的に略等価な位置に配置されている。すなわち、図2に示すように、被走査面の側方で、被走査面を延長した面上に検知手段10の受光面が位置するように配置されている。しかしながら、前にも述べたように、実際の走査光学系では画像領域外では像面湾曲が劣化していることが多いため、焦点位置が、被走査面と光学的に等価な位置からずれる。また、設計上、検知手段位置での像面湾曲量を小さく抑えたとしても、実際の使用時には部品公差や組み付け公差等の積み上げによって像面湾曲が劣化し、画像領域内での焦点位置と、検知手段位置での焦点位置とがずれることがある。そのため、図3に示すように、検知手段位置に焦点位置を合わせると、被走査面の画像領域内に最適な焦点位置がくるとは限らないことになる。
【0014】
そこで、図4に示すように、検知手段10を光軸方向にずらし、検知手段10の位置を実際の像面湾曲に合わせることによって、検知手段位置に焦点位置を合わせれば画像領域内でも最適な焦点位置になるようにした。かかる技術思想に基づいたものが請求項1記載の発明である。図4に示すように、検知手段10の位置を実際の像面湾曲に合わせれば、被走査面上でも最適な焦点位置に合わせることができる。
【0015】
請求項1記載の発明では、検知手段10を光軸方向にのみずらしていたが、図6に示す実施の形態のように、光軸方向にずらすことに加えて、走査方向にもずらしてもよい。請求項2記載の発明はこの実施の形態に対応する。この実施の形態によっても請求項1記載の発明に対応する図4に示す実施の形態と同様の効果を得ることができる。
【0016】
次に、請求項3記載の発明に対応する実施の形態について説明する。この実施の形態は、上記検知手段10を同期検知手段としても兼用させ、検知手段10からの信号を、書込開始タイミングを決める同期検知信号としても利用するようにしたものである。ここで、検知手段10は、ラインCCDや、PD(位置検出ダイオード)にスリット状のマスクを施したものなどを使うことができる。
【0017】
次に、請求項4記載の発明に対応する実施の形態について図5を用いて説明する。請求項1記載の発明について説明したように、検知手段10を光軸方向にdで示す量だけずらして実際の像面湾曲に合わせることにより、検知手段の配置位置に焦点位置を合わせ、画像領域内でも最適な焦点位置になるようにした場合、検知手段10に入射する光ビームの画角と、検知手段10を被走査面と光学的に略等価な位置に配置したときに検知手段10に入射する光ビームの画角との間には、図5に示す角度△θだけずれが生じる。そのため、検知手段10を同期検知手段としても使用すると、被走査面上での書き出し位置にずれが生じるいわゆるレジストずれが発生する。そこで、検知手段10の光軸方向の移動量dに応じて走査方向の画像の書き出しタイミングを補正すれば、レジストずれの発生を回避することができる。これが請求項4記載の発明に係る技術思想である。
【0018】
請求項2記載の発明に対応する図6の実施の形態について説明したように、検知手段10を光軸方向にずらすことに加えて、走査方向にもずらして配置すれば、次の利点がある。すなわち、検知手段10を光軸方向にずらすとともに、走査方向にもずらして配置することにより、この配置位置で検知手段10に入射する光ビームの画角を、検知手段10を被走査面と光学的に略等価な位置に配置したときに、検知手段10に入射する光ビームの画角と同じにすることができ、これによってレジストずれの発生を回避することができる。
【0019】
次に、請求項5記載の発明に対応する実施の形態について説明する。図2〜図6においては、説明を簡単にするため、像面湾曲を主走査方向と副走査方向とに分けることなく表記したが、実際には、図7に示すように主走査方向にも副走査方向にもそれぞれ像面湾曲が発生する。また、温度変動などの環境変動で変動する像面湾曲量は、主走査方向と副走査方向とで違うことが多い。そこで、補正レンズ3、4をそれぞれ独立に動かすことで主走査方向と副走査方向それぞれの像面湾曲を補正することができるようにしたのが、請求項5記載の発明に対応する実施の形態である。主走査方向の像面湾曲の補正は補正レンズ3で行い、副走査方向の像面湾曲の補正は補正レンズ4で行う。
【0020】
7は、主走査方向と副走査方向それぞれの像面湾曲が画像領域内で最適な状態になっていて、検知手段10を主走査方向の像面湾曲に合わせてeだけ光軸方向にずらした場合を示している。この状態で、副走査方向の焦点位置を合わせると、画像領域外での副走査方向の像面湾曲が主走査方向の像面湾曲とは逆向きにずれているため、図8に示すように、画像領域内で副走査方向の焦点位置がずれてしまう。そこであらかじめ、主副走査方向と副走査方向それぞれの像面湾曲(焦点位置)が画像領域内で最適な状態の時(例えばユニットの組み付け時等)に、検知手段10の配置位置での主走査方向と副走査方向相互間の焦点位置ずれ量Lを測定し、そのずれ量Lを制御部13に記憶させておく。そして、焦点位置調整時に、記憶した上記主走査方向と副走査方向の焦点位置ずれ量Lを考慮して主走査方向と副走査方向を独立に調整する。こうすることによって、主走査方向と副走査方向それぞれの像面湾曲(焦点位置)を画像領域内で最適な状態にすることができる。
【0021】
【発明の効果】
請求項1記載の発明によれば、走査光学系により走査される光ビームの結像状態を検知する検知手段を、被走査面と光学的に略等価な位置から光軸方向にずらすことにより、実際の像面湾曲に合わせて上記検知手段を配置することになるので、検知手段上で最適な焦点位置に合わせれば、被走査面上でも最適な焦点位置に合わせることができる。
【0022】
請求項2記載の発明のように、走査光学系により走査される光ビームの結像状態を検知する検知手段を、被走査面と光学的に略等価な位置から光軸方向にずらすとともに走査方向にもずらしても、請求項1記載の発明と同様の効果を得ることができる。
【0023】
請求項3記載の発明によれば、走査光学系により走査される光ビームの結像状態を検知する検知手段を、同期検知手段としても兼用させたため、コストを削減することができる。
【0024】
請求項4記載の発明によれば、検知手段の光軸方向への移動量に応じて、走査方向の画像の書き出しタイミングを補正するようにしたため、レジストずれの発生を回避することができる。
【0025】
温度変動などの環境変動で変動する像面湾曲量は、主走査方向と副走査方向とで違うことが多いが、請求項5記載の発明によれば、被走査面上の光ビームの焦点位置を調整する調整手段は、主走査方向、副走査方向の少なくとも一方向において独立に焦点位置を調整することができるようにしたため、上記調整手段を独立に動かすことにより、主走査方向と副走査方向それぞれの像面湾曲を独立に補正することができる。
【図面の簡単な説明】
【図1】本発明にかかる光走査装置の実施の形態を示す平面図である。
【図2】従来の光走査装置における光ビームの結像状態を検知する検知手段の配置例を像面湾曲線とともに示す平面図である。
【図3】同上従来の検知手段の配置例による不具合を説明するための平面図である。
【図4】本発明にかかる光走査装置における光ビームの結像状態を検知する検知手段の配置例を像面湾曲線とともに示す平面図である。
【図5】同上検知手段の配置例における検知手段への入射bの画角のずれを説明するための平面図である。
【図6】本発明にかかる光走査装置における光ビームの結像状態を検知する検知手段の他の配置例を像面湾曲線とともに示す平面図である。
【図7】光走査装置における被走査面での主走査方向と副走査方向それぞれの像面湾曲の例を示す平面図である。
【図8】主走査方向と副走査方向それぞれの像面湾曲の一方に焦点位置合わせをした場合に生ずる不具合を説明するための平面図である。
【符号の説明】
1 光源
2 カップリングレンズ
3 補正レンズ
4 補正レンズ
5 偏向器
6 結像素子
10 検知手段
11 調整手段
12 調整手段
13 制御部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an optical scanning device applicable to an image writing optical system such as a digital electrophotographic copying machine and a laser printer, and can be applied to an image forming apparatus, a measuring instrument, an inspection apparatus, and the like.
[0002]
[Prior art]
In recent years, the density of formed images has been increasing in digital copying machines, laser printers, and the like, and accordingly, it is desired to reduce the beam spot diameter on the surface of the photoconductor that is the surface to be scanned. However, when the beam spot diameter is reduced to about 30 μm, the depth of focus can be only about 1 mm, so that component accuracy and assembly accuracy are strictly required. Accordingly, various methods for adjusting the focal position by detecting the imaging state of the light beam have been proposed.
[0003]
An example of this is an optical scanning device proposed in Japanese Patent No. 2761723 and Japanese Patent Laid-Open No. 10-20225. The detection means for detecting the imaging state of the light beam is optically connected to the surface to be scanned outside the image area. They are arranged on a substantially equivalent surface.
[0004]
[Problems to be solved by the invention]
However, in an actual scanning optical system, the curvature of field often deteriorates outside the image area, and the focal position often deviates from a position that is optically substantially equivalent to the surface to be scanned. Also, even if the amount of field curvature at the detection means position is kept small by design, the field curvature deteriorates due to accumulation of component tolerances and component assembly tolerances in actual use, and the focal position within the image area And the detection means position may cause the focal position to deviate. Therefore, even if the focus position is adjusted to the detection means position, the optimum focus position in the image region is not always obtained.
[0005]
In addition, the focal positions in the main scanning direction and the sub-scanning direction are not always the same both inside and outside the image area. Even if the focus position is optimized in the main scanning direction, the focus position in the sub-scanning direction is not always optimal, and even if the focus position is optimized in the sub-scanning direction, the focus position in the main scanning direction is optimal. There are problems such as not always.
[0006]
The present invention has been made to solve the above-described problems of the prior art, and a detecting means for detecting the imaging state of the light beam scanned by the scanning optical system is adapted to the actual curvature of field. It is an object of the present invention to provide a scanning optical system that can adjust the focal position in an image region to an optimal position by arranging them.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, the invention described in claim 1 of the present application includes a light source that emits a light beam, a scanning optical system that deflects the light beam from the light source and focuses it on the surface to be scanned, and In an optical scanning apparatus including a detection unit that detects an imaging state of a light beam scanned by a scanning optical system and an adjustment unit that adjusts a focal position of the light beam on a surface to be scanned, the detection unit includes an image It is located on the locus of the beam waist position in a state where it is located outside the region and is shifted in the optical axis direction from a position optically substantially equivalent to the surface to be scanned to suppress curvature of field in the image region to a small extent, The adjusting means adjusts the focal position of the light beam to the detection means position based on the detection result of the detection means .
[0008]
According to a second aspect of the present invention, there is provided a light source that emits a light beam, a scanning optical system that deflects the light beam from the light source and focuses the light beam on a surface to be scanned, and a light beam that is scanned by the scanning optical system. In an optical scanning apparatus including a detecting unit that detects an imaging state and an adjusting unit that adjusts a focal position of a light beam on a scanned surface, the detecting unit is located outside an image area and is It is arranged on the locus of the beam waist position in a state in which the curvature of field in the image area is suppressed to be small by shifting from the optically equivalent position to the optical axis direction and the scanning direction. On the basis of this detection result, adjustment is made so that the focal position of the light beam is adjusted to the detection means position .
[0009]
According to a third aspect of the present invention, in the optical scanning device according to the first or second aspect, the detection means is also used as the synchronization detection means.
According to a fourth aspect of the present invention, in the optical scanning device according to the third aspect, the image writing timing in the scanning direction is corrected in accordance with the amount of movement of the detecting means.
[0010]
According to a fifth aspect of the invention, in the optical scanning apparatus according to claim 2, wherein the adjustment means, the main scanning direction, you characterized in that the focal position adjustable independently in at least one direction in the sub-scanning direction.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 shows an embodiment of the present invention. In FIG. 1, reference numeral 1 denotes a light source that emits a light beam, which is composed of a coupling lens 2, a correction lens 3, a correction lens 4, and a polygon mirror in order in the traveling direction of the light beam emitted from the light source 1. A deflector 5 is arranged. The light beam from the light source 1 is deflected by the reflection surface by the rotational drive of the deflector, and the imaging element 6 is disposed on the path of the deflected light, and on the path of the light beam transmitted through the imaging element 6. The surface of the photosensitive drum 7 as the surface to be scanned is located. The deflector 5 and the imaging element 6 constitute a scanning optical system that deflects the light beam from the light source 1 and focuses it on the surface to be scanned.
[0012]
The correction lens 3 is an optical element that has power only in the main scanning direction and adjusts the focal position in the main scanning direction. The correction lens 4 is an optical element that has power only in the sub-scanning direction and adjusts the focal position in the sub-scanning direction. For example, a cylindrical lens can be used as the correction lenses 3 and 4. Reference numerals 11 and 12 denote moving mechanisms for moving the correction lenses 3 and 4 in the optical axis direction, respectively. These moving mechanisms 11 and 12 are controlled by the control unit 13. Reference numeral 10 denotes a means for detecting the imaging state of the light beam scanned by the scanning optical system, and is disposed on the side of the photosensitive drum 7, that is, outside the image area of the scanned surface. The control unit 13 has a calculation unit that calculates the amount by which the correction lenses 3 and 4 are moved in the optical axis direction based on the detection signal from the detection means 10, and controls the moving mechanisms 11 and 12 based on the calculation result. To do. As the moving mechanisms 11 and 12, an appropriate mechanism can be adopted. For example, a feed screw mechanism or a cam mechanism is used, and the amount of rotation of the feed screw or the rotation angle of the cam is controlled to move the correction lenses 3 and 4. The amount can be adjusted.
[0013]
Next, the invention according to claim 1 will be described with reference to FIGS. 2, 3, and 4. In the conventional optical scanning apparatus proposed in the above-mentioned Japanese Patent No. 276723 and Japanese Patent Laid-Open No. 10-20225, the detecting means for detecting the image formation state of the light beam is optically connected to the surface to be scanned outside the image area. Is disposed at a position substantially equivalent to. That is, as shown in FIG. 2, the light receiving surface of the detection means 10 is disposed on the side of the surface to be scanned on the surface that is an extension of the surface to be scanned. However, as described above, in the actual scanning optical system, the curvature of field often deteriorates outside the image area, and therefore the focal position deviates from a position optically equivalent to the surface to be scanned. In addition, even if the amount of field curvature at the detection means position is kept small by design, the field curvature deteriorates due to the accumulation of component tolerances and assembly tolerances in actual use, and the focal position in the image area, The focus position at the detection means position may be shifted. Therefore, as shown in FIG. 3, when the focus position is adjusted to the detection means position, the optimum focus position does not always come within the image area of the surface to be scanned.
[0014]
Therefore, as shown in FIG. 4, the detection means 10 is shifted in the optical axis direction, and the position of the detection means 10 is adjusted to the actual curvature of field, so that the focus position is adjusted to the detection means position, so that the optimum in the image region. The focus position was set. The invention according to claim 1 is based on this technical idea. As shown in FIG. 4, if the position of the detection means 10 is matched to the actual curvature of field, the optimum focus position can be adjusted even on the surface to be scanned.
[0015]
In the first aspect of the invention, the detection means 10 is shifted only in the optical axis direction. However, in addition to shifting in the optical axis direction as in the embodiment shown in FIG. Good. The invention described in claim 2 corresponds to this embodiment. According to this embodiment, the same effect as that of the embodiment shown in FIG. 4 corresponding to the first aspect of the invention can be obtained.
[0016]
Next, an embodiment corresponding to the third aspect of the present invention will be described. In this embodiment, the detection means 10 is also used as a synchronization detection means, and a signal from the detection means 10 is also used as a synchronization detection signal for determining the write start timing. Here, the detection means 10 may be a line CCD or a PD (position detection diode) provided with a slit mask.
[0017]
Next, an embodiment corresponding to the invention of claim 4 will be described with reference to FIG. As described in the first aspect of the present invention, the detection means 10 is shifted by an amount indicated by d in the optical axis direction so as to match the actual curvature of field, thereby adjusting the focal position to the arrangement position of the detection means, and the image area. In this case, when the focus position is optimal, the angle of view of the light beam incident on the detection means 10 and the detection means 10 when the detection means 10 is optically substantially equivalent to the surface to be scanned are detected. There is a deviation from the angle of view of the incident light beam by an angle Δθ shown in FIG. For this reason, when the detection unit 10 is also used as a synchronization detection unit, a so-called registration shift that causes a shift in the writing position on the surface to be scanned occurs. Therefore, if the image writing timing in the scanning direction is corrected according to the amount of movement d of the detecting means 10 in the optical axis direction, the occurrence of registration deviation can be avoided. This is the technical idea according to the invention of claim 4.
[0018]
As described in the embodiment of FIG. 6 corresponding to the invention described in claim 2, if the detection means 10 is shifted in the scanning direction in addition to shifting in the optical axis direction, the following advantages are obtained. . That is, by shifting the detection means 10 in the optical axis direction and also in the scanning direction, the angle of view of the light beam incident on the detection means 10 at this arrangement position can be determined by using the detection means 10 and the surface to be scanned. Therefore, when they are arranged at substantially equivalent positions, the angle of view of the light beam incident on the detection means 10 can be made the same, thereby avoiding the occurrence of resist misalignment.
[0019]
Next, an embodiment corresponding to the fifth aspect of the present invention will be described. In FIG. 2 to FIG. 6, for the sake of simplicity, the field curvature is shown without being divided into the main scanning direction and the sub-scanning direction. However, actually, as shown in FIG. Field curvature also occurs in the sub-scanning direction. Further, the amount of field curvature that varies due to environmental fluctuations such as temperature fluctuations is often different between the main scanning direction and the sub-scanning direction. Accordingly, an embodiment corresponding to the invention according to claim 5 is configured such that the field curvature in each of the main scanning direction and the sub-scanning direction can be corrected by independently moving the correction lenses 3 and 4. It is. Correction of the curvature of field in the main scanning direction is performed by the correction lens 3, and correction of the curvature of field in the sub-scanning direction is performed by the correction lens 4.
[0020]
7, the main scanning direction and the sub-scanning direction each curvature They become optimal state within the image area, shifted by the optical axis direction e combined detection means 10 in field curvature in the main scanning direction Shows the case. In this state, when the focal position in the sub-scanning direction is adjusted, the field curvature in the sub-scanning direction outside the image area is shifted in the opposite direction to the field curvature in the main scanning direction, as shown in FIG. The focal position in the sub-scanning direction is shifted in the image area. Therefore, the main scanning at the position where the detecting means 10 is arranged in advance when the field curvature (focal position) in each of the main and sub-scanning directions and the sub-scanning direction is optimal in the image area (for example, when the unit is assembled). The focal position deviation amount L between the direction and the sub-scanning direction is measured, and the deviation amount L is stored in the control unit 13. Then, at the time of adjusting the focal position, the main scanning direction and the sub scanning direction are adjusted independently in consideration of the stored focal position shift amount L in the main scanning direction and the sub scanning direction. By doing so, the curvature of field (focus position) in each of the main scanning direction and the sub-scanning direction can be optimized in the image region.
[0021]
【The invention's effect】
According to the first aspect of the present invention, the detection means for detecting the imaging state of the light beam scanned by the scanning optical system is shifted in the optical axis direction from a position optically substantially equivalent to the surface to be scanned. Since the detection means is arranged in accordance with the actual curvature of field, if the optimum focus position is adjusted on the detection means, the optimum focus position can be adjusted on the scanned surface.
[0022]
According to the second aspect of the invention, the detecting means for detecting the imaging state of the light beam scanned by the scanning optical system is shifted in the optical axis direction from a position optically substantially equivalent to the surface to be scanned and also in the scanning direction. Even if shifted, the same effect as that of the first aspect of the invention can be obtained.
[0023]
According to the third aspect of the present invention, since the detection means for detecting the imaging state of the light beam scanned by the scanning optical system is also used as the synchronization detection means, the cost can be reduced.
[0024]
According to the fourth aspect of the invention, since the image writing timing in the scanning direction is corrected according to the amount of movement of the detecting means in the optical axis direction, it is possible to avoid the occurrence of registration deviation.
[0025]
The amount of curvature of field that varies due to environmental variations such as temperature variations is often different between the main scanning direction and the sub-scanning direction. According to the invention of claim 5, the focal position of the light beam on the surface to be scanned Since the adjustment means for adjusting the focus position can be adjusted independently in at least one of the main scanning direction and the sub-scanning direction, the adjustment means is moved independently to thereby adjust the main scanning direction and the sub-scanning direction. Each field curvature can be independently corrected.
[Brief description of the drawings]
FIG. 1 is a plan view showing an embodiment of an optical scanning device according to the present invention.
FIG. 2 is a plan view showing an example of the arrangement of detection means for detecting the imaging state of a light beam in a conventional optical scanning device, together with a field curvature line.
FIG. 3 is a plan view for explaining a problem due to the arrangement example of the conventional detection means.
FIG. 4 is a plan view showing an arrangement example of detection means for detecting the imaging state of a light beam in the optical scanning device according to the present invention, together with a field curvature line.
FIG. 5 is a plan view for explaining a shift in the angle of view of an incident b on the detection means in the arrangement example of the detection means.
FIG. 6 is a plan view showing another arrangement example of the detecting means for detecting the imaging state of the light beam in the optical scanning device according to the present invention, together with the field curvature line.
FIG. 7 is a plan view showing an example of field curvature in each of the main scanning direction and the sub-scanning direction on the surface to be scanned in the optical scanning device.
FIG. 8 is a plan view for explaining a problem that occurs when the focal position is aligned with one of the curvature of field in each of the main scanning direction and the sub-scanning direction.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Light source 2 Coupling lens 3 Correction lens 4 Correction lens 5 Deflector 6 Imaging element 10 Detection means 11 Adjustment means 12 Adjustment means 13 Control part

Claims (6)

光ビームを放射する光源と、この光源からの光ビームを偏向して被走査面上に集光させる走査光学系と、この走査光学系により走査される光ビームの結像状態を検知する検知手段と、被走査面上の光ビームの焦点位置を調整する調整手段とを備えた光走査装置において、
上記検知手段は、画像領域外に位置するとともに被走査面と光学的に略等価な位置から光軸方向にずらされて画像領域内での像面湾曲を小さく抑制した状態におけるビームウェスト位置の軌跡上に配置され、
上記調整手段は、上記検知手段の検知結果に基づいて検知手段位置に光ビームの焦点位置を合わせるように調整することを特徴とする光走査装置。
A light source that emits a light beam, a scanning optical system that deflects the light beam from the light source and focuses it on the surface to be scanned, and a detection means that detects the imaging state of the light beam scanned by the scanning optical system And an adjustment unit that adjusts the focal position of the light beam on the surface to be scanned.
The detecting means is located outside the image area and shifted in the optical axis direction from a position optically substantially equivalent to the surface to be scanned, and the locus of the beam waist position in a state in which the curvature of field in the image area is suppressed to be small. Placed on top
The optical scanning device according to claim 1, wherein the adjusting unit adjusts the focal position of the light beam to a detection unit position based on a detection result of the detection unit.
光ビームを放射する光源と、この光源からの光ビームを偏向して被走査面上に集光させる走査光学系と、この走査光学系により走査される光ビームの結像状態を検知する検知手段と、被走査面上の光ビームの焦点位置を調整する調整手段とを備えた光走査装置において、
上記検知手段は、画像領域外に位置するとともに被走査面と光学的に略等価な位置から光軸方向と走査方向にずらされて画像領域内での像面湾曲を小さく抑制した状態におけるビームウェスト位置の軌跡上に配置され、
上記調整手段は、上記検知手段の検知結果に基づいて検知手段位置に光ビームの焦点位置を合わせるように調整することを特徴とする光走査装置。
A light source that emits a light beam, a scanning optical system that deflects the light beam from the light source and focuses it on the surface to be scanned, and a detection means that detects the imaging state of the light beam scanned by the scanning optical system And an adjustment unit that adjusts the focal position of the light beam on the surface to be scanned.
The detecting means is positioned outside the image area and shifted from the optically equivalent position to the surface to be scanned in the optical axis direction and the scanning direction to suppress the curvature of field in the image area to a small extent. Placed on the locus of the position,
The optical scanning device according to claim 1 , wherein the adjusting unit adjusts the focal position of the light beam to a detection unit position based on a detection result of the detection unit .
請求項1または2記載の光走査装置において、検知手段は同期検知手段を兼ねていることを特徴とする光走査装置。  3. The optical scanning device according to claim 1, wherein the detection unit also serves as a synchronization detection unit. 請求項3記載の光走査装置において、検知手段の移動量に応じて走査方向の画像の書き出しタイミングを補正することを特徴とする光走査装置。  4. The optical scanning device according to claim 3, wherein the image writing timing in the scanning direction is corrected in accordance with the amount of movement of the detection means. 請求項1乃至4記載の光走査装置の何れかにおいて、調整手段は主走査方向、副走査方向の少なくとも一方向において独立に焦点位置を調整することを特徴とする光走査装置。  5. The optical scanning device according to claim 1, wherein the adjusting unit independently adjusts the focal position in at least one of the main scanning direction and the sub-scanning direction. 光ビームを放射する光源と、この光源からの光ビームを偏向して被走査面上に集光させる走査光学系と、この走査光学系により走査される光ビームの結像状態を検知する検知手段と、被走査面上の光ビームの焦点位置を調整する調整手段とを備え、A light source that emits a light beam, a scanning optical system that deflects the light beam from the light source and focuses it on the surface to be scanned, and a detection means that detects the imaging state of the light beam scanned by the scanning optical system And adjusting means for adjusting the focal position of the light beam on the surface to be scanned,
上記検知手段は、画像領域外に位置するとともに被走査面と光学的に略等価な位置から光軸方向にずらされている光走査装置の焦点位置調整方法であって、  The detection means is a focal position adjustment method for an optical scanning device that is located outside the image region and is shifted in the optical axis direction from a position that is optically substantially equivalent to the surface to be scanned.
上記検知手段を画像領域内での像面湾曲を小さく抑制した状態におけるビームウェスト位置の軌跡上に配置する工程と、Arranging the detection means on the locus of the beam waist position in a state in which the curvature of field in the image region is suppressed to a small extent;
上記検知手段の検知結果に基づいて上記調整手段を用いて検知手段位置に光ビームの焦点位置を合わせるように調整する工程と、を備えている光走査装置の焦点位置調整方法。And a step of adjusting the focal position of the light beam at the position of the detection means using the adjustment means based on the detection result of the detection means.
JP18742399A 1999-07-01 1999-07-01 Scanning optical system and focus position adjusting method thereof Expired - Fee Related JP4197806B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18742399A JP4197806B2 (en) 1999-07-01 1999-07-01 Scanning optical system and focus position adjusting method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18742399A JP4197806B2 (en) 1999-07-01 1999-07-01 Scanning optical system and focus position adjusting method thereof

Publications (2)

Publication Number Publication Date
JP2001013435A JP2001013435A (en) 2001-01-19
JP4197806B2 true JP4197806B2 (en) 2008-12-17

Family

ID=16205799

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18742399A Expired - Fee Related JP4197806B2 (en) 1999-07-01 1999-07-01 Scanning optical system and focus position adjusting method thereof

Country Status (1)

Country Link
JP (1) JP4197806B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5233236B2 (en) * 2007-10-12 2013-07-10 コニカミノルタビジネステクノロジーズ株式会社 Optical scanning device

Also Published As

Publication number Publication date
JP2001013435A (en) 2001-01-19

Similar Documents

Publication Publication Date Title
KR100374271B1 (en) Multi-beam scanning optical system and image forming apparatus using it
JP2008033141A (en) Optical scanner and image forming apparatus using the same
JP2006323159A (en) Optical scanner and image forming apparatus
JP3564026B2 (en) Optical scanning device, multi-beam optical scanning device, and image forming apparatus using the same
JP4197806B2 (en) Scanning optical system and focus position adjusting method thereof
JP4551560B2 (en) Scanning optical apparatus and image forming apparatus
JP4006208B2 (en) Multi-beam scanning device and image forming apparatus using the same
JP3610313B2 (en) Multi-beam scanning optical system and image forming apparatus using the same
JPH08286135A (en) Optical scanning device
JP4708629B2 (en) Scanning optical device and image forming apparatus using the same
JP2004045808A (en) Light deflector
JP4573944B2 (en) Optical scanning optical device and image forming apparatus using the same
JP2692944B2 (en) Scanning optical device
JPH01177511A (en) Scanning optical device
JPH0258016A (en) Scanning optical device
JP2001108930A (en) Scanning optical device and its controlling method
JP2002311368A (en) Optical scanner and method for registration adjustment and right/left magnification adjustment of the same
JP2570176B2 (en) Electrophotographic recording device
JP2005164907A (en) Optical scanner and image forming apparatus furnished with same
JP2004333556A (en) Scanning optical device and image forming device using the same
JP2001166242A (en) Optical scanner and mirror surface adjusting device
JPH11218715A (en) Optical scanner
JP2001264659A (en) Optical scanner and adjustment method of light beam scanning position
JP2001194604A (en) Optical scanner
JPH10161051A (en) Optical scanning device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080408

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080605

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080701

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080828

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080909

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080930

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080930

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121010

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131010

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees