JP4197797B2 - Inspection method of oocyst concentration of Cryptosporidium - Google Patents

Inspection method of oocyst concentration of Cryptosporidium Download PDF

Info

Publication number
JP4197797B2
JP4197797B2 JP12183499A JP12183499A JP4197797B2 JP 4197797 B2 JP4197797 B2 JP 4197797B2 JP 12183499 A JP12183499 A JP 12183499A JP 12183499 A JP12183499 A JP 12183499A JP 4197797 B2 JP4197797 B2 JP 4197797B2
Authority
JP
Japan
Prior art keywords
cryptosporidium
target molecule
fluorescent
concentration
fluorescence polarization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP12183499A
Other languages
Japanese (ja)
Other versions
JP2000310641A (en
Inventor
敏朗 加藤
理 三木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Nippon Steel Engineering Co Ltd
Original Assignee
Nippon Steel Corp
Nippon Steel Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp, Nippon Steel Engineering Co Ltd filed Critical Nippon Steel Corp
Priority to JP12183499A priority Critical patent/JP4197797B2/en
Publication of JP2000310641A publication Critical patent/JP2000310641A/en
Application granted granted Critical
Publication of JP4197797B2 publication Critical patent/JP4197797B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Landscapes

  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Description

【0001】
【発明の属する技術分野】
最近、原虫クリプトスポリジウムや病原性大腸菌O−157などを原因としたの新興もしくは再興の水系感染症の発生が大きな社会問題となっている。これら感染症の集団発生を未然に防止するためには、食品製造プロセスや水処理プロセスにおける原因微生物のモニタリングが必要不可欠である。また、病原微生物を除去して安全な浄水を供給するための新水処理プロセスを開発する場合においても、原因微生物の存否を評価する必要がある。本発明は、迅速かつ簡便な水中の微生物の検査方法に関する。
【0002】
【従来の技術】
新興の水系感染症の原因微生物として、例えばクリプトスポリジウムやジアルジア等の原虫類がある(総説として例えば、保坂三継(1998)「水系原虫感染症―原因微生物と流行発生―」、用水と廃水、第40巻、第2号、11頁;金子光美(1998)「原虫類やその他の病原微生物の検出とその除去技術」、用水と廃水、第10巻、第4号、32頁など)。これら原虫類は環境水中においてはオーシストもしくはシストと呼ばれる嚢胞状の殻に包まれた形態で存在しており、クリプトスポリジウムのオーシストやジアルジアのシストが検査の対象となっている。従来の検査法としては、顕微鏡観察法、免疫学的検査法、遺伝子検査法がある。
【0003】
まず、顕微鏡観察法は、色素もしくは蛍光色素で微生物細胞を染色し、顕微鏡もしくは蛍光顕微鏡によって染色された微生物数を計数する方法であり、微生物の種を問わず、非特異的に細胞を染色するために、形態や大きさの点から他の微生物(酵母や細菌など)との識別は可能であるが、近縁種のオーシストとの識別には熟練を要するため、一般には誤判定を招きやすいとされている。
ついで、免疫学的検査法としては、蛍光抗体染色、フローサイトメーター分析、蛍光分光分析、酵素抗体法、ウェスタン分析等が挙げられる。免疫学的検査法は、対象とする微生物もしくはその生体成分に対して特異的に結合する抗体を用いることによって、検査対象の微生物のみを特異的に検出することが可能であるが、顕微鏡による目視観察、高額なフローサイトメーター分析機器、染色操作が煩雑、多量の微生物を含んだ試料が必要など、操作性や定量性の点で満足のゆく検査方法とはいえない。
【0004】
さらに、遺伝子検査法としては、サザン分析、ノーザン分析、RCR[polymerase chain reaction] 分析、RT−PCR [逆転写PCR] 分析等が挙げられる。遺伝子検査法は、着目する遺伝子に十分配慮すれば、検査対象の微生物を特異的に検出することが可能であるが、遺伝子解析に関する専門知識が必要、試験操作が煩雑な上に、存在の有無は判定できても、存在量についての定量的な評価が困難である。
【0005】
ところで、タンパク質や核酸分子等の生体分子間の結合特性を検出する方法として蛍光偏光度法が知られている(総説として例えば、Checovich, W. J. et al., (1995) Fluorescence polarization: a new tool for cell and molecular biology, Nature, vol.375, p254 )。この方法は、1926年にPerrinによって最初に報告され(Perrin, F. (1926) J. Phys. Rad., vol.1, p390)、最近、再び注目されるようになった。蛍光偏光度法の測定原理は、蛍光分子を懸濁した溶液に、振幅方向が均一な蛍光を入射光として照射すると、蛍光分子の自由運動によって入射光が散乱されあらゆる振幅方向の反射光を生じるが、標的分子との結合等の固定化によって蛍光分子の自由運動が拘束された状態では、入射光に対して特定の振幅面に偏光された反射光が生じるという現象に基づき、偏光の程度(偏光度)を指標として蛍光分子と標的分子との結合状態(結合量や結合強度)を調べることができる。つまり、蛍光分子と結合しうる標的分子が被験水中に存在しなければ、蛍光分子は自由運動状態となり偏光度は微小であるが、蛍光分子と結合する標的分子が被験水中に存在する場合には、蛍光分子と標的分子との結合によって蛍光分子が固定化され運動状態が低減するために偏光度が高くなることから、偏光度の変化を計測することによって被験水中の標的分子の存在量を推定できる。
【0006】
この蛍光偏光度法の適用例(総説として例えば、Mineno, J. (1997) 蛋白質・核酸・酵素,第42巻,第1号,77頁)としては、抗体とその抗原タンパク質の結合測定やタンパク分解酵素とその基質タンパク質分子との反応性測定などのタンパク質分子間の相互作用分析、DNAハイブリダイゼーションなど核酸分子間の相互作用分析、DNAとDNA結合性タンパク質との結合測定やタンパク質と糖鎖との結合測定など異種分子間の相互作用分析などがある。しかしながら、いずれも単離精製した生体分子に関する事例であり、微生物の細胞のような巨大分子に適用した例は報告がない。
【0007】
【発明が解決しようとする課題】
従来知られている微生物(とりわけクリプトスポリジウム等の原虫類)の検査方法は、前記したように、操作の簡便さや検出精度の点で満足のゆく方法がない。また、蛍光偏光度法については単離精製した生体分子に関する適用例はあるが、微生物の細胞のような巨大分子に適用した例はない。そこで、本発明においては、蛍光偏光度法の原理に基づいた、被験水中の原虫類や病原性細菌など微生物の存否や濃度を簡便かつ迅速に検査する方法を提供することを課題とする。
【0008】
【課題を解決するための手段】
従来は単離精製した生体分子についてのみ適用されていた蛍光偏光度法に関して、蛍光プローブの選定、被験水の前処理条件、結合溶媒条件、偏光度測定条件等を最適化することによって、被験水中の微生物や細胞等の生物体を検出・定量することができる。すなわち、本発明は、クリプトスポリジウムのオーシスト外皮表面に露出した生体成分、又は、クリプトスポリジウムのスポロゾイド表皮に露出した生体成分を標的分子とし、前記標的分子に結合しうる抗クリプトスポリジウム・モノクロナール抗体又はポリクロナール抗体を蛍光物質のFITC( fluorescein isothiocyanate で修飾した蛍光プローブを被験水に添加して蛍光偏光度を計測し、該蛍光偏光度の変化量から被験水中に含まれるクリプトスポリジウムの濃度を定量することを特徴とするクリプトスポリジウムのオーシスト濃度の検査方法である。
【0009】
【発明の実施の形態】
本発明の説明に先立ち、まずは用語を説明する。
・標的分子:検査したい微生物細胞の表面に露出したタンパク質や糖鎖、もしくは、微生物細胞内に存在するタンパク質、核酸、糖質、脂質等の生体成分のうち、検査に用いるプローブが特異的に結合しうる生体成分を意味する。
・プローブ:標的分子と結合しうる化合物。具体的には、抗体、レクチン、オリゴヌクレオチド等が挙げられる。
・蛍光プローブ:フルオレセイン、FITC[fluorescein isothiocyanate]、ローダミン、テキサスレッド等の蛍光化合物で修飾したプローブ。
本発明は、上下水道分野で特に問題視されている原虫クリプトスポリジウムについて、検査手順の流れに沿って以下に記載する。
【0010】
(1)標的分子の選定:クリプトスポリジウムは環境水中においては、スポロゾイドと呼ばれる感染性虫体を内包したオーシストの形態で存在しており、標的分子としては、▲1▼オーシスト外皮表面に露出した生体成分、▲2▼スポロゾイド表皮に露出した生体成分、▲3▼オーシストもしくはスポロゾイドの細胞破砕物から抽出した生体成分等が挙げられる。環境水中のクリプトスポリジウムの存在量を検査するためには▲1▼を標的分子として選定すればよいが、感染能力を保持したクリプトスポリジウムの存在量を評価するためには▲2▼を標的分子として選定すればよい。▲3▼の生体成分としては、DNAやRNA等の核酸、タンパク質、糖質、脂質等が挙げられるが、クリプトスポリジウムを限定的に検出するためには、標的分子の選定に熟慮する必要があり、例えば、クリプトスポリジウムに特徴的な遺伝子の塩基配列を選定すればよい。また、脱嚢時や感染・発症時に特徴的に発現する遺伝子やタンパク質を標的分子として選定すれば、感染能力を保持したクリプトスポリジウムの存在量を評価することができる。これらのうち、検査の容易さを考慮すると、▲1▼ないしは▲2▼が簡便である。
【0011】
(2)蛍光プローブの選定:前記した標的分子に特異的に結合するプローブとしては、抗体が挙げられる。抗体についてはクリプトスポリジウムのオーシスト外皮を抗原とした抗体が種々市販されており、入手の容易さや特異性の点で好適である。さらに、蛍光偏光度法においては、標的分子に対してできる限り多くの蛍光プローブが結合した方が検出感度が高まる可能性があるため、モノクローナル抗体よりはむしろポリクローナル抗体の方が好適である。
【0012】
プローブを標識する蛍光化合物は、FITC[fluorescein isothiocyanate] 挙げられる。プローブへの蛍光化合物の修飾は公知の方法で行うことができる。あるいは、蛍光染色等の他の用途のために市販されている蛍光抗体を用いることもできる。
【0013】
(3)被験水の調製:被験水中のクリプトスポリジウム・オーシスト濃度が10,000個/Lよりも低いことが予想される場合には、遠心分離、ろ過捕集、化学凝集沈殿などの公知の方法によって被験水中のクリプトスポリジウムを濃縮することが望ましい。
スポロゾイドもしくはその抽出物を標的分子として選定した場合には、公知の方法(例えば、Upton,S.J. (1994) ^A simple and reliable method of producing in vitro infection of Cryptosporidium parvum (Apicoplexa)", FEMS Microbiol. Lett, vol.118, p45 )で被験水を処理して、被験水中のオーシストをあらかじめ脱嚢させ、オーシスト中のスポロゾイドを遊離させればよい。
【0015】
(4)検査試薬の添加:被験水へ蛍光プローブを添加して、結合反応に供する。被験水へは、結合反応を助長・安定化する目的で種々の化合物(例えば、アルブミン、ポリビニールアルコール、ポリエチレングリコール、エチレンジアミン四酢酸塩、プロテアーゼインヒビター、リン酸緩衝液、トリス緩衝液、ヘペス緩衝液など)を必要に応じて添加してもよい。
【0016】
(5)結合反応:結合反応の条件は、標的分子とプローブの組合せを考慮して、至適な温度・時間を選定することができる。検査試薬を加えた後に速やかに蛍光偏光度計測を実施してもよいが、室温〜37℃に加温、もしくは、氷温〜15℃に冷却して、数分〜数時間反応させた後に蛍光偏光度を計測することで、結合反応を促進・安定化させることができ、所望の標的分子とプローブの組合せに応じて至適な条件を選定することができる。蛍光プローブの添加濃度は、予備検討によって至適化した濃度で添加することができる。核酸を標的分子とし、オリゴヌクレオチドをプローブとして用いる場合には、加熱とそれに続く徐冷によってアニーリングさせることができる。
【0017】
(6)蛍光偏光度の計測:蛍光偏光度の計測は、市販の蛍光偏光度計を使用することができる。
(7)データ解析:濃度が既知のオーシスト懸濁液を被験水として検量線を作成し、調べたい試料を被験水とした場合の蛍光偏光度の計測値と検量線とを比較することによって試料中のオーシスト濃度を推定することができる。
【0018】
【実施例】
既知量のクリプトスポリジウム・パルバム・オーシストを含んだ水試料を被験水として、抗クリプトスポリジウム抗体をプローブとして検査した。
クリプトスポリジウム懸濁液をPBS緩衝液で順次希釈して、1mLあたり0〜10,000個の範囲でオーシスト希釈懸濁液を調整した。該希釈懸濁液1mLに対して、BSA−PBS溶液[1mg−ウシ血清アルブミン;PBS緩衝液]を0.1mL添加して、更に、FITC標識した抗クリプトスポリジウム・モノクローナル抗体(和光純薬)を終濃度100pg/mLで添加し、37℃にて1分間保温した後に蛍光偏光度計(米国PanVera社 BEACON(商標))を用いて蛍光偏光度を測定した。
【0019】
結果を図1に示す。図1では、横軸にクリプトスポリジウム・オーシスト濃度を示し、縦軸に蛍光偏光度をオーシストを含まない被験水の計測値に対する相対値としてプロットした。本図から明らかなように、オーシストの濃度に依存して蛍光偏光度が高まった。
本実施例の結果より、クリプトスポリジウム・オーシスト数が10,000個以下の範囲においてその濃度に応じた定量評価が可能であることが明らかである。
【0020】
【発明の効果】
本発明によれば、従来法に比べて極めて簡便に水中の微生物量を定量・評価することができる。
本発明は、抗体をプローブとして目的の微生物の存在量を検査できるばかりでなく、微生物細胞もしくはその生体成分に結合可能な蛍光化合物をプローブとして用いることもできる
【図面の簡単な説明】
【図1】クリプトスポリジウムに関して本願の検査方法を用いて検出した実施例を示す。
[0001]
BACKGROUND OF THE INVENTION
Recently, the emergence of emerging or reviving waterborne infectious diseases caused by protozoan cryptosporidium or pathogenic E. coli O-157 has become a major social problem. In order to prevent outbreaks of these infectious diseases, it is essential to monitor the causative microorganisms in the food production process and water treatment process. In addition, when developing a new water treatment process for removing pathogenic microorganisms and supplying safe purified water, it is necessary to evaluate the presence or absence of causative microorganisms. The present invention relates to a rapid and simple method for examining microorganisms in water.
[0002]
[Prior art]
For example, there are protozoa such as Cryptosporidium and Giardia as emerging causative microorganisms of emerging aquatic infections (for example, Mitsuyoshi Hosaka (1998) “Aquatic protozoal infections—causative microorganisms and outbreaks”), water and wastewater, Vol. 40, No. 2, p. 11; Mitsumi Kaneko (1998) “Technology for detection and removal of protozoa and other pathogenic microorganisms”, water and waste water, Vol. 10, No. 4, p. 32, etc.). These protozoa exist in the form of cysts in cysts called oocysts or cysts in the environmental water. Cryptosporidium oocysts and Giardia cysts are the targets of the examination. Conventional testing methods include microscopy, immunological testing, and genetic testing.
[0003]
First, the microscopic observation method is a method in which microbial cells are stained with a dye or a fluorescent dye, and the number of microorganisms stained with the microscope or the fluorescent microscope is counted, and the cells are non-specifically stained regardless of the type of the microorganism. Therefore, it is possible to distinguish from other microorganisms (yeast, bacteria, etc.) in terms of form and size, but since skill is required to distinguish from closely related oocysts, it is generally easy to make an erroneous determination. It is said that.
Next, immunological examination methods include fluorescent antibody staining, flow cytometer analysis, fluorescence spectroscopic analysis, enzyme antibody method, Western analysis, and the like. The immunological test method can specifically detect only the target microorganism by using an antibody that specifically binds to the target microorganism or its biological component. Observation, expensive flow cytometer analysis equipment, staining procedures are complicated, and a sample containing a large amount of microorganisms is necessary. Therefore, it is not a satisfactory inspection method in terms of operability and quantitativeness.
[0004]
Furthermore, examples of genetic testing methods include Southern analysis, Northern analysis, RCR [polymerase chain reaction] analysis, RT-PCR [reverse transcription PCR] analysis, and the like. Genetic testing can detect microorganisms to be tested specifically if the gene of interest is fully considered, but requires specialized knowledge on genetic analysis, complicated testing procedures, and presence / absence of presence. Even if it can be determined, it is difficult to quantitatively evaluate the abundance.
[0005]
By the way, the fluorescence polarization method is known as a method for detecting the binding characteristics between biomolecules such as proteins and nucleic acid molecules (for example, Checovic, WJ et al., (1995) Fluorescence polarization: a new tool for cell and molecular biology, Nature, vol.375, p254). This method was first reported by Perrin in 1926 (Perrin, F. (1926) J. Phys. Rad., Vol. 1, p390) and has recently gained attention again. The measurement principle of the fluorescence polarization method is that when a solution in which fluorescent molecules are suspended is irradiated with fluorescent light having a uniform amplitude direction as incident light, the incident light is scattered by free movement of the fluorescent molecules, and reflected light in all amplitude directions is generated. However, in the state where the free movement of the fluorescent molecule is restrained by immobilization such as binding to the target molecule, the degree of polarization ( The binding state (binding amount or binding strength) between the fluorescent molecule and the target molecule can be examined using the degree of polarization) as an index. In other words, if the target molecule that can bind to the fluorescent molecule is not present in the test water, the fluorescent molecule is in a free motion state and the degree of polarization is very small, but the target molecule that binds to the fluorescent molecule is present in the test water. Since the fluorescence molecule is immobilized by the binding of the fluorescence molecule and the target molecule and the movement state is reduced, the degree of polarization increases, so the amount of the target molecule in the test water is estimated by measuring the change in the degree of polarization. it can.
[0006]
Examples of application of this fluorescence polarization method (for example, Mineno, J. (1997) Protein, Nucleic Acid, Enzyme, Vol. 42, No. 1, p. 77) Analysis of interaction between protein molecules, such as measurement of reactivity between degrading enzyme and its substrate protein molecule, analysis of interaction between nucleic acid molecules such as DNA hybridization, measurement of binding between DNA and DNA-binding protein, protein and sugar chain There is an interaction analysis between different kinds of molecules such as measurement of binding. However, all of these cases are related to isolated and purified biomolecules, and no examples of application to macromolecules such as microbial cells have been reported.
[0007]
[Problems to be solved by the invention]
Conventionally known methods for testing microorganisms (especially protozoa such as Cryptosporidium) are not satisfactory in terms of ease of operation and detection accuracy, as described above. In addition, although there is an application example regarding a biomolecule isolated and purified with respect to the fluorescence polarization degree method, there is no application example to a macromolecule such as a microbial cell. Therefore, an object of the present invention is to provide a method for simply and rapidly examining the presence and concentration of microorganisms such as protozoa and pathogenic bacteria in test water based on the principle of fluorescence polarization.
[0008]
[Means for Solving the Problems]
Conventionally, with regard to the fluorescence polarization method, which was applied only to isolated and purified biomolecules, by optimizing the selection of fluorescent probes, pretreatment conditions for test water, binding solvent conditions, polarization measurement conditions, etc. Organisms such as microorganisms and cells can be detected and quantified. That is, the present invention relates to a biological component exposed on the surface of cryptosporidium oocysts or a biological component exposed on the sporozoid epidermis of cryptosporidium as a target molecule, and an anti-cryptospodium monoclonal antibody that can bind to the target molecule or fluorescence polarization to measure total fluorescence probe having a modified polyclonal antibodies FITC (fluorescein isothiocyanate) of a fluorescent material was added to the test water, determining the concentration of Cryptosporidium included from the variation of the fluorescence polarization to the subject water A method for inspecting the oocyst concentration of Cryptosporidium, characterized in that:
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Prior to the description of the present invention, terms will be described first.
・ Target molecule: Probes used for testing specifically bind among proteins and sugar chains exposed on the surface of microbial cells to be tested, or biological components such as proteins, nucleic acids, carbohydrates, and lipids present in microbial cells. Means a possible biological component.
Probe: A compound that can bind to a target molecule. Specific examples include antibodies, lectins, oligonucleotides and the like.
Fluorescent probe: a probe modified with a fluorescent compound such as fluorescein, FITC [fluorescein isothiocyanate], rhodamine, Texas red, etc.
The present invention is, for protozoa cryptosporidium being particularly problematic in Sewage art are described below along the flow of the inspection procedure.
[0010]
(1) Selection of target molecule: Cryptosporidium is present in the form of oocysts encapsulating infectious worms called sporozoids in environmental water, and as target molecules, (1) living bodies exposed on the surface of oocyst skin Ingredients, {circle around (2)} biological components exposed on the sporozoid epidermis, {circle around (3)} biological components extracted from oocysts or sporozoid cell debris. In order to examine the abundance of Cryptosporidium in environmental water, (1) should be selected as a target molecule, but in order to evaluate the abundance of Cryptosporidium that retains infectivity, (2) is used as a target molecule. It only has to be selected. The biological component (3) includes nucleic acids such as DNA and RNA, proteins, carbohydrates, lipids, etc., but in order to detect Cryptosporidium in a limited way, it is necessary to consider the selection of the target molecule. For example, the base sequence of a gene characteristic of Cryptosporidium may be selected. In addition, if a gene or protein that is characteristically expressed at the time of decapsulation or infection / onset is selected as a target molecule, the abundance of Cryptosporidium that retains the ability to infect can be evaluated. Among these, considering the ease of inspection, (1) or (2) is simple.
[0011]
(2) fluorescent probes Selection of: a probe that binds specifically to a target molecule wherein the antibody and the like. Antibodies The antibody that Cryptosporidium oocysts skin and antigen are various commercially available, it is preferable in terms of ease and specificity of availability. Furthermore, in the fluorescence polarization method, the detection sensitivity may be increased when as many fluorescent probes as possible bind to the target molecule. Therefore, a polyclonal antibody is preferable to a monoclonal antibody rather than a monoclonal antibody.
[0012]
Fluorescent compounds for labeling probes include F ITC [fluorescein isothiocyanate]. Modification of the fluorescent compound to the probe can be performed by a known method. Alternatively, commercially available fluorescent antibodies for other uses such as fluorescent staining can also be used.
[0013]
(3) Preparation of test water: If the Cryptosporidium oocyst concentration in the test water is expected to be lower than 10,000 / L, test using known methods such as centrifugation, filtration and collection, chemical coagulation precipitation, etc. It is desirable to concentrate Cryptosporidium in water.
When sporozoide or an extract thereof is selected as a target molecule, a known method (for example, Upton, SJ (1994) ^ A simple and reliable method of producing in vitro infection of Cryptosporidium parvum (Apicoplexa) ", FEMS Microbiol. Lett , vol.118, p45), the oocysts in the test water may be removed in advance to release the sporozoid in the oocysts.
[0015]
(4) Addition of test reagent: A fluorescent probe is added to the test water and subjected to a binding reaction. For test water, various compounds (for example, albumin, polyvinyl alcohol, polyethylene glycol, ethylenediaminetetraacetate, protease inhibitor, phosphate buffer, Tris buffer, Hepes buffer for the purpose of promoting and stabilizing the binding reaction. Etc.) may be added as necessary.
[0016]
(5) Binding reaction: Optimum temperature and time can be selected as the conditions for the binding reaction in consideration of the combination of the target molecule and the probe. Fluorescence polarization measurement may be carried out immediately after adding a test reagent. However, the fluorescence is measured after heating at room temperature to 37 ° C or cooling to ice temperature to 15 ° C and reacting for several minutes to several hours. By measuring the degree of polarization, the binding reaction can be promoted and stabilized, and optimal conditions can be selected according to the desired combination of target molecule and probe. The fluorescent probe can be added at a concentration optimized by preliminary examination. When a nucleic acid is used as a target molecule and an oligonucleotide is used as a probe, it can be annealed by heating and subsequent slow cooling.
[0017]
(6) Measurement of fluorescence polarization degree: A commercially available fluorescence polarimeter can be used for measurement of fluorescence polarization degree.
(7) Data analysis: Create a calibration curve using oocyst suspension with a known concentration as test water, and compare the measured value of fluorescence polarization with the calibration curve when the sample to be examined is test water. The oocyst concentration in the medium can be estimated.
[0018]
【Example】
A water sample containing a known amount of Cryptosporidium parvum oocyst was tested as test water and anti-Cryptosporidium antibody as a probe.
Cryptosporidium suspension was sequentially diluted with PBS buffer to prepare oocyst-diluted suspension in the range of 0 to 10,000 per mL. 0.1 mL of BSA-PBS solution [1 mg-bovine serum albumin; PBS buffer] was added to 1 mL of the diluted suspension, and FITC-labeled anti-cryptospodium monoclonal antibody (Wako Pure Chemical Industries) was further added. After adding at a final concentration of 100 pg / mL and incubating at 37 ° C. for 1 minute, the degree of fluorescence polarization was measured using a fluorescence polarimeter (BEACON ™, Pan Vera, USA).
[0019]
The results are shown in FIG. In FIG. 1, the horizontal axis represents Cryptosporidium oocyst concentration, and the vertical axis represents the degree of fluorescence polarization as a relative value with respect to the measured value of test water not containing oocyst. As is clear from this figure, the degree of fluorescence polarization increased depending on the concentration of oocysts.
From the results of this example, it is clear that quantitative evaluation according to the concentration is possible in the range where the number of Cryptosporidium oocysts is 10,000 or less.
[0020]
【The invention's effect】
According to the present invention, the amount of microorganisms in water can be quantified and evaluated extremely easily compared to the conventional method.
The present invention can not only test the abundance of a target microorganism using an antibody as a probe, but also can use a fluorescent compound capable of binding to a microorganism cell or a biological component thereof as a probe .
[Brief description of the drawings]
FIG. 1 shows an embodiment of Cryptosporidium detected using the inspection method of the present application.

Claims (1)

クリプトスポリジウム (Cryptosporidium) のオーシスト外皮表面に露出した生体成分、又は、クリプトスポリジウムのスポロゾイド表皮に露出した生体成分を標的分子とし、前記標的分子に結合しうる抗クリプトスポリジウム・モノクロナール抗体又はポリクロナール抗体を蛍光物質のFITC( fluorescein isothiocyanate で修飾した蛍光プローブを被験水に添加して蛍光偏光度を計測し、該蛍光偏光度の変化量から被験水中に含まれるクリプトスポリジウムの濃度を定量することを特徴とするクリプトスポリジウムのオーシスト濃度の検査方法。 Cryptosporidium (Cryptosporidium) biological components exposed to oocysts envelope surface of, or, a biological component exposed to sporozoite epidermis of Cryptosporidium to a target molecule, the anti-Cryptosporidium monoclonal or polyclonal antibodies capable of binding to the target molecule it fluorescent probes modified with a fluorescent substance FITC (fluorescein isothiocyanate) was added to the test water measuring fluorescence polarization photometer, to quantify the concentration of Cryptosporidium included in the test water from the variation of the fluorescence polarization An inspection method for oocyst concentration of Cryptosporidium, which is a feature .
JP12183499A 1999-04-28 1999-04-28 Inspection method of oocyst concentration of Cryptosporidium Expired - Fee Related JP4197797B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12183499A JP4197797B2 (en) 1999-04-28 1999-04-28 Inspection method of oocyst concentration of Cryptosporidium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12183499A JP4197797B2 (en) 1999-04-28 1999-04-28 Inspection method of oocyst concentration of Cryptosporidium

Publications (2)

Publication Number Publication Date
JP2000310641A JP2000310641A (en) 2000-11-07
JP4197797B2 true JP4197797B2 (en) 2008-12-17

Family

ID=14821095

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12183499A Expired - Fee Related JP4197797B2 (en) 1999-04-28 1999-04-28 Inspection method of oocyst concentration of Cryptosporidium

Country Status (1)

Country Link
JP (1) JP4197797B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016111941A (en) * 2014-12-11 2016-06-23 アズビル株式会社 Detector of microorganism
JP2016111940A (en) * 2014-12-11 2016-06-23 アズビル株式会社 Detector of microorganism having metabolic activity
JP2022000003A (en) * 2020-06-19 2022-01-04 三菱重工業株式会社 Nucleic acid extraction method and water treatment system for organism

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3422402B2 (en) * 1996-07-05 2003-06-30 株式会社荏原製作所 Water pathogen microbe measurement method
JPH10211000A (en) * 1997-01-30 1998-08-11 Shimadzu Corp Detection of bacteria
US6146838A (en) * 1997-03-18 2000-11-14 Igen International, Inc. Detecting water-borne parasites using electrochemiluminescence
JPH1118767A (en) * 1997-07-07 1999-01-26 Wako Pure Chem Ind Ltd New monoclonal antibody and its use
CA2270233A1 (en) * 1997-09-05 1999-03-18 Matsushita Electric Industrial Co., Ltd. Fluorescence polarization method

Also Published As

Publication number Publication date
JP2000310641A (en) 2000-11-07

Similar Documents

Publication Publication Date Title
EP2511708B1 (en) Highly multiplexed particle-based assays
JP2009540326A (en) Increased specificity of analyte detection by measuring bound and unbound labels
JP7334989B2 (en) ANALYTE DETECTION AND METHOD THEREOF
Huang et al. Bacteria encapsulation and rapid antibiotic susceptibility test using a microfluidic microwell device integrating surface-enhanced Raman scattering
Dursun et al. Surface plasmon resonance aptasensor for Brucella detection in milk
Zhang et al. Microfluidic flow cytometry for blood-based biomarker analysis
KR101862439B1 (en) Immunoassay for detection of specific nucleic acid sequences such as mirnas
JP4197797B2 (en) Inspection method of oocyst concentration of Cryptosporidium
US10422806B1 (en) Methods for improving assays of biological samples
EP2261379A1 (en) Method and system for detecting and/or quantifying bacteriophages, use of a microelectronic sensor device for detecting said bacteriophages and microelectronic sensor device for implementing said method
WO2021209565A2 (en) In-vitro method and device for detecting a target nucleic acid and/or other macromolecules (such as peptides, proteins, carbohydrates or lipids)
Liao et al. The Microfluidic Microwell Device Integrating Surface Enhanced Raman Scattering for Bacteria Enrichment and in Situ Antibiotic Susceptibility Test
CN1285737C (en) Process for testing SARS virus genome segment by silicon shell nano particle
TWI825567B (en) Method for detecting nucleic acid sample
AU2021102162A4 (en) Renewable universal terahertz metamaterial sensor and method for quickly detecting pathogenic bacteria and drug resistance genes
EP3929307A1 (en) Methods for detecting the presence of sepsis
CN109932513B (en) Application of RPPA and PWG in preparation of respiratory tract pathogen detection product
EP3645734B1 (en) A method for quantifying the cultivability of individual bacterial cells using culture independent parameters
Salami et al. Aptamers-Based Gold-Micro-Array for High-Selective Detection of Bacteria Using Fluorescence Microscopy
Chen et al. Laboratory Diagnostic Techniques and Methods for Infectious and Inflammatory Diseases of the Central Nervous System
WO2021114040A1 (en) Non-amplified nucleic acid molecule detection kit and use method therefor
Chatterji et al. Common Techniques Used for Automated Diagnosis in Medical Microbiology
RU2430163C1 (en) Method of combined immunologic and genetic cell investigation
KR20200042511A (en) Method and apparatus for analyzing nucleic acid
JP2006141352A (en) Method for measuring microorganism

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050913

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20061106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061108

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20061222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070618

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070626

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080311

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080902

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080930

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121010

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121010

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121010

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131010

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131010

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131010

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees