JP4197088B2 - Low density and low gas permeability hexagonal boron nitride sintered body and method for producing the same - Google Patents

Low density and low gas permeability hexagonal boron nitride sintered body and method for producing the same Download PDF

Info

Publication number
JP4197088B2
JP4197088B2 JP2000167147A JP2000167147A JP4197088B2 JP 4197088 B2 JP4197088 B2 JP 4197088B2 JP 2000167147 A JP2000167147 A JP 2000167147A JP 2000167147 A JP2000167147 A JP 2000167147A JP 4197088 B2 JP4197088 B2 JP 4197088B2
Authority
JP
Japan
Prior art keywords
sintered body
boron nitride
gas
low
diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000167147A
Other languages
Japanese (ja)
Other versions
JP2001348276A (en
Inventor
正晃 海賀
幹敏 佐藤
卓 川崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP2000167147A priority Critical patent/JP4197088B2/en
Publication of JP2001348276A publication Critical patent/JP2001348276A/en
Application granted granted Critical
Publication of JP4197088B2 publication Critical patent/JP4197088B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、低密度かつ低ガス透過性六方晶窒化硼素焼結体及びその製造方法に関するものである。
【0002】
【従来の技術】
六方晶窒化硼素焼結体(以下、「hBN焼結体」という。)は、耐熱性、熱伝導性、潤滑性、離型性、耐食性等に優れているため、様々な用途に使用されている。窒化硼素粉末は難焼結性であるために、hBN焼結体の多くはホットプレス法で製造されているが、大型形状品、複雑形状品では、常圧焼結法が採用される。
【0003】
hBN焼結体の一用途として、高温水素ガス雰囲気下で用いられる治具がある。この場合、水素ガスがhBN焼結体中に侵入し、そこに存在する酸素と反応して系内の水分濃度を上昇させる。高温雰囲気下に水分が存在すると、発熱体の劣化や被処理物の腐食を促進することとなるので、好ましくない。
【0004】
hBN焼結体のガス透過量を抑えるためには、hBN焼結体の開気孔率を低くする、平均気孔径を小さくする、気孔径の大きい気孔を減少させる、等の方法が考えられ、こられはホットプレス法で焼結することで実現することができる。従って、ホットプレス品は高密度かつ低ガス透過性のhBN焼結体となる。一方、従来の常圧hBN焼結法では、焼成時の体積膨張により気孔率が増加するため、低密度かつ高ガス透過性のhBN焼結体となってしまう。
【0005】
しかしながら、ホットプレス法では、大型形状品、複雑形状品を得ることが設備的、コスト的に困難であるため、これらの形状品を得るためには常圧焼結法で行わざるを得ないのが現状である。
また、大型形状品においては、高密度となると重量が増えるため、作業性が不利となる。従って、低密度かつ低ガス透過性のhBN焼結体が望まれている。
【0006】
【発明が解決しようとする課題】
本発明は、上記に鑑みてなされたものであり、高温水素ガス雰囲気下で用いられる治具として好適な、低密度かつ低ガス透過性のhBN焼結体及びその製造方法を提供することを目的とする。
【0007】
【課題を解決するための手段】
すなわち、本発明は、密度1.5g/cm以下、下記の測定条件におけるガス透過量15cm/min以下の低密度かつ低ガス透過性hBN焼結体である。ガス透過量の測定条件は、温度24℃、相対湿度70%の大気中において、ガス透過部の形状を直径55mm、厚さ5mmとしたhBN焼結体の両面間に98kPaの圧力差を設け、この時ガス透過部を通過する空気の1分間当たりの量を温度0℃、圧力101.3kPaにおける体積に換算した絶対量である。また、本発明は、平均粒径(D50)が4.4〜8.1μmで、累積質量10%径(D10)と90%径(D90)との関係が、D90−D10≦25μmである六方晶窒化硼素粉末を成形後、1850℃以上の非酸化性雰囲気下、常圧焼結することを特徴とするhBN焼結体の製造方法である。
【0008】
【発明の実施の形態】
以下、更に詳しく本発明について説明する。
【0009】
本発明において、hBN焼結体の密度とガス透過量とを上記のように限定したのは、数多くの先行技術文献を調査し、その製造方法も含め、得られたhBN焼結体の両特性を精査したところ、本発明で限定された領域のhBN焼結体は見いだし得なかったことに基づいている。更には、ガス透過量が15cm3/minを超えると、上記したように系内の水分濃度が上昇して、発熱体の劣化等が促進される結果となることによる。
【0010】
本発明におけるガス透過量は、温度24℃、相対湿度70%の大気中において、ガス透過部の形状を直径55mm、厚さ5mmとしたhBN焼結体の両面間に98kPaの圧力差を設け、この時ガス透過部を通過する空気の1分間当たりの量を、温度0℃、圧力101.3kPaにおける体積に換算した絶対量として表記した。ガス透過量を測定するサンプルの大きさに特に制限はないが、サンプルの厚みが20mm以上では、殆どガスが透過しないので、10mm以下で測定することが望ましい。ガス透過量はガス透過部の面積に比例し(例えば測定サンプルのガス透過部の直径が55mmであるとき、その面積は23.76cm2となる)、又透過部の厚みに反比例する。上記とは異なる大きさ、形状のサンプルを用いてガス透過量を測定した場合においても、面積比及び厚み比から換算した値で、比較することが可能である。
【0011】
本発明のhBN焼結体の密度は、重量軽減を行うため密度1.5g/cm3以下であるが、耐久性の点からこの範囲内できるだけ高いことが望ましい。
【0012】
本発明のhBN焼結体は、原料の六方晶窒化硼素粉末として、平均粒径(D50)が4.4〜8.1μmで、累積質量10%径(D10)と90%径(D90)との関係が、D90−D10≦25μmであるものを用いて成形後、度1850℃以上の非酸化性雰囲気下、例えば窒素ガス、水素ガス、アンモニアガス、アルゴンガス等の雰囲気下で常圧焼結することによって製造することができる。
【0013】
原料の六方晶窒化硼素粉末の平均粒径(D50)が10μm超、又はD90−D10>25μmであると、常圧焼結体の粒子径が増大して開気孔が増加するため、ガス透過量が15cm3/minを超えてしまう。
【0014】
【実施例】
以下、実施例と比較例をあげて更に具体的に本発明を説明する。
【0015】
実施例1〜2 比較例1〜4
表1のようにD10、D50、D90が種々異なる六方晶窒化硼素粉を粉砕・分級によって調製し、4.9MPaで金型成形、更に98MPaでCIP成形を行った。それをアルゴン雰囲気下、2100℃、2時間の常圧焼結を行い、100×100×10(mm)のhBN焼結体を製造した。
【0016】
なお、六方晶窒化硼素粉末粒度分布の測定は、マイクロトラック(LEEDS&NORTHRUP)社製「MODEL−7997−20」)を用いてレーザー回折散乱法により行った。
またガス透過量の測定は、焼結体から直径61mm×厚さ5mmのサンプルを切り出し、ホルダーに固定してガス透過部の形状を直径55mm、厚さ5mmとした後、hBN焼結体の両面間に98kPaの圧力差を設け、この時ガス透過部を通過する空気の1分間当たりの量を、温度0℃、圧力101.3kPaにおける体積に換算した。サンプルの側面からのガス透過を防ぐために、側面にアルミテープを貼付して測定した。
それらの結果を表1に示す。
【0017】
【表1】

Figure 0004197088
【0018】
表1から、本発明の実施例によって、低密度かつ低ガス透過性のhBN焼結体を製造できたことがわかる。特に、実施例1のhBN焼結体は、ガス透過量が9.0cm3/minと比較例3のホットプレス品と同程度であり、かつ密度が1.22g/cm3とホットプレス品よりも小さいものであった。
【0019】
【発明の効果】
本発明によれば、密度が1.5g/cm3以下で、かつガス透過量が15cm3/min以下のhBN焼結体を提供することができる。また、このようなhBN焼結体を容易に製造することができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a low density and low gas permeability hexagonal boron nitride sintered body and a method for producing the same.
[0002]
[Prior art]
Hexagonal boron nitride sintered bodies (hereinafter referred to as “hBN sintered bodies”) are excellent in heat resistance, thermal conductivity, lubricity, release properties, corrosion resistance, etc., and are therefore used in various applications. Yes. Since boron nitride powder is difficult to sinter, most of the hBN sintered bodies are manufactured by the hot press method, but the normal pressure sintering method is adopted for large-sized products and complex-shaped products.
[0003]
One application of the hBN sintered body is a jig used in a high-temperature hydrogen gas atmosphere. In this case, hydrogen gas penetrates into the hBN sintered body and reacts with oxygen present therein to increase the water concentration in the system. Existence of moisture in a high temperature atmosphere is not preferable because deterioration of the heating element and corrosion of the object to be processed are promoted.
[0004]
In order to suppress the gas permeation amount of the hBN sintered body, methods such as lowering the open porosity of the hBN sintered body, reducing the average pore diameter, and reducing the pores having a large pore diameter are conceivable. This can be realized by sintering by hot pressing. Therefore, the hot-pressed product becomes a hBN sintered body having a high density and a low gas permeability. On the other hand, in the conventional atmospheric pressure hBN sintering method, the porosity increases due to volume expansion during firing, resulting in a low density and high gas permeability hBN sintered body.
[0005]
However, in the hot press method, it is difficult to obtain a large shape product and a complicated shape product in terms of equipment and cost, and in order to obtain these shape products, it is unavoidable to use an atmospheric pressure sintering method. Is the current situation.
Moreover, in a large-sized product, since the weight increases when the density is high, workability is disadvantageous. Accordingly, a low density and low gas permeability hBN sintered body is desired.
[0006]
[Problems to be solved by the invention]
The present invention has been made in view of the above, and an object of the present invention is to provide a low-density and low-gas-permeable hBN sintered body suitable as a jig used in a high-temperature hydrogen gas atmosphere and a method for producing the same. And
[0007]
[Means for Solving the Problems]
That is, the present invention is a low density and low gas permeability hBN sintered body having a density of 1.5 g / cm 3 or less and a gas permeation amount of 15 cm 3 / min or less under the following measurement conditions . The gas permeation amount was measured under a pressure difference of 98 kPa between both surfaces of the hBN sintered body in which the gas permeation portion had a diameter of 55 mm and a thickness of 5 mm in the atmosphere at a temperature of 24 ° C. and a relative humidity of 70%. At this time, the amount per minute of the air passing through the gas permeable portion is an absolute amount converted into a volume at a temperature of 0 ° C. and a pressure of 101.3 kPa. In the present invention, the average particle size (D 50 ) is 4.4 to 8.1 μm, and the relationship between the cumulative mass 10% diameter (D 10 ) and 90% diameter (D 90 ) is D 90 -D 10. A method for producing an hBN sintered body, comprising forming hexagonal boron nitride powder of ≦ 25 μm and then sintering under normal pressure in a non-oxidizing atmosphere at 1850 ° C. or higher .
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in more detail.
[0009]
In the present invention, the density and the gas permeation amount of the hBN sintered body are limited as described above. Many characteristics of the obtained hBN sintered body, including the manufacturing method thereof, are investigated. This is based on the fact that the hBN sintered body in the region limited by the present invention could not be found. Furthermore, when the gas permeation amount exceeds 15 cm 3 / min, the moisture concentration in the system increases as described above, resulting in the promotion of deterioration of the heating element.
[0010]
The gas permeation amount in the present invention is a pressure difference of 98 kPa between both surfaces of the hBN sintered body in which the shape of the gas permeation part is 55 mm in diameter and 5 mm in thickness in the atmosphere at a temperature of 24 ° C. and a relative humidity of 70%. At this time, the amount of air passing through the gas permeable part per minute was expressed as an absolute amount converted to a volume at a temperature of 0 ° C. and a pressure of 101.3 kPa. The size of the sample for measuring the gas permeation amount is not particularly limited. However, when the thickness of the sample is 20 mm or more, almost no gas permeates, so it is desirable to measure at 10 mm or less. The gas permeation amount is proportional to the area of the gas permeable part (for example, when the diameter of the gas permeable part of the measurement sample is 55 mm, the area is 23.76 cm 2 ), and is inversely proportional to the thickness of the permeable part. Even when the gas permeation amount is measured using a sample having a size and shape different from the above, it is possible to compare with a value converted from the area ratio and the thickness ratio.
[0011]
The density of the hBN sintered body of the present invention is 1.5 g / cm 3 or less in order to reduce the weight, but it is desirable that it be as high as possible within this range from the viewpoint of durability.
[0012]
The hBN sintered body of the present invention has an average particle diameter (D 50 ) of 4.4 to 8.1 μm as a raw material hexagonal boron nitride powder, a cumulative mass of 10% diameter (D 10 ) and 90% diameter (D relationship with 90), after molding by using what is D 90 -D 10 ≦ 25 [mu] m, under a non-oxidizing atmosphere or temperature 1850 ° C., for example, nitrogen gas, hydrogen gas, ammonia gas, an atmosphere such as argon gas It can be manufactured by performing normal pressure sintering under.
[0013]
If the average particle diameter (D 50 ) of the raw hexagonal boron nitride powder is more than 10 μm or D 90 -D 10 > 25 μm, the particle diameter of the atmospheric sintered body increases and the open pores increase. The gas permeation amount exceeds 15 cm 3 / min.
[0014]
【Example】
Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples.
[0015]
Examples 1-2 Comparative Examples 1-4
As shown in Table 1, hexagonal boron nitride powders having different D 10 , D 50 , and D 90 were prepared by pulverization and classification, followed by die molding at 4.9 MPa and further CIP molding at 98 MPa. This was sintered under normal pressure at 2100 ° C. for 2 hours in an argon atmosphere to produce a 100 × 100 × 10 (mm) hBN sintered body.
[0016]
The particle size distribution of the hexagonal boron nitride powder was measured by a laser diffraction scattering method using “MODEL-7997-20” manufactured by LEEDS & NORTHRUP.
The gas permeation amount was measured by cutting a 61 mm diameter x 5 mm thickness sample from the sintered body and fixing it to a holder to make the gas permeation portion 55 mm in diameter and 5 mm thick, and then both sides of the hBN sintered body. A pressure difference of 98 kPa was provided between them, and the amount of air per minute passing through the gas permeation unit at this time was converted to a volume at a temperature of 0 ° C. and a pressure of 101.3 kPa. In order to prevent gas permeation from the side surface of the sample, measurement was performed by attaching an aluminum tape to the side surface.
The results are shown in Table 1.
[0017]
[Table 1]
Figure 0004197088
[0018]
From Table 1, it can be seen that low density and low gas permeability hBN sintered bodies could be produced by the examples of the present invention. In particular, the hBN sintered body of Example 1 has a gas permeation amount of 9.0 cm 3 / min, which is similar to that of the hot press product of Comparative Example 3, and a density of 1.22 g / cm 3, which is higher than that of the hot press product. Was also small.
[0019]
【The invention's effect】
According to the present invention, an hBN sintered body having a density of 1.5 g / cm 3 or less and a gas permeation amount of 15 cm 3 / min or less can be provided. Moreover, such an hBN sintered body can be easily manufactured.

Claims (2)

密度1.5g/cm以下、下記の測定条件におけるガス透過量15cm/min以下の低密度かつ低ガス透過性六方晶窒化硼素焼結体。
ガス透過量の測定条件
温度24℃、相対湿度70%の大気中において、ガス透過部の形状を直径55mm、厚さ5mmとしたhBN焼結体の両面間に98kPaの圧力差を設け、この時ガス透過部を通過する空気の1分間当たりの量を温度0℃、圧力101.3kPaにおける体積に換算した絶対量。
A low-density and low-gas-permeable hexagonal boron nitride sintered body having a density of 1.5 g / cm 3 or less and a gas permeation amount of 15 cm 3 / min or less under the following measurement conditions .
Gas permeation measurement conditions
In the atmosphere at a temperature of 24 ° C. and a relative humidity of 70%, a pressure difference of 98 kPa is provided between both surfaces of the hBN sintered body having a gas permeable portion with a diameter of 55 mm and a thickness of 5 mm, and passes through the gas permeable portion at this time. Absolute amount of air per minute converted to volume at a temperature of 0 ° C. and a pressure of 101.3 kPa.
平均粒径(D50)が4.4〜8.1μmで、累積質量10%径(D10)と90%径(D90)との関係が、D90−D10≦25μmである六方晶窒化硼素粉末を成形後、1850℃以上の非酸化性雰囲気下で焼結することを特徴とする六方晶窒化硼素焼結体の製造方法。Hexagonal crystal having an average particle diameter (D 50 ) of 4.4 to 8.1 μm and a relationship between a cumulative mass of 10% diameter (D 10 ) and a 90% diameter (D 90 ) of D 90 −D 10 ≦ 25 μm A method for producing a hexagonal boron nitride sintered body, wherein the boron nitride powder is molded and then sintered in a non-oxidizing atmosphere at 1850 ° C. or higher .
JP2000167147A 2000-06-05 2000-06-05 Low density and low gas permeability hexagonal boron nitride sintered body and method for producing the same Expired - Lifetime JP4197088B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000167147A JP4197088B2 (en) 2000-06-05 2000-06-05 Low density and low gas permeability hexagonal boron nitride sintered body and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000167147A JP4197088B2 (en) 2000-06-05 2000-06-05 Low density and low gas permeability hexagonal boron nitride sintered body and method for producing the same

Publications (2)

Publication Number Publication Date
JP2001348276A JP2001348276A (en) 2001-12-18
JP4197088B2 true JP4197088B2 (en) 2008-12-17

Family

ID=18670341

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000167147A Expired - Lifetime JP4197088B2 (en) 2000-06-05 2000-06-05 Low density and low gas permeability hexagonal boron nitride sintered body and method for producing the same

Country Status (1)

Country Link
JP (1) JP4197088B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AR033485A1 (en) 2001-09-25 2003-12-26 Otsuka Pharma Co Ltd MEDICINAL SUBSTANCE OF ARIPIPRAZOL OF LOW HYGROSCOPICITY AND PROCESS FOR THE PREPARATION OF THE SAME
PE20030445A1 (en) 2001-09-25 2003-07-26 Otsuka Pharma Co Ltd ARIPIPRAZOLE MEDICINAL SUBSTANCE OF LOW HYGROSCOPICITY AND PROCESS FOR THE PREPARATION OF THE SAME
DE102013224308B4 (en) * 2013-11-27 2017-02-02 Kennametal Inc. Sintered boron nitride body and method of making a sintered boron nitride body

Also Published As

Publication number Publication date
JP2001348276A (en) 2001-12-18

Similar Documents

Publication Publication Date Title
CN101323524B (en) Preparation of oriented hole silicon carbide porous ceramic
JP4219325B2 (en) Method for producing porous titanium material article
US10919811B2 (en) Aluminum-silicon-carbide composite and method of manufacturing same
CN104926309B (en) A kind of without boron or the preparation method of the compact silicon carbide ceramic of rare earth element
JPS589880A (en) Substantially pore-less formed body comprising polycrystal alpha- and/or beta-silicon carbide and manufacture
JP4197088B2 (en) Low density and low gas permeability hexagonal boron nitride sintered body and method for producing the same
Bellosi et al. The influence of microstructure on the thermal conductivity of aluminium nitride
CN110885254A (en) Porous Ti3SiC2/SiC composite material and preparation method thereof
JP2002356384A (en) Silicon carbide based porous compact and method of manufacturing the same
JP3498989B2 (en) Silicon carbide based composite material and method for producing the same
CN116981650A (en) Carrier for ceramic firing
Yuan et al. Effect of pore-forming agent on porous reaction-bonded silicon nitride ceramics
KR20170109515A (en) Porous silicon nitride sintered body and method for manufacturing the same
JP2007131528A (en) Method for manufacturing non-oxide porous ceramic material
KR101017928B1 (en) Titanium diboride sintered body with metal as asintering aid and method for manufacture thereof
EP2479158A1 (en) Silicon carbide honeycomb and method of preparing the same
JP2003002759A (en) Ceramics porous body and production method therefor
CN113427001A (en) Method for preparing porous sintered body and porous sintered body
JP2005336539A (en) Porous sintered compact and its production method
JPS6042188B2 (en) Manufacturing method of silicon nitride molded body
JP4247957B2 (en) Method for producing non-oxide porous ceramic material mainly composed of silicon
JP2715794B2 (en) Method for producing molded body for producing cubic boron nitride sintered body
CN110759737B (en) Preparation method of high-performance silicon nitride-based composite ceramic
JP4963157B2 (en) Ceramic composite and method for producing the same
Das et al. Effects of pore size on electrical and thermal properties of porous SiC ceramics

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080410

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080520

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080718

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080924

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080924

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4197088

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121010

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121010

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131010

Year of fee payment: 5

EXPY Cancellation because of completion of term