JP4195932B2 - Control method of clathrate formation using trehalose - Google Patents

Control method of clathrate formation using trehalose Download PDF

Info

Publication number
JP4195932B2
JP4195932B2 JP2003321969A JP2003321969A JP4195932B2 JP 4195932 B2 JP4195932 B2 JP 4195932B2 JP 2003321969 A JP2003321969 A JP 2003321969A JP 2003321969 A JP2003321969 A JP 2003321969A JP 4195932 B2 JP4195932 B2 JP 4195932B2
Authority
JP
Japan
Prior art keywords
gas
trehalose
liquid
organic solvent
formation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003321969A
Other languages
Japanese (ja)
Other versions
JP2005089331A (en
Inventor
努 内田
育子 池田
亮 大村
孝郎 海老沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2003321969A priority Critical patent/JP4195932B2/en
Publication of JP2005089331A publication Critical patent/JP2005089331A/en
Application granted granted Critical
Publication of JP4195932B2 publication Critical patent/JP4195932B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

本発明は、水とガス体および/または溶剤等の液体とからの包接化合物の形成をトレハロースを添加することにより抑制する方法、該方法を適用したガス体および/または溶剤等の液体の輸送管の閉塞防止方法、該方法を適用したガス体および/または溶剤等の液体の輸送・貯蔵方法に関する。   The present invention relates to a method for suppressing the formation of an inclusion compound from water and a liquid such as a gas body and / or a solvent by adding trehalose, and transportation of a liquid such as a gas body and / or a solvent to which the method is applied. The present invention relates to a method for preventing clogging of a pipe and a method for transporting and storing a liquid such as a gas body and / or a solvent to which the method is applied.

包接化合物は、メタンやプロパンなどの炭化水素ガス、炭酸ガスや硫化水素などの酸性ガス、及びネオンやクリプトンなどの希ガス等やHFC-32やHFC-134aなどのフルオロカーボン、テトラヒドロフランやアセトンなどの有機溶剤等の分子(ゲスト分子と呼ぶ)と水(ホスト分子とも呼ばれる)とが低温高圧条件下で反応し、水(あるいは氷)への溶解度をはるかに超える高濃度にゲスト分子を包蔵した固体のことを言う。この物質は18世紀末に発見されているが、1950年代に高緯度地域の石油化学プラントにて輸送パイプが閉塞する事故が生じ、この原因物質として大きく注目された。その後こうした事故を防ぐため、生成を阻害する技術を中心に研究が進められてきた(例えば非特許文献1参照)。またメチルシクロヘキサンやイソペンタンなどの有機溶剤や液体炭化水素等の比較的分子サイズの大きなゲスト分子は、単独では包接化合物を生成しないが、前述のガス状ゲスト分子との共存下で包接化合物を生成することも知られている。   Inclusion compounds include hydrocarbon gases such as methane and propane, acidic gases such as carbon dioxide and hydrogen sulfide, rare gases such as neon and krypton, fluorocarbons such as HFC-32 and HFC-134a, tetrahydrofuran and acetone, etc. A solid containing guest molecules at a high concentration far exceeding the solubility in water (or ice) when molecules such as organic solvents (called guest molecules) react with water (also called host molecules) under low-temperature and high-pressure conditions. Say that. This material was discovered at the end of the 18th century, but in the 1950s, an accident occurred in a high-latitude petrochemical plant where a transportation pipe was blocked, and it attracted much attention as the causative agent. Thereafter, in order to prevent such accidents, research has been progressed mainly on technology that inhibits generation (see, for example, Non-Patent Document 1). In addition, guest molecules with a relatively large molecular size such as organic solvents such as methylcyclohexane and isopentane and liquid hydrocarbons do not generate inclusion compounds by themselves, but do not contain inclusion compounds in the presence of the aforementioned gaseous guest molecules. It is also known to generate.

化石燃料が次第に極地域、大水深地域に展開していく現在、包接化合物の生成抑制技術は古くて新しい技術として現在も研究対象となっている(例えば非特許文献2参照)。また海底の堆積物中や極域の永久凍土層中には、こうした化石燃料に付随するものばかりではない天然ガスが包接化合物の形で腑存していることが知られており、近年これらを天然ガス資源として開発するための開発研究が開始されている(例えば非特許文献3参照)。   As fossil fuels gradually develop in the polar regions and deep water regions, the clathrate compound formation suppression technology is an old and new technology that is still a subject of research (see Non-Patent Document 2, for example). In addition, it is known that natural gas not only associated with these fossil fuels is present in the form of clathrate compounds in sediments on the seabed and in the permafrost in the polar region. Development research for developing natural gas as a natural gas resource has been started (see, for example, Non-Patent Document 3).

さらに包接化合物の持つ高密度ゲスト分子包蔵性や生成・分解反応時のゲスト分子選択性等のユニークな特性を利用し、工業的に利用する技術についても検討が行われ始めている。例えば包接化合物を利用した天然ガス貯蔵・輸送技術としては、「ガスハイドレートの荷役方法及び装置」(特許文献1)や「天然ガスハイドレートの生成方法および生成システム」((特許文献2)、「ガスハイドレートの製造方法および製造装置」(特許文献3)、「ガスハイドレートの輸送・利用方法」(特許文献4)、「天然ガスハイドレート輸送方法及びその容器」(特許文献5)などが報告されている。これらの手法のうちいくつかはその輸送形態に包接化合物を含んだスラリー状の流体を扱うプロセスを含んでいる。   Furthermore, industrially utilized techniques have begun to be studied using the unique properties of the inclusion compound, such as high density guest molecule inclusion and guest molecule selectivity during generation and decomposition reactions. For example, as a natural gas storage / transport technology using an inclusion compound, “Gas hydrate cargo handling method and apparatus” (Patent Document 1) and “Natural gas hydrate production method and system” (Patent Document 2) , “Method and apparatus for producing gas hydrate” (Patent Document 3), “Transport and utilization method of gas hydrate” (Patent Document 4), “Method for transporting natural gas hydrate and its container” (Patent Document 5) Some of these approaches involve processes involving slurry fluids containing inclusion compounds in their transport form.

これらの技術開発において、包接化合物の生成・成長・分解挙動を制御することは、きわめて重要である。特に前述したように、包接化合物の生成を抑制する技術についてはその応用範囲が広い。   In these technological developments, it is extremely important to control the formation, growth and decomposition behavior of inclusion compounds. In particular, as described above, the technology for suppressing the formation of clathrate compounds has a wide range of applications.

包み説化合物の生成を抑制する技術としては、主として次のような二つの添加剤を用いる方法が主流である。ひとつは、包接化合物の平衡条件を抑制側にシフトさせる添加物(例えば海水やアルコールなど)を利用する方法であり、もうひとつは平衡条件はほとんど変化させないが生成した結晶を抑制する添加物(PVPなどの化学薬品)を利用する方法である。いずれの方法も実際の生産において利用されてはいるが、前者の添加物は包接化合物の成長を抑制するわけではないので、系がシフトした平衡条件になってしまうと包接化合物の生成を抑制することができない。また後者の添加物は現在も開発が進められているが、環境への影響評価などが十分に行われておらず、経済的な問題も多い。   As a technique for suppressing the formation of the wrapping theory compound, a method using mainly the following two additives is mainly used. One is to use an additive (such as seawater or alcohol) that shifts the equilibrium condition of the clathrate compound to the inhibitory side, and the other is an additive that suppresses the crystals that are formed (almost no change in the equilibrium condition) PVP and other chemicals). Although both methods are used in actual production, the former additive does not suppress the growth of the clathrate compound. It cannot be suppressed. The latter additive is still under development, but the environmental impact assessment has not been conducted sufficiently and there are many economic problems.

Uchida et al. (1999)は炭酸ガス包接化合物の生成実験を行い、純水−炭酸ガス界面で生成される膜状包接化合物の成長速度を調べた。その結果、炭酸ガス包接化合物の成長速度は、その圧力下で生成を開始する時の温度の平衡温度からのずれ(過冷却度DT)の関数であらわされることがわかった(非特許文献4)。さらにUchida et al. (2002)は、同様の実験をNaClを含む水溶液で行い、NaCl水溶液−炭酸ガス界面で生成する包接化合物は、純水系よりも成長速度が遅いこと、またNaCl濃度が高いほど成長速度抑制効果が大きいことを見出した(非特許文献5)。   Uchida et al. (1999) conducted an experiment to produce a carbon dioxide clathrate compound and investigated the growth rate of the film clathrate compound produced at the pure water-carbon dioxide interface. As a result, it has been found that the growth rate of the carbon dioxide clathrate compound is expressed as a function of the deviation from the equilibrium temperature (supercooling degree DT) when the generation starts under the pressure (non-patent document 4). ). Uchida et al. (2002) conducted a similar experiment with an aqueous solution containing NaCl, and the inclusion compound produced at the NaCl aqueous solution-carbon dioxide interface has a slower growth rate than pure water and has a higher NaCl concentration. It was found that the growth rate suppression effect was so great (Non-patent Document 5).

近年澱粉からの大量生産が可能になった天然糖質であるトレハロースが、包接化合物と同様の水素化合物系結晶である氷の生成抑制技術として効果があることが明らかになった(非特許文献6)。天然糖質であることから環境への負荷が非常に小さく、また水溶液として使用するためゲスト分子への混入も少ないという長所が考えられる。しかしその機能は、これまで氷の結晶構造に限定されて評価されているのみである。   It has become clear that trehalose, a natural carbohydrate that can be mass-produced from starch in recent years, is effective as a technology to suppress the formation of ice, which is a hydrogen compound crystal similar to clathrate compounds. 6). Since it is a natural carbohydrate, the environmental load is very small, and since it is used as an aqueous solution, it can be considered to have the advantage of being less contaminated with guest molecules. However, its function has so far been limited to the crystal structure of ice.

特開2003-171678号公報Japanese Patent Laid-Open No. 2003-171678 特開2003-105362号公報Japanese Patent Laid-Open No. 2003-105362 特開2003-055677号公報JP 2003-055677 A 特開2002-161288号公報Japanese Patent Laid-Open No. 2002-161288 特開2000-304196号公報JP 2000-304196 A Sloan, E.D.Jr., Clathrate Hydrates of Natural Gases 2nd Ed. Revised and Expanded, Marcel Dekker Inc., 1998Sloan, E.D.Jr., Clathrate Hydrates of Natural Gases 2nd Ed. Revised and Expanded, Marcel Dekker Inc., 1998 Carroll, J.J., Natural Gas Hydrates: A Guide for Engineers, Butterwort-Heinemann, 2002Carroll, J.J., Natural Gas Hydrates: A Guide for Engineers, Butterwort-Heinemann, 2002 Paull, C.K and Dilloin, W.P. Eds., Natural Gas Hydrates: Occurrence, Distribution, and DetectionPaull, C.K and Dilloin, W.P. Eds., Natural Gas Hydrates: Occurrence, Distribution, and Detection Uchida et al., J. Crystal Growth, 204, p. 348, (1999)Uchida et al., J. Crystal Growth, 204, p. 348, (1999) Uchida et al., J. Crystal Growth, 237-239, p. 383, 2002Uchida et al., J. Crystal Growth, 237-239, p. 383, 2002 Sei et al., J. Crystal Growth, 240, p. 218, 2002Sei et al., J. Crystal Growth, 240, p. 218, 2002

この発明の目的は、天然ガス等のガス体や石油や有機溶剤等の液体を輸送する際に輸送管中に生成し、あるいは工業的に生成された包接化合物スラリーの輸送管中で成長を続け、輸送管の閉塞事故を起こす原因となる包接化合物の形成を抑制するため、天然に産出し環境調和性の高いトレハロースなどの糖類を水溶液中に添加、溶解させる方法を提供することである。   The object of the present invention is to produce a gas body such as natural gas or a liquid such as petroleum or an organic solvent in a transport pipe or to grow an industrially produced clathrate slurry in a transport pipe. To provide a method for adding and dissolving saccharides such as trehalose, which are naturally produced and have high environmental harmony, in an aqueous solution in order to suppress the formation of clathrate compounds that cause a blockage accident of the transport pipe. .

本発明者は包接化合物の生成に用いる水溶液やゲスト分子と、形成された包接化合物の生成過程について鋭意研究を重ねた結果、氷の生成制御に効果があることが報告されたトレハロース水溶液から包接化合物を形成させる際、包接化合物相の結晶が発生してから成長する速度が純水を用いたときより遅くなることを見出し、水溶液中のトレハロースの濃度によってその効果が変化するという知見に基づいて本発明を完成するに至った。   As a result of earnest research on the formation process of the formed clathrate compound with the aqueous solution and guest molecules used for the clathrate compound generation, the present inventor has reported that the trehalose aqueous solution is effective in controlling the formation of ice. Finding that when forming an clathrate compound, the rate of growth after the clathrate phase crystals are generated is slower than when pure water is used, and the effect varies depending on the concentration of trehalose in the aqueous solution. Based on this, the present invention has been completed.

すなわち、本発明は、水とガス体および/または溶剤等の液体とから包接化合物が形成されるに際し、トレハロースを添加することにより該包接化合物の形成抑制方法である。   That is, the present invention is a method for suppressing the formation of an inclusion compound by adding trehalose when the inclusion compound is formed from water and a liquid such as a gas body and / or a solvent.

さらに、本発明は、ガス体および/または溶剤等の液体を輸送・貯蔵する際に、トレハロースを添加し包接化合物の形成を抑制することを特徴とするガス体および/または液体の輸送・貯蔵方法である。   Furthermore, the present invention relates to the transportation and storage of a gas body and / or liquid characterized by adding trehalose to suppress the formation of an inclusion compound when transporting and storing a liquid such as a gas body and / or a solvent. Is the method.

さらに、本発明は、ガス体および/または溶剤等の液体を輸送管により輸送する方法において、トレハロースを添加し包接化合物の形成を抑制することにより輸送管の閉塞を防止する方法である。   Furthermore, the present invention is a method for preventing clogging of a transport pipe by adding trehalose to suppress the formation of an inclusion compound in a method of transporting a liquid such as a gas body and / or a solvent by a transport pipe.

上記それぞれの方法において、ガス体としては、メタンやプロパンなどの炭化水素ガス、炭酸ガスや硫化水素などの酸性ガス、及びネオンやクリプトンなどの希ガスが挙げられ、溶剤としては、HFC-32やHFC-134aなどのフルオロカーボン、テトラヒドロフランやアセトンなどの有機溶剤、または上記ガス体との共存下で包接化合物を生成するメチルシク
ロヘキサンやイソペンタンなどの有機溶剤や液体炭化水素が挙げられる。また、使用す
るトレハロースは水溶液中での濃度がトレハロース10%以上、好ましくは40%以上が好ま
しい。
In each of the above methods, examples of the gas body include hydrocarbon gases such as methane and propane, acidic gases such as carbon dioxide and hydrogen sulfide, and rare gases such as neon and krypton, and examples of the solvent include HFC-32 and Examples include fluorocarbons such as HFC-134a, organic solvents such as tetrahydrofuran and acetone, or organic solvents such as methylcyclohexane and isopentane that form an inclusion compound in the presence of the above gas body, and liquid hydrocarbons. The trehalose to be used has a concentration in an aqueous solution of trehalose of 10% or more, preferably 40% or more.

本発明により、水とガス体および/または溶剤等の液体から包接化合物が形成されるに際し、これらにトレハロースを添加することにより該包接化合物の形成を抑制することができた。そして、この方法をガス体および/または溶剤等の液体を輸送管により輸送する方法において適用することにより包接化合物の形成による輸送管等の閉塞を防止することができた。   According to the present invention, when an clathrate compound is formed from water and a liquid such as a gas body and / or a solvent, the formation of the clathrate compound can be suppressed by adding trehalose thereto. By applying this method to a method of transporting a liquid such as a gas body and / or a solvent through a transport pipe, it was possible to prevent the transport pipe or the like from being blocked due to the formation of an inclusion compound.

従来トレハロースは水の平均構造に特有の大きさを持っており、そのため水溶液中で結晶化作用が進むのを抑制するというメカニズムが提案されていた。しかしながらこのトレハロースが水と二酸化炭素のようなガス体との包接化合物の成長速度を抑制するとの報告は全く無く、本発明者らが始めてこのような知見を得た。トレハロース自体は天然に産出される物質であるため、化学薬品で合成された生成制御・抑制剤とは異なり環境調和性が高い。また従来包接化合物の成長速度を抑制する物質として知られていたNaClと異なり反応容器や輸送管等を腐食する恐れも少ないという利点を持っている。   Conventionally, trehalose has a size specific to the average structure of water, and therefore a mechanism has been proposed that suppresses the progress of crystallization in an aqueous solution. However, there is no report that trehalose suppresses the growth rate of the inclusion compound between water and a gas body such as carbon dioxide, and the present inventors have obtained such knowledge for the first time. Trehalose itself is a naturally-occurring substance, and therefore has high environmental harmony, unlike production control / inhibitors synthesized with chemicals. In addition, unlike NaCl, which has been known as a substance that suppresses the growth rate of clathrate compounds, there is an advantage that there is little risk of corroding the reaction vessel or the transport pipe.

本発明の方法は、上記のとおり包接化合物を生成し得るゲスト分子相(気相または液相)と水とを反応させる際に、トレハロースを添加することにより生成反応が起きた後包接化合物が成長する速度を低下させることで包接化合物の成長を抑制する技術からなっている。   In the method of the present invention, the clathrate compound is produced after the formation reaction has occurred by adding trehalose when the guest molecular phase (gas phase or liquid phase) capable of producing the clathrate compound is reacted with water as described above. It consists of a technology that suppresses the growth of the inclusion compound by reducing the growth rate of the.

本発明で用いるトレハロースは、ブトウ糖2分子がα、α−1、1で結合した非還元性の糖質であり、市販のものを用いることができる(株式会社 林原商事社製)。通常トレハロースはその他に水分や不純物が微量に含まれることもあるが、本発明で用いているトレハロースは、トレハロースを98%以上、望ましくは99%以上含む含水結晶を含むものとする。   The trehalose used in the present invention is a non-reducing saccharide in which two butter sugar molecules are linked by α, α-1, 1 and commercially available products can be used (manufactured by Hayashibara Shoji Co., Ltd.). Normally, trehalose may contain trace amounts of moisture and impurities, but the trehalose used in the present invention includes water-containing crystals that contain 98% or more, preferably 99% or more of trehalose.

本発明において用いられる包接化合物を生成することのできるゲスト分子としては、メタンガスのほか、エタンガス、プロパンガスなどの天然ガスの主成分である炭化水素気体や炭酸ガス、窒素ガス、酸素ガス、硫化水素等の小さな分子、キセノンガス、アルゴンガス、クリプトンガスなどの希ガスが挙げられる。またHFC-32(2フッ化メタン(CH2F2))やHFC-134a(1,1,1,2-テトラフルオロエタン(CH2FCF3))などのフルオロカーボン、テトラヒドロフランやアセトンなどの有機溶剤等やアンモニウム塩水溶液などのゲスト分子は、上記のゲスト分子と異なり常圧条件で包接化合物を生成することができる。また比較的分子サイズの大きなメチルシクロヘキサンやイソペンタンなどの有機溶剤や液体炭化水素等のゲスト分子は、単独では包接化合物を生成しないが、前述のガス状ゲスト分子との共存下で包接化合物を生成することも知られている。ここでは炭酸ガスを用いて実施したが、本発明に用いた手法は、上記に示したようなゲスト分子に対しても一般的に成立する。 As guest molecules capable of generating an inclusion compound used in the present invention, in addition to methane gas, hydrocarbon gas or carbon dioxide gas, which is a main component of natural gas such as ethane gas, propane gas, nitrogen gas, oxygen gas, sulfide Examples include small molecules such as hydrogen, and rare gases such as xenon gas, argon gas, and krypton gas. Also, fluorocarbons such as HFC-32 (difluoromethane (CH 2 F 2 )) and HFC-134a (1,1,1,2-tetrafluoroethane (CH 2 FCF 3 )), organic solvents such as tetrahydrofuran and acetone The guest molecules such as ammonium salt aqueous solution and the like can form an inclusion compound under normal pressure conditions, unlike the above guest molecules. In addition, guest molecules such as organic solvents such as methylcyclohexane and isopentane, which are relatively large in molecular size, and liquid hydrocarbons, do not form inclusion compounds by themselves, but they do not form inclusion compounds in the presence of the aforementioned gaseous guest molecules. It is also known to generate. Although carbon dioxide gas was used here, the method used in the present invention is generally valid for guest molecules as described above.

本発明において用いられる水は、通常脱イオン・脱気した蒸留水を用いるが、塩や塩基等の不純物が多少含まれていても一般的に成立する。ただし、含まれる不純物の種類や濃度により、包接化合物の生成平衡条件がシフトする場合もあるため、得られる気体や包接化合物中の成分比が異なってくることもある。   The water used in the present invention is usually deionized / degassed distilled water, but generally holds even if some impurities such as salts and bases are contained. However, since the formation equilibrium condition of the clathrate compound may shift depending on the type and concentration of impurities contained, the component ratio in the obtained gas or clathrate compound may differ.

反応させる条件は、用いるゲスト分子と純水との反応から予想される平衡条件より低温・高圧条件である。例えば炭酸ガスを用いた場合、純水と反応して生成される包接化合物の平衡圧力は、273.2Kにおいて約1.2MPaである。従ってこのガスを用いる実験では1.2MPa以上の範囲で行われる。温度範囲は圧力条件によって任意であるが、トレハロースが氷中にほとんど溶存しないため水溶液との反応条件のもとで行う方が好ましく、273.2K以上で行う。   The reaction conditions are lower temperature and higher pressure conditions than the equilibrium conditions expected from the reaction between the guest molecules used and pure water. For example, when carbon dioxide gas is used, the equilibrium pressure of the clathrate compound produced by reaction with pure water is about 1.2 MPa at 273.2K. Therefore, experiments using this gas are performed in the range of 1.2 MPa or more. The temperature range is arbitrary depending on the pressure conditions, but trehalose is hardly dissolved in ice, so it is preferable to perform the reaction under the reaction conditions with an aqueous solution, and it is performed at 273.2K or higher.

図1は本発明で使用した包接化合物生成観測装置である。この装置は炭酸ガス−純水(または塩水)系での包接化合物生成速度測定に用いられており(非特許文献5)、トレハロース水溶液の効果を定量的に比較するために適している。一定量の水試料を高圧容器HV中に入れ全体を恒温槽TB中に入れて所定温度にする。その後HV中の空気を排気しボンベBよりゲスト分子試料をHV中へ導入し、所定圧力にする。そして恒温槽の設定を下げて包接化合物生成条件へ持っていく。温度・圧力が包接化合物生成条件になった時刻をゼロとし、温度・圧力を熱電対TC、圧力計PGで計測し、記録計Rにて記録する。   FIG. 1 shows a clathrate compound production observation apparatus used in the present invention. This apparatus is used to measure the rate of clathrate formation in a carbon dioxide gas-pure water (or salt water) system (Non-Patent Document 5), and is suitable for quantitatively comparing the effects of trehalose aqueous solutions. A fixed amount of water sample is put in a high-pressure vessel HV, and the whole is put in a thermostat TB to a predetermined temperature. After that, the air in the HV is exhausted, and the guest molecule sample is introduced into the HV from the cylinder B, and is set to a predetermined pressure. Then, the setting of the thermostatic chamber is lowered and brought to the inclusion compound generation conditions. The time when the temperature / pressure reaches the inclusion compound generation condition is set to zero, and the temperature / pressure is measured with the thermocouple TC and the pressure gauge PG, and is recorded with the recorder R.

包接化合物の生成の確認は、観測窓Wからの目視観測、および生成熱放出に伴う系の温度上昇によって行う。また包接化合物の成長速度は、観測窓から系内の様子を顕微鏡MSで観測し、その変化をビデオカメラVTRで録画して得られた画像を解析することで測定した。   Confirmation of the generation of the clathrate compound is performed by visual observation from the observation window W and by the temperature rise of the system accompanying the generated heat release. The growth rate of the clathrate compound was measured by observing the inside of the system with a microscope MS through an observation window and analyzing the image obtained by recording the change with a video camera VTR.

なお生成速度の測定実験の後、系内の温度を上昇させて包接化合物を分解させ、その分解温度を測定することによってトレハロース水溶液による平衡条件の変化を確認した。
本発明は、次の実施例で示した系のほか、同じ結晶構造を持つメタン包接化合物、異なる結晶構造を持つプロパン包接化合物や多くのフルオロカーボン包接化合物、準包接化合物と呼ばれるアンモニア塩を用いた包接化合物などの生成抑制剤として利用することが可能であることが示された。従ってこれらの包接化合物を利用する技術に関しても、本発明による生成制御法を適応することが可能である。
In addition, after the measurement experiment of the production | generation rate, the temperature in a system was raised, the inclusion compound was decomposed | disassembled, and the change of the equilibrium conditions by the trehalose aqueous solution was confirmed by measuring the decomposition | disassembly temperature.
In addition to the systems shown in the following examples, the present invention includes methane clathrate compounds having the same crystal structure, propane clathrate compounds having different crystal structures, many fluorocarbon clathrate compounds, and ammonia salts referred to as quasi clathrate compounds It was shown that it can be used as a production inhibitor for clathrate compounds and the like. Therefore, the production control method according to the present invention can also be applied to the technology using these clathrate compounds.

また、本発明は、包接化合物生成水溶液およびガス体と包接化合物との平衡条件をほとんど変えずに核生成し、核発生後の包接化合物の成長は著しく抑制されるという特徴から、水溶液中で結晶が発生したとしても大きく成長せず、水溶液と混合したスラリー状態になると考えられる。従ってこれらの特徴を生かせる温度・圧力条件にすることにより、輸送管等の包接化合物による閉塞を防止することができる。   In addition, the present invention provides an aqueous clathrate-forming aqueous solution and a feature that nucleation occurs almost without changing the equilibrium condition between the gas body and the clathrate compound, and the growth of the clathrate compound after nucleation is remarkably suppressed. Even if crystals are generated, it does not grow greatly and is considered to be in a slurry state mixed with an aqueous solution. Therefore, by setting the temperature and pressure conditions to make use of these characteristics, it is possible to prevent clogging by inclusion compounds such as transport pipes.

以下、本発明を実施例により具体的に説明する。但し、本発明の技術的範囲はこれら実施例に限定されるものではない。   Hereinafter, the present invention will be specifically described by way of examples. However, the technical scope of the present invention is not limited to these examples.

脱イオン・脱気処理した蒸留水試料にトレハロース(2含水結晶粉末)を所定の濃度で溶かした水溶液一滴(約0.5 cm3)を、図1に示す高圧反応容器HV(内容積約10 cm3)中に封入し、恒温槽TB中に入れる。その際、HV中に残存していた空気はバルブV2を開けて真空ポンプVPにて脱気する。脱気後バルブV2は閉じる。 One drop (about 0.5 cm 3 ) of an aqueous solution of trehalose (2 water-containing crystal powder) dissolved in a deionized / degassed distilled water sample at a predetermined concentration is added to the high-pressure reaction vessel HV (internal volume of about 10 cm 3) ) Enclose in and put in a thermostatic chamber TB. At that time, the air remaining in the HV is deaerated by the vacuum pump VP by opening the valve V2. The valve V2 is closed after deaeration.

その後バルブV1を開けてボンベBより炭酸ガス試料をHV中へ導入し、所定圧力まで昇圧させた後、バルブV1を閉じる。そして温度圧力が所定条件になったことを確認した後、恒温槽TBの設定を下げて温度を所定温度にする。設定圧力における包接化合物生成温度に達した後、界面上に包接化合物が生成するのを観測する。   Thereafter, the valve V1 is opened, a carbon dioxide gas sample is introduced into the HV from the cylinder B, the pressure is increased to a predetermined pressure, and then the valve V1 is closed. Then, after confirming that the temperature and pressure are in a predetermined condition, the setting of the thermostatic chamber TB is lowered to bring the temperature to a predetermined temperature. After reaching the clathrate generation temperature at the set pressure, observe the clathrate compound formation on the interface.

炭酸ガス包接化合物の生成実験は、トレハロースを50wt%溶かした水溶液を用いた。恒温槽温度は263.2Kに設定し、系内圧力は約5 MPaとした。このときの平衡温度は、分解実験の結果純水−炭酸ガス系で求められる包接化合物の平衡温度より3K低い約279.4Kであった。これはトレハロースの溶存によるモル凝固点効果の結果として理解される。   In the experiment for producing the carbon dioxide clathrate compound, an aqueous solution in which 50 wt% of trehalose was dissolved was used. The thermostatic chamber temperature was set to 263.2K, and the internal pressure was set to about 5 MPa. The equilibrium temperature at this time was about 279.4K, which is 3K lower than the equilibrium temperature of the clathrate compound obtained in the pure water-carbon dioxide system as a result of the decomposition experiment. This is understood as a result of the molar freezing point effect due to the dissolution of trehalose.

同じ実験系における、炭酸ガス包接化合物の成長過程のビデオ画像から求めた膜状包接化合物の成長速度vfは、約0.3 mm sec-1と求められた。同じ過冷却度DT = 7 Kにおける純水−炭酸ガス系における成長速度は約11 mm sec-1、また成長速度が大きく抑制されることが明らかになった濃度10wt%のNaCl水溶液−炭酸ガス系における、同じ過冷却度での成長速度は約1.7 mm sec-1と見積もられる(非特許文献5)。これらの結果と比較すると、濃度50wt%のトレハロース水溶液−炭酸ガス系における成長速度は、海水の3倍以上の濃度のNaCl水溶液よりもさらに大きな成長抑制効果を持つことが示唆された。 In the same experimental system, the growth rate v f of the film clathrate compound determined from the video image of the growth process of the carbon dioxide clathrate compound was determined to be about 0.3 mm sec −1 . The growth rate in pure water-carbon dioxide system at the same supercooling degree DT = 7 K is about 11 mm sec -1 , and the concentration of 10 wt% NaCl aqueous solution-carbon dioxide system was found to be greatly suppressed The growth rate with the same degree of supercooling is estimated to be about 1.7 mm sec −1 (Non-patent Document 5). Compared with these results, it was suggested that the growth rate in the 50 wt% trehalose aqueous solution-carbon dioxide system has a greater growth-inhibiting effect than the NaCl aqueous solution with a concentration three times that of seawater.

実施例1と同様にして、トレハロースの濃度を1wt%、10wt%にした水溶液と炭酸ガスとを試料として用いた実験を行った。同様な条件下で炭酸ガス包接化合物の成長速度を測定した結果、成長速度の抑制効果はいずれの場合も見られた。トレハロース濃度が10wt%の水溶液を用いた場合、過冷却度DT=18 Kにおいて成長速度約4 mm sec-1だった。この値は、濃度10wt%のNaCl水溶液−炭酸ガス系における、同じ過冷却度での成長速度(約6.9 mm sec-1)と同等かやや小さく、純水−炭酸ガス系における成長速度(約45 mm sec-1)より著しく小さいと見積もられる。またトレハロース濃度1wt%の水溶液の場合、DT=15 Kにおいて成長速度約8.5 mm sec-1であった。この値は、濃度10wt%のNaCl水溶液−炭酸ガス系における、同じ過冷却度での成長速度(約5 mm sec-1)とほぼ同等で、純水−炭酸ガス系における成長速度(約34 mm sec-1)より著しく小さいと見積もられる。これらの結果を、表1に示した。 In the same manner as in Example 1, an experiment was conducted using an aqueous solution and carbon dioxide gas having trehalose concentrations of 1 wt% and 10 wt% as samples. As a result of measuring the growth rate of the carbon dioxide clathrate compound under the same conditions, an inhibitory effect on the growth rate was observed in all cases. When an aqueous solution having a trehalose concentration of 10 wt% was used, the growth rate was about 4 mm sec −1 at a supercooling degree DT = 18 K. This value is equivalent to or slightly smaller than the growth rate (about 6.9 mm sec -1 ) at the same supercooling degree in a 10 wt% NaCl aqueous solution-carbon dioxide system, and the growth rate in pure water-carbon dioxide system (about 45 mm sec -1 ). In the case of an aqueous solution having a trehalose concentration of 1 wt%, the growth rate was about 8.5 mm sec −1 at DT = 15 K. This value is almost the same as the growth rate (about 5 mm sec -1 ) at the same supercooling degree in a 10 wt% NaCl aqueous solution-carbon dioxide system, and the growth rate (about 34 mm in pure water-carbon dioxide system). It is estimated to be significantly smaller than sec -1 ). These results are shown in Table 1.

Figure 0004195932
Figure 0004195932

従って、トレハロースの濃度による包接化合物成長速度抑制効果の変化は、濃度が高いほど大きいことがわかった。   Therefore, it was found that the change in the clathrate growth rate suppressing effect due to the trehalose concentration was larger as the concentration was higher.

氷の成長速度に関する試験結果(Sei et al., 2002)と比較すると、トレハロース濃度が20.8wt%、41.7wt%、52.1wt%と大きくなるにつれて成長速度が抑制されていることが報告されている。またトレハロース濃度20.8wt%の成長速度抑制効果は、同じ糖類であるサッカロースを41.5wt%添加した水溶液と同等であり、その効果の高さが示されている。   Compared to the test results on ice growth rate (Sei et al., 2002), it has been reported that the growth rate is suppressed as the trehalose concentration increases to 20.8 wt%, 41.7 wt%, and 52.1 wt%. . Further, the growth rate suppression effect at a trehalose concentration of 20.8 wt% is equivalent to that of an aqueous solution to which 41.5 wt% of saccharose, which is the same saccharide, is added, indicating the high effect.

実施例で使用した生成観測装置構造の概略を示す図The figure which shows the outline of the production | generation observation apparatus structure used in the Example

符号の説明Explanation of symbols

B:ガス用の高圧ボンベ
V1,V2:弁
HV:高圧反応容器
TB:恒温槽
SM:水溶液(試料)
PG:圧力計
TC:温度計
R:記録計
VP:真空ポンプ
W:観測窓
MS:顕微鏡
VHS:ビデオカメラ
B: High-pressure cylinder for gas
V1, V2: Valve
HV: High-pressure reactor
TB: Thermostatic bath
SM: Aqueous solution (sample)
PG: Pressure gauge
TC: Thermometer
R: Recorder
VP: Vacuum pump
W: Observation window
MS: Microscope
VHS: Video camera

Claims (12)

水とガス体および/または溶剤からなる液体とから包接化合物が形成されるに際し、トレハロースを添加することを特徴とする該包接化合物の形成抑制方法。 Upon inclusion compounds from a liquid comprising water and a body of gas and / or solvent is formed, the method of preventing formation該包abutment compound characterized by the addition of trehalose. ガス体がメタンまたはプロパンからなる炭化水素ガス、炭酸ガスまたは硫化水素からなる酸性ガス、及びネオンまたはクリプトンからなる希ガスである請求項1記載の形成抑制方法。 2. The formation suppressing method according to claim 1, wherein the gas body is a hydrocarbon gas composed of methane or propane, an acidic gas composed of carbon dioxide gas or hydrogen sulfide, and a rare gas composed of neon or krypton. 溶剤がHFC-32またはHFC-134aからなるフルオロカーボン、テトラヒドロフランまたはアセトンからなる有機溶剤、または請求項2記載のガス体との共存下で包接化合物を形成するメチルシクロヘキサンまたはイソペンタンからなる有機溶剤、または液体炭化水素である請求項1記載の生成抑制方法。 An organic solvent consisting of fluorocarbon consisting of HFC-32 or HFC-134a, an organic solvent consisting of tetrahydrofuran or acetone, or an organic solvent consisting of methylcyclohexane or isopentane that forms an inclusion compound in the presence of a gas body according to claim 2, or 2. The production suppression method according to claim 1, which is a liquid hydrocarbon. 水溶液中のトレハロース濃度が10%以上であることを特徴とする請求項1記載の形成抑制方法。   2. The formation inhibiting method according to claim 1, wherein the trehalose concentration in the aqueous solution is 10% or more. ガス体および/または溶剤からなる液体を輸送・貯蔵する際に、トレハロースを添加し包接化合物の形成を抑制することを特徴とするガス体および/または液体の輸送・貯蔵方法。 When transportation and storage of liquid consisting of a gas material and / or Solvent, gas body and / or methods transportation and storage of liquid, characterized in that to suppress the formation of the addition of trehalose clathrate. ガス体がメタンまたはプロパンからなる炭化水素ガス、炭酸ガスまたは硫化水素からなる酸性ガス、及びネオンまたはクリプトンからなる希ガスである請求項5記載のガス体および/または液体の輸送・貯蔵方法。 Hydrocarbon gas gas body is methane or propane, acid gases, and rare gas scan a body of gas and / or process transportation and storage of liquid according to claim 5, wherein comprising a neon, or krypton comprising a carbon dioxide gas or hydrogen sulfide. 溶剤がHFC-32またはHFC-134aからなるフルオロカーボン、テトラヒドロフランまたはアセトンからなる有機溶剤、または請求項6記載のガス体との共存下で包接化合物を生成するメチルシクロヘキサンまたはイソペンタンからなる有機溶剤、または液体炭化水素である請求項5記載のガス体および/または液体の輸送・貯蔵方法。 An organic solvent consisting of fluorocarbon consisting of HFC-32 or HFC-134a, an organic solvent consisting of tetrahydrofuran or acetone , or an organic solvent consisting of methylcyclohexane or isopentane that forms an inclusion compound in the presence of a gas body according to claim 6 , or 6. The method for transporting and storing a gas body and / or liquid according to claim 5, wherein the method is a liquid hydrocarbon. 水溶液中のトレハロース濃度が10%以上であることを特徴とする請求項5記載のガス体および/または液体の輸送・貯蔵方法。   6. The method for transporting and storing a gas body and / or liquid according to claim 5, wherein the trehalose concentration in the aqueous solution is 10% or more. ガス体および/または溶剤からなる液体を輸送管により輸送する方法において、トレハロースを添加し包接化合物の形成を抑制することを特徴とする輸送管の閉塞を防止する方法。 A method of transporting a transport pipe of the liquid consisting of the gas body and / or Solvent A method of preventing clogging of the transport tube, characterized in that to suppress the formation of the addition of trehalose clathrate. ガス体がメタンまたはプロパンからなる炭化水素ガス、炭酸ガスまたは硫化水素からなる酸性ガス、及びネオンまたはクリプトンからなる希ガスである請求項9記載の輸送管の閉塞を防止する方法。 10. The method for preventing clogging of a transport pipe according to claim 9, wherein the gas body is a hydrocarbon gas composed of methane or propane, an acidic gas composed of carbon dioxide gas or hydrogen sulfide, and a rare gas composed of neon or krypton. 溶剤がHFC-32またはHFC-134aからなるフルオロカーボン、テトラヒドロフランまたはアセトンからなる有機溶剤、または請求項6記載のガス体との共存下で包接化合物を生成するメチルシクロヘキサンまたはイソペンタンからなる有機溶剤、または液体炭化水素である請求項9記載の輸送管の閉塞を防止する方法。 An organic solvent consisting of fluorocarbon consisting of HFC-32 or HFC-134a, an organic solvent consisting of tetrahydrofuran or acetone , or an organic solvent consisting of methylcyclohexane or isopentane that forms an inclusion compound in the presence of a gas body according to claim 6 , or 10. The method for preventing clogging of a transport pipe according to claim 9, which is a liquid hydrocarbon. 水溶液中のトレハロース濃度が10%以上であることを特徴とする請求項9記載の輸送管の閉塞を防止する方法。   10. The method for preventing clogging of a transport pipe according to claim 9, wherein the trehalose concentration in the aqueous solution is 10% or more.
JP2003321969A 2003-09-12 2003-09-12 Control method of clathrate formation using trehalose Expired - Lifetime JP4195932B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003321969A JP4195932B2 (en) 2003-09-12 2003-09-12 Control method of clathrate formation using trehalose

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003321969A JP4195932B2 (en) 2003-09-12 2003-09-12 Control method of clathrate formation using trehalose

Publications (2)

Publication Number Publication Date
JP2005089331A JP2005089331A (en) 2005-04-07
JP4195932B2 true JP4195932B2 (en) 2008-12-17

Family

ID=34453485

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003321969A Expired - Lifetime JP4195932B2 (en) 2003-09-12 2003-09-12 Control method of clathrate formation using trehalose

Country Status (1)

Country Link
JP (1) JP4195932B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5505839B2 (en) * 2010-05-26 2014-05-28 株式会社Ihi CO2 hydrate and manufacturing method thereof

Also Published As

Publication number Publication date
JP2005089331A (en) 2005-04-07

Similar Documents

Publication Publication Date Title
Karaaslan et al. Effect of an anionic surfactant on different type of hydrate structures
Kim et al. Influences of large molecular alcohols on gas hydrates and their potential role in gas storage and CO2 sequestration
Tariq et al. Gas hydrate inhibition: a review of the role of ionic liquids
Inkong et al. Innovative approach to enhance the methane hydrate formation at near-ambient temperature and moderate pressure for gas storage applications
US5841010A (en) Surface active agents as gas hydrate inhibitors
US8961656B2 (en) Gas hydrate inhibitor and method of inhibiting gas hydrate formation
Ohno et al. Interaction of antifreeze proteins with hydrocarbon hydrates
US6015929A (en) Gas hydrate anti-agglomerates
JP3944610B2 (en) A method to reduce flocculation tendency of hydrates in production effluents
Zhou et al. Investigation on the kinetics of carbon dioxide hydrate formation using flow loop testing
Partoon et al. Effect of mixed thermodynamic and kinetic hydrate promoters on methane hydrate phase boundary and formation kinetics
Sefidroodi et al. THF hydrate crystal growth inhibition with small anionic organic compounds and their synergistic properties with the kinetic hydrate inhibitor poly (N-vinylcaprolactam)
Kelland et al. Control of hydrate formation by surfactants and polymers
BR102015028704B1 (en) MULTIFUNCTIONAL FOAM FORMATION COMPOSITION, INTENSIFIED OIL OR GAS RECOVERY METHOD, AND INTENSIFIED RECOVERY PROCESS AND/OR ASSURED SEQUENCED BATCH PRODUCTION
Tang et al. Kinetic studies of gas hydrate formation with low-dosage hydrate inhibitors
Chin et al. Prediction of phase equilibrium for gas hydrate in the presence of organic inhibitors and electrolytes by using an explicit pressure-dependent Langmuir adsorption constant in the van der Waals–Platteeuw model
Jarrahian et al. Natural gas hydrate promotion capabilities of toluene sulfonic acid isomers
Zhou et al. In situ PXRD analysis on the kinetic effect of PVP-K90 and PVCap on methane hydrate dissociation below ice point
JP4195932B2 (en) Control method of clathrate formation using trehalose
US20150337196A1 (en) Method for inhibiting structure ii gas hydrate formation
US9228075B2 (en) Composition and method for inhibiting gas hydrate formation
Camacho et al. Top of the line corrosion in H2S/CO2 environment
KR101199547B1 (en) Gas hydrate inhibitors and a method of inhibiting gas hydrate formation
JP4106440B2 (en) Control method of clathrate formation using antifreeze protein
Semenov et al. Dual nature of methanol as a thermodynamic inhibitor and kinetic promoter of methane hydrate formation in a wide concentration range

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050315

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080304

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080410

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080513

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080711

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080711

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080902

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Ref document number: 4195932

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term