JP4194452B2 - Equipment for measuring oxygen concentration in high-temperature gas - Google Patents

Equipment for measuring oxygen concentration in high-temperature gas Download PDF

Info

Publication number
JP4194452B2
JP4194452B2 JP2003306482A JP2003306482A JP4194452B2 JP 4194452 B2 JP4194452 B2 JP 4194452B2 JP 2003306482 A JP2003306482 A JP 2003306482A JP 2003306482 A JP2003306482 A JP 2003306482A JP 4194452 B2 JP4194452 B2 JP 4194452B2
Authority
JP
Japan
Prior art keywords
solid electrolyte
electrolyte tube
oxygen concentration
temperature gas
platinum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003306482A
Other languages
Japanese (ja)
Other versions
JP2005077194A (en
Inventor
良之 上島
隆宏 横山
勝正 高木
秀和 池本
久雄 井川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KAWASO ELECTRIC INDUSTRIAL KABUSHIKI KAISHA
Nippon Steel Corp
Original Assignee
KAWASO ELECTRIC INDUSTRIAL KABUSHIKI KAISHA
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KAWASO ELECTRIC INDUSTRIAL KABUSHIKI KAISHA, Nippon Steel Corp filed Critical KAWASO ELECTRIC INDUSTRIAL KABUSHIKI KAISHA
Priority to JP2003306482A priority Critical patent/JP4194452B2/en
Publication of JP2005077194A publication Critical patent/JP2005077194A/en
Application granted granted Critical
Publication of JP4194452B2 publication Critical patent/JP4194452B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/10Reduction of greenhouse gas [GHG] emissions
    • Y02P10/134Reduction of greenhouse gas [GHG] emissions by avoiding CO2, e.g. using hydrogen

Landscapes

  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)
  • Measuring Oxygen Concentration In Cells (AREA)
  • Treatment Of Steel In Its Molten State (AREA)
  • Blast Furnaces (AREA)

Description

本発明は、高温ガス中の酸素濃度を直接かつ連続的に精度よく測定することができ、しかも耐久性に優れ生産コストも安価である高温ガス中の酸素濃度測定装置に関するものである。   The present invention relates to an apparatus for measuring oxygen concentration in high-temperature gas, which can directly and continuously measure the oxygen concentration in high-temperature gas, and has excellent durability and low production cost.

例えば、各種の溶解炉や燃焼炉等の高温ガス中の酸素濃度を測定する方法として、従来から特許文献1や特許文献2に示されるように、ガスをポンプ等で一旦炉外に吸引採取してから別の場所で酸素濃度を分析する方法が普通に採用されている。しかしながら、このような酸素濃度測定装置は大型で材料費が高くなるうえに、高温ガスに耐えられる耐熱性と耐腐食性のポンプ、フィルター、配管等も必要となり生産コストが高くなるという問題点があった。   For example, as a method for measuring the oxygen concentration in a high-temperature gas such as various melting furnaces and combustion furnaces, as shown in Patent Document 1 and Patent Document 2, gas is once sucked out of the furnace using a pump or the like. A method of analyzing the oxygen concentration in another place is usually adopted. However, such an oxygen concentration measuring device has a large size and high material cost, and also requires heat and corrosion resistant pumps, filters, piping, etc. that can withstand high-temperature gas, resulting in high production costs. there were.

一方、高温ガス中の酸素濃度の測定原理として、非特許文献1に示されるように、酸素イオン伝導性固体電解質を用いることが知られている。このような固体電解質を利用すれば温度変化に敏感に対応する熱容量の小さい小型の酸素濃度測定装置を実用化できる可能性がある。しかしながら、小径の円筒状固体電解質管を用いる場合は、以下のような問題点があり実用化されていないのが現状である。   On the other hand, as shown in Non-Patent Document 1, it is known to use an oxygen ion conductive solid electrolyte as a principle for measuring the oxygen concentration in a high-temperature gas. If such a solid electrolyte is used, there is a possibility that a small oxygen concentration measuring device with a small heat capacity that can be sensitive to temperature changes can be put into practical use. However, in the case where a small-diameter cylindrical solid electrolyte tube is used, there are the following problems and it has not been put into practical use.

(1)作動極側である電解質管外表面への白金電極の接着は容易であるが、基準極側である電解質管内壁表面への白金電極の接着は極めて困難である。(2)炉体外壁から酸素濃度の測定場所までの距離が長い場合、長尺の固体電解質管が必要で高価となる。(3)高価な固体電解質管は必要最小限の先端部分だけにして残りの部分を安価な通常の耐火物で構成したいが、接合部での確実なシール方法が知られていない。即ち、耐火物の接合手段としてはアルミナセメント等を塗布して固定する方法が一般的であるが、乾燥後に微小な収縮孔や亀裂を生じ確実に気密性を確保することができず、また固体電解質管と耐火物の加熱・冷却時における熱膨張・熱収縮差により折損を生じやすく気密性を確保することができないものであった。
特開昭60−187854号公報 実開平6−86058号公報 大谷正康著「鉄冶金熱力学」(日刊工業新聞社)P.119
(1) The platinum electrode can be easily adhered to the outer surface of the electrolyte tube on the working electrode side, but the platinum electrode is extremely difficult to adhere to the inner surface of the electrolyte tube on the reference electrode side. (2) When the distance from the outer wall of the furnace body to the measurement site of the oxygen concentration is long, a long solid electrolyte tube is necessary and expensive. (3) Although it is desired that the expensive solid electrolyte tube has only the minimum necessary tip portion and the remaining portion is made of an inexpensive ordinary refractory, a reliable sealing method at the joint is not known. In other words, as a means for joining refractories, a method of applying and fixing alumina cement or the like is generally used, but fine shrinkage holes and cracks are generated after drying, and airtightness cannot be ensured reliably, and solids are also solid. The electrolyte tube and the refractory were subject to breakage due to differences in thermal expansion / contraction during heating / cooling, and airtightness could not be ensured.
JP-A-60-187854 Japanese Utility Model Publication No. 6-86058 Otani Masayasu, “Iron Metallurgical Thermodynamics” (Nikkan Kogyo Shimbun) 119

本発明が解決しようとする問題点は、熱応力を緩和して固体電解質管と一般耐火物との気密性を確保できる新規でかつ安価なシール方法を採用し、小型の固体電解質管を用いることにより炉内ガスの吸引装置等の特別な設備を使用することなく、高温ガス中の酸素濃度を直接かつ連続的に精度よく測定することができ、しかも耐久性に優れ生産コストも安価な高温ガス中の酸素濃度測定装置を提供することである。なお、本発明でいう高温ガスとは750℃以上のガスを意味する。   The problem to be solved by the present invention is to adopt a new and inexpensive sealing method that can relax the thermal stress and ensure the airtightness between the solid electrolyte tube and the general refractory, and use a small solid electrolyte tube. This makes it possible to measure the oxygen concentration in high-temperature gas directly and continuously with high accuracy without using special equipment such as a furnace gas suction device, and has high durability and low production costs. It is to provide an oxygen concentration measuring device. In addition, the high temperature gas as used in the field of this invention means the gas of 750 degreeC or more.

上記の課題を解決するためになされた本発明の高温ガス中の酸素濃度測定装置は、先端部を封じた円筒状固体電解質管の内外表面に白金コーティング層を設けるとともに、該白金コーティング層にそれぞれ白金電極を接続し、固体電解質管の内側を空気を用いた基準極、固体電解質管の外側を高温ガスと接触する作動極とした高温ガス中の酸素濃度測定装置において、前記固体電解質管の内側先端部に白金メッシュを充填し、該白金メッシュに白金電極の先端部を押し付け接触させたことを特徴とする。 An apparatus for measuring oxygen concentration in a high-temperature gas according to the present invention, which has been made to solve the above problems, provides a platinum coating layer on the inner and outer surfaces of a cylindrical solid electrolyte tube sealed at the tip, and each of the platinum coating layers An apparatus for measuring oxygen concentration in a high-temperature gas, wherein a platinum electrode is connected, the inside of the solid electrolyte tube is a reference electrode using air, and the outside of the solid electrolyte tube is in contact with the high-temperature gas, the inside of the solid electrolyte tube The tip is filled with a platinum mesh, and the tip of the platinum electrode is pressed against and brought into contact with the platinum mesh .

本発明の高温ガス中の酸素濃度測定装置は、固体電解質管の内側を空気を用いた基準極、固体電解質管の外側を高温ガスと接触する作動極とする電池を構成することにより、この電池の起電力と基準極の酸素分圧から作動極の酸素分圧を算出して高温ガス中の酸素濃度を精度よく測定することができる。また、小型の固体電解質管を用いることにより従来のような炉内ガスの吸引装置等の特別な設備を使用することなく、高温ガス中の酸素濃度を直接かつ連続的に測定することができ、しかも耐久性に優れ生産コストも安価なものにすることができる。   The apparatus for measuring oxygen concentration in a high-temperature gas according to the present invention comprises a battery in which the inside of the solid electrolyte tube is a reference electrode using air and the outside of the solid electrolyte tube is a working electrode in contact with the high-temperature gas. The oxygen partial pressure of the working electrode can be calculated from the electromotive force of the gas and the oxygen partial pressure of the reference electrode to accurately measure the oxygen concentration in the high temperature gas. In addition, by using a small solid electrolyte tube, the oxygen concentration in the high-temperature gas can be directly and continuously measured without using special equipment such as a conventional furnace gas suction device. Moreover, it is excellent in durability and can be produced at low cost.

以下に、図面を参照しつつ本発明の好ましい形態を示す。   Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.

図1は本発明に係る酸素濃度測定装置の全体を示す正面図、図2はその要部を示す断面図である。図において、1は一般的な安定化ジルコニア系からなる先端部が封じられ後端が開放された円筒状の固体電解質管、2は緻密質のアルミナ等からなる円筒状の支持耐火物であり、これら固体電解質管1と支持耐火物2がプローブ本体3の先端に取り付けられている。   FIG. 1 is a front view showing an entire oxygen concentration measuring apparatus according to the present invention, and FIG. In the figure, 1 is a cylindrical solid electrolyte tube in which a tip portion made of a general stabilized zirconia system is sealed and a rear end is opened, 2 is a cylindrical support refractory made of dense alumina or the like, The solid electrolyte tube 1 and the supporting refractory 2 are attached to the tip of the probe body 3.

前記固体電解質管1の内外表面には刷毛塗りやスポンジ塗り等による白金コーティング層4a、4bが設けられており、該白金コーティング層4a、4bにそれぞれ白金電極5a、5bが接続されている。なお、6a、6bは白金電極5a、5bを保護と絶縁する筒状の耐火物管である。そして本発明では、固体電解質管1の内側を空気を用いた基準極、固体電解質管1の外側を高温ガスと接触する作動極とする電池を構成したものとなっている。   The inner and outer surfaces of the solid electrolyte tube 1 are provided with platinum coating layers 4a and 4b by brushing or sponge coating, and platinum electrodes 5a and 5b are connected to the platinum coating layers 4a and 4b, respectively. 6a and 6b are cylindrical refractory tubes that insulate the platinum electrodes 5a and 5b from protection. In the present invention, a battery is constructed in which the inside of the solid electrolyte tube 1 is a reference electrode using air and the outside of the solid electrolyte tube 1 is an operating electrode in contact with a high-temperature gas.

なお、図示のものでは固体電解質管1の内側先端部には白金メッシュ7が充填され、該白金メッシュ7に白金電極5aの先端部を機械的に押し付け内面の白金コーティング層に接触させたものとなっている。これは、固体電解質管1の内側と白金電極5aとの接触面積が小さいと基準極において接触抵抗による接触電位差が発生して正確な酸素濃度の測定をすることができないおそれがあり、白金コーティングの上に白金メッシュ7を充填することでこの問題点を解消することができる。   In the illustrated example, the inner tip of the solid electrolyte tube 1 is filled with a platinum mesh 7, and the tip of the platinum electrode 5a is mechanically pressed against the platinum mesh 7 so as to contact the platinum coating layer on the inner surface. It has become. This is because if the contact area between the inside of the solid electrolyte tube 1 and the platinum electrode 5a is small, a contact potential difference due to contact resistance may occur at the reference electrode, and an accurate oxygen concentration measurement may not be possible. This problem can be solved by filling the platinum mesh 7 on top.

また、図において8a、8bは、基準極として用いた空気の吸入孔と排出孔である。この基準極としては空気の他、純酸素や、Ni/NiO、Fe/FeO、Cr/Cr等の金属とその酸化物の混合粉末で酸素分圧が固定された物質を用いることができる。ただし、ガス中の酸素濃度を連続的かつ安価に精度よく測定するには原理的に空気が最も優れており、本発明では基準極として空気を用いている。 In the figure, reference numerals 8a and 8b denote air suction holes and discharge holes used as reference electrodes. As the reference electrode, in addition to air, a substance in which oxygen partial pressure is fixed with pure oxygen, a mixed powder of a metal such as Ni / NiO, Fe / FeO, Cr / Cr 2 O 3 and its oxide is used. it can. However, in principle, air is the best method for continuously and inexpensively measuring the oxygen concentration in the gas. In the present invention, air is used as the reference electrode.

図示のものでは、固体電解質管1の後端側が円筒状の支持耐火物2に挿入支持されているとともに、該支持部にはセラミックヤーン8が介在されて固体電解質管1と支持耐火物2の気密性が保持された構造となっている。これは、プローブ支持治具3の先端にセンサー部となる固体電解質管1のみを取り付けてもよいが、固体電解質管は高価であるため必要最小限の先端部だけにしてコストダウンを図るためである。特に、炉体外壁から酸素濃度を測定したい場所までの距離が長い場合は、長尺の固体電解質管が必要となってコストアップが著しいうえに、小径の固体電解質管の内面に白金コーティング層を均一に形成することが難しく精度の高い電極を得ることが困難で、酸素濃度の測定精度が劣化するおそれがある。   In the illustrated example, the rear end side of the solid electrolyte tube 1 is inserted and supported by a cylindrical support refractory 2, and a ceramic yarn 8 is interposed in the support portion to interpose the solid electrolyte tube 1 and the support refractory 2. The structure is airtight. This is because only the solid electrolyte tube 1 serving as the sensor portion may be attached to the tip of the probe support jig 3, but the solid electrolyte tube is expensive, so that only the minimum tip portion is necessary to reduce the cost. is there. In particular, when the distance from the outer wall of the furnace body to the location where the oxygen concentration is to be measured is long, a long solid electrolyte tube is required, resulting in a significant increase in cost and a platinum coating layer on the inner surface of the small-diameter solid electrolyte tube. It is difficult to form uniformly and it is difficult to obtain a highly accurate electrode, and there is a possibility that the measurement accuracy of the oxygen concentration is deteriorated.

しかしながら、固体電解質管1と支持耐火物2を接合する場合、アルミナセメント等を塗布して固定する方法が一般的であるが、乾燥後に微小な収縮孔や亀裂を生じ確実に気密性を確保することができず、また固体電解質管1と支持耐火物2の加熱・冷却時における熱膨張・熱収縮差により折損を生じやすく気密性を確保することができないという問題が残されていた。そこで、本発明では固体電解質管1の挿入支持部には耐熱性に優れたセラミックヤーン8を介在することにより固体電解質管1と支持耐火物2の気密性を保持する構造とした。図示のものでは、セラミックヤーン8を固体電解質管1の外周に巻きつけたうえセラミックセメント9を塗布した構造となっている。   However, when the solid electrolyte tube 1 and the supporting refractory 2 are joined, a method of applying and fixing alumina cement or the like is generally used, but minute shrinkage holes and cracks are generated after drying to ensure airtightness. In addition, there remains a problem that the solid electrolyte tube 1 and the supporting refractory 2 are easily broken due to differences in thermal expansion and contraction during heating / cooling and cannot secure airtightness. Therefore, in the present invention, the insertion support portion of the solid electrolyte tube 1 has a structure in which the solid electrolyte tube 1 and the supporting refractory 2 are kept airtight by interposing a ceramic yarn 8 having excellent heat resistance. In the illustrated example, the ceramic yarn 8 is wound around the outer periphery of the solid electrolyte tube 1 and the ceramic cement 9 is applied.

なお、前記セラミックヤーン8は、ヤーンが溶融を開始する温度よりも200℃以上低い温度域の部分に介在するのが好ましい。これは、セラミックヤーン8が溶融すると気密性が劣りガスシール機能を保証できなくなるからである。具体的には、例えば、炉中央部に1600℃の高温ガスが存在する電気炉内に長さ2mのプローブのうち1mを挿入する場合、高温度のガスに曝される固体電解質管1の先端部より200mm以上奥まった個所に巻きつけるのが好ましい。なお、セラミックヤーンの特性表示として溶融開始温度は明示されていない場合が多いが、この時は完全溶融温度よりも600℃以上低い温度域を目安とすればよい。   The ceramic yarn 8 is preferably interposed in a portion of a temperature region that is 200 ° C. or more lower than the temperature at which the yarn starts to melt. This is because if the ceramic yarn 8 is melted, the airtightness is poor and the gas sealing function cannot be guaranteed. Specifically, for example, when 1 m of a 2 m long probe is inserted into an electric furnace in which a high temperature gas of 1600 ° C. exists in the center of the furnace, the tip of the solid electrolyte tube 1 exposed to the high temperature gas It is preferable to wrap around a portion that is 200 mm deeper than the portion. In many cases, the melting start temperature is not clearly shown as the characteristic display of the ceramic yarn. At this time, a temperature range lower than the complete melting temperature by 600 ° C. or more may be used as a guide.

次に、酸素濃度の測定原理について説明する。図3に示されるように、固体電解質管を用いた濃淡電池においては下記の化学式1に示したネルンスト(Nernst)の式が知られている。   Next, the principle of measuring the oxygen concentration will be described. As shown in FIG. 3, the Nernst equation shown in the following chemical formula 1 is known in a concentration cell using a solid electrolyte tube.

Figure 0004194452
Eは起電力、Rは気体定数、Tは絶対温度、Fはファラデー定数、Poは基準極の酸素分圧、Poは作動極の酸素分圧である。本発明では基準極に空気を用いるためその酸素分圧は0.21atmである。従って、起電力(E)とプローブ先端温度(T)を測定すれば化学式1より作動極の酸素分圧(Po)が連続的かつ正確に算出できることとなる。実際にはプローブ内側に熱電対を封入して同時に温度を測定できるようにすることが好ましい。
Figure 0004194452
E is the electromotive force, R is the gas constant, T is the absolute temperature, F is the Faraday constant, Po 1 is the oxygen partial pressure of the reference electrode, and Po 2 is the oxygen partial pressure of the working electrode. In the present invention, since air is used for the reference electrode, the oxygen partial pressure is 0.21 atm. Therefore, if the electromotive force (E) and the probe tip temperature (T) are measured, the oxygen partial pressure (Po 2 ) of the working electrode can be continuously and accurately calculated from the chemical formula 1. In practice, it is preferable to enclose a thermocouple inside the probe so that the temperature can be measured simultaneously.

固体電解質管として、ZrO・8mol%Yを用い、外径8mm、内径5mm、長さ300mmを準備し、管の内外表面に刷毛塗りで白金コーティング層を形成した。また、固体電解質管の内側先端部に5mm径で55メッシュの白金メッシュを充填し、白金電極は0.5mmのものを用いた。一方、支持耐火物として、緻密質アルミナからなり、直径15mm、内径10mm、長さ1000mmを準備した。この固体電解質管と支持耐火物を、図2に示されるように組み合わせてセンサー部とした。なお、セラミックヤーンはAl・B系のもので、直径0.3mm、溶融開始温度1420℃であり、このヤーン溶融開始温度よりも200℃以上低い温度域となる固体電解質管の先端部より250〜300mmの個所に巻きつけた。 ZrO 2 .8 mol% Y 2 O 3 was used as a solid electrolyte tube, and an outer diameter of 8 mm, an inner diameter of 5 mm, and a length of 300 mm were prepared. A platinum coating layer was formed on the inner and outer surfaces of the tube by brushing. Moreover, the inner tip part of the solid electrolyte tube was filled with a platinum mesh having a diameter of 5 mm and 55 mesh, and a platinum electrode having a thickness of 0.5 mm was used. On the other hand, the supporting refractory was made of dense alumina, and a diameter of 15 mm, an inner diameter of 10 mm, and a length of 1000 mm were prepared. The solid electrolyte tube and the supporting refractory were combined as shown in FIG. 2 to form a sensor unit. The ceramic yarn is of the Al 2 O 3 .B 2 O 3 system, has a diameter of 0.3 mm and a melting start temperature of 1420 ° C., and is a solid electrolyte tube having a temperature range lower than this yarn melting start temperature by 200 ° C. or more. It wound around the part 250-300mm from the front-end | tip part.

タンマン炉内の中央部の最高温度を800〜1200℃の範囲で設定し、炉内にAr・O混合標準ガスを5l/min流した。上記で得られた酸素濃度測定装置により炉内中央部のガス中の酸素濃度を測定した結果を表1、および図4に示す。 The maximum temperature in the center of the Tamman furnace was set in the range of 800 to 1200 ° C., and Ar / O 2 mixed standard gas was allowed to flow in the furnace at 5 l / min. Table 1 and FIG. 4 show the results of measuring the oxygen concentration in the gas in the center of the furnace using the oxygen concentration measuring apparatus obtained above.

Figure 0004194452
上記表1、および図4に示すように、標準混合ガス中の酸素濃度と本発明の装置で測定した酸素濃度とはほぼ完全に一致しており、ガス中の酸素濃度を精度よく測定できることが確認できた。
Figure 0004194452
As shown in Table 1 and FIG. 4, the oxygen concentration in the standard mixed gas and the oxygen concentration measured by the apparatus of the present invention are almost completely the same, and the oxygen concentration in the gas can be accurately measured. It could be confirmed.

30kg溶解炉において電解鉄30kgを溶解し、4%Cを含む溶銑に成分調整後、溶銑温度を1450℃に調整した。実施例1の酸素濃度測定装置を先端センサー部がシールポット上面から200mm下(溶銑表面から約20mm上方)の位置にセットしてガス中の酸素濃度を測定したところ、0.19%であった。一方、同じ位置のガスをポンプで吸引採取し、炉外のガス分析装置によってガス中の酸素濃度を測定した結果は、0.18%であり、本発明の装置がガス中の酸素濃度を精度よく測定できることが確認できた。   In a 30 kg melting furnace, 30 kg of electrolytic iron was melted, the components were adjusted to hot metal containing 4% C, and the hot metal temperature was adjusted to 1450 ° C. When the oxygen concentration measuring apparatus of Example 1 was set at a position where the tip sensor portion was 200 mm below the upper surface of the seal pot (approximately 20 mm above the hot metal surface) and the oxygen concentration in the gas was measured, it was 0.19%. . On the other hand, the result of measuring the oxygen concentration in the gas with the gas analyzer at the same position by sucking and collecting the gas at the same position was 0.18%, and the apparatus of the present invention accurately measured the oxygen concentration in the gas. It was confirmed that measurement was possible.

本発明の実施の形態を示す正面図である。It is a front view which shows embodiment of this invention. 本発明の実施の形態を示す要部の断面図である。It is sectional drawing of the principal part which shows embodiment of this invention. 酸素濃度の測定原理を示す説明図である。It is explanatory drawing which shows the measurement principle of oxygen concentration. 標準混合ガス中の酸素濃度と本発明で測定した酸素濃度の関係を示すグラフである。It is a graph which shows the relationship between the oxygen concentration in a standard mixed gas, and the oxygen concentration measured by this invention.

符号の説明Explanation of symbols

1 固体電解質管
2 支持耐火物
3 プローブ本体
4a 白金コーティング層
4b 白金コーティング層
5a 白金電極
5b 白金電極
7 白金メッシュ
8 セラミックヤーン
9 セラミックセメント
10 電圧測定器
DESCRIPTION OF SYMBOLS 1 Solid electrolyte pipe 2 Support refractory 3 Probe main body 4a Platinum coating layer 4b Platinum coating layer 5a Platinum electrode 5b Platinum electrode 7 Platinum mesh 8 Ceramic yarn 9 Ceramic cement 10 Voltage measuring device

Claims (3)

先端部を封じた円筒状固体電解質管の内外表面に白金コーティング層を設けるとともに、該白金コーティング層にそれぞれ白金電極を接続し、固体電解質管の内側を空気を用いた基準極、固体電解質管の外側を高温ガスと接触する作動極とした高温ガス中の酸素濃度測定装置において、前記固体電解質管の内側先端部に白金メッシュを充填し、該白金メッシュに白金電極の先端部を押し付け接触させたことを特徴とする高温ガス中の酸素濃度測定装置。 A platinum coating layer is provided on the inner and outer surfaces of a cylindrical solid electrolyte tube sealed at the tip, and a platinum electrode is connected to each of the platinum coating layers. The inside of the solid electrolyte tube is a reference electrode using air, and a solid electrolyte tube In the oxygen concentration measuring device in the high-temperature gas with the outside serving as the working electrode in contact with the high-temperature gas, the inner tip of the solid electrolyte tube was filled with platinum mesh, and the tip of the platinum electrode was pressed against and contacted the platinum mesh. A device for measuring oxygen concentration in a high-temperature gas. 固体電解質管の後端側が円筒状の支持耐火物に挿入支持されているとともに、固体電解質管と支持耐火物との接合部にはセラミックヤーンが介在されて固体電解質管と支持耐火物の気密性が保持されている請求項1に記載の高温ガス中の酸素濃度測定装置。 The rear end side of the solid electrolyte tube is inserted and supported by a cylindrical support refractory, and a ceramic yarn is interposed at the joint between the solid electrolyte tube and the support refractory so that the air tightness of the solid electrolyte tube and the support refractory The oxygen concentration measuring device in the high temperature gas according to claim 1, wherein セラミックヤーンは、固体電解質管の先端部より200mm以上離れて、ヤーンが溶融を開始する温度よりも200℃以上低い温度域の部分に介在されている請求項2に記載の高温ガス中の酸素濃度測定装置。 3. The oxygen concentration in the high-temperature gas according to claim 2, wherein the ceramic yarn is interposed at a portion in a temperature range that is 200 mm or more away from the tip of the solid electrolyte tube and lower than the temperature at which the yarn starts melting by 200 ° C. or more. measuring device.
JP2003306482A 2003-08-29 2003-08-29 Equipment for measuring oxygen concentration in high-temperature gas Expired - Fee Related JP4194452B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003306482A JP4194452B2 (en) 2003-08-29 2003-08-29 Equipment for measuring oxygen concentration in high-temperature gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003306482A JP4194452B2 (en) 2003-08-29 2003-08-29 Equipment for measuring oxygen concentration in high-temperature gas

Publications (2)

Publication Number Publication Date
JP2005077194A JP2005077194A (en) 2005-03-24
JP4194452B2 true JP4194452B2 (en) 2008-12-10

Family

ID=34409548

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003306482A Expired - Fee Related JP4194452B2 (en) 2003-08-29 2003-08-29 Equipment for measuring oxygen concentration in high-temperature gas

Country Status (1)

Country Link
JP (1) JP4194452B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10409295B2 (en) * 2016-12-31 2019-09-10 Applied Materials, Inc. Methods and apparatus for enhanced flow detection repeatability of thermal-based mass flow controllers (MFCS)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5965757A (en) * 1982-10-07 1984-04-14 Fuji Electric Corp Res & Dev Ltd Oxygen sensor
JPS6151558A (en) * 1984-08-21 1986-03-14 Hitachi Chem Co Ltd Manufacture of oxygen sensor element
JPH0632615Y2 (en) * 1985-10-09 1994-08-24 日本碍子株式会社 Solid electrolyte sensor
JPS63185554U (en) * 1987-05-21 1988-11-29
JP3811991B2 (en) * 1996-05-21 2006-08-23 株式会社デンソー Oxygen sensor element manufacturing method and oxygen sensor element

Also Published As

Publication number Publication date
JP2005077194A (en) 2005-03-24

Similar Documents

Publication Publication Date Title
WO2017080005A1 (en) Sensor and method for measuring content of hydrogen in metal melt
US8152978B2 (en) Apparatus and method for measuring hydrogen concentration in molten metals
US4046661A (en) Ceramic oxygen probe
JP4194452B2 (en) Equipment for measuring oxygen concentration in high-temperature gas
JP3878875B2 (en) Oxygen concentration meter
JP2000214127A (en) Apparatus for measuring oxygen partial pressure in slag and its measurement method
JP2021156740A (en) Gas sensor
RU2489711C1 (en) Solid electrolyte sensor for measurement of oxygen concentration in gases and molten metals
JP2018080986A (en) Solid electrolyte sensor and method of manufacturing solid electrolyte sensor
JPH0462463A (en) Sensor probe having solid reference material
JP7265007B2 (en) Solid reference material and hydrogen gas sensor
JPH1062382A (en) Device for executing electrochemical measurment in fused glass or salt
RU2677927C1 (en) Potentiometric oxygen concentration sensor
JP2785892B2 (en) Oxygen sensor
JPH084610Y2 (en) Oxygen sensor with heater
JPH04283654A (en) Measuring method for hydrogen concentration in melted metal and sensor prove used in execution thereof
JPH0829379A (en) Sensor for measuring quantity of hydrogen dissolved in molten metal
JPH0756478B2 (en) Insertable sensor probe
JP2022147913A (en) gas sensor
RU1784906C (en) Solid electrolyte dip pick-up
JPH01284750A (en) Direct current polarization type oxygen sensor
JPH03276055A (en) Insertion type sensor probe
JPH0571762U (en) Oxygen meter
JPH0462464A (en) Sensor probe having solid reference material
SU851249A1 (en) Metallic melt oxidation pickup

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051020

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080620

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080812

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080912

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080922

R150 Certificate of patent or registration of utility model

Ref document number: 4194452

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111003

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121003

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121003

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131003

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131003

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131003

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees