JP4193357B2 - Optical device having optical fiber diffraction grating - Google Patents

Optical device having optical fiber diffraction grating Download PDF

Info

Publication number
JP4193357B2
JP4193357B2 JP2000374027A JP2000374027A JP4193357B2 JP 4193357 B2 JP4193357 B2 JP 4193357B2 JP 2000374027 A JP2000374027 A JP 2000374027A JP 2000374027 A JP2000374027 A JP 2000374027A JP 4193357 B2 JP4193357 B2 JP 4193357B2
Authority
JP
Japan
Prior art keywords
adhesive
diffraction grating
optical fiber
fiber diffraction
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000374027A
Other languages
Japanese (ja)
Other versions
JP2002174737A (en
Inventor
麻紀 池知
充章 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2000374027A priority Critical patent/JP4193357B2/en
Publication of JP2002174737A publication Critical patent/JP2002174737A/en
Application granted granted Critical
Publication of JP4193357B2 publication Critical patent/JP4193357B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02057Optical fibres with cladding with or without a coating comprising gratings
    • G02B6/02076Refractive index modulation gratings, e.g. Bragg gratings
    • G02B6/02171Refractive index modulation gratings, e.g. Bragg gratings characterised by means for compensating environmentally induced changes
    • G02B6/02176Refractive index modulation gratings, e.g. Bragg gratings characterised by means for compensating environmentally induced changes due to temperature fluctuations
    • G02B6/0218Refractive index modulation gratings, e.g. Bragg gratings characterised by means for compensating environmentally induced changes due to temperature fluctuations using mounting means, e.g. by using a combination of materials having different thermal expansion coefficients

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Light Guides In General And Applications Therefor (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、光ファイバ回折格子を有する光学装置に関する。
【0002】
【従来の技術】
光ファイバ回折格子は、一般に、光ファイバの被覆層を軸方向に所定の長さにわたって除去してクラッドを露出させ、該クラッドに向けて紫外線を照射し、該クラッドの内側のコアの所定の領域に屈折率差を生じさせることにより形成される。この屈折率変化の周期長を格子ピッチと呼ぶ。光ファイバ回折格子によって反射される波長(ブラッグ波長)は、光ファイバのコアの実効屈折率をn、格子ピッチをΛとして2nΛで表される。
光ファイバ回折格子の周囲温度の変化により、コアの実効屈折率nおよび格子ピッチΛが変化し、ブラッグ波長が変化するが、この変化を補償する(以下、このことを光ファイバ回折格子の温度補償という)ために、負の熱膨張係数を有する基材に光ファイバ回折格子を固定し、n、Λおよび光弾性効果による光ファイバの屈折率の変化により変化するブラッグ波長を基材の長さの温度による変化で相殺するように調整する光学装置が知られている。特表平5−503170号公報には、熱膨張係数の異なる二種の部材を組み合わせてなる基材を使用することが開示されている。
【0003】
【発明が解決しようとする課題】
光ファイバ回折格子を基材に固定するためには、接着剤を使用することができる。複数の部材を組み合わせて基材となす場合も、該部材は接着剤により固定することができる。光ファイバ回折格子とそれが固定された基材からなる光学装置において、基材の熱膨張係数を最適に設計しても、高温多湿の湿熱環境においた後、当初の設計通りに光ファイバ回折格子の温度補償がなされないことを本発明者は経験した。本発明者はその原因究明に努め、前記光学装置に使用する接着剤の物性が、湿熱環境においた後の光ファイバ回折格子の温度補償に大きな影響を及ぼすことを究明した。
本発明は、光ファイバ回折格子とそれが固定された基材からなる光学装置であって、湿熱環境においた後も当初の設計通りに光ファイバ回折格子の温度補償がなされる光学装置を提供することを課題とする。
【0004】
【課題を解決するための手段】
本発明の光学装置は、光ファイバ回折格子とそれが固定される負の熱膨張係数を有する基材からなり、周囲温度の変化により前記基材が伸縮して前記光ファイバ回折格子に応力が印加され、該応力により前記光ファイバ回折格子のブラッグ波長が調整される光学装置であって、前記基材は、石英ガラス部材の端に二つのアルミニウム部材を向かい合わせてそれぞれヤング率が882N/mm 以下である第二の接着剤で接着したものであって、前記光ファイバ回折格子を前記アルミニウム部材に接着する第一の接着剤の熱膨張係数が1×10−5ないし8×10−5/℃であり、前記第一の接着剤の湿熱環境においた後の接着強度が5.88N/mm以上であることを特徴とする光学装置。
接着剤の熱膨張係数を1×10−5ないし8×10−5/℃とすることで製造直後の光学装置のブラッグ波長が周囲温度によって変化することがなくなる。すなわち、光学装置の初期の温度依存性がよくなる。有機材料からなる接着剤の熱膨張係数を小さくしようとすると、フィラー等の無機物質の添加が必要となる。熱膨張係数を1×10−5/℃にすると無機物質の添加濃度が相当高くなり耐久性が悪くなる。すなわち、接着剤の熱膨張係数が1×10−5/℃より小さい場合、湿熱環境におくことにより劣化が著しく接着剤が剥がれやすくなる。接着剤の熱膨張係数が8×10−5/℃を越えるとブラッグ波長が温度により変化する量が急増し、製品として許容できる範囲を大きく逸脱する。たとえば、接着剤の熱膨張係数が10×10−5/℃となると製造直後のブラッグ波長の温度依存性が0.002nm/℃と一桁大きな値となる。接着剤の熱膨張係数は、温度によって変化するが、本発明の光学装置では、その使用温度範囲である−40℃から85℃の範囲において、1×10−5ないし8×10−5/℃である。
そして、本発明の光学装置では、85℃、相対湿度85%湿熱環境に3000時間おいた後の接着強度を5.88N/mm以上とすることでブラッグ波長が周囲温度により変化することを抑え、光ファイバ回折格子の温度補償を行っている。
【0005】
本発明の光学装置は、基材がアルミニウム部材と石英ガラス部材からなる。負の熱膨張係数を有する基材を一つの部材のみで作った場合は、湿熱環境においた後にブラッグ波長が温度により変化しないもの得ることは難しい。また、加工性も必ずしもよくない。しかし、二つの部材を組み合わせて基材を構成することにより、湿熱環境においた後のブラッグ波長の温度依存性が変化せず、かつ加工性のよい基材を得ることができる。
【0006】
さらに、二つの部材を接着する接着剤のヤング率を882N/mm以下とする。これにより、アルミニウム部材と石英ガラス部材のそれぞれの熱膨張量が異なることによる応力差を前記接着剤が吸収することができ、ヒートサイクルテストにおいて熱衝撃で前記部材のいずれかが破壊されることが起こらず、湿熱環境においても両部材が破損または接着剤部分で破断されることがなくなる。
【0007】
【発明の実施の形態】
本発明の光学装置の一形態を図1に例示する。図1に示す光学装置8は、その基材5が第一の部材である棒状の石英ガラス部材3と第二の部材である略L字型のアルミニウム部材4からなり、該アルミニウム部材4の上に光ファイバ回折格子6を固定したものである。二つのアルミニウム部材4を向かい合わせ、各アルミニウム部材4を第二の接着剤2で石英ガラス部材3の端にそれぞれ接着する。そして、各アルミニウム部材4に光ファイバ回折格子6を張力をかけた状態で第一の接着剤1で接着する。アルミニウム、石英ガラスとも正の熱膨張係数を有しているが、アルミニウムの方が熱膨張係数が大きく、光ファイバ回折格子が固定される部分は、アルミニウム部材4が、その周囲温度が上昇して膨張する場合は、その間の距離が短くなる。すなわち、基材全体としては負の熱膨張係数を有することになる。
周囲温度の変化により光ファイバ回折格子6および基材5が伸縮したときに、それぞれの伸縮量の差異により光ファイバ回折格子6に応力がかかる。この応力によって光ファイバ回折格子のブラッグ波長が調整され、光ファイバ回折格子の温度補償がなされる。基材5の熱膨張係数、光ファイバ回折格子が固定される場所間の距離および光ファイバを固定するときの張力は、光ファイバ回折格子の温度補償がなされる限り、任意の値で設計可能である。
【0008】
第一の接着剤の接着強度の測定方法について説明する。表面処理していないアルミニウムブロックを接着剤層の厚さが10μm程度になるように接着剤で接着する。このとき、接着剤は接着面全体に塗布する。接着剤が固化した後、接着面に垂直にアルミブロックを引き離す。この力はゼロから徐々に大きくしていく。ある力に達したときにアルミブロックが接着部において剥離または接着剤が破断するが、このときの力を接着力とする。この測定は室温で行う。
本発明の光学装置の第一の接着剤の接着強度は湿熱環境においた後でも5.88N/mm2以上であるが、湿熱環境は、85℃、相対湿度85%の条件とし、この環境に3000時間以上おいて5.88N/mm2以上の接着強度があればよい。
【0009】
第一の接着剤および第二の接着剤は、他の樹脂に比較して接着強度の大きいエポキシ系接着剤を使用するのが好ましい。エポキシ系接着剤の中でも熱硬化型または紫外線硬化型のものが好ましい。紫外線硬化型のものは、作業性および設備コストの点で特に好ましい。
【0010】
第一の接着剤および第二の接着剤は、吸湿率が1.2%以下のものが好ましい。ここで吸湿率とは、その試験物質を85℃、相対湿度85%の湿熱環境に3000時間おいた後に吸湿により増加した重量が湿熱環境におく前の重量に対して占める百分率をいう。そのような接着剤を使用すると、湿熱環境においても、接着剤が膨潤して体積が増加することによりブラッグ波長が問題になるほど変化するおそれがない。
【0011】
【実施例】
第一の接着剤A、B、CおよびD、第二の接着剤EおよびFを用意し、それらを組み合わせ8通りの光学装置を作成した。また、第一の接着剤、第二の接着剤とも接着剤Aとした光学装置を作成した。同じ各光学装置は接着剤以外は共通の構造とした。それらの光学装置について、20℃→−40℃→85℃→20℃のヒートサイクルテストを行い、温度変化に対するブラッグ波長の変化量の傾き(単位はnm/℃)を求め、これを初期温度特性とした。また、温度上昇時と温度下降時それぞれの35℃におけるブラッグ波長の差を求め、これを初期35℃ヒステリシスとした。その後、各光学装置を85℃、相対湿度85%の湿熱環境に3000時間おいた。湿熱環境から取り出して20℃でのブラッグ波長を測定し、湿熱環境におく前のブラッグ波長との差を求め、これを湿熱後シフトとした。
【0012】
各接着剤の熱膨張係数、ヤング率、吸湿率、接着強度を表1に示す。
熱膨張係数は−40℃ないし85℃の範囲における値である。
ヤング率は室温でテンシロンで測定した値である。
吸湿率は接着剤C以外は85℃、相対湿度85%の湿熱環境に3000時間おいたときの値である。接着剤Cは、120℃、相対湿度100%の環境に100時間おいたときの値であるが、この値は、同じ接着剤を85℃、相対湿度85%の環境に3000時間おいたときの値よりは小さな値である。
接着強度は接着剤A、B、CおよびDにおいては表面処理していないアルミニウムブロック同士を接着剤で接着し、85℃、相対湿度85%の湿熱環境に3000時間おいた後に前述の方法で測定した値である。接着剤EおよびFではアルミニウムブロックと石英ガラスとを接着剤で接着し、以後は接着剤A、B、C、Dの場合と同じにして測定した。
【0013】
【表1】

Figure 0004193357
【0014】
第一の接着剤と第二の接着剤との組み合わせおよびそれぞれの場合の初期温度特性、初期35℃ヒステリシスおよび湿熱後シフトを表2に示す。
【0015】
【表2】
Figure 0004193357
【0016】
初期温度特性の絶対値が0.001nm/℃以下、初期35℃ヒステリシスが0.02nm以下、かつ湿熱後シフトが0.05nm以下のものを合格とした。表2の各組み合わせのうち、組み合わせ4が、湿熱後シフトが最も小さくこれのみが合格となった。他の組み合わせも初期の特性は合格したが、湿熱後シフトが大きく、最終的に不合格となった。組み合わせ4では、第一の接着剤の湿熱環境においた後の接着強度が他の樹脂に比して大きな値であり、湿熱後シフトを小さくするには湿熱環境においた後の接着強度を5.88N/mm2以上とすることが必要であることが分かった。
表2に示す組み合わせ1ないし8では第二の接着剤のヤング率を882N/mm2以下としたので、ヒートサイクルテストを行った後に、石英ガラス部材とアルミニウム部材との接着部が破断したり石英ガラス部材が破損することはなかった。しかし、組み合わせ9では、第二の接着剤にヤング率が2891N/mm2のものを使用したところヒートサイクルテストを行った後に、石英ガラスが割れることが多く、その歩留まりは27/44であった。
【0017】
【発明の効果】
本発明の光学装置では、湿熱環境においた後でも、光ファイバ回折格子の温度補償がなされる。
基材を熱膨張係数の異なる二つの部材から構成することにより、基材の加工性がよくなり、生産性が向上する。
基材を二つの部材から構成する場合は、両部材を接着する接着剤のヤング率を882N/mm2以下とすると、本発明の光学装置を湿熱環境においた後の不良率が減り、歩留まりが向上する。
【図面の簡単な説明】
【図1】本発明の光学装置の斜視図である。
【符号の説明】
1:第一の接着剤
2:第二の接着剤
3:石英ガラス部材
4:アルミニウム部材
5:基材
6:光ファイバ回折格子
7:光学装置[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an optical device having an optical fiber diffraction grating.
[0002]
[Prior art]
In general, an optical fiber diffraction grating is formed by removing a coating layer of an optical fiber over a predetermined length in an axial direction to expose a clad, irradiating the clad with ultraviolet rays, and a predetermined region of a core inside the clad. It is formed by causing a difference in refractive index. The period length of this refractive index change is called a grating pitch. The wavelength (Bragg wavelength) reflected by the optical fiber diffraction grating is represented by 2nΛ where n is the effective refractive index of the core of the optical fiber and Λ is the grating pitch.
The effective refractive index n and the grating pitch Λ of the core change due to the change in the ambient temperature of the optical fiber diffraction grating, and the Bragg wavelength changes. This change is compensated (hereinafter this is referred to as temperature compensation of the optical fiber diffraction grating). Therefore, the optical fiber diffraction grating is fixed to the base material having a negative thermal expansion coefficient, and the Bragg wavelength that changes due to the change in the refractive index of the optical fiber due to the n, Λ and the photoelastic effect is changed to the length of the base material. Optical devices that adjust so as to cancel out changes due to temperature are known. Japanese Patent Laid-Open No. 5-503170 discloses that a base material formed by combining two kinds of members having different thermal expansion coefficients is used.
[0003]
[Problems to be solved by the invention]
An adhesive can be used to fix the optical fiber diffraction grating to the substrate. Even when a plurality of members are combined to form a base material, the members can be fixed with an adhesive. In an optical device consisting of an optical fiber diffraction grating and a base material to which the optical fiber diffraction grating is fixed, even if the thermal expansion coefficient of the base material is optimally designed, the optical fiber diffraction grating is designed as originally designed after being placed in a hot and humid environment. The inventor has experienced no temperature compensation. The present inventor has sought to determine the cause, and has found that the physical properties of the adhesive used in the optical device have a great influence on the temperature compensation of the optical fiber diffraction grating after being placed in a humid heat environment.
The present invention provides an optical device comprising an optical fiber diffraction grating and a base material on which the optical fiber diffraction grating is fixed, wherein the temperature of the optical fiber diffraction grating is compensated as originally designed even after being placed in a humid heat environment. This is the issue.
[0004]
[Means for Solving the Problems]
The optical device of the present invention comprises an optical fiber diffraction grating and a base material having a negative thermal expansion coefficient to which the optical fiber diffraction grating is fixed. The base material expands and contracts due to a change in ambient temperature, and stress is applied to the optical fiber diffraction grating. An optical device in which the Bragg wavelength of the optical fiber diffraction grating is adjusted by the stress, wherein the base material has two aluminum members facing each other at an end of a quartz glass member and has a Young's modulus of 882 N / mm 2, respectively. It is those bonded with it with a second adhesive below, the optical fiber to the thermal expansion coefficient of the first adhesive for bonding the diffraction grating in the aluminum member is 1 × 10 -5 no 8 × 10 -5 / ℃ a and an optical device adhesive strength after placing the wet heat environment of the first adhesive is characterized in that at 5.88 N / mm 2 or more.
By setting the thermal expansion coefficient of the adhesive to 1 × 10 −5 to 8 × 10 −5 / ° C., the Bragg wavelength of the optical device immediately after manufacture does not change depending on the ambient temperature. That is, the initial temperature dependency of the optical device is improved. In order to reduce the thermal expansion coefficient of an adhesive made of an organic material, it is necessary to add an inorganic substance such as a filler. When the thermal expansion coefficient is 1 × 10 −5 / ° C., the concentration of inorganic substance added becomes considerably high and the durability deteriorates. That is, when the thermal expansion coefficient of the adhesive is smaller than 1 × 10 −5 / ° C., the adhesive is easily peeled off due to significant deterioration by placing it in a moist heat environment. When the thermal expansion coefficient of the adhesive exceeds 8 × 10 −5 / ° C., the amount by which the Bragg wavelength changes with temperature increases rapidly, greatly deviating from the acceptable range for the product. For example, when the thermal expansion coefficient of the adhesive is 10 × 10 −5 / ° C., the temperature dependence of the Bragg wavelength immediately after production becomes 0.002 nm / ° C., which is an order of magnitude greater. Although the thermal expansion coefficient of the adhesive varies depending on the temperature, in the optical apparatus of the present invention, in the range of −40 ° C. to 85 ° C., which is the operating temperature range, 1 × 10 −5 to 8 × 10 −5 / ° C. It is.
In the optical device of the present invention, the Bragg wavelength is prevented from changing due to the ambient temperature by setting the adhesive strength after 3000 hours in an environment of 85 ° C. and 85% relative humidity to be at least 5.88 N / mm 2. The temperature compensation of the optical fiber diffraction grating is performed.
[0005]
The optical device of the present invention, the substrate is made of an aluminum member and the quartz glass member. When a base material having a negative thermal expansion coefficient is made of only one member , it is difficult to obtain a substrate whose Bragg wavelength does not change with temperature after being placed in a humid heat environment. Moreover, workability is not necessarily good. However, by combining the two members to form the base material, it is possible to obtain a base material with good workability without changing the temperature dependence of the Bragg wavelength after being placed in a humid heat environment.
[0006]
Furthermore, the Young's modulus of the adhesive that bonds the two members is 882 N / mm 2 or less . Thus, the stress difference due to the respective thermal expansion amounts of the aluminum member and the quartz glass member is different can the adhesive absorbs, that one of the members in thermal shock in a heat cycle test is destroyed It does not occur, and both members are not damaged or broken at the adhesive portion even in a humid heat environment.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
One form of the optical device of the present invention is illustrated in FIG. The optical device 8 shown in FIG. 1 includes a base 5 composed of a rod-shaped quartz glass member 3 as a first member and a substantially L-shaped aluminum member 4 as a second member. The optical fiber diffraction grating 6 is fixed to the above. The two aluminum members 4 face each other, and each aluminum member 4 is bonded to the end of the quartz glass member 3 with the second adhesive 2. Then, the optical fiber diffraction grating 6 is bonded to each aluminum member 4 with the first adhesive 1 in a state where tension is applied. Both aluminum and quartz glass have a positive coefficient of thermal expansion, but aluminum has a larger coefficient of thermal expansion, and the portion where the optical fiber diffraction grating is fixed is that the aluminum member 4 has an increased ambient temperature. In the case of expansion, the distance between them becomes short. That is, the whole substrate has a negative coefficient of thermal expansion.
When the optical fiber diffraction grating 6 and the base material 5 expand and contract due to a change in ambient temperature, stress is applied to the optical fiber diffraction grating 6 due to the difference between the expansion and contraction amounts. The Bragg wavelength of the optical fiber diffraction grating is adjusted by this stress, and temperature compensation of the optical fiber diffraction grating is performed. The thermal expansion coefficient of the base material 5, the distance between the places where the optical fiber diffraction grating is fixed, and the tension when fixing the optical fiber can be designed with arbitrary values as long as the temperature compensation of the optical fiber diffraction grating is performed. is there.
[0008]
A method for measuring the adhesive strength of the first adhesive will be described. The aluminum block which is not surface-treated is bonded with an adhesive so that the thickness of the adhesive layer becomes about 10 μm. At this time, the adhesive is applied to the entire bonding surface. After the adhesive has solidified, pull the aluminum block away from the bonding surface. This force gradually increases from zero. When a certain force is reached, the aluminum block peels off at the bonded portion or the adhesive breaks, and this force is defined as the bonding force. This measurement is performed at room temperature.
The adhesive strength of the first adhesive of the optical device of the present invention is 5.88 N / mm 2 or more even after being placed in a wet heat environment. The wet heat environment is set at 85 ° C. and a relative humidity of 85%. What is necessary is just to have an adhesive strength of 5.88 N / mm 2 or more after 3000 hours or more.
[0009]
As the first adhesive and the second adhesive, it is preferable to use an epoxy adhesive having a higher adhesive strength than other resins. Among the epoxy adhesives, those of thermosetting type or ultraviolet curing type are preferable. The ultraviolet curable type is particularly preferable in terms of workability and equipment cost.
[0010]
The first adhesive and the second adhesive preferably have a moisture absorption rate of 1.2% or less. Here, the moisture absorption rate refers to the percentage of the weight of the test substance increased by moisture absorption after being placed in a moist heat environment of 85 ° C. and a relative humidity of 85% for 3000 hours with respect to the weight before being placed in the moist heat environment. When such an adhesive is used, the Bragg wavelength does not change so as to become a problem due to the swelling of the adhesive and an increase in volume even in a wet heat environment.
[0011]
【Example】
The first adhesives A, B, C and D and the second adhesives E and F were prepared, and they were combined to prepare eight types of optical devices. Moreover, the optical apparatus which made the 1st adhesive agent and the 2nd adhesive agent adhesive A was created. Each optical device has a common structure except for the adhesive. For these optical devices, a heat cycle test of 20 ° C. → −40 ° C. → 85 ° C. → 20 ° C. is performed to determine the gradient (unit: nm / ° C.) of the change amount of the Bragg wavelength with respect to the temperature change. It was. Further, the difference in Bragg wavelength at 35 ° C. at the time of temperature rise and at the time of temperature fall was determined, and this was used as the initial 35 ° C. hysteresis. Thereafter, each optical device was placed in a humid heat environment of 85 ° C. and a relative humidity of 85% for 3000 hours. Taking out from the wet heat environment, the Bragg wavelength at 20 ° C. was measured, and the difference from the Bragg wavelength before being placed in the wet heat environment was determined.
[0012]
Table 1 shows the thermal expansion coefficient, Young's modulus, moisture absorption rate, and adhesive strength of each adhesive.
The coefficient of thermal expansion is a value in the range of -40 ° C to 85 ° C.
Young's modulus is a value measured with Tensilon at room temperature.
The moisture absorption rate is a value when the sample is placed in a humid heat environment of 85 ° C. and a relative humidity of 85% for 3000 hours except for the adhesive C. Adhesive C is a value when it is placed in an environment of 120 ° C. and a relative humidity of 100% for 100 hours. This value is the value when the same adhesive is placed in an environment of 85 ° C. and a relative humidity of 85% for 3000 hours. The value is smaller than the value.
Adhesive strength was measured by the method described above after adhering aluminum blocks that were not surface-treated with adhesives in adhesives A, B, C, and D and placing them in a moist heat environment at 85 ° C. and 85% relative humidity for 3000 hours. It is the value. For adhesives E and F, the aluminum block and quartz glass were bonded together with an adhesive, and thereafter the same measurement was performed as in the case of adhesives A, B, C, and D.
[0013]
[Table 1]
Figure 0004193357
[0014]
Table 2 shows the combinations of the first adhesive and the second adhesive and the initial temperature characteristics, initial 35 ° C. hysteresis, and shift after wet heat in each case.
[0015]
[Table 2]
Figure 0004193357
[0016]
An initial temperature characteristic having an absolute value of 0.001 nm / ° C. or less, an initial 35 ° C. hysteresis of 0.02 nm or less, and a post-humid heat shift of 0.05 nm or less was accepted. Of the combinations in Table 2, combination 4 had the smallest shift after wet heat and only passed. Other combinations also passed the initial properties, but the shift after wet heat was large and eventually failed. In the combination 4, the adhesive strength of the first adhesive after being placed in a wet heat environment is larger than that of other resins, and in order to reduce the shift after wet heat, the adhesive strength after being put in a wet heat environment is 5. It turned out that it is necessary to set it as 88 N / mm < 2 > or more.
In combinations 1 to 8 shown in Table 2, since the Young's modulus of the second adhesive was set to 882 N / mm 2 or less, after the heat cycle test, the bonded portion between the quartz glass member and the aluminum member was broken or quartz The glass member was not damaged. However, in combination 9, when the second adhesive having a Young's modulus of 2891 N / mm 2 was used, the quartz glass often cracked after the heat cycle test, and the yield was 27/44. .
[0017]
【The invention's effect】
In the optical device of the present invention, temperature compensation of the optical fiber diffraction grating is performed even after being placed in a humid heat environment.
By forming the base material from two members having different thermal expansion coefficients, the workability of the base material is improved and the productivity is improved.
When the base material is composed of two members, if the Young's modulus of the adhesive for bonding both members is 882 N / mm 2 or less, the defect rate after the optical device of the present invention is placed in a humid heat environment is reduced, and the yield is increased. improves.
[Brief description of the drawings]
FIG. 1 is a perspective view of an optical device according to the present invention.
[Explanation of symbols]
1: first adhesive 2: second adhesive 3: quartz glass member 4: aluminum member 5: substrate 6: optical fiber diffraction grating 7: optical device

Claims (1)

光ファイバ回折格子とそれが固定される負の熱膨張係数を有する基材からなり、周囲温度の変化により前記基材が伸縮して前記光ファイバ回折格子に応力が印加され、該応力により前記光ファイバ回折格子のブラッグ波長が調整される光学装置であって、前記基材は、石英ガラス部材の端に二つのアルミニウム部材を向かい合わせてそれぞれヤング率が882N/mm 以下である第二の接着剤で接着したものであって、前記光ファイバ回折格子を前記アルミニウム部材に接着する第一の接着剤の熱膨張係数が1×10−5ないし8×10−5/℃であり、前記第一の接着剤の湿熱環境においた後の接着強度が5.88N/mm以上であることを特徴とする光学装置。An optical fiber diffraction grating and a base material having a negative coefficient of thermal expansion to which the optical fiber diffraction grating is fixed. The base material expands and contracts due to a change in ambient temperature, and stress is applied to the optical fiber diffraction grating. An optical device in which a Bragg wavelength of a fiber diffraction grating is adjusted, wherein the base material is a second adhesive whose Young's modulus is 882 N / mm 2 or less with two aluminum members facing each other at an end of a quartz glass member be one obtained by bonding with adhesive, the thermal expansion coefficient of the first adhesive for bonding the optical fiber diffraction grating in the aluminum member is is 1 × 10 -5 to 8 × 10 -5 / ℃, the first optical device adhesive strength after placing the wet heat environment of the adhesive is characterized in that at 5.88 N / mm 2 or more.
JP2000374027A 2000-12-08 2000-12-08 Optical device having optical fiber diffraction grating Expired - Fee Related JP4193357B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000374027A JP4193357B2 (en) 2000-12-08 2000-12-08 Optical device having optical fiber diffraction grating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000374027A JP4193357B2 (en) 2000-12-08 2000-12-08 Optical device having optical fiber diffraction grating

Publications (2)

Publication Number Publication Date
JP2002174737A JP2002174737A (en) 2002-06-21
JP4193357B2 true JP4193357B2 (en) 2008-12-10

Family

ID=18843304

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000374027A Expired - Fee Related JP4193357B2 (en) 2000-12-08 2000-12-08 Optical device having optical fiber diffraction grating

Country Status (1)

Country Link
JP (1) JP4193357B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100554901C (en) * 2008-05-05 2009-10-28 中国地震局地壳应力研究所 Work in the method for making of the high-sensitivity optical fibre grating temperature sensor of high and low temperature

Also Published As

Publication number Publication date
JP2002174737A (en) 2002-06-21

Similar Documents

Publication Publication Date Title
US8701500B2 (en) Method and apparatus for fixing strained optical fibers against creep and temperature and strain sensors using said technology
US7702190B2 (en) Fiber Bragg grating sensor
US7333696B2 (en) Tape-shaped optical fiber cable
CA2074860C (en) Method of reinforcing optical fiber coupler
JP5041450B2 (en) Optical fiber colored core
De Baere et al. On the feasibility of optical fibre sensors for strain monitoring in thermoplastic composites under fatigue loading conditions
JP4193357B2 (en) Optical device having optical fiber diffraction grating
Lo et al. Packaging a fiber Bragg grating with metal coating for an athermal design
US20060078245A1 (en) Waveguide type optical device and manufacturing method thereof
JP3735049B2 (en) Optical module and adhesive applied to the optical module
US6466716B1 (en) Optical fiber having a bragg grating in a wrap that resists temperature-induced changes in length
CN115950369A (en) Strain sensor with compressed fiber grating wavelength and manufacturing method thereof
JP4369634B2 (en) Optical module
JP4193355B2 (en) Optical apparatus having optical fiber diffraction grating
JP2001324617A (en) Optical device
JP3832372B2 (en) Optical fiber Bragg grating recoating method and optical fiber
US20040105618A1 (en) Apparatus and method for making temperature compensated optical fiber diffraction gratings
CN220751097U (en) Strain optical fiber sensor and integrated waveguide sensor
US20210396928A1 (en) Optical fibers with high-temperature write-through coatings
Serovaev et al. The analysis of the stress-strain state in the PCM–optical-fiber system
JP2002311253A (en) Fiber grating and method for measuring physical quantity by using the same
JPH11218637A (en) Fixation structure for optical fiber type optical component
JP3454894B2 (en) Reinforcing structure of optical fiber coupler
Paul et al. Simulation of the effect of adhesion and cross-sectional nonuniformity of coatings on the thermal tuning of fiber Bragg gratings
CN111486880A (en) Molding self-monitoring intelligent composite material and monitoring method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070823

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080611

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080617

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080807

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080902

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080915

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111003

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121003

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131003

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees