JP4193337B2 - Arousal level drop determination device - Google Patents

Arousal level drop determination device Download PDF

Info

Publication number
JP4193337B2
JP4193337B2 JP2000219098A JP2000219098A JP4193337B2 JP 4193337 B2 JP4193337 B2 JP 4193337B2 JP 2000219098 A JP2000219098 A JP 2000219098A JP 2000219098 A JP2000219098 A JP 2000219098A JP 4193337 B2 JP4193337 B2 JP 4193337B2
Authority
JP
Japan
Prior art keywords
time
frequency distribution
data
distribution data
blink
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000219098A
Other languages
Japanese (ja)
Other versions
JP2002029279A (en
Inventor
明伯 堀口
宣浩 林田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP2000219098A priority Critical patent/JP4193337B2/en
Publication of JP2002029279A publication Critical patent/JP2002029279A/en
Application granted granted Critical
Publication of JP4193337B2 publication Critical patent/JP4193337B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Image Analysis (AREA)
  • Auxiliary Drives, Propulsion Controls, And Safety Devices (AREA)
  • Traffic Control Systems (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は覚醒度低下判定装置に関し、特にドライバの顔の画像を処理することにより該ドライバの瞬きを検出し、その瞬き時間の長短でドライバの覚醒度を判定する覚醒度低下判定装置に関するものである。
【0002】
【従来の技術】
従来より、種々の覚醒度低下判定装置が既に提案されている。
例えば、最近では瞬きと瞳孔径を検知してドライバの覚醒度や疲労度を推定し警報するシステムが特開平11-316884号公報で提案されており、また、瞳孔反射を利用して瞬きを検出しドライバの覚醒度を推定する瞬き検出システムが同11-105578号公報で提案されている。
【0003】
さらには、同11-339200号公報において、瞬き状態により覚醒度を判定し、さらに精度を高めるため、車線に対する車両位置や運転操作から最終判定するシステムが提案されている。
【0004】
【発明が解決しようとする課題】
一般に、左右のミラーの角度、メータの見下ろし角度、路面からのドライバの視点など、乗用車と商業車ではそれぞれ図10(1)及び(2)に示すように、かなり異なる車室内レイアウトとなっている。
【0005】
すなわち、同図(1)に示す乗用車の場合には、メータ類30への見下ろし角(俯角)は−25°程度であるが、同図(2)に示す商業車の場合には、メータ類30に対する見下ろし角は−35°程度にまで拡大する。
従って、商業車ではドライバの視線の移動量も乗用車より大きくなり、また、職業ドライバなどでは視線を配る頻度も異なることになる。
【0006】
このような商業車で、従来の顔画像処理による瞬き検出を実施するには、図11に示すようにドライバの上半身を写すようにCCDカメラを設置し、ミラーの確認時や周囲の確認時に、視線移動量がある程度大きくてもドライバの視線を画像の中に捉えるように設置する必要がある。
【0007】
しかしながら、同図に示すような画像処理を行うとき、ドライバの上半身を写し出していることから、その一部であるドライバの眼の周辺の解像度は相対的に低くなり、図12(1)に示すような前方注視状態に対して、同図(2)に示すような瞬きをしている閉眼状態に変わったのか、同図(3)に示すようなメータ類を見下ろしている状態に変わったのかが区別でき難くなってしまう。
【0008】
さらに商業車の場合には、同図(1)に示す前方注視状態の視線角度と同図(3)に示すメータ注視状態の視線角度が互いに大きく異なることから、速度を調節するためにドライバがメータ類を見下ろしている後者の状態を、瞬きしている同図(2)の状態と誤判定してしまう場合が多くなることが確かめられた。
【0009】
従って本発明は、ドライバの瞬きを検出して、該ドライバの覚醒度低下を判定する覚醒度低下判定装置において、メータ視認時などの影響を受けずに精度よく瞬きを検出して覚醒度低下を判定することを目的とする。
【0010】
上記の目的を達成するため本発明に係る覚醒度低下判定装置は、一定時間毎に瞬き時間データの頻度分布データを求めるとともに前回求めた該一定時間における頻度分布データに、該一定時間より短い単位時間又はデータ出力間隔毎に求めた最新の単位時間又はデータ出力間隔における頻度分布データを加え、該前回の頻度分布データの内の最も古い単位時間又はデータ出力間隔における頻度分布データを除去することで今回分の頻度分布データを求め、該求めた頻度分布データ中に一定の瞬き時間内でピークが発生しているときは、該データを該判定から除外した上で該頻度分布データに基づき覚醒度の低下を判定することを特徴としている。
【0011】
今、一定時間(ΔAn:例えば1分)当たりの瞬き時間の頻度分布をとると、図1(1)に示すようになる。すなわち、短い瞬き時間の頻度が最も多く、瞬き時間が大きくなるにつれて徐々になだらかに頻度が小さくなって行く。
この場合、実線で示した特性▲1▼が正常時(覚醒時)の頻度分布を示しており、破線で示した特性▲2▼が覚醒度低下時の頻度分布を示している。覚醒度低下時の特性▲2▼は正常時の特性▲1▼とほぼ同様の特性曲線を呈しているが、全体的に瞬き時間が長くなり、平均値が長くなることが分かる。
【0012】
従って、例えば両特性1)及び2)の差を従来より知られる演算手法により求めれば、正常時であるか覚醒度低下時であるかが判定できることになる。
これに対して、図12(3)に示したようなメータ視認時においては、図1(2)の特性 Cに示すように、特定の瞬き時間にピークP1が現れる。このようなメータ視認時の瞬き時間は0.5〜0.7秒程度であり通常の瞬き時間よりも長くなる。
【0013】
一方、覚醒度低下時であってもメータ視認時においては、同図(1)に示すようにピークP2が発生するので、両ピークP1とP2を一定の瞬き時間Tτを境界にして区別する必要がある。
そこで、同図(2)に示すように一定の瞬き時間Tτ内にピークP1が検出されたときには、一定時間ΔAnにおける瞬きデータを覚醒度低下の為の判定に用いないようにすれば、メータ類の視認時等を瞬きとして誤検知することがなくなる。
この場合、前回求めた一定時間における瞬き時間データの頻度分布データに、該一定時間より短い単位時間又はデータ出力間隔における瞬き時間データの内の最新のものを加えるとともに最も古い単位時間又はデータ出力間隔の頻度分布を除くことで今回分の頻度分布を求めることにより短時間で十分に覚醒度の低下傾向を判定することが可能となる。
【0014】
【発明の実施の形態】
図2は、本発明に係る覚醒度低下判定装置の構成例を示したもので、CCDなどのカメラ1が画像処理部2と瞬き時間検出部3と誤検知判定部4とに縦続接続されている。
【0015】
図3は、図2に示した本発明に係る覚醒度低下判定装置の各部の動作実施例を示したフローチャートである。
以下、この図3に示すフローチャートに沿って、本発明に係る覚醒度低下判定装置の動作を説明する。
【0016】
画像処理部 2 の動作:
まず、カメラ1から図4(1)に示すような顔画像を入力し(図3のステップS1)、画面全体に対してフィルタリングなどの前処理を施す(同S2)。次に、画像全体に対して二値化処理を施し(同S3)、ドライバの鼻の穴を探索する準備をする。
【0017】
そして、パターンマッチングなどの手法を用いて図4(2)に示すようにドライバの鼻の穴の位置を特定する(同S4)。次に、この鼻の穴の位置から更に同図(3)及び図5(1)に示すように眼の位置を特定し、眼の周辺領域A及びBを設定する(同S5)。
【0018】
そして、眼の周辺領域として推定できたか否かを、やはりパターンマッチングなどの手法を用いて判定し(同S6)、推定できなかったときにはステップS1に戻るが、眼の周辺領域が推定できたときには、再び顔画像を入力し(同S7)、同図(2)に示すような目の周辺領域の追跡を行い(同S8)、更に追跡できたか否かを判定する(同S9)。
【0019】
この結果、追跡できなかったときにはステップS1に戻るが、追跡できたときには、眼の周辺領域に対して前処理を施し(同S10)、眼の周辺領域に対してエッジ抽出処理を実行する(同S11)。
このように、鼻の穴の位置から推定された眼の位置の周辺領域に対してエッジ抽出処理を施すことにより、眼の上瞼の境と下瞼の境を明確化し境界を抽出する。この上瞼の境界と下瞼の境界の位置関係により、同図(3)に示す如く、開眼か閉眼かを判定する。
【0020】
瞬き時間検出部 3 の動作:
上記のようにエッジ抽出処理を施して瞬きを検出した後、一定時間(ΔAn)において、瞬き時間を計測する(同S12)。そして、瞬き時間データを蓄積し(同S13)、一定時間(ΔAn)当たりの瞬き時間の頻度分布を図1のようにして求める(同S14)。
【0021】
誤検知判定部 4 の動作:
まず、従来から知られた手法によりピーク検出を実行し(同S15)、図1(1)及び(2)に示したようなピークP1,P2が存在するか否かを判定する(同S16)。ピーク検出がなされなかったときには同図(1)に示すような覚醒度判定に使用可能なデータであるので、この場合、特性▲1▼又は▲2▼の何れであっても出力してステップS7に戻る(同S17)。
【0022】
一方、ピークが誤検知範囲か否か、すなわちピークP1であるかP2であるかを区別しなければならないので(同S18)、そのピーク位置が一定値Tτ以下であれば同図(2)に示すピークP1が検出されたものとして、この瞬きデータを無効にし(同S19)、ステップS7に戻るが、該ピークがTτ以上であれば同図(1)に示すピークP2が検出されたものとして瞬きデータを覚醒度判定に用いる(同S20)。
【0023】
なお、上記の実施例においては、図6に示すように、過去の一定時間ΔAnの瞬きデータをとってその頻度分布を求めたが、この一定時間ΔAnが短いと正確な頻度分布得られず、逆に長いと覚醒度の判定時間が長くなり、その判定結果に伴う警報の発生が遅れてしまうということが有り得る。
【0024】
そこで、図6に示すように、一定時間ΔAnより短い単位時間又はデータ出力間隔ΔTにおいて瞬き時間の頻度分布を上記のΔAnにおける頻度分布に加えると共に、上記の一定時間ΔAnの中の古い単位時間又はデータ出力間隔ΔTの頻度分布データを除くことにより、新しい単位時間又はデータ出力間隔ΔTを加えた過去ΔAnの頻度分布を求めてピークの存在を判定しても良い。
【0025】
この場合のピークは徐々に大きくなったり、又は小さくなったりするので、経験的な閾値を設定してピークの発生を検知すればよい。
このようにして、覚醒度の判定は一定時間ΔAnより短いデータ出力間隔ΔT毎に瞬きデータを得ることが可能となる。
【0026】
また、上記の実施例では、昼間の運転時における瞬き時間の検出とその頻度分布を求めたが、夜間の場合には、例えば、図7に示すように、赤外線カメラ1と照明用の赤外LED10とによりドライバの眼球20における瞳孔を光らせた映像を撮るようにしても良い。
【0027】
すなわち、これはフラッシュを使って写真を撮ったとき被写体の人物の眼が赤く光る場合があるが、これと同じ原理を利用する方法であり、カメラ1の光軸に照明を出来るだけ近づけ、或いはハーフミラーを使ってドライバの顔(図9(1)参照)を撮影すれば、図8(1)に示すような眼の画像から同図(2)及び図9(2)に示すような明瞳孔反射という瞳孔が光った顔画像を利用して瞬きを検出することが可能となる。
【0028】
【発明の効果】
以上説明したように本発明に係る覚醒度低下判定装置によれば、一定時間当たりの瞬き時間データの頻度分布を求め、この頻度分布中に一定の瞬き時間内でピークが発生している場合は、その瞬き時間データを覚醒度低下の判定から除外するように構成したので、特に商業車のようにメータ類を視認する場合に瞬き状態と類似した状態を呈する場合の瞬き時間検出に伴う誤判定を無くすことができる。
【図面の簡単な説明】
【図1】本発明に係る覚醒度低下判定装置の原理を説明するために瞬き時間の頻度分布を示した特性グラフ図である。
【図2】本発明に係る覚醒度低下判定装置の構成例を示したブロック図である。
【図3】本発明に係る覚醒度低下判定装置の動作を説明するためのフローチャート図である。
【図4】昼間の画像から眼の位置を推定する過程を説明した図である。
【図5】眼の画像処理領域における詳細な処理方法を示した図である。
【図6】データ処理間隔とデータ処理区間との関係を説明するための図である。
【図7】夜間走行時での赤外LEDによる眼球の照明状態を説明した図である。
【図8】明瞳孔反射を示した図である。
【図9】明瞳孔反射に伴うドライバの瞳孔位置を説明するための図である。
【図10】車両の種類によってメータ類の見下ろし角が異なる状態を示した側面概略図である。
【図11】 CCDカメラによるドライバの顔画像例を示した図である。
【図12】前方注視時とメータ視認時の視線角度を説明するための図である。
【符号の説明】
1 カメラ
2 画像処理部
3 瞬き時間検出部
4 誤検知判定部
10 赤外LED
20 眼球
30 メータ類
図中、同一符号は同一又は相当部分を示す。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a wakefulness decrease determination device, and more particularly to a wakefulness decrease determination device that detects a driver's blink by processing an image of a driver's face and determines the driver's wakefulness by the length of the blink time. is there.
[0002]
[Prior art]
Conventionally, various awakening level fall determination apparatuses have been proposed.
For example, recently, a system that detects blinks and pupil diameter and estimates and alerts the driver's wakefulness and fatigue is proposed in Japanese Patent Application Laid-Open No. 11-316884, and pupil reflection is used to detect blinks. Japanese Patent Publication No. 11-105578 proposes a blink detection system that estimates the driver's arousal level.
[0003]
Furthermore, Japanese Patent Application Laid-Open No. 11-339200 proposes a system for determining the arousal level based on the blinking state and further determining the final position based on the vehicle position and driving operation with respect to the lane in order to further improve the accuracy.
[0004]
[Problems to be solved by the invention]
In general, passenger cars and commercial vehicles have considerably different interior layouts as shown in Fig. 10 (1) and (2), such as the left and right mirror angles, the meter look-down angle, and the driver's viewpoint from the road surface. .
[0005]
In other words, in the case of the passenger car shown in Fig. 1 (1), the look-down angle (the depression angle) to the meters 30 is about -25 °, but in the case of the commercial vehicle shown in Fig. 2 (2), the meters The look-down angle with respect to 30 expands to about -35 °.
Therefore, the amount of movement of the driver's line of sight is larger than that of a passenger car in a commercial vehicle, and the frequency of distributing the line of sight is different for professional drivers.
[0006]
In such a commercial vehicle, in order to perform blink detection by conventional face image processing, a CCD camera is installed so as to capture the upper body of the driver as shown in FIG. Even if the line-of-sight movement amount is large to some extent, it is necessary to install the driver so that the line of sight of the driver is captured in the image.
[0007]
However, when performing the image processing shown in the figure, the upper body of the driver is copied, so the resolution around the eyes of the driver, which is a part of it, is relatively low, as shown in FIG. Whether the eye is in a closed eye state as shown in (2) or looking down on the meters as shown in (3) in the forward gaze state Becomes difficult to distinguish.
[0008]
Furthermore, in the case of commercial vehicles, the gaze angle in the forward gaze state shown in (1) and the gaze angle in the meter gaze state shown in (3) are greatly different from each other. It has been confirmed that the latter state of looking down on the meters is often mistaken as the blinking state of (2) in the figure.
[0009]
Therefore, the present invention detects a blink of a driver and determines a decrease in arousal level by detecting a blink with high accuracy without being affected by the visual recognition of a meter, etc. The purpose is to judge.
[0010]
The awareness decrease determination device according to the present invention for achieving the purpose of, Rutotomoni determined frequency distribution data of the blink time data at every predetermined time, the frequency distribution data in said predetermined time previously determined, from the predetermined time The frequency distribution data at the latest unit time or data output interval obtained every short unit time or data output interval is added, and the frequency distribution data at the oldest unit time or data output interval in the previous frequency distribution data is removed. Thus, the frequency distribution data for this time is obtained, and when a peak occurs within a certain blinking time in the obtained frequency distribution data , the data is excluded from the determination and based on the frequency distribution data. It is characterized by determining a decrease in arousal level .
[0011]
Now, if the frequency distribution of the blinking time per fixed time (ΔAn: for example, 1 minute) is taken, it is as shown in FIG. That is, the frequency of short blinking times is the highest, and the frequency gradually decreases gradually as the blinking time increases.
In this case, the characteristic (1) indicated by the solid line indicates the frequency distribution at the normal time (when awakening), and the characteristic (2) indicated by the broken line indicates the frequency distribution when the arousal level is reduced. The characteristic {circle around (2)} when the degree of arousal is lowered exhibits a characteristic curve almost the same as the characteristic {circle around (1)} at normal times, but it can be seen that the overall blinking time becomes longer and the average value becomes longer.
[0012]
Therefore, for example, if the difference between the two characteristics 1) and 2) is obtained by a conventionally known calculation method, it can be determined whether it is normal or when the arousal level is lowered.
On the other hand, at the time of visual recognition of the meter as shown in FIG. 12 (3), a peak P1 appears at a specific blink time as shown by the characteristic C in FIG. 1 (2). The blinking time when the meter is visually recognized is about 0.5 to 0.7 seconds, which is longer than the normal blinking time.
[0013]
On the other hand, when the meter is visible even when the arousal level is reduced, peak P2 occurs as shown in (1) of the figure. Therefore, it is necessary to distinguish both peaks P1 and P2 with a certain blink time Tτ as a boundary. There is.
Therefore, if peak P1 is detected within a certain blink time Tτ as shown in Fig. 2 (2), if the blink data at a certain time ΔAn is not used for the determination for arousal level reduction, It will not be erroneously detected as blinking when the user visually recognizes
In this case, the latest one of the blink time data in the unit time or data output interval shorter than the certain time is added to the frequency distribution data of the blink time data in the fixed time obtained last time and the oldest unit time or data output interval By obtaining the frequency distribution for this time by removing the frequency distribution, it is possible to sufficiently determine the tendency to decrease the arousal level in a short time.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 2 shows a configuration example of a wakefulness reduction determination apparatus according to the present invention, in which a camera 1 such as a CCD is connected in cascade to an image processing unit 2, a blinking time detection unit 3, and a false detection determination unit 4. Yes.
[0015]
FIG. 3 is a flowchart showing an operation example of each part of the wakefulness reduction determination apparatus according to the present invention shown in FIG.
The operation of the wakefulness reduction determination apparatus according to the present invention will be described below along the flowchart shown in FIG.
[0016]
Operation of image processor 2 :
First, a face image as shown in FIG. 4 (1) is input from the camera 1 (step S1 in FIG. 3), and preprocessing such as filtering is performed on the entire screen (S2). Next, a binarization process is performed on the entire image (S3), and preparations are made to search for a driver's nostril.
[0017]
Then, using a method such as pattern matching, the position of the nostril of the driver is specified as shown in FIG. 4 (2) (S4). Next, as shown in FIGS. 3 (3) and 5 (1), the position of the eye is further specified from the position of the nostril, and the peripheral areas A and B of the eye are set (S5).
[0018]
Then, it is determined whether or not it can be estimated as a peripheral region of the eye by using a method such as pattern matching (S6), and if it cannot be estimated, the process returns to step S1, but when the peripheral region of the eye can be estimated Then, the face image is input again (S7), the eye peripheral area as shown in FIG. 2B is tracked (S8), and it is further determined whether or not tracking is possible (S9).
[0019]
As a result, when tracking is not possible, the process returns to step S1, but when tracking is possible, preprocessing is performed on the peripheral area of the eye (S10), and edge extraction processing is performed on the peripheral area of the eye (same as above). S11).
In this way, by performing edge extraction processing on the peripheral region of the eye position estimated from the position of the nostril, the boundary between the upper eyelid and the lower eyelid is clarified and the boundary is extracted. Based on the positional relationship between the upper eyelid boundary and the lower eyelid boundary, it is determined whether the eye is open or closed as shown in FIG.
[0020]
Operation of blink time detector 3 :
After performing the edge extraction process as described above to detect blinking, the blinking time is measured for a certain time (ΔAn) (S12). Then, the blink time data is accumulated (S13), and the frequency distribution of the blink time per fixed time (ΔAn) is obtained as shown in FIG. 1 (S14).
[0021]
Operation of false detection determination unit 4 :
First, peak detection is performed by a conventionally known method (S15), and it is determined whether or not peaks P1 and P2 as shown in FIGS. 1 (1) and (2) exist (S16). . When no peak is detected, the data can be used for arousal level determination as shown in FIG. 1A. In this case, either the characteristic (1) or (2) is output and output in step S7. Return to (S17).
[0022]
On the other hand, since it is necessary to distinguish whether the peak is in the false detection range, that is, whether it is peak P1 or P2 (S18), if the peak position is below a certain value Tτ, Assuming that the peak P1 shown is detected, the blink data is invalidated (S19), and the process returns to Step S7.If the peak is equal to or greater than Tτ, the peak P2 shown in FIG. The blink data is used to determine the arousal level (S20).
[0023]
In the above embodiment, as shown in FIG. 6, the frequency distribution is obtained by taking the blink data of the past fixed time ΔAn, but if this fixed time ΔAn is short, an accurate frequency distribution cannot be obtained. On the contrary, if it is long, the determination time of the arousal level becomes long, and it is possible that the generation of an alarm accompanying the determination result is delayed.
[0024]
Therefore, as shown in FIG. 6, the frequency distribution of the blinking time is added to the frequency distribution in the above ΔAn at a unit time shorter than the certain time ΔAn or the data output interval ΔT, and the old unit time in the above certain time ΔAn or By excluding the frequency distribution data of the data output interval ΔT, the presence of the peak may be determined by obtaining the past frequency distribution of ΔAn added with the new unit time or the data output interval ΔT.
[0025]
Since the peak in this case gradually increases or decreases, it is only necessary to detect the occurrence of the peak by setting an empirical threshold.
In this way, it is possible to obtain blink data for each data output interval ΔT shorter than the predetermined time ΔAn for determining the arousal level.
[0026]
In the above embodiment, the detection of the blinking time during daytime driving and the frequency distribution thereof are obtained. In the case of nighttime, for example, as shown in FIG. 7, the infrared camera 1 and the infrared for illumination are used. The LED 10 may be used to take an image in which the pupil of the driver's eyeball 20 is illuminated.
[0027]
In other words, this is a method that uses the same principle as when the subject's eye may glow red when taking a picture using a flash, and the illumination is as close as possible to the optical axis of the camera 1, or If the driver's face (see Fig. 9 (1)) is photographed using a half mirror, the images shown in Fig. 8 (1) and Fig. 9 (2) can be obtained from the eye image shown in Fig. It is possible to detect blinks using a face image in which the pupil is shining, called pupil reflection.
[0028]
【The invention's effect】
As described above, according to the arousal level decrease determination device according to the present invention, the frequency distribution of blink time data per fixed time is obtained, and a peak occurs within the fixed blink time in the frequency distribution. Since the blink time data is excluded from the determination of arousal level reduction, especially when viewing meters like a commercial vehicle, misjudgment associated with blink time detection when presenting a state similar to the blink state Can be eliminated.
[Brief description of the drawings]
FIG. 1 is a characteristic graph showing a frequency distribution of blinking time in order to explain the principle of a wakefulness reduction determination apparatus according to the present invention.
FIG. 2 is a block diagram showing a configuration example of a wakefulness reduction determination apparatus according to the present invention.
FIG. 3 is a flowchart for explaining the operation of the wakefulness reduction determination apparatus according to the present invention.
FIG. 4 is a diagram illustrating a process of estimating an eye position from a daytime image.
FIG. 5 is a diagram showing a detailed processing method in an eye image processing region.
FIG. 6 is a diagram for explaining a relationship between a data processing interval and a data processing interval.
FIG. 7 is a diagram illustrating an illumination state of an eyeball by an infrared LED during night driving.
FIG. 8 is a diagram showing bright pupil reflection.
FIG. 9 is a diagram for explaining a driver's pupil position accompanying bright pupil reflection;
FIG. 10 is a schematic side view showing a state in which the look-down angle of the meters is different depending on the type of vehicle.
FIG. 11 is a diagram showing an example of a driver's face image by a CCD camera.
FIG. 12 is a diagram for explaining line-of-sight angles at the time of forward gaze and meter viewing;
[Explanation of symbols]
1 Camera
2 Image processing section
3 Blink time detector
4 False detection judgment part
10 Infrared LED
20 Eyeball
In the meter diagrams, the same symbols indicate the same or corresponding parts.

Claims (1)

ドライバの瞬きを検出して該ドライバの覚醒度低下を判定する覚醒度低下判定装置において、
一定時間毎に瞬き時間データの頻度分布データを求めるとともに前回求めた該一定時間における頻度分布データに、該一定時間より短い単位時間又はデータ出力間隔毎に求めた最新の単位時間又はデータ出力間隔における頻度分布データを加え、該前回の頻度分布データの内の最も古い単位時間又はデータ出力間隔における頻度分布データを除去することで今回分の頻度分布データを求め、該求めた頻度分布データ中に一定の瞬き時間内でピークが発生しているときは、該データを該判定から除外した上で該頻度分布データに基づき覚醒度の低下を判定することを特徴とした覚醒度低下判定装置。
In a wakefulness decrease determination device that detects blinking of a driver and determines a decrease in wakefulness of the driver,
Rutotomoni determined frequency distribution data of the blink time data at every predetermined time, the frequency distribution data in said predetermined time previously determined, the latest calculated a predetermined time shorter than the unit time or per data output interval of the unit time or data output The frequency distribution data at the interval is added, and the frequency distribution data for the current time is obtained by removing the frequency distribution data at the oldest unit time or data output interval from the previous frequency distribution data . When a peak occurs within a certain blinking time, a wakefulness level reduction determination apparatus characterized by determining a reduction in wakefulness level based on the frequency distribution data after excluding the data from the determination.
JP2000219098A 2000-07-19 2000-07-19 Arousal level drop determination device Expired - Fee Related JP4193337B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000219098A JP4193337B2 (en) 2000-07-19 2000-07-19 Arousal level drop determination device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000219098A JP4193337B2 (en) 2000-07-19 2000-07-19 Arousal level drop determination device

Publications (2)

Publication Number Publication Date
JP2002029279A JP2002029279A (en) 2002-01-29
JP4193337B2 true JP4193337B2 (en) 2008-12-10

Family

ID=18713940

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000219098A Expired - Fee Related JP4193337B2 (en) 2000-07-19 2000-07-19 Arousal level drop determination device

Country Status (1)

Country Link
JP (1) JP4193337B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015094371A1 (en) * 2013-12-20 2015-06-25 Intel Corporation Systems and methods for augmented reality in a head-up display

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4110902B2 (en) * 2002-09-27 2008-07-02 日産自動車株式会社 Armpit detector
JP4711826B2 (en) * 2003-11-30 2011-06-29 ボルボ テクノロジー コーポレイション Method and system for recognizing driver failure
JP4492652B2 (en) 2007-07-26 2010-06-30 トヨタ自動車株式会社 Sleepiness state judgment device
JP5167027B2 (en) * 2008-08-19 2013-03-21 トヨタ自動車株式会社 Blink state detection device
JP4915413B2 (en) * 2008-12-03 2012-04-11 オムロン株式会社 Detection apparatus and method, and program
DE102015211444A1 (en) * 2015-06-22 2016-12-22 Robert Bosch Gmbh A method and apparatus for distinguishing blink events and instrument views using an eye opening width

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62203731U (en) * 1986-06-17 1987-12-25
JP3349609B2 (en) * 1994-12-22 2002-11-25 ヤマハ発動機株式会社 Work optimization system and device
JP3183161B2 (en) * 1996-04-12 2001-07-03 三菱自動車工業株式会社 Arousal level estimation device
JP3556439B2 (en) * 1997-08-12 2004-08-18 三菱電機株式会社 Face image processing device
JP3477047B2 (en) * 1997-10-02 2003-12-10 三菱電機株式会社 Blink detection face image processing device using retinal reflection image
DE19803158C1 (en) * 1998-01-28 1999-05-06 Daimler Chrysler Ag Arrangement for determining the state of vigilance, esp. for machinery operator or vehicle driver
JPH11339200A (en) * 1998-05-28 1999-12-10 Toyota Motor Corp Detector for driving vehicle asleep
US6154559A (en) * 1998-10-01 2000-11-28 Mitsubishi Electric Information Technology Center America, Inc. (Ita) System for classifying an individual's gaze direction

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015094371A1 (en) * 2013-12-20 2015-06-25 Intel Corporation Systems and methods for augmented reality in a head-up display

Also Published As

Publication number Publication date
JP2002029279A (en) 2002-01-29

Similar Documents

Publication Publication Date Title
JP3257310B2 (en) Inattentive driving detection device
JP4492652B2 (en) Sleepiness state judgment device
EP1878604B1 (en) Method of mitigating driver distraction
JP6350145B2 (en) Face orientation detection device and vehicle warning system
US9117358B2 (en) Method for classification of eye closures
US20100214105A1 (en) Method of detecting drowsiness of a vehicle operator
CN104318237A (en) Fatigue driving warning method based on face identification
JP2016103249A (en) Driving support device and driving support method
JP4647387B2 (en) Vehicle driving support device
JP3424808B2 (en) Rear side monitoring device for vehicles
JP6187155B2 (en) Gaze target estimation device
JP4193337B2 (en) Arousal level drop determination device
JP4989249B2 (en) Eye detection device, dozing detection device, and method of eye detection device
JP4123050B2 (en) Arousal level judgment device
JPH08290726A (en) Doze alarm device
JP2000011298A (en) Read and side monitoring device for vehicle
JP2008191784A (en) Eye closure detection apparatus, doze detection apparatus, eye closure detection method, and program for eye closure detection
JPWO2023017595A5 (en)
KR20190044818A (en) Apparatus for monitoring driver and method thereof
JP7276082B2 (en) Driver state estimation device
JP4601376B2 (en) Image abnormality determination device
KR200392762Y1 (en) Apparatus for sensing drowsiness based on infrared facial image
JP2004347464A (en) Looking-aside detection device
JP2004130940A (en) Gazing direction detection device
CN116052136B (en) Distraction detection method, vehicle-mounted controller, and computer storage medium

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070515

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070518

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070709

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080520

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080714

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080801

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080902

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080915

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111003

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121003

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121003

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131003

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees