JP4191994B2 - Occlusal surface shape measurement and motion reproduction device - Google Patents

Occlusal surface shape measurement and motion reproduction device Download PDF

Info

Publication number
JP4191994B2
JP4191994B2 JP2002383341A JP2002383341A JP4191994B2 JP 4191994 B2 JP4191994 B2 JP 4191994B2 JP 2002383341 A JP2002383341 A JP 2002383341A JP 2002383341 A JP2002383341 A JP 2002383341A JP 4191994 B2 JP4191994 B2 JP 4191994B2
Authority
JP
Japan
Prior art keywords
data
occlusal surface
shape
measurement
model
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002383341A
Other languages
Japanese (ja)
Other versions
JP2004195152A (en
Inventor
伊織 斎藤
治庸 粂田
毅 森山
雅巳 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shofu Inc
Original Assignee
Shofu Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shofu Inc filed Critical Shofu Inc
Priority to JP2002383341A priority Critical patent/JP4191994B2/en
Publication of JP2004195152A publication Critical patent/JP2004195152A/en
Application granted granted Critical
Publication of JP4191994B2 publication Critical patent/JP4191994B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Dental Tools And Instruments Or Auxiliary Dental Instruments (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、歯科医療分野において患者から採得した歯列模型の咬合面形状を3次元データとして計測する咬合面形状計測装置に関するものである。
また本発明は、歯科医療分野において咬合面形状計測装置を用いて計測した咬合面形状データを任意の顎位・顎運動データと重合及び/又は連動させることによって、咬合時における歯牙の接触や咬合状態を再現する、及び/又は、咀嚼運動時等の下顎の向き、方向及び速度を再現する形状標点位置運動模擬再現装置に関するものである。
さらに本発明は、歯牙の咬合状態や咀嚼等の運動を観察することによって、顎口腔機能異常等の治療の支援に用いられる形状標点位置運動模擬再現装置に関するものである。さらに本発明は、歯牙の咬合状態や咀嚼等の運動を患者に説明する患者へのインフォームドコンセントに用いられる形状標点位置運動模擬再現装置に関するものである。また本発明は、歯科矯正分野において歯牙の経時的位置変化を再現する形状標点位置運動模擬再現装置に関するものである。
【0002】
【従来の技術】
一般に歯科医療分野において、咬合に異常がある場合、顎関節症を引き起こすことがあるため、スプリント療法や義歯の装着及び歯列矯正等の咬合治療が行われ、術前や経過観察時の咬合に関する形態的、機能的状態を把握することが重要である。
従来、咬合を診査する方法としては、咬合紙による方法、診断用模型による方法、また器具を用いての視診による方法等がある。咬合紙による方法は、患者に咬合紙を噛ませることにより、咬合接触部位に相当する歯列に色素を付着させ、この色素の付着部位及び咬合紙の色の抜け方によって咬合接触状態を判定する。また診断用模型による方法では、上下顎模型を作製し、歯列状態を視診したり、咬合器に装着させて早期接触や咬頭干渉の部位の確認などのシミュレーションを行なうことにより、咬合接触状態を判定する。
【0003】
しかし、歯牙の経時的位置変化等の診査は視診で行うため、歯牙の位置や方向等の定量的な変化を確認することは困難である。また一般の咬合器は単純な開閉運動、側方又は前方の滑走運動しか再現できず、咀嚼運動や習慣性開閉口運動等の顎運動を再現することができないため、正確な干渉部位の確認を行うことができない。さらに実際の咬合時は閉口であることから、口腔内での咬合の観察は著しく困難である。
【0004】
そこで近年では、これらの問題を解決するために、咀嚼運動や習慣性開閉口運動等の顎運動を再現する装置の発明が行われている。
例えば、特開2000−107207号公報には、上顎モデルに対する相対的な下顎モデルの動きをパラレルメカニズムにより6自由度で再現させる顎運動シミュレート方法が紹介されている。しかしコンピュータ上ではなく実物の下顎モデルを6自由度で動かすため、咬合時には上下顎モデルが閉口した状態になり、咬合接触を観測することは極めて困難である。
【0005】
また、3次元データで構成された頭蓋骨データを顎運動データと連動させて表示し、顎運動を再現する装置が市販されている。しかし歯列形状データについては顎運動データを測定した同一患者の歯列形状データではないため、正確な咬合接触を観測することはできない。さらにこれらの装置及び方法では、歯列模型形状の計測を行わないため、定量的な歯牙の位置や方向等の定量的な変化を確認することは困難である。
これらの問題点を解決する更なる発明として歯列模型を3次元データとして計測を行い、顎運動データと連動させることによって顎運動を再現する装置又は方法が紹介されている。
【0006】
例えば、特開平9−238963号公報には、患者の歯列又は顎提の任意の複数点の咀嚼運動軌跡を計測した運動データと、患者の歯列又は顎堤の石膏模型を3次元計測した形状データを同一座標系で一致させ、運動データに基づいて形状データを運動させる顎運動シミュレーション方法が紹介されている。
また補綴学会誌44巻6号には、レーザ式三次元歯列模型測定装置によって測定したデータと、市販されている6自由度下顎運動計測装置からのデータを基に、上下顎歯列咬合面の相対的運動奇跡を経時的に再現する装置について紹介されている。
【0007】
しかし、これらの方法及び装置では顎運動データについては顎運動測定器で測定した顎運動データを用いるが、歯列模型を計測する装置としては、専用の歯列模型計測器ではなく、一般の3次元形状計測装置を用いている。しかし歯列状態や咀嚼運動時の咬合状態等を確認するには、咬合面形状のデータのみで良く不必要な部分の計測も行われるため、膨大なデータ量となり演算処理等が複雑となる。また、計測装置自体が大型であり、非常にコスト高である。
【0008】
また歯列模型の咬合面形態を計測する3次元形状計測装置としては、例えば、特開平8−327338号公報には、被測定物からの反射光像の幅及び最大輝度が所定範囲内にあるか否かを検知し、測定不能を示す信号が出力された相対位置に対して位置関係を修正し再測定を行うことにより、被測定物の被測定面の傾きに起因する測定誤差を低減し、安定して高い精度で測定することを目的とした3次元形状測定装置が紹介されている。
【0009】
また例えば、特開平9−178437号公報には、被計測物(歯模型)は相異なる2つの姿勢で取り付けられ、それぞれ回転軸まわりの複数の回転位置に支持台により設定されることにより、被計測物の3次元形状を光の不可視領域なく正確に計測することを目的とした3次元計測装置が紹介されている。
しかしこれらの計測装置は歯科補綴物の製作や石膏模型のディジタルデータ化を目的としているため、石膏模型の咬合面形状だけでなく、石膏模型全体を計測する必要があり、不可視領域をなくすために石膏模型の姿勢を変えて計測を行うため、移動機構を複数有した構成となっており、構造が複雑になり装置が大型化するだけでなく、保守管理が複雑になりコスト高になることは避けられない。また移動機構を制御するために多くの演算部が必要となり、計測に多大な時間を費やすだけでなく、データ量が膨大になり演算処理が複雑となる。さらに特開平9−178437号公報に関しては、1回の計測で1個の被計測物しか計測できないため、複数の被計測物の計測を行う場合、被計測物を交換する必要があり作業性が悪くなる。
【0010】
【特許文献1】
特開2000−107207号公報
【特許文献2】
特開平9−238963号公報
【特許文献3】
特開平8−327338号公報
【特許文献4】
特開平9−178437号公報
【非特許文献1】
補綴学会誌44巻6号
【0011】
【発明が解決しようとする課題】
石膏模型の咬合面形態を短時間で計測でき、咬合面形態の測定を目的としているためデータ数も少なく演算処理が簡略化でき、構造的に可動部分を減らし小型化した咬合面形状計測装置は今日ではなかった。
咬合面形状計測装置を用いて計測した形状データと、同一患者から計測した顎位・顎運動データを口腔内及び/又は口腔外で計測した標点を基準として形状データを顎位・顎運動データに重合又は連動させることによって咬合時における歯牙の接触や咬合状態、又は咀嚼運動時の下顎の向き、方向及び速度を再現する形状標点位置運動模擬再現装置は今日までなかった。また歯牙の接触や咬合状態、又は歯牙の経時的位置変化を同一患者のデータで正確に再現でき、患者が容易に口腔内の観察を行うことが可能な形状標点位置運動模擬再現装置は今日までなかった。
【0012】
【課題を解決する為の手段】
本発明は、スリット状の照射光を測定範囲に向けて照射する照射部と、測定範囲内の光切断線を受光する受光部と、被計測体を測定範囲に保持又は誘導するテーブル部とを有する咬合面形状計測装置において、照射部及び受光部に対してテーブル部が一方向に移動することを特徴とする咬合面形状計測装置である。
本発明は、照射部の照射方向と受光部の受光方向の相対角度が5〜100度の範囲であることを特徴とする咬合面形状計測装置である。
【0013】
本発明は、受光部の受光方向がテーブル部の垂線に対して10〜30度であることを特徴とする咬合面形状計測装置である。
本発明は、テーブル部に複数の被計測体を設置できることを特徴とする咬合面形状計測装置である。
本発明は咬合面形状計測装置において得られた形状データを位置データと重ね合せる重合機構、及び/又は咬合面形状計測装置において得られた形状データを静止データ又は運動データと連動させる連動機構を有することを特徴とする形状標点位置運動模擬再現装置である。
【0014】
本発明は、形状データが上顎データ及び下顎データであって、連動機構によって、上顎データ及び下顎データの相対的な移動速度を視覚的報知することを特徴とする形状標点位置運動模擬再現装置である。
本発明は、形状データが上顎データ及び下顎データであって、連動機構によって、上顎データ及び下顎データが重なり合う部分及び/又は接触する部分を視覚的報知することを特徴とする形状標点位置運動模擬再現装置である。
【0015】
本発明は、形状データが複数の上顎データ又は下顎データであって、重合機構によって、上顎データ又は下顎データの経時的位置変化を視覚的報知することを特徴とする形状標点位置運動模擬再現装置である。
本発明は、ある単数又は複数の物体について、その物体の位置データ、静止データ、又は運動データが、任意の座標系Aを基準として与えられ、かつ同じ物体又はその模型の形状データが任意の座標系Bを基準として与えられた場合に、これらのデータを記憶演算し、任意の座標系Cを基準としてこれら単数又は複数の物体の3次元形状及び運動を同時に表現する形状標点位置運動模擬再現方法である。
【0016】
本発明は、上顎又は下顎の歯列模型上の計測咬合面に対応する生体上の生体計測咬合面上における同一直線状にない少なくとも3点以上の上顎口腔内生体標点又は下顎口腔内生体標点の座標が外部より与えられた場合に、計測咬合面データ上でこれら上顎口腔内生体標点又は下顎口腔内生体標点に対応する歯列模型の上顎模型標点又は下顎模型標点を術者が指定できることを特徴とする形状標点位置運動模擬再現装置である。
【0017】
本発明は、上顎又は下顎の歯列模型上の計測咬合面に対応する生体上の生体計測咬合面上における同一直線状にない少なくとも3点以上の上顎口腔内生体標点又は下顎口腔内生体標点、又は生体上の同一直線上にない少なくとも3点以上の口腔外生体標点の任意の座標系から見た座標が外部より与えられた場合に、形状データ、静止データ及び運動データを、上顎口腔内生体標点3点によって決まる上顎口腔内生体標点座標系か、下顎口腔内生体標点3点によって決まる下顎口腔内生体標点座標系、及び口腔外生体標点3点によって決まる口腔外生体座標系に変換することを特徴とする形状標点位置運動模擬再現装置である。
【0018】
本発明は、記憶した複数の計測咬合面データを該任意の座標系又は口腔外生体座標系又は上顎口腔内生体標点座標系又は下顎口腔内生体標点座標系を基準に、位置関係の解析を行い、解析結果を表示することを特徴とする形状標点位置運動模擬再現装置である。
【0019】
【発明実施の形態】
以下に、本発明の好ましい実施の形態について具体的に説明するが本発明はこれに限定されるものではない。
咬合面形状計測装置の形態について説明する。
本発明の1形態としては、開閉部を有する筐体内に照射部、受光部、及びテーブル部が設置された計測室を備えていることが好ましく、照射部から照射されるスリット状の照射光をテーブル部によって測定範囲に保持又は誘導された被計測体に照射することによって被計測体表面に光切断線を生じさせ、光切断線を受光部で撮像し、撮像データから3次元座標を算出する光切断法を基本としている。
【0020】
以下に各構成について、説明する。
照射部は、スリット状の照射光を測定範囲に向けて照射する機構を有している。
また照射部は、スリット状の照射光を生成する機構を有している。スリット状の照射光を生成する方法においては、例えば光源から照射された光に、シリンドリカルレンズやスリットマスク、又はポリゴンミラーを用いることによってスリット状の照射光を生成する方法があるが、好ましくはシリンドリカルレンズを用いる方法である。更に光源においても、半導体レーザやライン状のレーザダイオードを使用しても良いが、好ましくは半導体レーザが好ましく、更に好ましくは赤色半導体レーザである。最も好ましいのは635〜670nmの波長の赤色半導体レーザ光である。
更に照射部から発光されるスリット状の照射光は連続的に照射されることが好ましいが、更に好ましくは、開閉部の開放時はスリット状の照射光を消灯するように連動されていることが好ましい。
【0021】
スリット状の照射光とは、照射部によって生成され、測定範囲に向けて照射される面状の光のことであり、スリット幅は0.1〜1.0mmが好ましい。更に好ましくは0.1〜0.3mmである。
測定範囲とは受光部が撮像できる空間であり、好ましくは照射部から照射されたスリット状の照射光によって被計測体に生じる光切断線を受光部が撮像できる空間である。また、測定範囲は照射部の照射方向と受光部の受光方向の交点を中心に配置されていることが好ましい。
受光部は、受光素子及びレンズで構成されており、測定範囲内の被測定体に生じた光切断線を受光する機構を有している。受光部が有する受光素子としてPSDやCCD素子等を使用することができるが、好ましくはCCD素子であり、更に好ましくは2次元CCD素子である。また、受光部が有するレンズは、受光素子の受光面全体で被計測体が撮像できる焦点距離を有するものが好ましく、さらに好ましくは受光量を調節できる機構を有したものが良い。
【0022】
照射部の照射方向とは、照射部が有する光源の中心を通り、照射部から照射されるスリット状の照射光面に平行な直線である。
受光部の受光方向とは、受光部が有する受光素子の受光面の中心を通り、受光面の法線上の直線である。
照射部と受光部の設置位置は、照射部の照射方向と受光部の受光方向が平行であり、その相対角度が、5〜100度の範囲が好ましい。更に好ましくは20〜40度の範囲が良く、最も好ましい角度は25〜35度の範囲が良い。
また受光部の受光方向がテーブル部の模型台の法線に対して10〜30度であることが好ましく、更に好ましいのは15〜25度である。
【0023】
テーブル部は被計測体を設置又は固定する模型台と模型台を保持又は移動させる駆動部を備え、被計測体を測定範囲に保持又は誘導する機構を有している。
模型台は複数の被計測体が設置できることが好ましい。
駆動部は例えばボールねじとリニアガイドを組み合わせた構成や、ベルトを掛けることによってテーブルを移動させる構成があるが、好ましくはモータと連結したボールねじを回転させることによって、リニアガイドに沿って被計測体を測定範囲に保持又は誘導する移動機構を有したものが良い。またモータはステッピングモータが好ましい。
テーブル部の移動方式は、1軸の直動方式や回転方式、又はそれらを組み合わせた多軸方式でも良いが、好ましくは1軸の直動方式が好ましい。
またテーブル部は計測時に相対移動することが好ましい。
【0024】
被計測体は、テーブル部によって測定範囲に保持又は誘導される物体であり、本発明においては石膏模型や顎堤がこれにあたる。被計測体の上方面とテーブル部の模型台面は平行であることが好ましい。
開閉部とは、筐体中の一部を切り欠き、計測室内部に被計測体の出し入れができれば良く、好ましくは切り欠いた部分がヒンジで接合されていることが好ましく、更に好ましくは扉状になっていることが好ましい。
開閉方法においても、ヒンジに限定することなく、何を用いても良いが、スライド式、扉式、片開き式、両開き式、引き出し式などを採用することができる。
【0025】
計測室は、筐体内に位置し、照射部、受光部、及びテーブル部で構成されていることが好ましい。また開閉部内壁、及び計測室内を構成する部分は、外乱光やスリット状の照射光の反射を防ぐ為に、黒色処理することが好ましい。
筐体とは、各構成を関連付けるものであり、この筐体内に本発明の構成要素が装着される。筐体とは、咬合面形状計測装置に使用する種々の部品が設置できれば良く、特に定められた形態をする必要はないが、好ましくは小型である。
【0026】
次に形状標点位置運動模擬再現装置の形態について説明する。
形状データとは、本発明の咬合面形状計測装置において計測、算出された被計測体の3次元形状データであり、3次元座標値又は画像で表示される。好ましくは上顎又は下顎の歯列模型上の計測咬合面を計測、算出した計測咬合面データである。
計測咬合面とは、本発明の咬合面形状計測装置において計測される患者の上顎又は下顎の歯列模型上の咬合面である。
また生体計測咬合面とは、生体の上顎又は下顎の咬合面である。
上顎データとは、上顎の計測咬合面データであり、下顎データとは、下顎の計測咬合面データである。
【0027】
静止データとは、ある物体の3次元位置と3次元方向を表す6次元位置方向データであり、好ましくは顎運動測定器で測定した上顎又は下顎の任意の顎位データである。
物体とは、運動計測装置で計測される被計測体であり、好ましくは、患者の上顎又は下顎であることが好ましく、更に好ましくは、患者の上下顎歯列、又は上下顎歯列の一部である。
運動データとは、静止データが時系列に沿って位置方向を表す6次元運動データであり、6次元座標値、軌跡図又はグラフで表示される。好ましくは顎運動測定器で測定した上顎又は下顎の顎運動データであり、更に好ましくは上下顎歯列又は上下顎歯列の一部の顎運動データである。
位置データとは、ある物体の特定の位置を表す3次元位置データであり、3次元座標値で表示される。好ましくは生体計測咬合面上における上顎口腔内生体標点、下顎口腔内生体標点、又は生体上の口腔外生体標点であり、又は歯列模型の計測咬合面上における上顎模型標点又は下顎模型標点である。
【0028】
上顎口腔内生体標点とは、上顎の生体計測咬合面上における同一直線上にない少なくとも3点以上の位置データである。この3点は上顎の生体計測咬合面上であればどの特定点でも良いが、好ましくは上顎中切歯の近心切端隅角の中点と上顎左右第一大臼歯の窩点の3点である。
下顎口腔内生体標点とは、下顎の生体計測咬合面上における同一直線上にない少なくとも3点以上の位置データである。この3点は下顎の生体計測咬合面上であればどの特定点でも良いが、好ましくは下顎中切歯の近心切端隅角の中点と下顎左右第一大臼歯の窩点の3点である。
口腔外生体標点とは、生体上の同一直線上にない少なくとも3点以上の位置データである。この3点は生体上であればどの特定点でも良いが、好ましくは左右顆頭点や眼窩下点、又は鼻翼下縁点である。
【0029】
上顎模型標点とは、生体計測咬合面上の上顎口腔内生体標点に対応する上顎歯列模型の計測咬合面上の点である。
下顎模型標点とは、生体計測咬合面上の下顎口腔内生体標点に対応する下顎歯列模型の計測咬合面上の点である。
【0030】
連動機構とは、形状データを運動データに基づいて時系列に表示させる機構である。好ましくは形状データを顎位、又は顎運動データに基づいて、計測咬合面形状を計測咬合面の位置、又は方向、又は運動とともに表示させることが好ましい。また、形状データ及び運動データは同一患者のデータであることが好ましい。
重合機構とは、形状データと位置データの3次元座標を重ね合わせる機構である。好ましくは、形状データ上で上顎口腔内生体標点又は下顎口腔内生体標点に対応する上顎模型標点又は下顎模型標点の座標を一致させることが好ましく、更に好ましくは上顎模型標点又は下顎模型標点を術者が指定できることが好ましい。
視覚的報知の好ましい形態としては、ディスプレイ上に画像、グラフ又は座標値で表示することが好ましい。
物体の咬合形状計測装置、あるいは物体の運動計測装置は従来より発表・製造・発売・利用されているが、物体が運動した状態で、形状計測と運動計測を同時に計測する装置は実現困難であるし、形状と運動を別の時刻に計測するにしても、同一の計測座標系、つまり同一の計測系の計測範囲に物体を保ちつつ計測する装置は物体によっては実現困難か又は大規模な装置となる。本発明は、形状計測装置と運動計測装置が別の装置として分離しており、形状計測と運動計測が互いに別の任意時刻又は任意地点で分離して測定される場合に、物体の形状と運動を再現するための装置として発明したものである。
【0031】
この場合、形状計測装置における基準座標系である形状計測座標系と、運動計測装置における基準座標系である運動計測座標系の間には、位置方向に関する6自由度の任意性が存在する。運動計測においては、物体を剛体と見なして物体中の特定の代表点を原点とし物体中の特定の代表方向を座標軸の方向とする物体座標系を設定し、物体の運動は運動計測座標系の中での物体座標系の原点の運動と座標軸の回転角の運動、つまり物体座標系の運動と見なすことと理論的に同値である。つまり、運動計測データには形状に関わるデータは入る余地が無い。
【0032】
一方、物体の形状と運動を再現するということは、特定又は任意の座標系を基準に、物体の形状データを再現し、その物体の代表点代表方向データを物体の形状データ中に再現し、代表点代表方向の運動として物体の形状ごと運動データを再現しなければならない。そのために、運動計測の際に物体の形状に基づく少なくとも3つの標点の座標を運動計測座標系を基準に計測し、形状計測の際に同じ3つの標点の座標を形状計測座標系を基準に計測すれば、物体座標系を基準にしたときにこの3つの標点は同じ座標値として一致する。このことを利用して、任意座標系中で物体の形状と運動を再現しようとするものである。
この場合に、運動計測時の物体の3つの標点の座標から物体座標系データ(位置と方向)を運動計測座標系で算出し、形状計測時の物体の3つの標点の座標から物体座標系データ(位置と方向)を形状計測座標系基準で算出する。
【0033】
物体の形状運動の再現は次の手順で行うことができる。まず、物体座標系に対して任意座標系データ(位置と方向)を設定する。次に形状計測座標系基準の物体座標系データ(位置と方向)を用いて、形状データを形状計測座標系基準から物体座標系基準の表現に変換する。次に物体座標系基準の任意座標系データ(位置と方向)を用いて、形状データを物体座標系基準から任意座標系基準の表現に変換する。これで任意座標系中に物体座標系が設定され、物体の形状データが再現されたことになる。
次に、運動計測座標系基準の運動データ(時系列に並べた複数の物体の位置と方向のデータ)を物体座標系の運動データ(位置と方向)表現に変換する。(これは運動計測装置内で行われる場合も考えられる。)次に、個々の物体座標系の運動データから物体運動計測座標系基準から物体基準座標系にすると、逆に任意の座標系中に物体座標系を静止状態で再現できる。
【0034】
以下に本発明の咬合面形状計測装置の実施方法について説明する。
本発明の咬合面形状計測装置は、照射部から照射されるスリット状の照射光をテーブル部によって測定範囲に保持又は誘導された被計測体に照射することによて被計測体表面に光切断線を生じさせ、その光切断線を受光部で撮像し、撮像データから3次元座標を算出する装置である。
計測時は、先ず、患者の口腔内から採得した上顎及び下顎の石膏模型をテーブル部に備えられた模型台に設置する。次にテーブル部に備えられた駆動部によってある一定の間隔で移動させ、測定範囲に上顎及び下顎の石膏模型を誘導し、
照射部から照射されるスリット状の照射光により生じた石膏模型表面の光切断線を受光部で撮像し、上顎及び下顎の咬合面形状の3次元座標を算出する。
次に本発明の形状標点位置運動模擬再現装置の実施方法について説明する。
咬合面形状計測装置によって得られた上顎及び下顎の形状データとが顎運動測定器によって得られた顎運動データから、上顎口腔内生体標点と上顎模型標点、下顎口腔内生体標点と下顎模型標点を一致させることにより、上下顎の咬合面形状データを顎運動データに基づいて時系列に表示させる。
【0035】
【発明の効果】
本発明の咬合面形状計測装置は、咬合面形態を計測することを目的としているためデータ数も少なく演算処理が簡略化でき、構造的にも可動部分を減らし小型化できると共に、一度に複数の石膏模型の咬合面形態を計測できるため、作業性良く短時間で計測することができる。
本発明の咬合面形状計測装置で計測した形状データと同一患者から計測した顎位・顎運動データを口腔内及び/又は口腔外で計測した標点を基準として重合又は連動させることによって歯牙の接触や咬合状態、又は咀嚼運動時の下顎の向き、方向及び速度を再現できると共に、歯牙の経時的位置変化を正確に再現できるため、容易に口腔内の観察を行うことが可能である。
【0036】
【図面の簡単な説明】
【図1】本発明の咬合面形状計測装置の斜視図
【図2】本発明の咬合面形状計測装置で得られた上顎及び下顎データ
【符号の説明】
1テーブル部
2受光部
3照射部
4上顎データ
5下顎データ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an occlusal surface shape measuring apparatus that measures the occlusal surface shape of a dentition model obtained from a patient in the field of dentistry as three-dimensional data.
Further, the present invention relates to occlusion surface occlusion and occlusion at the time of occlusion by superimposing and / or interlocking occlusal surface shape data measured using an occlusal surface shape measuring device in the dentistry field with arbitrary jaw position and jaw movement data. The present invention relates to a shape target position movement simulation reproduction apparatus that reproduces the state and / or reproduces the orientation, direction, and speed of the lower jaw during chewing movement.
Furthermore, the present invention relates to a shape target position movement simulation reproduction apparatus used for assisting treatment of abnormalities in the stomatognathic function by observing movements such as tooth occlusion and mastication. Furthermore, the present invention relates to a shape target position movement simulation reproducing apparatus used for informed consent to a patient explaining to the patient the movement of teeth such as occlusion and chewing. The present invention also relates to a shape gage position motion simulation reproduction device that reproduces a change in position of a tooth over time in the orthodontic field.
[0002]
[Prior art]
Generally, in the field of dentistry, if there is an abnormality in the occlusion, temporomandibular disorders may be caused, so occlusal treatment such as splint treatment, denture attachment and orthodontic treatment is performed, and it is related to occlusion before surgery and during follow-up It is important to understand the morphological and functional states.
Conventionally, methods for examining occlusion include a method using occlusal paper, a method using a diagnostic model, and a method using visual inspection using an instrument. In the method using the occlusal paper, the patient is biting the occlusal paper to attach a pigment to the dentition corresponding to the occlusal contact site, and the occlusal contact state is determined based on the site where the pigment is attached and the color of the occlusal paper. . In the diagnostic model method, the occlusal contact state can be determined by making a model of the upper and lower jaws and observing the dentition state, or by attaching it to an articulator and simulating the site of early contact and cusp interference. judge.
[0003]
However, since examinations such as changes in the position of teeth over time are made by visual inspection, it is difficult to confirm quantitative changes in the position and direction of the teeth. In addition, general articulators can only reproduce simple opening and closing movements, lateral or forward sliding movements, and cannot reproduce jaw movements such as mastication movements and habitual opening and closing movements. I can't do it. Furthermore, since the mouth is closed at the time of actual occlusion, observation of the occlusion in the oral cavity is extremely difficult.
[0004]
Therefore, in recent years, in order to solve these problems, devices for reproducing jaw movements such as mastication movements and habitual opening / closing movements have been invented.
For example, Japanese Patent Laid-Open No. 2000-107207 introduces a jaw movement simulation method that reproduces the movement of the lower jaw model relative to the upper jaw model with six degrees of freedom by a parallel mechanism. However, since the actual lower jaw model is moved with 6 degrees of freedom rather than on the computer, the upper and lower jaw models are closed during occlusion, and it is extremely difficult to observe occlusal contact.
[0005]
Devices that display skull data composed of three-dimensional data in conjunction with jaw movement data and reproduce jaw movement are commercially available. However, since the dentition shape data is not the dentition shape data of the same patient whose jaw movement data is measured, accurate occlusal contact cannot be observed. Furthermore, since these devices and methods do not measure the dentition model shape, it is difficult to confirm quantitative changes such as quantitative tooth positions and directions.
As a further invention for solving these problems, an apparatus or method for reproducing a jaw movement by measuring a dentition model as three-dimensional data and interlocking with the jaw movement data has been introduced.
[0006]
For example, in Japanese Patent Laid-Open No. 9-238963, movement data obtained by measuring the masticatory movement trajectory of a plurality of points on a patient's dentition or jaw and three-dimensional measurement of a gypsum model of the patient's dentition or jaw ridge. A jaw movement simulation method has been introduced in which shape data is matched in the same coordinate system, and shape data is moved based on movement data.
The Journal of the Prosthodontic Society, Vol. 44, No. 6, describes the upper and lower jaw occlusal surfaces based on data measured by a laser-type three-dimensional dentition model measuring device and data from a commercially available six-degree-of-freedom mandibular movement measuring device. An apparatus that reproduces the relative movement miracles over time is introduced.
[0007]
However, in these methods and apparatuses, jaw movement data measured by a jaw movement measuring instrument is used as jaw movement data, but the apparatus for measuring a dental model is not a dedicated dental model measuring instrument, but a general 3 A dimensional shape measuring device is used. However, in order to confirm the dentition state, the occlusal state during mastication, etc., only the occlusal surface shape data is necessary, and unnecessary portions are also measured. Therefore, the amount of data becomes enormous and the calculation processing becomes complicated. In addition, the measuring device itself is large and very expensive.
[0008]
Moreover, as a three-dimensional shape measuring apparatus for measuring the occlusal surface form of a dentition model, for example, in Japanese Patent Laid-Open No. 8-327338, the width and maximum luminance of a reflected light image from a measured object are within a predetermined range. Measurement error due to the inclination of the measurement surface of the object to be measured is reduced by correcting the positional relationship with respect to the relative position where the signal indicating that measurement is impossible is output and performing the measurement again. A three-dimensional shape measuring apparatus for the purpose of stably measuring with high accuracy has been introduced.
[0009]
Further, for example, in Japanese Patent Laid-Open No. 9-178437, an object to be measured (tooth model) is attached in two different postures, and each of the objects to be measured is set by a support base at a plurality of rotational positions around the rotation axis. A three-dimensional measuring device aimed at accurately measuring the three-dimensional shape of a measurement object without an invisible region of light has been introduced.
However, since these measuring devices are intended for the production of dental prostheses and digital data for plaster models, it is necessary to measure not only the occlusal surface shape of the plaster model but also the entire plaster model, in order to eliminate the invisible area. In order to measure by changing the posture of the gypsum model, it has a configuration with multiple moving mechanisms, which not only makes the structure complicated and the equipment larger, but also makes maintenance management complicated and expensive. Inevitable. In addition, a large number of calculation units are required to control the moving mechanism, and not only a great amount of time is spent for measurement, but the amount of data becomes enormous and the calculation processing becomes complicated. Furthermore, since JP-A-9-178437 can measure only one object to be measured in one measurement, when measuring a plurality of objects to be measured, it is necessary to replace the objects to be measured. Deteriorate.
[0010]
[Patent Document 1]
JP 2000-107207 A [Patent Document 2]
JP-A-9-238963 [Patent Document 3]
JP-A-8-327338 [Patent Document 4]
JP-A-9-178437 [Non-Patent Document 1]
Prosthodontic Society Vol.44 No.6 [0011]
[Problems to be solved by the invention]
The occlusal surface shape measuring device that can measure the occlusal surface form of the plaster model in a short time, and is designed to measure the occlusal surface form, the number of data is small, the calculation process can be simplified, and the size is reduced by reducing the movable parts structurally. Not today.
Shape data measured using an occlusal surface shape measuring device and jaw position / chin movement data measured from the same patient and jaw point / chin movement data measured in the mouth and / or outside the mouth Until now, there has not been a shape target position movement simulation reproduction device that reproduces the tooth contact and occlusion during occlusion or the orientation, direction, and speed of the lower jaw during mastication by superimposing or interlocking with each other. In addition, today is the shape target position movement simulation reproduction device that can accurately reproduce the contact and occlusion of teeth, or changes in the position of teeth over time with the same patient data, and allows the patient to easily observe the oral cavity. I didn't.
[0012]
[Means for solving the problems]
The present invention includes an irradiation unit that irradiates slit-shaped irradiation light toward a measurement range, a light receiving unit that receives a light cutting line within the measurement range, and a table unit that holds or guides the measurement target in the measurement range. In the occlusal surface shape measuring apparatus, the occlusal surface shape measuring apparatus is characterized in that the table unit moves in one direction with respect to the irradiation unit and the light receiving unit.
The present invention is the occlusal surface shape measuring apparatus, wherein the relative angle between the irradiation direction of the irradiation unit and the light reception direction of the light receiving unit is in the range of 5 to 100 degrees.
[0013]
The present invention is the occlusal surface shape measuring apparatus characterized in that the light receiving direction of the light receiving portion is 10 to 30 degrees with respect to the normal of the table portion.
The present invention is an occlusal surface shape measuring device characterized in that a plurality of objects to be measured can be installed on a table portion.
The present invention has a superposition mechanism that superimposes the shape data obtained in the occlusal surface shape measurement device with position data, and / or an interlocking mechanism that links the shape data obtained in the occlusal surface shape measurement device with stationary data or motion data. This is a shape gage position motion simulation and reproduction device characterized by the above.
[0014]
The present invention relates to a shape target position movement simulation reproduction device characterized in that the shape data is upper jaw data and lower jaw data, and the relative movement speeds of the upper jaw data and the lower jaw data are visually notified by an interlocking mechanism. is there.
According to the present invention, the shape data is a maxillary data and a mandibular data, and a shape target position movement simulation is performed by visually informing a portion where the upper jaw data and the lower jaw data overlap and / or contact with each other by an interlocking mechanism. It is a reproduction device.
[0015]
The present invention relates to a shape target position movement simulation reproduction device characterized in that shape data is a plurality of upper jaw data or lower jaw data, and a positional change of the upper jaw data or the lower jaw data is visually notified by a superposition mechanism. It is.
According to the present invention, position data, stationary data, or motion data of an object or a plurality of objects is given with reference to an arbitrary coordinate system A, and shape data of the same object or its model is an arbitrary coordinate. When given with reference to the system B, these data are stored and calculated, and the shape target position motion simulation reproduction that simultaneously represents the three-dimensional shape and motion of one or more objects with the arbitrary coordinate system C as a reference Is the method.
[0016]
The present invention provides at least three or more maxillary intraoral biomarks or mandibular intraoral biomarks that are not collinear on the biometric occlusion surface on the living body corresponding to the measurement occlusal surface on the maxillary or mandibular dentition model. When the coordinates of the points are given from the outside, the maxillary model or mandibular model target corresponding to the maxillary oral biomark or the mandibular biomark on the measurement occlusal surface data is operated. It is a shape gage position motion simulation reproduction device characterized by being able to be specified by a person.
[0017]
The present invention provides at least three or more maxillary intraoral biomarks or mandibular intraoral biomarks that are not collinear on the biometric occlusion surface on the living body corresponding to the measurement occlusal surface on the maxillary or mandibular dentition model. If the coordinates of a point or at least three or more extraoral biomarkers that are not on the same straight line on the living body are given from the outside, the shape data, stationary data, and motion data are transferred to the upper jaw. The maxillary intraoral biomark coordinate system determined by three intraoral biomedical points, or the mandibular intraoral biomark coordinate system determined by three mandibular intraoral biomarks and the extraoral biomark determined by three extraoral biomarks It is a shape target position movement simulation reproduction apparatus characterized by converting into a living body coordinate system.
[0018]
The present invention analyzes the positional relationship of a plurality of stored measurement occlusal surface data based on the arbitrary coordinate system, the extraoral biological coordinate system, the maxillary intraoral biometric coordinate system, or the mandibular intraoral biometric coordinate system. It is a shape gage position movement simulation reproduction device characterized by performing the analysis and displaying the analysis result.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described in detail, but the present invention is not limited thereto.
The form of the occlusal surface shape measuring apparatus will be described.
As one form of this invention, it is preferable to provide the measurement chamber in which the irradiation part, the light-receiving part, and the table part were installed in the housing | casing which has an opening-and-closing part, and the slit-shaped irradiation light irradiated from an irradiation part is used. By irradiating the measurement object held or guided in the measurement range by the table unit, an optical cutting line is generated on the surface of the measurement object, the optical cutting line is imaged by the light receiving unit, and three-dimensional coordinates are calculated from the imaging data. Based on the light cutting method.
[0020]
Each configuration will be described below.
The irradiation unit has a mechanism for irradiating slit-shaped irradiation light toward the measurement range.
The irradiation unit has a mechanism for generating slit-shaped irradiation light. As a method for generating slit-shaped irradiation light, for example, there is a method of generating slit-shaped irradiation light by using a cylindrical lens, a slit mask, or a polygon mirror for light irradiated from a light source. This is a method using a lens. Further, as the light source, a semiconductor laser or a line-shaped laser diode may be used, but a semiconductor laser is preferable, and a red semiconductor laser is more preferable. Most preferred is red semiconductor laser light having a wavelength of 635 to 670 nm.
Further, it is preferable that the slit-shaped irradiation light emitted from the irradiation unit is continuously irradiated, but more preferably, the slit-shaped irradiation light is interlocked so that the slit-shaped irradiation light is turned off when the opening / closing unit is opened. preferable.
[0021]
The slit-shaped irradiation light is planar light generated by the irradiation unit and irradiated toward the measurement range, and the slit width is preferably 0.1 to 1.0 mm. More preferably, it is 0.1-0.3 mm.
The measurement range is a space that can be imaged by the light receiving unit, and is preferably a space in which the light receiving unit can image a light cutting line generated in the measurement object by slit-shaped irradiation light irradiated from the irradiation unit. Moreover, it is preferable that the measurement range is arranged around the intersection of the irradiation direction of the irradiation unit and the light reception direction of the light receiving unit.
The light receiving unit is composed of a light receiving element and a lens, and has a mechanism for receiving a light cutting line generated on a measurement object within a measurement range. A PSD, a CCD element, or the like can be used as the light receiving element of the light receiving unit, but a CCD element is preferable, and a two-dimensional CCD element is more preferable. Further, the lens of the light receiving unit preferably has a focal length that allows the measurement object to be imaged over the entire light receiving surface of the light receiving element, and more preferably has a mechanism that can adjust the amount of received light.
[0022]
The irradiation direction of the irradiation unit is a straight line that passes through the center of the light source of the irradiation unit and is parallel to the slit-shaped irradiation light surface irradiated from the irradiation unit.
The light receiving direction of the light receiving unit is a straight line passing through the center of the light receiving surface of the light receiving element of the light receiving unit and on the normal line of the light receiving surface.
The installation position of the irradiation unit and the light receiving unit is preferably such that the irradiation direction of the irradiation unit and the light receiving direction of the light receiving unit are parallel, and the relative angle thereof is in the range of 5 to 100 degrees. More preferably, the range is 20 to 40 degrees, and the most preferable angle is 25 to 35 degrees.
In addition, the light receiving direction of the light receiving unit is preferably 10 to 30 degrees with respect to the normal of the model base of the table unit, and more preferably 15 to 25 degrees.
[0023]
The table section includes a model base for installing or fixing the measurement target and a drive unit for holding or moving the model base, and has a mechanism for holding or guiding the measurement target in the measurement range.
It is preferable that a plurality of measurement objects can be installed on the model table.
For example, the drive unit has a configuration in which a ball screw and a linear guide are combined, or a configuration in which the table is moved by hanging a belt. Preferably, the measurement is performed along the linear guide by rotating the ball screw connected to the motor. What has the moving mechanism which hold | maintains or guides a body in a measurement range is good. The motor is preferably a stepping motor.
The moving method of the table portion may be a single-axis linear movement method, a rotation method, or a multi-axis method combining them, but preferably a single-axis linear movement method.
Moreover, it is preferable that a table part moves relatively at the time of measurement.
[0024]
The object to be measured is an object that is held or guided in the measurement range by the table portion, and in the present invention, this is a plaster model or a jaw crest. It is preferable that the upper surface of the object to be measured and the model table surface of the table portion are parallel.
The opening / closing part is not limited as long as a part in the housing is cut out and the object to be measured can be taken in and out of the measurement chamber, preferably the notched part is preferably joined by a hinge, and more preferably a door-like shape. It is preferable that
The opening / closing method is not limited to the hinge, and any method may be used, but a sliding type, a door type, a single-opening type, a double-opening type, a drawer type, or the like can be employed.
[0025]
It is preferable that the measurement chamber is located in the housing and includes an irradiation unit, a light receiving unit, and a table unit. Moreover, it is preferable to black-process the opening / closing part inner wall and the part constituting the measurement chamber in order to prevent reflection of disturbance light and slit-shaped irradiation light.
The casing associates each component, and the constituent elements of the present invention are mounted in the casing. The casing only needs to be able to install various parts used in the occlusal surface shape measuring apparatus, and does not need to have a specific form, but is preferably small.
[0026]
Next, the form of the shape mark position movement simulation reproduction apparatus will be described.
The shape data is the three-dimensional shape data of the measured object measured and calculated by the occlusal surface shape measuring apparatus of the present invention, and is displayed as a three-dimensional coordinate value or an image. Preferably, the measurement occlusal surface data is obtained by measuring and calculating the measurement occlusal surface on the maxillary or mandibular dentition model.
The measurement occlusal surface is the occlusal surface on the upper or lower jaw dentition model measured by the occlusal surface shape measuring apparatus of the present invention.
The biometric occlusal surface is the occlusal surface of the upper or lower jaw of the living body.
Maxilla data is measurement occlusal surface data of the upper jaw, and mandibular data is measurement occlusal surface data of the lower jaw.
[0027]
The stationary data is 6-dimensional position / direction data representing a three-dimensional position and a three-dimensional direction of a certain object, and is preferably arbitrary jaw position data of the upper jaw or the lower jaw measured by a jaw movement measuring device.
The object is a measured object measured by the motion measuring device, preferably the upper jaw or lower jaw of the patient, and more preferably the patient's upper and lower jaw dentition or a part of the upper and lower jaw dentition. It is.
The motion data is 6-dimensional motion data in which still data represents a position direction along a time series, and is displayed as a 6-dimensional coordinate value, a locus diagram, or a graph. Preferably, it is jaw movement data of the upper jaw or the lower jaw measured by a jaw movement measuring device, and more preferably jaw movement data of the upper and lower jaw dentition or a part of the upper and lower jaw dentition.
The position data is three-dimensional position data representing a specific position of a certain object, and is displayed as a three-dimensional coordinate value. Preferably, it is a maxillary intraoral biomark on the biometric occlusal surface, a mandibular intraoral biomark, or an extraoral biomark on the living body, or an maxillary model target or mandible on the measurement occlusal surface of the dentition model It is a model mark.
[0028]
The maxillary intraoral biomark is the position data of at least three points that are not on the same straight line on the biometric occlusion surface of the upper jaw. These three points may be any specific points as long as they are on the biomeasuring occlusal surface of the upper jaw, but are preferably the three points of the midpoint of the mesial incision corner of the maxillary central incisor and the fossa of the maxillary left and right first molars. is there.
The mandibular intraoral biomark is the position data of at least three points that are not on the same straight line on the biometric occlusion surface of the lower jaw. These three points may be any specific points as long as they are on the biometric occlusal surface of the lower jaw, but are preferably the three points of the midpoint of the mesial incision angle of the central incisor of the lower jaw and the fossa of the lower left and right first molars. is there.
The extraoral biomarker is position data of at least three points that are not on the same straight line on the living body. These three points may be any specific points on the living body, but are preferably the left and right condyle points, the lower orbital point, or the lower nose wing point.
[0029]
The maxillary model point is a point on the measurement occlusal surface of the maxillary dentition model corresponding to the biomedical point in the maxillary oral cavity on the biomeasurement occlusal surface.
The mandibular model mark is a point on the measurement occlusal surface of the lower jaw dentition model corresponding to the biomedical point in the lower jaw oral cavity on the biometric measurement occlusal surface.
[0030]
The interlocking mechanism is a mechanism that displays shape data in time series based on motion data. It is preferable to display the measurement occlusal surface shape together with the position, direction, or movement of the measurement occlusal surface based on the shape data or the jaw movement data. Moreover, it is preferable that shape data and exercise | movement data are the data of the same patient.
The superposition mechanism is a mechanism for superimposing three-dimensional coordinates of shape data and position data. Preferably, it is preferable to match the coordinates of the maxillary model point or the mandibular model point corresponding to the maxillary intraoral biomark or the mandibular intraoral biomark on the shape data, more preferably the maxillary model point or the mandible It is preferable that an operator can designate a model mark.
As a preferable form of visual notification, it is preferable to display an image, a graph, or coordinate values on a display.
Object occlusal shape measurement devices or object motion measurement devices have been previously announced, manufactured, released, and used, but it is difficult to realize a device that simultaneously measures shape measurement and motion measurement while the object is moving. However, even if the shape and movement are measured at different times, it is difficult to realize a device that measures an object while keeping the object in the same measurement coordinate system, that is, the measurement range of the same measurement system, or a large-scale device. It becomes. In the present invention, when the shape measurement device and the motion measurement device are separated as separate devices, and the shape measurement and the motion measurement are separately measured at different arbitrary times or arbitrary points, the shape and motion of the object are measured. Was invented as a device for reproducing the above.
[0031]
In this case, there is an arbitrary degree of freedom with six degrees of freedom between the shape measurement coordinate system, which is the reference coordinate system in the shape measurement apparatus, and the motion measurement coordinate system, which is the reference coordinate system in the motion measurement apparatus. In motion measurement, an object coordinate system is set in which the object is regarded as a rigid body, a specific representative point in the object is the origin, and a specific representative direction in the object is the direction of the coordinate axis. It is theoretically equivalent to the movement of the origin of the object coordinate system and the movement of the rotation angle of the coordinate axis, that is, the movement of the object coordinate system. In other words, there is no room for data related to the shape in the motion measurement data.
[0032]
On the other hand, to reproduce the shape and motion of an object is to reproduce the object shape data based on a specific or arbitrary coordinate system, and to reproduce the representative point representative direction data of the object in the object shape data, The motion data for each shape of the object must be reproduced as the motion in the representative point representative direction. Therefore, at the time of motion measurement, the coordinates of at least three target points based on the shape of the object are measured with reference to the motion measurement coordinate system, and at the time of shape measurement, the coordinates of the same three target points are referred to the shape measurement coordinate system. If these are measured, these three marks coincide with the same coordinate value when the object coordinate system is used as a reference. This is used to reproduce the shape and motion of an object in an arbitrary coordinate system.
In this case, the object coordinate system data (position and direction) is calculated from the coordinates of the three target points of the object at the time of motion measurement, and the object coordinates are calculated from the coordinates of the three target points of the object at the time of shape measurement. System data (position and direction) is calculated based on the shape measurement coordinate system.
[0033]
The shape movement of the object can be reproduced by the following procedure. First, arbitrary coordinate system data (position and direction) is set for the object coordinate system. Next, using the object coordinate system data (position and direction) based on the shape measurement coordinate system, the shape data is converted from the shape measurement coordinate system reference to the representation of the object coordinate system reference. Next, using the arbitrary coordinate system data (position and direction) based on the object coordinate system, the shape data is converted from the object coordinate system reference to an expression based on the arbitrary coordinate system. Thus, the object coordinate system is set in the arbitrary coordinate system, and the shape data of the object is reproduced.
Next, the motion data (position and direction data of a plurality of objects arranged in time series) based on the motion measurement coordinate system is converted into motion data (position and direction) representation of the object coordinate system. (This may be done in the motion measurement device.) Next, if the object motion measurement coordinate system reference is changed to the object reference coordinate system from the motion data of the individual object coordinate system, it will be in any coordinate system. The object coordinate system can be reproduced in a stationary state.
[0034]
Below, the implementation method of the occlusal surface shape measuring apparatus of this invention is demonstrated.
The occlusal surface shape measuring apparatus according to the present invention irradiates the surface of the object to be measured by irradiating the object to be measured which is held or guided in the measurement range by the table unit with the slit-shaped irradiation light irradiated from the irradiation unit. This is a device that generates a line, images the optical cutting line with a light receiving unit, and calculates three-dimensional coordinates from the imaged data.
At the time of measurement, first, the upper and lower gypsum models obtained from the patient's mouth are placed on a model table provided in the table. Next, it is moved at a certain interval by the drive part provided in the table part, and the upper and lower jaw plaster models are guided to the measurement range,
The light cutting line on the surface of the gypsum model generated by the slit-shaped irradiation light irradiated from the irradiation unit is imaged by the light receiving unit, and the three-dimensional coordinates of the occlusal shape of the upper jaw and the lower jaw are calculated.
Next, an implementation method of the shape target position movement simulation reproduction apparatus of the present invention will be described.
Maxillary and mandibular biomarks, maxillary biomarks, mandibular intraoral biomarks and mandibular from maxillary and mandibular shape data obtained by the occlusal surface shape measurement device By matching the model marks, the occlusal surface shape data of the upper and lower jaws are displayed in time series based on the jaw movement data.
[0035]
【The invention's effect】
The occlusal surface shape measuring apparatus of the present invention is intended to measure the occlusal surface form, so that the number of data is small, the arithmetic processing can be simplified, the movable part can be reduced in size structurally, and a plurality of units can be reduced at a time. Since the occlusal surface form of the plaster model can be measured, it can be measured in a short time with good workability.
Contact of teeth by superimposing or interlocking jaw position and jaw movement data measured from the same patient as the shape data measured by the occlusal surface shape measuring device of the present invention with reference to a reference point measured in the oral cavity and / or outside the oral cavity. In addition to being able to reproduce the orientation, direction and speed of the lower jaw during occlusal or chewing movements, it is also possible to accurately reproduce changes in the position of the tooth over time, making it possible to easily observe the oral cavity.
[0036]
[Brief description of the drawings]
FIG. 1 is a perspective view of an occlusal surface shape measuring apparatus according to the present invention. FIG. 2 is an upper jaw and lower jaw data obtained by an occlusal surface shape measuring apparatus according to the present invention.
1 table part 2 light receiving part 3 irradiation part 4 upper jaw data 5 lower jaw data

Claims (2)

咬合面形状計測装置において得られた形状データを位置データと重ね合せる重合機構、及び/又は咬合面形状計測装置において得られた形状データを静止データ又は運動データと連動させる連動機構を有する形状標点位置運動模擬再現装置であって、
形状データが、上顎又は下顎の歯列模型上の咬合面を計測、算出した咬合面データであり、
位置データが、上顎口腔内生体標点、下顎口腔内生体標点、又は生体上の口腔外生体標点であり、又は歯列模型の計測咬合面上における上顎模型標点又は下顎模型標点であり、静止データが、上顎又は下顎の任意の顎位データであり、
運動データが、上顎又は下顎の顎運動データであることを特徴とする形状標点位置運動模擬再現装置。
A shape mark having a superposition mechanism that superimposes the shape data obtained in the occlusal surface shape measuring device with position data and / or a linkage mechanism that links the shape data obtained in the occlusal surface shape measuring device with stationary data or motion data. A position movement simulation reproduction device,
The shape data is the occlusal surface data obtained by measuring and calculating the occlusal surface on the maxillary or mandibular dentition model,
The position data is a maxillary intraoral biomark, a mandibular intraoral biomark, or an extraoral biomark on the living body, or an maxillary or mandibular model target on the measurement occlusal surface of the dentition model. Yes, the static data is any jaw position data of the upper jaw or lower jaw,
An apparatus for simulating and reproducing a shape target position movement, wherein the movement data is jaw movement data of the upper jaw or the lower jaw.
請求項1記載の形状標点位置運動模擬再現装置であって、
位置データとは、生体計測咬合面上における上顎口腔内生体標点、下顎口腔内生体標点、又は生体上の口腔外生体標点であり、又は歯列模型の計測咬合面上における上顎模型標点又は下顎模型標点であり、
上顎口腔内生体標点が、上顎中切歯の近心切端隅角の中点と上顎左右第一大臼歯の窩点の3点であり、
下顎口腔内生体標点が、下顎中切歯の近心切端隅角の中点と下顎左右第一大臼歯の窩点の3点であり、
生体上の口腔外生体標点が、左右顆頭点や眼窩下点、又は鼻翼下縁点であり、上顎模型標点が、生体計測咬合面上の上顎口腔内生体標点に対応する上顎歯列模型の計測咬合面上の点であり、
下顎模型標点が、生体計測咬合面上の下顎口腔内生体標点に対応する下顎歯列模型の計測咬合面上の点であることを特徴とする形状標点位置運動模擬再現装置。
A shape gage position movement simulation reproduction apparatus according to claim 1,
The position data is a maxillary intraoral biomark on the biometric occlusal surface, a mandibular intraoral biomark, or an extraoral biomark on the living body, or an maxillary model target on the measurement occlusal surface of the dentition model. A point or mandibular model mark,
The maxillary oral biomark is the midpoint of the mesial incision corner of the maxillary central incisor and the fossa of the maxillary left and right first molars,
The mandibular intraoral biomark is the midpoint of the mesial incision corner of the mandibular central incisor and the fossa of the left and right first molars,
The extraoral biomark on the living body is the left or right condyle point, the lower orbital point, or the lower nose wing point, and the upper jaw model mark corresponds to the upper oral biomark on the biometric occlusal surface It is a point on the measurement occlusal surface of the row model,
A shape target position movement simulation reproducing apparatus, wherein the lower jaw model point is a point on the measurement occlusal surface of the lower jaw dentition model corresponding to the lower jaw oral biometric point on the biological measurement occlusal surface.
JP2002383341A 2002-12-16 2002-12-16 Occlusal surface shape measurement and motion reproduction device Expired - Fee Related JP4191994B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002383341A JP4191994B2 (en) 2002-12-16 2002-12-16 Occlusal surface shape measurement and motion reproduction device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002383341A JP4191994B2 (en) 2002-12-16 2002-12-16 Occlusal surface shape measurement and motion reproduction device

Publications (2)

Publication Number Publication Date
JP2004195152A JP2004195152A (en) 2004-07-15
JP4191994B2 true JP4191994B2 (en) 2008-12-03

Family

ID=32767092

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002383341A Expired - Fee Related JP4191994B2 (en) 2002-12-16 2002-12-16 Occlusal surface shape measurement and motion reproduction device

Country Status (1)

Country Link
JP (1) JP4191994B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2556533A1 (en) * 2005-08-24 2007-02-24 Degudent Gmbh Method of determining the shape of a dental technology object and apparatus performing the method
JP5233456B2 (en) * 2008-07-14 2013-07-10 和田精密歯研株式会社 Crown design method and crown preparation method
JP2012000253A (en) * 2010-06-16 2012-01-05 Yoshida Dental Mfg Co Ltd Occlusion contact measuring device, and dental treatment system
US8423166B2 (en) * 2010-06-25 2013-04-16 Kabushiki Kaisha Shofu Method for calculating grinding portion of pre-grinding denture
DE102011081151A1 (en) * 2011-08-17 2013-02-21 Dw Lingual Systems Gmbh A method of deforming an orthodontic wire from a shape memory material and associated wire
JP4997340B1 (en) 2011-08-23 2012-08-08 株式会社松風 Wear evaluation device, wear evaluation method, and wear evaluation program

Also Published As

Publication number Publication date
JP2004195152A (en) 2004-07-15

Similar Documents

Publication Publication Date Title
US10052160B2 (en) Robotic surgery system
Maestre-Ferrin et al. Virtual articulator for the analysis of dental occlusion: an update
Bhambhani et al. Digitization and its futuristic approach in prosthodontics
EP2363066A1 (en) Dental diagnosis system and dental care system
US5921927A (en) Positioning method and apparatus for X-ray tomography
EP3473207A1 (en) System and method of designing a dental component
KR20070054658A (en) Method for determining the set relative position of a patient in a dental panorama x-ray apparatus or the set path of which this apparatus is moved with regard to a patient, and a device suited therefor
WO2007095598A2 (en) Method for making a virtual computer model of the jaws
JP2008136865A (en) Automatic tooth movement measuring method employing three-dimensional reverse engineering technique and program for it
BR112012021294B1 (en) COMPUTER IMPLEMENTED METHOD OF USING A DYNAMIC VIRTUAL ARTICULATOR TO SIMULATE TEETH OCCLUSION
KR20200030745A (en) Impressing tray and denture manufacturing process using the impressing tray and ct imaging apparatus
JP5891080B2 (en) Jaw movement simulation method, jaw movement simulation apparatus, and jaw movement simulation system
Madhavan et al. Methods of recording mandibular movements-A review
JP4191994B2 (en) Occlusal surface shape measurement and motion reproduction device
Özdemir et al. Virtual articulators, virtual occlusal records and virtual patients in dentistry
EP2543335A2 (en) Mounting method of dental cast
Nishii et al. Three-Dimensional Evaluation of the Distal Jet Appliance.
Rathee et al. Digitalization in prosthodontics: Changing needs based on modern demands
Ballastreire et al. Reliability of the anterior functional device in recording the centric relations of patients with posterior tooth loss
JP7067710B2 (en) Diagnostic device
Hamborg et al. Movement and signal analysis by means of a computer‐assisted system
KR20240084779A (en) Apparatus and method for tracking of jaw motion
EP4382076A1 (en) Apparatus and method for tracking jaw motion and sensor assembly therefor
JP2022041340A (en) Biological gauge mark measurement indicator for dental lower jaw movement measuring device
Joy et al. Virtual articulators

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080520

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080716

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080716

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080908

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080919

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110926

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4191994

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110926

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110926

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120926

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120926

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120926

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130926

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees