JP4190137B2 - Oxygen sensor - Google Patents

Oxygen sensor Download PDF

Info

Publication number
JP4190137B2
JP4190137B2 JP2000229489A JP2000229489A JP4190137B2 JP 4190137 B2 JP4190137 B2 JP 4190137B2 JP 2000229489 A JP2000229489 A JP 2000229489A JP 2000229489 A JP2000229489 A JP 2000229489A JP 4190137 B2 JP4190137 B2 JP 4190137B2
Authority
JP
Japan
Prior art keywords
heating element
separator
oxygen sensor
oxygen
sensor according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000229489A
Other languages
Japanese (ja)
Other versions
JP2002039985A (en
Inventor
正二 赤塚
聡 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2000229489A priority Critical patent/JP4190137B2/en
Publication of JP2002039985A publication Critical patent/JP2002039985A/en
Application granted granted Critical
Publication of JP4190137B2 publication Critical patent/JP4190137B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Measuring Oxygen Concentration In Cells (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、例えば内燃機関の排気ガスなど、被測定ガス中の酸素を検出するための酸素センサに関する。
【0002】
【従来の技術】
このような酸素センサの一形態として、前端部が閉じた中空軸状をなし、この前端部側が測定対象となるガスに向けられる酸素検出素子を備えたものが知られている。このようなタイプの酸素センサでは、基準ガスとしての大気を酸素検出素子の内面に導入する一方、酸素検出素子の外面には測定対象となる排気ガスが接触し、その結果酸素検出素子には、その内外面の酸素濃度差に応じて酸素濃淡電池起電力が生じる。そして、この酸素濃淡電池起電力を、排気ガス中の酸素濃度の検出信号として内外面からリード線等を介して取り出すことにより、排気ガス中の酸素濃度を検出できる。
【0003】
【発明が解決しようとする課題】
かかるタイプの酸素センサは、エンジン始動直後など排気ガス温度が低いときに、固体電解質部材で構成された酸素検出素子の活性が充分でなく、測定可能な起電力を取り出せるまでにかなりの時間を要する。そこで、発熱部を有する軸状の発熱体を酸素検出素子の中空部に挿入し、エンジン始動時に酸素検出素子を加熱して活性化させることにより、有害成分の発生が比較的多い始動時に素早く測定出力(起電力)を立ち上げるようにしている。
【0004】
ところで、発熱体で発生する熱量を効率よく酸素検出素子に伝達し、酸素検出素子の立ち上がりをより活性化するため、発熱体の発熱部を酸素検出素子の中空部内壁面に接触させるようにした酸素センサが構成されることがある。かかる構成の酸素センサにあっては、発熱体の発熱部を酸素検出素子の中空部内壁面に接触させるために、例えば発熱体の中心軸線が酸素検出素子の中心軸線に対して傾斜して設置したりすることがある。その結果、発熱体の中心軸線が酸素検出素子の中心軸線に対して片側に寄るように偏心して配置されることになる。
【0005】
一方、組立時に発熱体の位置決めを容易にし、酸素センサの全長を短縮するため、酸素検出素子よりも後方側に配置されるセパレータに、前端面が開口した発熱体端部収容穴を形成し、発熱体の後端面(以下、発熱体端面という)をこの発熱体端部収容穴の底面(以下、セパレータ底面という)に当接させる場合がある。このとき、上記したように発熱体の中心軸線が酸素検出素子の中心軸線に対して傾斜したり、片側に寄るように偏心したりしていると、発熱体端面がセパレータ底面に対して偏った状態で当接することになる。また、発熱体とセパレータとが設計上偏心していなくても、製造誤差や組立時の不均一な押し込み力等によって、発熱体端面とセパレータ底面とが偏った状態で当接することがある。これらの結果、組立時の押し込み力や内燃機関運転時の振動等によって、発熱体端面とセパレータ底面との少なくとも一方にチッピング(欠け)やクラック(割れ)等を生じ、これらの脱落破片によって酸素センサ(酸素検出素子)が作動不良や作動不能の状態に陥るおそれがある。
【0006】
そこで本発明の課題は、セパレータ底面と発熱体端面とが当接しうるように対向配置される場合でも、組立時及び運転時にセパレータ底面や発熱体端面にチッピング、クラック等が発生するのを防止し、作動不良や作動不能の状態を回避して高い信頼性と製品寿命が実現可能な酸素センサを提供することにある。
【0007】
【課題を解決するための手段及び作用・効果】
上記課題を解決するために、本発明の酸素センサは、
前端部が閉じた中空軸状をなし、この前端部側が測定対象となるガスに向けられる酸素検出素子と、
前記酸素検出素子の中空部に配置され、該酸素検出素子を加熱する軸状の発熱体と、
前記酸素検出素子よりも後方側においてその中空部とほぼ同軸的に配置され、前端面が開口して前記発熱体の後端部が挿入される発熱体端部収容穴を有するセパレータとを備え、
前記セパレータの軸線方向中間部に位置する前記発熱体端部収容穴の底面(以下、セパレータ底面という)と前記発熱体の後端面(以下、発熱体端面という)とが対向配置され、かつそれらセパレータ底面と発熱体端面との少なくとも一方が、それらの対向方向において先端側が連続的に断面縮小する形態で突出する突出面を有し、
前記セパレータ底面と前記発熱体端面とは、前記突出面の先端において点状接触状態にて当接することを特徴とする。
【0008】
上記本発明によれば、対向配置されるセパレータ底面と発熱体端面との少なくとも一方が突出面を有している。この突出面は、対向配置され、組立時の押し込み力や内燃機関運転時の振動等によって当接しうる面であるセパレータ底面や発熱体端面にチッピング、クラック等が発生するのを防止することができる。したがって、これらの脱落破片によって酸素センサ(酸素検出素子)が作動不良や作動不能となる状態を未然に防ぐことができ、酸素センサの信頼性と製品寿命を高めることができる。
【0009】
ここで、対向配置されるセパレータ底面と発熱体端面とが当接する場合には、上記突出面の先端において点状接触状態にて当接するのが望ましく、接触面積を縮小することによりセパレータ底面や発熱体端面でのチッピング、クラック等の発生を抑えることができる。なお、本明細書において点状接触状態とは、点接触もしくはそれに近似した状態をいう。
【0010】
例えば、発熱体を酸素検出素子の中空部内壁面に接触させるために、発熱体の中心軸線がセパレータの中心軸線に対して傾斜して配置され、その結果、前者は後者に対して片側に寄るように偏心して配置される場合がある。しかし、セパレータ底面にこの突出面を形成するときは、セパレータ底面や発熱体端面でのチッピング、クラック等の発生を抑えるとともに、セパレータ底面の突出面に対する発熱体端面の相対的な回転移動が可能となる。これによって、セパレータと発熱体との間のこじれを解消し、製造誤差等を所定範囲内にとどめることができる。
【0011】
また、他の例として、発熱体端面に突出面を形成するとともに、セパレータ底面に、発熱体端面に形成される突出面に対応した凹状面を形成することができる。これによって、発熱体端面の突出面がセパレータ底面の凹状面に対して軽く相対回転できるようになる。したがって、セパレータ底面や発熱体端面でのチッピング、クラック等の発生の抑制と、セパレータと発熱体との間のこじれの解消において一層の効果を発揮する。なお、発熱体端面に形成される突出面の曲率半径よりもセパレータ底面に形成される凹状面の曲率半径を大とすれば、計器や時計等の精密機器に使用されるピボット軸受とほぼ同様の構成を有するので、両面がさらにスムーズに相対回転できるようになる。
【0012】
これらの例において、セパレータ底面と発熱体端面との少なくとも一方の外縁には、中心軸線に対して所定の傾きを有する面取りを施してもよい。チッピング、クラック等が発生しやすく、かつ脱落もしやすい外縁に面取りを施すことによって、これらの発生及び脱落破片の飛散を効果的に防止できる。
【0013】
【発明の実施の形態】
以下、本発明の実施の形態を図面に示す実施例に基づき説明する。
図1は本発明に係る酸素センサの一実施例の内部構造を示し、図2は要部の拡大図である。酸素センサ1は、先端が閉じた中空軸状の酸素検出素子2と、酸素検出素子2の中空部2aに挿入された発熱体3とを備える。酸素検出素子2は、酸素イオン伝導性を有する固体電解質により中空軸状に形成されている。なお、このような固体電解質としては、YないしCaOを固溶させたZrOが代表的なものであるが、それ以外のアルカリ土類金属ないし希土類金属の酸化物とZrOとの固溶体を使用してもよい。さらには、ベースとなるZrOにはHfOが含有されていてもよい。そして、図2及び図3に示すように、酸素検出素子2の中空部2aの内面には、そのほぼ全面を覆うように、例えばPtあるいはPt合金により多孔質に形成された内部電極層2cが、一方その外面にはその前方部を覆うように、同じく外部電極層2bがそれぞれ設けられている。また、この酸素検出素子2の中間部外側には、絶縁性セラミックから形成されたインシュレータ6,7及びタルクから形成されたセラミック粉末8を介して筒状の金属製ケーシング10が設けられている。なお、以下の説明において、酸素検出素子2の軸方向先端部に向かう側(閉じている側)を「前方側」、これと反対方向に向かう側を「後方側」と称する。
【0014】
ケーシング10は、酸素センサ1を排気管等の取付部に取り付けるためのねじ部9bを有する主体金具9と、その主体金具9の前方側開口部を覆うように取り付けられたプロテクタ11からなる。本実施例の酸素センサ1はねじ部9bより前方が排気管等のエンジン内に位置し、それより後方は外部の大気中に位置して使用される。主体金具9(ケーシング10)は、その前方側開口部から酸素検出素子2の先端側(検出部)を測定対象となる排気ガスに向けられるように突出させた状態で酸素検出素子2を保持するとともに、この開口部に形成される筒状のプロテクタ装着部9aにキャップ状のプロテクタ11が装着されて、酸素検出素子2の検出部を所定の空間を隔てて覆っている。プロテクタ11には、排気ガスを透過させる複数のガス透過口12が貫通形態で形成されている。
【0015】
主体金具9の後方部は、絶縁体6との間にリング15を介して加締められ、この主体金具9に筒状の金属製外筒16の前端に形成された開口部16F(図6参照)が外側から嵌合されている。そして、主体金具9の周方向に沿って形成された全周レーザー溶接部16Eが、外筒16の前端開口部16F内周面と主体金具9の外周面とを接合・固定している。また、この外筒16の後端開口部16Rはゴム等で構成されたグロメット17を嵌入させることにより封止され、さらにこれに続いて前方側にセラミックセパレータ18(以下単にセパレータともいう)が設けられている。そして、それらセラミックセパレータ18及びグロメット17を貫通するように、検出素子側リード線20,21及び発熱体側リード線19,22が配置されている(図7参照)。
【0016】
セラミックセパレータ18は、ケーシング10の後方側にケーシング10とほぼ同軸的に設けられている。外筒16は、セラミックセパレータ18を外側から覆う状態で、その前端開口部16Fがケーシング10に対し後方外側からほぼ同軸的に重ね合わせて連結される筒状形態をなす。グロメット17は、セラミックセパレータ18の後方側に位置して、外筒16の後端開口部16Rに対しその内側に弾性的に嵌入されている。
【0017】
次に、検出素子側リード線20,21のうち一方のリード線21は、互いに一体に形成されたコネクタ23a、引出し線部23b、固定部23c及び下方押圧部23dとを有する第一端子金具23(押圧部材)を経て前述の酸素検出素子2の内部電極層2c(図2)と電気的に接続されている。また、他方のリード線20は、互いに一体に形成されたコネクタ33a、引出し線部33b及び金具本体部33cとを有する第二端子金具33を経て、酸素検出素子2の外部電極層2b(図3)と電気的に接続されている。酸素検出素子2は、その内側に配置された発熱体3で加熱することで活性化される。発熱体3は棒状のセラミックヒータであり、Alを主とする芯材に抵抗発熱体(図示せず)を有する発熱部3aが、+極側及び−極側のヒータ端子3b,3bに接続される発熱体側リード線19,22(図7)を経て通電されることにより、酸素検出素子2の先端部(検出部)を加熱する。検出素子側リード線20,21及び発熱体側リード線19,22は、セラミックセパレータ18の軸線方向に貫通して設けられた2個ずつの検出素子側リード線挿通孔18a1,18a1及び発熱体側リード線挿通孔18a2,18a2(リード線挿通孔)と、グロメット17の軸線方向に貫通して設けられた2個ずつの検出素子側リード線挿通孔17a1,17a1及び発熱体側リード線挿通孔17a2,17a2とに、各々挿通されて外部へ引き出されている。
【0018】
図2及び図3に示すように、第一端子金具23は、先端側に形成された下方押圧部23dの内面で発熱体3の外面を押圧し、少なくとも発熱体3の先端部を酸素検出素子2の中空部2a内壁面に接触させる。下方押圧部23dに続く固定部23cの外面が酸素検出素子2の内面に嵌入することにより第一端子金具23を軸方向に位置固定する。また引出し線部23bの一端が固定部23cの周方向の1ケ所に接続する形で一体化され、さらにその他端にコネクタ23aが一体化されている。そして、固定部23cの上方部(後方部)において、固定部23cに設けられる開口の左右両縁部側近傍には固定部23cの周面の一部にコ字状の切れ目を設け、この切れ目が径方向内側へ折り込まれて左右一対の上方押圧部23eを形成している。なお、23gは固定部23cが発熱体端部収容穴18cに入り込まないようにするための鍔である。
【0019】
一方、第二端子金具33は、円筒状の金具本体部33cを有するとともに、引出し線部33bの一端が金具本体部33cの周方向の1ケ所に接続する形で一体化され、さらにその他端にコネクタ33aが一体化されている。他方、その中心軸線を挟んで引出し線部33bの接続点と反対側には、軸線方向のスリット33eが形成されている。このような金具本体部33cの内側に、酸素検出素子2の後端部がこれを弾性的に押し広げる形で内側から挿入されている。具体的には、酸素検出素子2の外周面後端部には外部側出力取出部としての導電層2fが、周方向に沿って帯状に形成されている。外部電極層2bは、例えば無電解メッキ等により、酸素検出素子2の係合フランジ部2sよりも前端側の要部全面を覆うものとされている。他方、導電層2fは、例えば金属ペーストを用いたパターン形成・焼き付けにより形成されるもので、同様に形成される軸線方向の接続パターン層2hを介して外部電極層2bと電気的に接続されている。
【0020】
図4に示すように、発熱体3は下方押圧部23d及び上方押圧部23eにより酸素検出素子2の中空部2aの中心軸線O2と交差する方向に押圧され、発熱体3の中心軸線O1が酸素検出素子2の中空部2aの中心軸線O2に対して片側に寄るように偏心(オフセット)して配置されるとともに、発熱体3の少なくとも一部が酸素検出素子2の中空部2a内壁面に接触している。
【0021】
図5は外筒16を示す。外筒16は、軸線方向において前後に二分割され、前方側に位置する前方側外筒部材161の後部に形成される外筒側支持部16Aに対し、後方側の後方側外筒部材162の前部が後方外側からほぼ同軸的に重ね合わせて連結されている。この重ね合わせ連結部において、第一外筒部材161の外筒側支持部16Aの外周面と第二外筒部材162の前部内周面とを接合する全周レーザー溶接部16Cが、連結部の周方向に沿って形成されている。なお、外筒16の前端開口部16Fは主体金具9に対して後方外側からほぼ同軸的に重ね合わせて連結され、外筒16の前端開口部16F内周面と主体金具9の外周面とを接合する全周レーザー溶接部16Eが、主体金具9の周方向に沿って形成されている。
【0022】
次に、前方側外筒部材161の後部に形成される外筒側支持部16Aについて、図2を参照しつつ説明する。外筒側支持部16Aは全体として後方側へ向かうほど外径が小となる先細形状を呈しているが、かかる形状は次のような構成によって実現されている。外筒側支持部16Aには、外径が後方に向かうほど傾斜状に小さくなる形態を有する縮径部が軸線方向において前後に2個形成されている。2個の縮径部のうち前方側に形成された第一縮径部16a1と後方側に形成された第二縮径部16a2との間に、軸線に対してほぼ平行な形態で前方側筒状部16b1が形成されている。この第一筒状部16b1の外周面に対し後方側外筒部材162の前部内周面が後方外側から重ね合わせて連結され、上記全周レーザー溶接部16Cが連結部の周方向に沿って形成されている。
【0023】
また、第二縮径部16a2よりも後方側において、セパレータ18の本体部18B外周面にほぼ沿うような形態で第二筒状部16b2が形成されている。さらに、第二筒状部16b2よりも後方側は径方向内側へ折曲げられて折曲部16cが形成され、この折曲部16cの後方側支持面16c1がセパレータ側支持部18Aの前方側支持面18A1に接するような形態を有している。このようにして形成される折曲部16cは、セパレータ18の本体部18Bが外筒側支持部16Aの内側に配置されたとき、セパレータ側支持部18Aの前方側支持面18A1の受止具として機能する。なお、折曲部16cの後方側支持面16c1は、径方向内側へ折曲げられていて、セパレータ18の本体部18Bが外筒側支持部16Aの内側に挿入される際の案内ガイドとなっている。
【0024】
以上の通り、外筒側支持部16Aは、第一及び第二縮径部16a1,16a2、第一及び第二筒状部16b1,16b2並びに折曲部16cから構成されている。この外筒側支持部16Aがセパレータ側支持部18Aを下方から支持するとき、外筒側支持部16Aの内周面はセパレータ18の本体部18Bの外周面を、両者の間に形成される空間部S3を内包しつつ囲うようにして設けられている(図2参照)。よって、跳ね石等により外筒16にもたらされる衝撃力は、両縮径部16a1,16a2によるバネ効果と空間部S3による隔離効果とによって減衰されてセパレータ18に伝達されることになり、セパレータ18の破損等が防止できる。
【0025】
一方、後方側外筒部材162は、後端開口部16Rの内側にグロメット17が挿入され、このグロメット17挿入部位よりも前方側において、内径が前方に向かうほど傾斜状に(連続的に)大きくなる形態を有する拡径部16Bが設けられている。そして後方側外筒部材162の後端開口部16R内周面をセパレータ側支持部18Aの外周面の挿入案内ガイドとして利用している。
【0026】
外筒16の肉厚は、跳ね石等に対する耐衝撃性とグロメット側(後方側)への熱伝達量を考慮して、前方側に設けられる前方側外筒部材161の肉厚t1を後方側に設けられる後方側外筒部材162の肉厚t2以上にしている。すなわち、取り付けの際低位置になることが多く跳ね石の当たる確率の高い前方側(検出素子側)の前方側外筒部材161は、相対的に厚肉として耐衝撃性を高くしている。一方、グロメット17の取り付け位置に近い後方側の第二外筒部材162は、相対的に薄肉としてグロメット17側(後方側)への熱伝達量を減少している。具体的には、前方側外筒部材161の肉厚t1が0.5mm以上0.8mm以下(例えば0.6mm)であり、また後方側外筒部材162の肉厚t2が0.3mm以上0.5mm以下(例えば0.3mm)であることが望ましい。
【0027】
図2において、セパレータ側支持部18Aの外周面と後方側外筒部材162の内周面との間には、径方向間隔が例えば0.3mm以上の環状の隙間S0が設けられている。隙間S0は、跳ね石等により外筒16にもたらされる衝撃力が外筒16から直接セパレータ18に伝わらないようにするための環状の空間を形成している。一方、外筒側支持部16Aの折曲部16cの縁部とセラミックセパレータ18の本体部18Bの外周面との間には径方向の微小な隙間S1が形成されている。隙間S1は、セラミックセパレータ18の本体部18Bをがたつきなくスムーズに外筒側支持部16Aに挿入するために設けられたガイド代である。
【0028】
図6にセラミックセパレータ18の詳細を示す。軸直交断面が円形状に形成されるセラミックセパレータ18の本体部18Bには、検出素子側リード線20,21及び発熱体側リード線19,22(図7参照)を挿通するための2個ずつの検出素子側リード線挿通孔18a1,18a1及び発熱体側リード線挿通孔18a2,18a2(以下、これらを総称するとき挿通孔18aという)が軸方向に貫通して形成されている。その軸線方向後端側の外周面には、全周にわたり外向きに一体的に突出する形態でフランジ状かつ軸直交断面が円形状のセパレータ側支持部18Aが形成されている。セパレータ側支持部18Aの前方側支持面18A1は後方側に向かうほど外径が大となる傾斜面に形成されている。セラミックセパレータ18(セパレータ側支持部18A)の後端面において、通気溝18bが4個の挿通孔18aと干渉しない位置に十字形態で軸線と直交する方向に形成されている。通気溝18bは、検出素子側リード線挿通孔18a1,18a1と検出素子側リード線20,21との隙間Kに連通している(図2参照)。
【0029】
セラミックセパレータ18には、後端部側(図6(c)及び(d)の上端側)から4個の挿通孔18aが、中心軸線O2を中心とするピッチ円Pに沿って略90°間隔で軸線方向に貫通している。また、セラミックセパレータ18の軸線方向前端(図6(c)及び(d)の下端)から軸線方向に沿って全長のほぼ中央部に位置する底面18eまで、端子収容穴72が形成されている。端子収容穴72は、第一収容部72b、第二収容部72c、2つのヒータ端子収容部72d,72d及び中央連通部72e(発熱体端部収容穴)とを有する。第一収容部72b及び第二収容部72cは、第一接続金具23及び第二接続金具33をそれぞれ前方側から後方側へ挿入して保持し、一方、ヒータ端子収容部72d,72dは、+極側及び−極側のヒータ端子3b、3bをそれぞれ前方側から後方側へ挿入して保持する。そして、中央連通部72eは、これら4つの収容部72b,72c,72d,72dの中間に位置して、それぞれの収容部に連通形態で形成されている。具体的には、第一及び第二収容部72b,72c及び両ヒータ端子収容部72d,72dは互いに中央連通部72eを挟んで向かい合う状態にあり、ピッチ円Pに沿って略90゜間隔で並ぶ挿通孔18aと同様の位置関係を有する。
【0030】
第一収容部72b、第二収容部72c及び2つのヒータ端子収容部72d,72dは、それぞれ中央連通部72eに面する幅狭の開口部と、中央連通部72eとは反対側の外周方向(奥行き方向)に広がる幅広の底部と、開口部から底部へとその開口幅(壁間距離)を徐々に広くして両者を連設する傾斜部とからなる隔壁18cで囲まれた空間として形成されている(図6(b)参照)。各々の収容部72b,72c,72d,72dは、全体として、一部が中央連通部72eに開口された貝殻状を呈しており、団扇にも近い形状を有している。
【0031】
さらに、図6(b)に示すように、第二接続金具33の金具本体部33cの後端縁は、セラミックセパレータ18の端子収容穴72の開口側端面(前端面)において、隔壁18cの前端面に当接している。一方、第一接続金具23の金具本体部23cの後端縁は、第二接続金具33の金具本体部33c及びピッチ円Pよりも内側にて、隔壁18cの前端面に当接している。また、隣接する挿通孔18aの間に形成される隔壁18cは、各々ピッチ円Pよりも内側に張り出して形成されている。そして、中央連通部72eはその内径が発熱体3の外径よりも大きく設定されて発熱体端部収容穴を兼ねており、発熱体3の後端面3c(発熱体端面)は、端子収容穴72の前端側から軸心に沿って底面18e(セパレータ底面)に当接するまで挿入される。これにより組立時の発熱体3の軸線方向の位置決めを容易にするとともに、酸素センサ1の全長が短くなり、センサ寸法のコンパクト化が実現されている。
【0032】
ところで、セラミックセパレータ18の前半部においては、その前端部側からみて(図6(b))、4個の挿通孔18aは、ピッチ円Pよりも内側において、端子収容穴72と重なり合う(含まれる)形態で、一体化されている。具体的には、挿通孔18aの各々の軸線方向前端側が、底面18eの外縁18e1において中央連通部(発熱体端部収容穴)72eに連通開口して、この中央連通部72eと重なり合い、一体化する。一方、セラミックセパレータ18の後半部においては、中心軸線O2を包含し、かつ4個の挿通孔18aと、底面18eとで囲まれる形態で、柱状(例えば円柱状、多角柱状等)に立ち上がる中心骨格部18fが形成されている。つまり、底面18eは中心骨格部18fの先端面を形成することになる。
【0033】
図7はグロメット17と通気部53との組立状態を示す。グロメット17には、検出素子側リード線20,21及び発熱体側リード線19,22を挿通するための2個ずつの検出素子側リード線挿通孔17a1,17a1及び発熱体側リード線挿通孔17a2,17a2(以下、これらを総称するとき挿通孔17aという)がその内部に軸線方向に貫通して設けられている。グロメット17の径方向中央部には中央貫通孔17bが設けられ、この中央貫通孔17bに通気部53が嵌入されている。グロメット17の挿通孔17a、中央貫通孔17b及び外周面17Aは、これら通気部53及びリード線19,20,21,22の外面と外筒16の後端開口部16R内壁との間をシールする。通気部53をグロメット17に設けることで、通気部53を相対的に高位置に設けることが容易になり、水滴が侵入しにくく防水性が高くなる。
【0034】
通気部53は、フィルタ53Aとフィルタ支持金具53Bとから構成されている。フィルタ53Aは、軸線方向に延びる円筒状周面部53A1と、周面部53A1に対して後端部で蓋状に連接され、軸線方向に外気を導く通気端面部53A2とを有し、全体が軸方向断面にて逆U字状を呈している。そして、円筒状のフィルタ支持金具53Bは、前端部に鍔部53B2を有し、軸線方向に延びる円筒状周面部53B1がフィルタ53Aの円筒状周面部53A1内部に嵌合して、フィルタ53Aを内側から支持し、外筒16の小径部16cを加締めてグロメット加締部16Bを形成するときにフィルタ53Aの円筒状周面部53A1が破壊しないよう支えている。フィルタ53A等の通気部53をグロメット17に設けることで、酸素センサ1の中で最も高温に晒される部位である酸素検出素子2の検出部から通気部53をできるだけ遠ざけることができ、フィルタ53Aの耐熱性に有利である。
【0035】
フィルタ53A又はフィルタ支持金具53Bには各々内外の周面に軸線方向に沿うテーパ等の傾斜を設けて嵌合を強固なものとすることができる。フィルタ53Aは、図7の状態から180゜回転させて通気端面部53A2を底部(前端部)に位置させることもできるが、水等の侵入を防止する意味において、グロメット17の後端面と通気端面部53A2とがほぼ面一になる図7の状態がより望ましい。なお、フィルタ53Aは、例えばポリテトラフルオロエチレン(PTFE)の多孔質繊維構造体(商品名:例えばゴアテックス(ジャパンゴアテックス(株)))等により、水滴等の水を主体とする液体の透過は阻止し、かつ空気及び/又は水蒸気などの気体の透過は許容する撥水性フィルタとして構成されている。
【0036】
上記酸素センサ1において、基準ガスとしての大気はフィルタ53Aの通気端面部53A2(通気部)→セラミックセパレータ18の通気溝18b→検出素子側リード線挿通孔18a1,18a1と検出素子側リード線20,21との隙間K→中空部2aを経て酸素検出素子2の内面(内部電極層2c)に導入される(図2矢印R参照)。一方、酸素検出素子2の外面(外部電極層2b)にはプロテクタ11のガス透過口12を介して導入された排気ガスが接触し、酸素検出素子2には、その内外面の酸素濃度差に応じて酸素濃淡電池起電力が生じる。そして、この酸素濃淡電池起電力を、排気ガス中の酸素濃度の検出信号として内外電極層2c,2b(図2、図3)から第一及び第二端子金具23,33並びに検出素子側リード線21,20を介して取り出すことにより、排気ガス中の酸素濃度を検出できる。
【0037】
図8は、セラミックセパレータ18と発熱体3との組み付け状態を示す第一実施例の縦断面図である。セパレータ底面18eと発熱体端面3cとが中央連通部72eにおいて対向状に配置され、このうちセパレータ底面18eには、平面状の発熱体端面3c側に向けて球面状に突出する突出面F1が形成されている。これによって、この突出面F1の先端において、セパレータ底面18eと発熱体端面3cとは点状接触状態にて当接し、接触面積が小さくなるため、これらの面でチッピング、クラック等は発生しにくくなる。
【0038】
ヒータ端子3bは、発熱体3の後端側に固定された基端部3b1に続く中間部が、セパレータ18の底面外縁18e1に対して径方向外側に階段状(例えばL形クランク状)に拡開して拡開部3b2を形成している。この拡開部3b2は、セパレータ18の中心軸線O2と直交する向きにおいて、ヒータ端子3bと底面外縁18e1との間に所定の隙間を形成する。この隙間によってヒータ端子3bと底面外縁18e1との接触・干渉が防止され、ヒータ端子3bがヒータ端子収容部72d及び発熱体側リード線挿通孔18a2へスムーズに挿入されるので、拡開部3b2は隙間形成部Sとしての機能を有している。なお、このヒータ端子3bの拡開部3b2は、上記挿入工程前に予め曲げ等の加工によって塑性変形させておけば、組み付け作業が能率的に行える。
【0039】
図9に、セラミックセパレータ18と発熱体3との組み付け状態の第二実施例を示す。この実施例では、発熱体端面3cに、セパレータ底面18e側に向けて球面状に突出する突出面F1を形成するとともに、セパレータ底面18eに突出面F1に対応した球面状の凹状面F2を形成している。そして、発熱体端面3cに形成される突出面F1の曲率半径R1よりもセパレータ底面18eに形成される凹状面F2の曲率半径R2を大として、ピボット軸受状の構成を有している。これによって、発熱体端面3cとセパレータ底面18eとがスムーズに相対回転でき、発熱体3とセパレータ18との間にこじれが発生しにくくなる。
【0040】
セパレータ底面18eの外縁18e1には、中心軸線O2に対して所定の傾きを有する面取り18e2を施してあり、隙間形成部Sを形成している。ヒータ端子3bと底面外縁18e1との接触・干渉が防止され、また、チッピング、クラック等の発生及び脱落破片の飛散が防止できる。さらに、次のような製造工程上の利点もある。すなわち、セラミック製のセパレータ18の焼成前の成形体を金型成形により製造する場合、端子収容穴72と挿通孔18aとは別体のマンドレルにより形成されることが多い。このとき、セパレータ18の底面外縁18e1には、これらマンドレルの合わせ面が位置し、合わせ面の隙間に粉末が圧入されて成形体にバリが発生することがある。そこで、セパレータ18の底面外縁18e1に面取りを施しておけば、仮にバリが発生しても、その破片等がセパレータ底面18e上に付着して不要な突起等が形成される不具合を生じにくくすることができる。
【0041】
さらに、中心骨格部18fには、発熱体側リード線挿通孔18a2内に突出する凸部18f1を、中心軸線O2と直交状に形成して、隙間形成部Sとしてある。ヒータ端子3bをこの凸部18f1で支持させて、底面外縁18e1から離間した状態で発熱体側リード線挿通孔18a2に挿入すれば、ヒータ端子3bの拡開部3b2は弾性変形により徐々に拡開し、ヒータ端子3bはスムーズに挿入される。
【0042】
また図10では、セラミックセパレータ18と発熱体3との組み付け状態の第三の実施例を表わしている。この実施例では、発熱体端面3cとセパレータ底面18eとに、相手側に向けて球面状に突出する突出面F1,F1をそれぞれ形成している。両突出面F1,F1の先端において、点接触状態が一層得やすくなり、チッピング、クラック等の発生が抑えられる。
【0043】
また、図10では、発熱体側リード線挿通孔18a2及びヒータ端子収容部72dと中央連通部72eとの間に仕切り壁100が形成され、この仕切り壁100に径方向の連通孔101を開口して、発熱体側リード線挿通孔18a2と中央連通部72eとを連通させてある。そして、ヒータ端子3bには、セパレータ18の底面外縁18e1に対して径方向外側にテーパー状(例えばへの字状)に拡開する拡開部3b2を形成して、隙間形成部Sとしている。この場合のヒータ端子3bの拡開部3b2は、ヒータ端子収容部72d及び発熱体側リード線挿通孔18a2への挿入工程前に塑性変形させておくとよい。
【0044】
次に、図8に示した第一実施例の変更例を図11に示す。このうち、図11(a)では、セパレータ底面18e及び発熱体端面3cの外縁18e1,3c1におけるチッピング、クラック等を防止するため、面取り18e2,3c2を形成した例を示す。同(b)では、セパレータ底面18eに、発熱体端面3c側に向けて球面状に突出する突出面F1(曲率半径R1)を形成するとともに、発熱体端面3cに突出面F1に対応した球面状の凹状面F2(曲率半径R2≧R1)を形成している。なお、この場合の発熱体端面3cの外周部には、面取り3c2を施す(詳細例1参照)か、又は半径rの球状面を形成する(詳細例2参照)とよい。
【0045】
さらに、図9に示した第二実施例の変更例を図12に示す。このうち、図12(a)では、発熱体端面3cに、セパレータ底面18e側に向けて球面状に突出する突出面F1を形成するとともに、セパレータ底面18eは平面状に形成している。同(b)では、隙間形成部Sとして、図9の中心骨格部18fに凸部18f1を形成する代わりに、ヒータ端子3bに弾性支持部3b3を形成している。この弾性支持部3b3は、ヒータ端子3bに形成され、中心軸線O2方向後方側に位置する一方の端から前方側に延び、方向転換部を経て後方側の他方の端に至る切れ目3b4の内側に位置する舌片3b5を、後方側に位置させた引き起こし支軸3b6を支点として、発熱体3の挿入方向に引き起こして形成される。弾性支持部3b3の弾発力によって、ヒータ端子3bの発熱体側リード線挿通孔18a2からの飛び出しを防止している。
【0046】
なお、図11及び図12において対応図(図8又は図9)と共通する部分には同一符号を付して説明を省略した。また、図12(b)において、X2部の拡大図は図9と共通である。
【図面の簡単な説明】
【図1】本発明に係る酸素センサの一実施例を表わす縦断面図。
【図2】図1の酸素センサの一部拡大縦断面図。
【図3】セラミックセパレータへの組み付け状態を示す分解斜視図。
【図4】酸素検出素子への発熱体の組み付け状態を示す縦断面図。
【図5】外筒の平面図及び正面半断面図。
【図6】セラミックセパレータの平面図、底面図並びにA−A及びB−B断面図。
【図7】グロメットと通気部との組み付け状態を示す分解斜視図。
【図8】セラミックセパレータと発熱体との組み付け状態を示す第一実施例の縦断面図。
【図9】セラミックセパレータと発熱体との組み付け状態を示す第二実施例の縦断面図。
【図10】セラミックセパレータと発熱体との組み付け状態を示す第三実施例の縦断面図。
【図11】図8の変更例を示す縦断面図。
【図12】図9の変更例を示す縦断面図。
【符号の説明】
1 酸素センサ
2 酸素検出素子
2a 中空部
3 発熱体
3a 発熱部
3b ヒータ端子
3b1 基端部
3b2 拡開部
3b3 弾性支持部
3b4 切れ目
3b5 舌片
3b6 引き起こし支軸
3c 後端面(発熱体端面)
3c1 外縁
3c2 面取り
9 主体金具
16 外筒
17 グロメット
17a1 検出素子側リード線挿通孔
17a2 発熱体側リード線挿通孔
18 セラミックセパレータ(セパレータ)
18a1 検出素子側リード線挿通孔
18a2 発熱体側リード線挿通孔(リード線挿通孔)
18e 底面(セパレータ底面)
18e1 外縁(底面外縁)
18e2 面取り(面取り部)
18f 中心骨格部
18f1 凸部
20,21 検出素子側リード線
19,22 発熱体側リード線(リード線)
23 第一端子金具(押圧部材)
72 端子収容穴
72e 中央連通部(発熱体端部収容穴)
F1 突出面
F2 凹状面
S 隙間形成部
O1 発熱体の中心軸線
O2 セパレータの中心軸線
R1 突出面F1の曲率半径
R2 凹状面F2の曲率半径
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an oxygen sensor for detecting oxygen in a gas to be measured such as an exhaust gas of an internal combustion engine.
[0002]
[Prior art]
As one form of such an oxygen sensor, an oxygen sensor having a hollow shaft shape with a closed front end and an oxygen detecting element that is directed to a gas to be measured on the front end side is known. In this type of oxygen sensor, the atmosphere as a reference gas is introduced into the inner surface of the oxygen detection element, while the outer surface of the oxygen detection element is in contact with the exhaust gas to be measured. Oxygen concentration cell electromotive force is generated according to the difference in oxygen concentration between the inner and outer surfaces. The oxygen concentration cell electromotive force is taken out from the inner and outer surfaces as a detection signal of the oxygen concentration in the exhaust gas via a lead wire or the like, whereby the oxygen concentration in the exhaust gas can be detected.
[0003]
[Problems to be solved by the invention]
In this type of oxygen sensor, when the exhaust gas temperature is low, such as immediately after the engine is started, the activity of the oxygen detection element constituted by the solid electrolyte member is not sufficient, and it takes a considerable time to obtain a measurable electromotive force. . Therefore, a shaft-like heating element with a heat generating part is inserted into the hollow part of the oxygen detection element, and the oxygen detection element is heated and activated at the time of engine start-up, thereby quickly measuring at the time of start-up with relatively many harmful components. The output (electromotive force) is raised.
[0004]
By the way, in order to efficiently transmit the amount of heat generated in the heating element to the oxygen detection element and to activate the rising of the oxygen detection element, oxygen that makes the heating part of the heating element contact the inner wall surface of the hollow part of the oxygen detection element A sensor may be configured. In the oxygen sensor having such a configuration, in order to bring the heat generating part of the heat generating element into contact with the inner wall surface of the hollow part of the oxygen detecting element, for example, the central axis of the heat generating element is installed inclined with respect to the central axis of the oxygen detecting element. Sometimes. As a result, the heating element is arranged eccentrically so that the central axis of the heating element is closer to one side with respect to the central axis of the oxygen detection element.
[0005]
On the other hand, in order to facilitate positioning of the heating element during assembly and reduce the total length of the oxygen sensor, a separator disposed on the rear side of the oxygen detection element is formed with a heating element end receiving hole having an open front end surface, In some cases, the rear end surface of the heat generating element (hereinafter referred to as the heat generating element end surface) is brought into contact with the bottom surface of the heat generating element end portion accommodation hole (hereinafter referred to as the separator bottom surface). At this time, as described above, if the central axis of the heating element is inclined with respect to the central axis of the oxygen detecting element or is eccentric so as to be closer to one side, the end face of the heating element is biased with respect to the bottom surface of the separator. It will contact in the state. Even if the heating element and the separator are not eccentric in design, the end face of the heating element and the bottom surface of the separator may be in contact with each other due to a manufacturing error or a non-uniform pushing force during assembly. As a result, chipping (cracking), cracks, etc. occur on at least one of the end face of the heating element and the bottom face of the separator due to the pushing force at the time of assembly or vibration during the operation of the internal combustion engine. There is a risk that the (oxygen detection element) will be in a malfunction or inoperable state.
[0006]
Accordingly, an object of the present invention is to prevent the occurrence of chipping, cracks, etc. on the separator bottom surface and the heating element end surface during assembly and operation even when the separator bottom surface and the heating element end surface are arranged to face each other. It is an object of the present invention to provide an oxygen sensor that can achieve high reliability and product life by avoiding malfunctions and inoperable states.
[0007]
[Means for solving the problems and actions / effects]
  In order to solve the above problems, the oxygen sensor of the present invention is
The front end portion has a closed hollow shaft shape, and the front end portion side is directed to the gas to be measured, and an oxygen detection element,
  An axial heating element that is disposed in a hollow portion of the oxygen detection element and heats the oxygen detection element;
  A separator having a heating element end accommodating hole that is disposed substantially coaxially with the hollow portion on the rear side of the oxygen detection element, has a front end surface opened, and a rear end portion of the heating element is inserted;
  A bottom surface (hereinafter referred to as a separator bottom surface) of the heating element end portion receiving hole located in an intermediate portion in the axial direction of the separator and a rear end surface (hereinafter referred to as a heating element end surface) of the heating element are disposed to face each other. At least one of the bottom surface and the end surface of the heating element has a projecting surface that projects in a form in which the tip side continuously reduces in cross section in the facing direction.And
  The bottom face of the separator and the end face of the heating element abut in a point contact state at the tip of the protruding faceIt is characterized by doing.
[0008]
According to the present invention, at least one of the bottom surface of the separator and the end surface of the heating element that face each other has the protruding surface. The projecting surfaces are arranged opposite to each other, and can prevent chipping, cracks, and the like from occurring on the bottom surface of the separator and the end surface of the heating element, which can be brought into contact with each other by a pushing force during assembly or vibration during internal combustion engine operation. . Therefore, it is possible to prevent the oxygen sensor (oxygen detection element) from malfunctioning or inoperable due to these falling pieces, thereby improving the reliability and product life of the oxygen sensor.
[0009]
Here, when the bottom surface of the separator and the end surface of the heating element that face each other are in contact, it is desirable that they contact in a point-like contact state at the tip of the projecting surface. The occurrence of chipping, cracks and the like on the body end surface can be suppressed. In the present specification, the point-like contact state refers to a point contact or a state approximate thereto.
[0010]
For example, in order to bring the heating element into contact with the inner wall surface of the hollow portion of the oxygen detection element, the central axis of the heating element is inclined with respect to the central axis of the separator, so that the former is closer to the one side than the latter. May be arranged eccentrically. However, when this projecting surface is formed on the separator bottom surface, it is possible to suppress the occurrence of chipping, cracks, etc. at the separator bottom surface and the heating element end surface, and to allow relative rotation movement of the heating element end surface with respect to the projecting surface of the separator bottom surface. Become. As a result, twisting between the separator and the heating element can be eliminated, and manufacturing errors and the like can be kept within a predetermined range.
[0011]
As another example, a protruding surface can be formed on the end face of the heating element, and a concave surface corresponding to the protruding face formed on the end face of the heating element can be formed on the bottom surface of the separator. As a result, the protruding surface of the end face of the heating element can be rotated lightly relative to the concave surface of the separator bottom surface. Therefore, further effects are exhibited in suppressing the occurrence of chipping, cracks and the like on the bottom surface of the separator and the end face of the heating element, and eliminating the twist between the separator and the heating element. If the radius of curvature of the concave surface formed on the bottom surface of the separator is larger than the radius of curvature of the projecting surface formed on the end surface of the heating element, it is substantially the same as a pivot bearing used in precision instruments such as instruments and watches. Since it has a structure, both surfaces can rotate relatively smoothly.
[0012]
In these examples, at least one outer edge of the bottom surface of the separator and the end surface of the heating element may be chamfered with a predetermined inclination with respect to the central axis. By chamfering the outer edge where chipping, cracks and the like are likely to occur and also easily fall off, it is possible to effectively prevent these occurrences and scattering of the falling pieces.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described based on examples shown in the drawings.
FIG. 1 shows an internal structure of an embodiment of an oxygen sensor according to the present invention, and FIG. 2 is an enlarged view of a main part. The oxygen sensor 1 includes a hollow shaft-shaped oxygen detection element 2 whose tip is closed, and a heating element 3 inserted into the hollow portion 2a of the oxygen detection element 2. The oxygen detection element 2 is formed in a hollow shaft shape by a solid electrolyte having oxygen ion conductivity. As such a solid electrolyte, Y2O3ZrO in which CaO is dissolved2Is representative, but other alkaline earth metal or rare earth metal oxides and ZrO2A solid solution may be used. Furthermore, the base ZrO2HfO2May be contained. As shown in FIGS. 2 and 3, the inner surface of the hollow portion 2a of the oxygen detecting element 2 has an internal electrode layer 2c formed porous, for example, of Pt or a Pt alloy so as to cover almost the entire surface. On the other hand, external electrode layers 2b are similarly provided on the outer surface so as to cover the front portion thereof. In addition, a cylindrical metal casing 10 is provided outside the intermediate portion of the oxygen detecting element 2 via insulators 6 and 7 made of insulating ceramic and ceramic powder 8 made of talc. In the following description, the side (closed side) toward the tip end in the axial direction of the oxygen detection element 2 is referred to as “front side”, and the side toward the opposite direction is referred to as “rear side”.
[0014]
The casing 10 includes a metal shell 9 having a threaded portion 9b for attaching the oxygen sensor 1 to an attachment portion such as an exhaust pipe, and a protector 11 attached so as to cover a front opening of the metal shell 9. The oxygen sensor 1 of the present embodiment is used in such a manner that the front side of the screw portion 9b is located in the engine such as an exhaust pipe, and the rear side thereof is located in the outside atmosphere. The metal shell 9 (casing 10) holds the oxygen detection element 2 in a state in which the front end side (detection part) of the oxygen detection element 2 is projected from the front opening so as to be directed to the exhaust gas to be measured. At the same time, a cap-like protector 11 is attached to a cylindrical protector attachment portion 9a formed in the opening, and covers the detection portion of the oxygen detection element 2 with a predetermined space therebetween. The protector 11 is formed with a plurality of gas permeation ports 12 through which exhaust gas permeates.
[0015]
A rear portion of the metal shell 9 is crimped between the insulator 6 and the insulator 15 via a ring 15, and an opening 16 </ b> F (see FIG. 6) formed at the front end of the cylindrical metal outer cylinder 16 in the metal shell 9. ) Is fitted from the outside. An all-around laser welded portion 16E formed along the circumferential direction of the metal shell 9 joins and fixes the inner peripheral surface of the front end opening 16F of the outer cylinder 16 and the outer peripheral surface of the metal shell 9. The rear end opening 16R of the outer cylinder 16 is sealed by fitting a grommet 17 made of rubber or the like, and a ceramic separator 18 (hereinafter simply referred to as a separator) is provided on the front side. It has been. The detection element side lead wires 20 and 21 and the heating element side lead wires 19 and 22 are arranged so as to penetrate the ceramic separator 18 and the grommet 17 (see FIG. 7).
[0016]
The ceramic separator 18 is provided substantially coaxially with the casing 10 on the rear side of the casing 10. The outer cylinder 16 has a cylindrical shape in which the front end opening portion 16F is connected to the casing 10 so as to be substantially coaxially overlapped from the rear outer side in a state of covering the ceramic separator 18 from the outside. The grommet 17 is positioned on the rear side of the ceramic separator 18 and is elastically fitted inside the rear end opening 16R of the outer cylinder 16.
[0017]
Next, one lead wire 21 of the detection element side lead wires 20, 21 is a first terminal fitting 23 having a connector 23a, a lead wire portion 23b, a fixing portion 23c, and a downward pressing portion 23d that are integrally formed with each other. It is electrically connected to the internal electrode layer 2c (FIG. 2) of the oxygen detecting element 2 through the (pressing member). The other lead wire 20 passes through a second terminal fitting 33 having a connector 33a, a lead wire portion 33b, and a fitting main body portion 33c that are integrally formed with each other, and then the external electrode layer 2b of the oxygen detection element 2 (FIG. 3). ) And are electrically connected. The oxygen detection element 2 is activated by heating with the heating element 3 disposed inside thereof. The heating element 3 is a rod-shaped ceramic heater, Al2O3The heating element side lead wires 19 and 22 (FIG. 7) are connected to the heater terminals 3b and 3b on the positive electrode side and the negative electrode side. By energizing through this, the tip (detection part) of the oxygen detection element 2 is heated. The detection element side lead wires 20 and 21 and the heating element side lead lines 19 and 22 include two detection element side lead wire insertion holes 18a1 and 18a1 and heating element side lead wires that are provided penetrating in the axial direction of the ceramic separator 18. Insertion holes 18a2 and 18a2 (lead wire insertion holes), two detection element side lead wire insertion holes 17a1 and 17a1, and heating element side lead wire insertion holes 17a2 and 17a2 provided penetrating in the axial direction of the grommet 17. Are respectively inserted and drawn out to the outside.
[0018]
As shown in FIGS. 2 and 3, the first terminal fitting 23 presses the outer surface of the heating element 3 with the inner surface of the lower pressing portion 23d formed on the distal end side, and at least the distal end portion of the heating element 3 is moved to the oxygen detecting element. 2 is brought into contact with the inner wall surface of the hollow portion 2a. The outer surface of the fixing portion 23c following the downward pressing portion 23d is fitted into the inner surface of the oxygen detection element 2, thereby fixing the position of the first terminal fitting 23 in the axial direction. Further, one end of the lead wire portion 23b is integrated so as to be connected to one place in the circumferential direction of the fixed portion 23c, and the connector 23a is integrated to the other end. In the upper part (rear part) of the fixing part 23c, a U-shaped cut is provided in a part of the peripheral surface of the fixing part 23c in the vicinity of the left and right edges of the opening provided in the fixing part 23c. Is folded inward in the radial direction to form a pair of left and right upper pressing portions 23e. Reference numeral 23g denotes a hook for preventing the fixing portion 23c from entering the heating element end accommodating hole 18c.
[0019]
On the other hand, the second terminal fitting 33 has a cylindrical fitting main body portion 33c, and is integrated in such a manner that one end of the lead wire portion 33b is connected to one circumferential position of the fitting main body portion 33c, and further to the other end. The connector 33a is integrated. On the other hand, an axial slit 33e is formed on the side opposite to the connection point of the lead line portion 33b across the central axis. The rear end portion of the oxygen detection element 2 is inserted into the metal fitting main body portion 33c from the inside in such a manner as to elastically push it. Specifically, a conductive layer 2 f as an external output extraction portion is formed in a strip shape along the circumferential direction at the rear end portion of the outer peripheral surface of the oxygen detection element 2. The external electrode layer 2b covers the entire surface of the main part on the front end side of the engagement flange portion 2s of the oxygen detection element 2 by, for example, electroless plating. On the other hand, the conductive layer 2f is formed, for example, by pattern formation / baking using a metal paste, and is electrically connected to the external electrode layer 2b via the axially formed connection pattern layer 2h. Yes.
[0020]
As shown in FIG. 4, the heating element 3 is pressed by the lower pressing part 23d and the upper pressing part 23e in a direction intersecting the central axis O2 of the hollow part 2a of the oxygen detecting element 2, and the central axis O1 of the heating element 3 is oxygenated. It is arranged eccentrically (offset) so as to be closer to one side with respect to the central axis O2 of the hollow portion 2a of the detection element 2, and at least a part of the heating element 3 contacts the inner wall surface of the hollow portion 2a of the oxygen detection element 2. is doing.
[0021]
FIG. 5 shows the outer cylinder 16. The outer cylinder 16 is divided into two front and rear in the axial direction, and the rear cylinder member 162 on the rear side of the outer cylinder side support part 16A formed at the rear part of the front outer cylinder member 161 located on the front side is arranged. The front part is overlapped and connected substantially coaxially from the rear outside. In this overlapping connecting portion, an all-around laser welded portion 16C that joins the outer peripheral surface of the outer cylinder side support portion 16A of the first outer cylinder member 161 and the front inner peripheral surface of the second outer cylinder member 162 is a connecting portion. It is formed along the circumferential direction. The front end opening 16F of the outer cylinder 16 is connected to the metal shell 9 so as to be substantially coaxially overlapped from the rear outer side, and the front end opening 16F inner peripheral surface of the outer cylinder 16 and the outer peripheral surface of the metal shell 9 are connected. The all-around laser welded portion 16E to be joined is formed along the circumferential direction of the metal shell 9.
[0022]
Next, the outer cylinder side support part 16A formed at the rear part of the front outer cylinder member 161 will be described with reference to FIG. The outer cylinder side support portion 16A as a whole has a tapered shape whose outer diameter decreases toward the rear side, and this shape is realized by the following configuration. In the outer cylinder side support portion 16A, two reduced diameter portions having a form that decreases in an inclined manner as the outer diameter goes rearward are formed on the front and rear in the axial direction. Between the first reduced diameter portion 16a1 formed on the front side of the two reduced diameter portions and the second reduced diameter portion 16a2 formed on the rear side, the front side cylinder is substantially parallel to the axis. A shaped portion 16b1 is formed. The front inner peripheral surface of the rear outer cylindrical member 162 is overlapped and connected to the outer peripheral surface of the first cylindrical portion 16b1 from the rear outer side, and the all-around laser welded portion 16C is formed along the circumferential direction of the connecting portion. Has been.
[0023]
Moreover, the 2nd cylindrical part 16b2 is formed in the form which follows the outer peripheral surface of the main-body part 18B of the separator 18 in the back side rather than the 2nd diameter reduction part 16a2. Further, the rear side of the second cylindrical portion 16b2 is bent radially inward to form a bent portion 16c, and the rear support surface 16c1 of the bent portion 16c is supported on the front side of the separator side support portion 18A. The surface is in contact with the surface 18A1. The bent portion 16c formed in this way serves as a catch for the front side support surface 18A1 of the separator side support portion 18A when the main body portion 18B of the separator 18 is disposed inside the outer cylinder side support portion 16A. Function. The rear side support surface 16c1 of the bent part 16c is bent inward in the radial direction, and serves as a guide when the main body part 18B of the separator 18 is inserted into the outer cylinder side support part 16A. Yes.
[0024]
As described above, the outer cylinder side support portion 16A includes the first and second reduced diameter portions 16a1 and 16a2, the first and second cylindrical portions 16b1 and 16b2, and the bent portion 16c. When the outer cylinder side support portion 16A supports the separator side support portion 18A from below, the inner peripheral surface of the outer cylinder side support portion 16A is the space formed between the outer peripheral surface of the main body portion 18B of the separator 18 and the two. It is provided so as to enclose and enclose part S3 (see FIG. 2). Therefore, the impact force caused to the outer cylinder 16 by the spring stone or the like is attenuated by the spring effect by the both reduced diameter portions 16a1 and 16a2 and the isolation effect by the space portion S3 and transmitted to the separator 18. Can be prevented.
[0025]
On the other hand, the rear side outer cylinder member 162 has a grommet 17 inserted inside the rear end opening 16R, and the front side of the grommet 17 insertion portion is inclined (continuously) larger as the inner diameter becomes frontward. The enlarged diameter part 16B which has the form which becomes is provided. The inner peripheral surface of the rear end opening 16R of the rear side outer cylinder member 162 is used as an insertion guide for the outer peripheral surface of the separator side support portion 18A.
[0026]
The wall thickness t1 of the front outer cylinder member 161 provided on the front side is set to the rear side in consideration of the impact resistance against the rock and the heat transfer amount to the grommet side (rear side). The thickness of the rear side outer cylinder member 162 provided on the wall is t2 or more. That is, the front-side outer cylinder member 161 on the front side (detection element side) that is often in a low position during attachment and has a high probability of hitting a rock is relatively thick and has high impact resistance. On the other hand, the second outer cylinder member 162 on the rear side close to the attachment position of the grommet 17 is relatively thin and reduces the amount of heat transfer to the grommet 17 side (rear side). Specifically, the thickness t1 of the front outer cylinder member 161 is 0.5 mm or more and 0.8 mm or less (for example, 0.6 mm), and the wall thickness t2 of the rear outer cylinder member 162 is 0.3 mm or more and 0. It is desirable that it is 5 mm or less (for example, 0.3 mm).
[0027]
In FIG. 2, an annular gap S0 having a radial interval of, for example, 0.3 mm or more is provided between the outer peripheral surface of the separator-side support portion 18A and the inner peripheral surface of the rear-side outer cylinder member 162. The gap S0 forms an annular space for preventing the impact force that is provided to the outer cylinder 16 by the jumping stone or the like from being transmitted directly from the outer cylinder 16 to the separator 18. On the other hand, a small radial gap S1 is formed between the edge of the bent portion 16c of the outer cylinder side support portion 16A and the outer peripheral surface of the main body portion 18B of the ceramic separator 18. The gap S1 is a guide margin provided for smoothly inserting the main body portion 18B of the ceramic separator 18 into the outer cylinder side support portion 16A without rattling.
[0028]
FIG. 6 shows details of the ceramic separator 18. In the main body 18B of the ceramic separator 18 having a circular cross section perpendicular to the axis, two detection element side lead wires 20 and 21 and two heating element side lead wires 19 and 22 (see FIG. 7) are inserted. Detection element side lead wire insertion holes 18a1 and 18a1 and heating element side lead wire insertion holes 18a2 and 18a2 (hereinafter, collectively referred to as insertion holes 18a) are formed to penetrate in the axial direction. On the outer peripheral surface on the rear end side in the axial direction, a separator-side support portion 18A having a flange-like shape and a circular shape orthogonal to the axis is formed so as to integrally protrude outward over the entire circumference. The front-side support surface 18A1 of the separator-side support portion 18A is formed as an inclined surface whose outer diameter increases toward the rear side. On the rear end surface of the ceramic separator 18 (separator-side support portion 18A), the ventilation groove 18b is formed in a cross shape and in a direction perpendicular to the axis at a position where it does not interfere with the four insertion holes 18a. The ventilation groove 18b communicates with the gap K between the detection element side lead wire insertion holes 18a1, 18a1 and the detection element side lead wires 20, 21 (see FIG. 2).
[0029]
The ceramic separator 18 has four insertion holes 18a from the rear end side (the upper end side in FIGS. 6C and 6D) at intervals of approximately 90 ° along the pitch circle P centered on the central axis O2. It penetrates in the axial direction. Further, a terminal accommodating hole 72 is formed from the front end in the axial direction of the ceramic separator 18 (the lower end in FIGS. 6C and 6D) to the bottom surface 18e located at the substantially central portion of the entire length along the axial direction. The terminal accommodating hole 72 includes a first accommodating portion 72b, a second accommodating portion 72c, two heater terminal accommodating portions 72d and 72d, and a central communication portion 72e (a heating element end accommodating hole). The first accommodating portion 72b and the second accommodating portion 72c insert and hold the first connecting fitting 23 and the second connecting fitting 33 from the front side to the rear side, respectively, while the heater terminal accommodating portions 72d and 72d are + The pole-side and -pole-side heater terminals 3b and 3b are inserted and held from the front side to the rear side, respectively. The central communication portion 72e is located in the middle of the four storage portions 72b, 72c, 72d, and 72d, and is formed in a communication form with each of the storage portions. Specifically, the first and second accommodating portions 72b and 72c and the heater terminal accommodating portions 72d and 72d are in a state of facing each other with the central communication portion 72e interposed therebetween, and are arranged at approximately 90 ° intervals along the pitch circle P. It has the same positional relationship as the insertion hole 18a.
[0030]
The first accommodating portion 72b, the second accommodating portion 72c, and the two heater terminal accommodating portions 72d and 72d are each formed with a narrow opening facing the central communicating portion 72e and an outer peripheral direction opposite to the central communicating portion 72e ( It is formed as a space surrounded by a partition wall 18c having a wide bottom portion extending in the depth direction and an inclined portion in which the opening width (inter-wall distance) is gradually increased from the opening portion to the bottom portion and the both are continuously provided. (See FIG. 6B). Each of the accommodating portions 72b, 72c, 72d, and 72d has a shell shape in which a part thereof is opened to the central communication portion 72e, and has a shape close to a fan.
[0031]
Further, as shown in FIG. 6B, the rear end edge of the metal fitting body 33 c of the second connection fitting 33 is the front end of the partition wall 18 c on the opening side end face (front end face) of the terminal accommodating hole 72 of the ceramic separator 18. It is in contact with the surface. On the other hand, the rear end edge of the metal fitting main body portion 23 c of the first connection fitting 23 is in contact with the front end surface of the partition wall 18 c on the inner side of the metal fitting main body portion 33 c and the pitch circle P of the second connection fitting 33. Further, the partition walls 18c formed between the adjacent insertion holes 18a are formed so as to protrude inward from the pitch circle P. The central communication portion 72e has an inner diameter larger than the outer diameter of the heating element 3 and also serves as a heating element end accommodating hole, and the rear end surface 3c (heating element end surface) of the heating element 3 has a terminal accommodating hole. It is inserted from the front end side of 72 until it contacts the bottom surface 18e (separator bottom surface) along the axis. This facilitates the positioning of the heating element 3 in the axial direction during assembly, reduces the overall length of the oxygen sensor 1, and realizes a compact sensor size.
[0032]
By the way, in the front half part of the ceramic separator 18, when viewed from the front end side (FIG. 6B), the four insertion holes 18a overlap with (include in) the terminal accommodating holes 72 inside the pitch circle P. ) And integrated. Specifically, the front end side in the axial direction of each insertion hole 18a opens to the central communication portion (heating element end accommodation hole) 72e at the outer edge 18e1 of the bottom surface 18e, and overlaps and integrates with the central communication portion 72e. To do. On the other hand, in the latter half of the ceramic separator 18, a central skeleton that rises in a columnar shape (for example, a columnar shape, a polygonal columnar shape, etc.) that includes the central axis O2 and is surrounded by the four insertion holes 18a and the bottom surface 18e. A portion 18f is formed. That is, the bottom surface 18e forms the tip surface of the central skeleton portion 18f.
[0033]
FIG. 7 shows an assembled state of the grommet 17 and the ventilation portion 53. The grommet 17 has two detection element side lead wire insertion holes 17a1 and 17a1 and heating element side lead wire insertion holes 17a2 and 17a2 for inserting the detection element side lead wires 20 and 21 and the heating element side lead wires 19 and 22, respectively. (Hereinafter, when these are collectively referred to as an insertion hole 17a), an inside thereof is provided penetrating in the axial direction. A central through hole 17b is provided in the central portion in the radial direction of the grommet 17, and a ventilation portion 53 is fitted into the central through hole 17b. The insertion hole 17a, the central through hole 17b, and the outer peripheral surface 17A of the grommet 17 seal between the outer surface of the ventilation portion 53 and the lead wires 19, 20, 21, and 22 and the inner wall of the rear end opening 16R of the outer cylinder 16. . By providing the ventilation part 53 in the grommet 17, it becomes easy to provide the ventilation part 53 at a relatively high position, and it is difficult for water droplets to enter and the waterproofness is improved.
[0034]
The ventilation part 53 includes a filter 53A and a filter support fitting 53B. The filter 53A has a cylindrical peripheral surface portion 53A1 extending in the axial direction, and a ventilation end surface portion 53A2 that is connected to the peripheral surface portion 53A1 in a lid shape at the rear end portion and guides outside air in the axial direction, and is entirely axial. The cross section has an inverted U shape. The cylindrical filter support fitting 53B has a flange portion 53B2 at the front end, the cylindrical peripheral surface portion 53B1 extending in the axial direction is fitted into the cylindrical peripheral surface portion 53A1 of the filter 53A, and the filter 53A is placed inside. The cylindrical peripheral surface portion 53A1 of the filter 53A is supported so as not to be broken when the small diameter portion 16c of the outer cylinder 16 is swaged to form the grommet swaged portion 16B. By providing the grommet 17 with the ventilation part 53 such as the filter 53A, the ventilation part 53 can be as far away as possible from the detection part of the oxygen detection element 2 which is the part exposed to the highest temperature in the oxygen sensor 1, and the filter 53A It is advantageous for heat resistance.
[0035]
The filter 53A or the filter support metal fitting 53B can be provided with an inclination such as a taper along the axial direction on the inner and outer peripheral surfaces, respectively, so that the fitting can be strengthened. The filter 53A can be rotated 180 ° from the state shown in FIG. 7 so that the ventilation end surface portion 53A2 is positioned at the bottom (front end portion). However, in order to prevent water and the like from entering, the rear end surface and the ventilation end surface of the grommet 17 The state of FIG. 7 where the portion 53A2 is substantially flush is more desirable. The filter 53A is made of, for example, polytetrafluoroethylene (PTFE) porous fiber structure (trade name: Gore-Tex (Japan Gore-Tex Co., Ltd.)), etc. Is configured as a water-repellent filter that blocks air and / or gas such as water vapor.
[0036]
In the oxygen sensor 1, the atmosphere as the reference gas is the ventilation end surface portion 53A2 (venting portion) of the filter 53A → the venting groove 18b of the ceramic separator 18 → the detecting element side lead wire insertion holes 18a1, 18a1 and the detecting element side lead wire 20, 21 is introduced into the inner surface (internal electrode layer 2c) of the oxygen detection element 2 through the gap K → the hollow portion 2a (see arrow R in FIG. 2). On the other hand, the exhaust gas introduced through the gas permeation port 12 of the protector 11 is in contact with the outer surface (external electrode layer 2b) of the oxygen detection element 2, and the oxygen detection element 2 has an oxygen concentration difference between its inner and outer surfaces. Accordingly, an oxygen concentration cell electromotive force is generated. Then, the oxygen concentration cell electromotive force is used as a detection signal of the oxygen concentration in the exhaust gas from the inner and outer electrode layers 2c and 2b (FIGS. 2 and 3) to the first and second terminal fittings 23 and 33 and the detection element side lead wire. The oxygen concentration in the exhaust gas can be detected by taking it out through 21 and 20.
[0037]
FIG. 8 is a longitudinal sectional view of the first embodiment showing the assembled state of the ceramic separator 18 and the heating element 3. The separator bottom face 18e and the heating element end face 3c are arranged in the central communication portion 72e so as to face each other, and the separator bottom face 18e is formed with a protruding surface F1 that protrudes in a spherical shape toward the flat heating element end face 3c side. Has been. As a result, the separator bottom surface 18e and the heating element end surface 3c come into contact with each other at the tip of the projecting surface F1 in a dot-like contact state, and the contact area becomes small, so that chipping, cracks, and the like hardly occur on these surfaces. .
[0038]
In the heater terminal 3b, an intermediate portion following the base end portion 3b1 fixed to the rear end side of the heating element 3 expands stepwise (for example, an L-shaped crank shape) radially outward from the bottom surface outer edge 18e1 of the separator 18. Opened to form an expanded portion 3b2. The expanded portion 3b2 forms a predetermined gap between the heater terminal 3b and the bottom surface outer edge 18e1 in a direction orthogonal to the central axis O2 of the separator 18. This clearance prevents contact / interference between the heater terminal 3b and the bottom outer edge 18e1, and the heater terminal 3b is smoothly inserted into the heater terminal accommodating portion 72d and the heating element side lead wire insertion hole 18a2. It has a function as the formation part S. If the expanded portion 3b2 of the heater terminal 3b is plastically deformed by a process such as bending before the insertion step, the assembling work can be performed efficiently.
[0039]
In FIG. 9, the 2nd Example of the assembly | attachment state of the ceramic separator 18 and the heat generating body 3 is shown. In this embodiment, a projecting surface F1 projecting in a spherical shape toward the separator bottom surface 18e is formed on the heating element end surface 3c, and a spherical concave surface F2 corresponding to the projecting surface F1 is formed on the separator bottom surface 18e. ing. Then, the radius of curvature R2 of the concave surface F2 formed on the separator bottom surface 18e is larger than the radius of curvature R1 of the protruding surface F1 formed on the heating element end surface 3c, so that a pivot bearing configuration is provided. As a result, the end face 3c of the heating element and the separator bottom face 18e can smoothly rotate relative to each other, and the twisting between the heating element 3 and the separator 18 is less likely to occur.
[0040]
A chamfer 18e2 having a predetermined inclination with respect to the central axis O2 is applied to the outer edge 18e1 of the separator bottom surface 18e to form a gap forming portion S. Contact / interference between the heater terminal 3b and the bottom outer edge 18e1 can be prevented, and the occurrence of chipping, cracks, etc. and the scattering of falling pieces can be prevented. Furthermore, there are also advantages in the manufacturing process as follows. That is, when the molded body before firing of the ceramic separator 18 is manufactured by die molding, the terminal receiving hole 72 and the insertion hole 18a are often formed by separate mandrels. At this time, the mandrel mating surfaces are positioned on the bottom surface outer edge 18e1 of the separator 18, and powder may be pressed into the gaps between the mating surfaces to generate burrs in the molded body. Therefore, if the bottom edge 18e1 of the separator 18 is chamfered, even if burrs are generated, it is difficult to cause a problem that the fragments and the like adhere to the separator bottom surface 18e to form unnecessary protrusions. Can do.
[0041]
Further, a convex portion 18f1 protruding into the heating element side lead wire insertion hole 18a2 is formed in the central skeleton portion 18f so as to be orthogonal to the central axis O2, thereby forming a gap forming portion S. If the heater terminal 3b is supported by the convex portion 18f1 and is inserted into the heating element side lead wire insertion hole 18a2 while being separated from the bottom surface outer edge 18e1, the expanded portion 3b2 of the heater terminal 3b is gradually expanded by elastic deformation. The heater terminal 3b is smoothly inserted.
[0042]
FIG. 10 shows a third embodiment of the assembled state of the ceramic separator 18 and the heating element 3. In this embodiment, the heating element end face 3c and the separator bottom face 18e are formed with projecting surfaces F1 and F1 projecting in a spherical shape toward the mating side, respectively. It is easier to obtain a point contact state at the tips of both projecting surfaces F1, F1, and the occurrence of chipping, cracks, etc. is suppressed.
[0043]
In FIG. 10, a partition wall 100 is formed between the heating element side lead wire insertion hole 18 a 2 and the heater terminal accommodating portion 72 d and the central communication portion 72 e, and a radial communication hole 101 is opened in the partition wall 100. The heating element side lead wire insertion hole 18a2 and the central communication portion 72e are communicated with each other. The heater terminal 3b is formed with a widened portion 3b2 that expands in a tapered shape (for example, a U-shape) radially outward with respect to the bottom surface outer edge 18e1 of the separator 18 to form a gap forming portion S. In this case, the expanded portion 3b2 of the heater terminal 3b may be plastically deformed before the insertion process into the heater terminal accommodating portion 72d and the heating element side lead wire insertion hole 18a2.
[0044]
Next, a modification of the first embodiment shown in FIG. 8 is shown in FIG. Among these, FIG. 11A shows an example in which chamfers 18e2 and 3c2 are formed in order to prevent chipping, cracks, and the like at the separator bottom surface 18e and the outer edges 18e1 and 3c1 of the heating element end surface 3c. In (b), the separator bottom surface 18e is formed with a projecting surface F1 (curvature radius R1) projecting spherically toward the heating element end surface 3c, and the heating element end surface 3c has a spherical shape corresponding to the projecting surface F1. The concave surface F2 (radius of curvature R2 ≧ R1) is formed. In this case, it is preferable to chamfer 3c2 (see the detailed example 1) or form a spherical surface with a radius r (see the detailed example 2) on the outer peripheral portion of the heating element end face 3c.
[0045]
Further, a modification of the second embodiment shown in FIG. 9 is shown in FIG. Among these, in FIG. 12 (a), a protruding surface F1 protruding in a spherical shape toward the separator bottom surface 18e side is formed on the heating element end surface 3c, and the separator bottom surface 18e is formed in a flat shape. In (b), as the gap forming portion S, an elastic support portion 3b3 is formed on the heater terminal 3b instead of forming the convex portion 18f1 on the central skeleton portion 18f of FIG. The elastic support portion 3b3 is formed in the heater terminal 3b, extends from one end located on the rear side in the center axis O2 direction to the front side, and passes through the direction change portion to reach the other end on the rear side inside the cut 3b4. The tongue piece 3b5 is positioned at the rear side, and is formed by causing the tongue 3b5 in the insertion direction of the heating element 3 with the support shaft 3b6 as a fulcrum. The elastic support portion 3b3 prevents the heater terminal 3b from jumping out from the heating element side lead wire insertion hole 18a2.
[0046]
In FIGS. 11 and 12, the same reference numerals are given to portions common to the corresponding diagrams (FIG. 8 or FIG. 9), and description thereof is omitted. In FIG. 12B, the enlarged view of the portion X2 is the same as FIG.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view showing an embodiment of an oxygen sensor according to the present invention.
FIG. 2 is a partially enlarged longitudinal sectional view of the oxygen sensor of FIG.
FIG. 3 is an exploded perspective view showing an assembled state of the ceramic separator.
FIG. 4 is a longitudinal sectional view showing an assembled state of a heating element to an oxygen detection element.
FIG. 5 is a plan view and a front half sectional view of an outer cylinder.
FIG. 6 is a plan view, a bottom view, and AA and BB cross-sectional views of a ceramic separator.
FIG. 7 is an exploded perspective view showing an assembled state of the grommet and the ventilation portion.
FIG. 8 is a longitudinal sectional view of the first embodiment showing an assembled state of the ceramic separator and the heating element.
FIG. 9 is a longitudinal sectional view of the second embodiment showing the assembled state of the ceramic separator and the heating element.
FIG. 10 is a longitudinal sectional view of a third embodiment showing the assembled state of the ceramic separator and the heating element.
11 is a longitudinal sectional view showing a modified example of FIG.
12 is a longitudinal sectional view showing a modified example of FIG. 9;
[Explanation of symbols]
1 Oxygen sensor
2 Oxygen detection element
2a Hollow part
3 Heating elements
3a Heating part
3b Heater terminal
3b1 Base end
3b2 expansion part
3b3 elastic support
3b4 cut
3b5 tongue
3b6 Trigger shaft
3c Rear end face (heating element end face)
3c1 outer edge
3c2 chamfer
9 Main metal fittings
16 outer cylinder
17 Grommet
17a1 Sensor element side lead wire insertion hole
17a2 Heating element side lead wire insertion hole
18 Ceramic separator (separator)
18a1 Detection element side lead wire insertion hole
18a2 Heating element side lead wire insertion hole (lead wire insertion hole)
18e Bottom (Separator bottom)
18e1 outer edge (bottom edge)
18e2 Chamfer (Chamfer)
18f Central skeleton
18f1 convex part
20, 21 Sensor element side lead wire
19, 22 Heating element side lead wire (lead wire)
23 First terminal fitting (pressing member)
72 Terminal receiving hole
72e Central communication part (heating element end receiving hole)
F1 protruding surface
F2 concave surface
S Gap forming part
Central axis of O1 heating element
Central axis of O2 separator
R1 radius of curvature of protruding surface F1
R2 radius of curvature of concave surface F2

Claims (9)

前端部が閉じた中空軸状をなし、この前端部側が測定対象となるガスに向けられる酸素検出素子と、
前記酸素検出素子の中空部に配置され、該酸素検出素子を加熱する軸状の発熱体と、
前記酸素検出素子よりも後方側においてその中空部とほぼ同軸的に配置され、前端面が開口して前記発熱体の後端部が挿入される発熱体端部収容穴を有するセパレータとを備え、
前記セパレータの軸線方向中間部に位置する前記発熱体端部収容穴の底面(以下、セパレータ底面という)と、前記発熱体の後端面(以下、発熱体端面という)とが対向配置され、かつそれらセパレータ底面と発熱体端面との少なくとも一方が、それらの対向方向において先端側が連続的に断面縮小する形態で突出する突出面を有し、
前記セパレータ底面と前記発熱体端面とは、前記突出面の先端において点状接触状態にて当接することを特徴とする酸素センサ。
The front end portion has a closed hollow shaft shape, and the front end portion side is directed to the gas to be measured, and an oxygen detection element,
An axial heating element that is disposed in a hollow portion of the oxygen detection element and heats the oxygen detection element;
A separator having a heating element end accommodating hole that is disposed substantially coaxially with the hollow portion on the rear side of the oxygen detection element, has a front end surface opened, and a rear end portion of the heating element is inserted;
A bottom surface (hereinafter referred to as a separator bottom surface) of the heating element end receiving hole located at an intermediate portion in the axial direction of the separator and a rear end surface (hereinafter referred to as a heating element end surface) of the heating element are arranged to face each other. at least one of the separator bottom and the heating element end face, have a protruding surface protruding form the tip side in their opposing direction is continuously reduced cross,
The oxygen sensor according to claim 1, wherein the bottom surface of the separator and the end surface of the heating element are in contact with each other in a point-like contact state at a tip of the protruding surface .
前記セパレータ底面に、前記突出面が形成されている請求項1記載の酸素センサ。The oxygen sensor according to claim 1 , wherein the protruding surface is formed on the bottom surface of the separator. 前記セパレータ底面に形成される前記突出面が球面状である請求項記載の酸素センサ。The oxygen sensor according to claim 2 , wherein the protruding surface formed on the bottom surface of the separator is spherical . 前記発熱体端面に、前記突出面が形成されている請求項記載の酸素センサ。 The heating element end surface, the oxygen sensor of claim 1 wherein said projecting surface is formed. 前記セパレータ底面には、前記発熱体端面に形成される突出面に対応した凹状面が形成されている請求項記載の酸素センサ。The oxygen sensor according to claim 4 , wherein a concave surface corresponding to a protruding surface formed on the end surface of the heating element is formed on the bottom surface of the separator . 前記セパレータ底面に形成される前記凹状面の開口面積が、該開口位置における前記発熱体端面側の突出面の軸直交断面積よりも大である請求項5記載の酸素センサ。The oxygen sensor according to claim 5, wherein an opening area of the concave surface formed on the bottom surface of the separator is larger than an axial orthogonal cross-sectional area of the protruding surface on the end face side of the heating element at the opening position . 前記発熱体端面に形成される前記突出面と前記セパレータ底面に形成される前記凹状面とが、ともに球面状である請求項5又は6記載の酸素センサ。The oxygen sensor according to claim 5 or 6, wherein the protruding surface formed on the end surface of the heating element and the concave surface formed on the bottom surface of the separator are both spherical . 前記発熱体端面に形成される前記突出面の曲率半径をR 1 とし、前記セパレータ底面に形成される前記凹状面の曲率半径をR 2 としたとき、R 1 ≦R 2 を満足する請求項5ないし7のいずれかに記載の酸素センサ。 When the radius of curvature of the projecting surface formed on the heating element end face and R 1, the radius of curvature of the concave surface of the separators bottom was R 2, claim satisfies R 1 R 2 5 Or an oxygen sensor according to any one of 7 to 7 ; 前記セパレータ底面と前記発熱体端面との少なくとも一方の外縁には、中心軸線に対して所定の傾きを有する面取りが施されている請求項ないし8のいずれかに記載の酸素センサ。The oxygen sensor according to any one of claims 1 to 8, wherein at least one outer edge of the bottom surface of the separator and the end surface of the heating element is chamfered with a predetermined inclination with respect to a central axis .
JP2000229489A 2000-07-28 2000-07-28 Oxygen sensor Expired - Fee Related JP4190137B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000229489A JP4190137B2 (en) 2000-07-28 2000-07-28 Oxygen sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000229489A JP4190137B2 (en) 2000-07-28 2000-07-28 Oxygen sensor

Publications (2)

Publication Number Publication Date
JP2002039985A JP2002039985A (en) 2002-02-06
JP4190137B2 true JP4190137B2 (en) 2008-12-03

Family

ID=18722602

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000229489A Expired - Fee Related JP4190137B2 (en) 2000-07-28 2000-07-28 Oxygen sensor

Country Status (1)

Country Link
JP (1) JP4190137B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102859350A (en) * 2011-02-07 2013-01-02 日本特殊陶业株式会社 Gas sensor

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4209817B2 (en) 2004-06-30 2009-01-14 日本特殊陶業株式会社 Water-repellent filter member, manufacturing method thereof, waterproof device, and gas sensor
JP4842870B2 (en) * 2007-03-28 2011-12-21 日本特殊陶業株式会社 Sensor manufacturing jig and sensor manufacturing method
CN116609415B (en) * 2023-03-13 2024-01-30 连云港感瓷电子科技有限公司 Oxygen sensor for monitoring exhaust emission

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102859350A (en) * 2011-02-07 2013-01-02 日本特殊陶业株式会社 Gas sensor

Also Published As

Publication number Publication date
JP2002039985A (en) 2002-02-06

Similar Documents

Publication Publication Date Title
JP4961416B2 (en) Sensor
JP4838871B2 (en) Gas sensor
JP2004053425A (en) Sensor and its manufacturing method, and assembly of separator and biasing member
JP2001133431A (en) Gas sensor
JP2008292459A (en) Gas sensor, manufacturing method therefor, and manufacturing tool therefor
JP2008134219A (en) Gas sensor and related manufacturing method
JP4309564B2 (en) Oxygen sensor
JP5524898B2 (en) Gas sensor
JP4190137B2 (en) Oxygen sensor
US6660143B1 (en) Oxygen sensor
JP4801181B2 (en) Sensor
JP4399509B2 (en) Oxygen sensor
US20130205872A1 (en) Gas sensor and subassembly unit therefor
JP2008298535A (en) Sensor
EP1063520A2 (en) Oxygen sensor
JP4644051B2 (en) Sensor
JP5753818B2 (en) Gas sensor
CN109211998B (en) Gas sensor and method for manufacturing gas sensor
JP5919132B2 (en) Gas sensor
JP5925089B2 (en) Gas sensor
JP2000314716A (en) Oxygen sensor
JPH11190715A (en) Gas sensor and its manufacture
JP3756005B2 (en) Oxygen sensor and method for manufacturing oxygen sensor
JP2002323470A (en) Sensor
JP2013088123A (en) Gas sensor and manufacturing method of gas sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060801

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080501

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080515

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080624

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080820

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080916

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110926

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110926

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110926

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120926

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120926

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130926

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees