JP4189821B2 - Filtration membrane and simple determination method of lead ion using the same - Google Patents

Filtration membrane and simple determination method of lead ion using the same Download PDF

Info

Publication number
JP4189821B2
JP4189821B2 JP2004199795A JP2004199795A JP4189821B2 JP 4189821 B2 JP4189821 B2 JP 4189821B2 JP 2004199795 A JP2004199795 A JP 2004199795A JP 2004199795 A JP2004199795 A JP 2004199795A JP 4189821 B2 JP4189821 B2 JP 4189821B2
Authority
JP
Japan
Prior art keywords
lead ion
lead
fibrous
filter
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004199795A
Other languages
Japanese (ja)
Other versions
JP2006023132A5 (en
JP2006023132A (en
Inventor
敏重 鈴木
アルフレド・パチェコ・タナカ
マルゴット・ヨサ・タンコ
由紀子 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2004199795A priority Critical patent/JP4189821B2/en
Publication of JP2006023132A publication Critical patent/JP2006023132A/en
Publication of JP2006023132A5 publication Critical patent/JP2006023132A5/ja
Application granted granted Critical
Publication of JP4189821B2 publication Critical patent/JP4189821B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、ろ過膜、及びそれを用いて、鉛イオン含有検体試料液をろ過することで鉛イオンを選択的に分離濃縮し、その後濃縮された鉛イオンを顕色試薬溶液により顕色し、その濃さの程度から簡易に鉛イオンを比色定量する方法に関する。 The present invention uses a filtration membrane and a lead ion-containing specimen sample solution to selectively separate and concentrate lead ions, and then develop the concentrated lead ions with a developer reagent solution. The present invention relates to a method for colorimetric determination of lead ions in a simple manner from the degree of the density.

従来、鉛イオンの定量法としては、フレーム原子吸光、ICP−AES、ICP−MSなどの機器分析法(JIS K0102)やジチゾンによる溶媒抽出後の吸光光度定量法(JIS G1229)等が知られている。
しかし、この機器分析法は高感度ではあるが、装置が大型かつ高価であり、現場でのオンサイト分析には不向きであるし、また、この吸光光度定量法は、ジチゾンによる抽出操作が煩雑で、かつ抽出試薬、有機溶媒、酸等を要し、簡易なものではない。
吸光光度定量法としては他にも、アゾ色素やポルフィリン等の試薬を用いた例が報告されてはいるが、いずれも他の金属イオンによる妨害が大きいし、また、検出感度に限界があるので環境基準値レベルの鉛イオン濃度を測定するのは困難であり、溶液への光透過を計測原理とするため汚濁・着色した排水のような試料の分析には不向きである。
Conventionally, as a method for quantifying lead ions, instrumental analysis methods such as flame atomic absorption, ICP-AES, ICP-MS (JIS K0102), and spectrophotometric methods after solvent extraction with dithizone (JIS G1229) are known. Yes.
However, although this instrumental analysis method is highly sensitive, the apparatus is large and expensive, and is not suitable for on-site analysis in the field. In addition, this spectrophotometric determination method requires complicated extraction operation with dithizone. In addition, an extraction reagent, an organic solvent, an acid and the like are required, and it is not a simple one.
As other spectrophotometric methods, other examples using reagents such as azo dyes and porphyrins have been reported, but all of them are greatly disturbed by other metal ions and have limited detection sensitivity. It is difficult to measure the concentration of lead ions at the environmental standard level, and it is unsuitable for analyzing samples such as polluted and colored wastewater because the measurement principle is light transmission through the solution.

また、薄膜内での鉛イオンと長鎖アルキル基を有する有機試薬との化学平衡反応を利用した光センサーが提案されているが(非特許文献1参照)、このセンサーは有機試薬が高価であり、簡易で汎用性のあるものではない。   In addition, an optical sensor using a chemical equilibrium reaction between a lead ion and an organic reagent having a long-chain alkyl group in a thin film has been proposed (see Non-Patent Document 1), but this sensor is expensive in organic reagent. It is not simple and versatile.

「アナリティカルケミストリー(Analytical Chemistry)」、第64巻、p.1534、1992年“Analytical Chemistry”, Vol. 64, p. 1534, 1992

人体が鉛に長期間さらされると、脳や神経に致命的な損傷を受けることが明らかになり、WHOは鉛の規制量として10ppb以下という厳しい環境基準を勧告している。我が国でも、鉛は、工業排水基準として0.1ppm以下、環境基準ならびに水道水基準として10ppb以下と定められている有害重金属である。また上水道の鉛配管からの鉛溶出による飲料水汚染も深刻な問題となっているため、そのモニターは重要な課題であるが、現状では、環境診断は大型機器を保有する一部の業者に限られている。
そのため、鉱工業排水や河川水、飲料水などの水溶液中に微量に存在する鉛イオンを、現行の水質基準値を満たすか否かを判別しうるに足る高感度で、現場で容易に定量しうる、簡便で汎用性のある鉛イオン計測法の開発が急務とされている。
It has become clear that when the human body is exposed to lead for a long time, it will cause fatal damage to the brain and nerves, and WHO recommends strict environmental standards of 10 ppb or less as the regulated amount of lead. In Japan, lead is a hazardous heavy metal that is defined as 0.1 ppm or less as an industrial wastewater standard and 10 ppb or less as an environmental standard and tap water standard. Drinking water contamination due to lead elution from water supply lead pipes is also a serious problem, so monitoring is an important issue, but at present, environmental diagnosis is limited to some contractors with large equipment. It has been.
For this reason, lead ions present in trace amounts in aqueous solutions such as industrial wastewater, river water, and drinking water can be easily quantified on site with sufficient sensitivity to determine whether or not the current water quality standards are met. There is an urgent need to develop a simple and versatile lead ion measurement method.

本発明の課題は、このような事情の下、現行の水質基準値での判別が可能な高感度で、現場での分析の容易な、簡便で汎用性のある鉛イオン簡易定量方法及びそれに用いて有効なろ過膜を提供することにある。 An object of the present invention, under such circumstances, in a high sensitivity can be determined at the current water quality standard value, easy analysis in the field, using a lead ion Simple determination method and it versatile in simple And providing an effective filtration membrane .

本発明者らは、前記した好ましい特徴を有する鉛イオン簡易定量方法及びろ過膜について種々研究を重ねた結果、リン酸セリウムが繊維状の結晶を生じ、鉛イオンを強く保持することに着目し、繊維状リン酸セリウム結晶を用いたろ過膜に鉛イオン含有検体試料液を通し、ろ過して鉛イオンをろ過膜に捕捉し、分離濃縮した後、顕色試薬により発色させ、発色の程度を目視で或いは光電的に比色するなどして比色定量する方法及び上記ろ過膜が課題解決に資することを見出し、この知見に基づいて本発明をなすに至った。 As a result of repeating various studies on the lead ion simple quantification method and filtration membrane having the above-mentioned preferred features, the present inventors have focused on the fact that cerium phosphate produces fibrous crystals and strongly holds lead ions, Pass the sample liquid containing lead ions through a filter membrane using fibrous cerium phosphate crystals, filter to capture the lead ions on the filter membrane, separate and concentrate, and then develop the color with a developer and visually check the degree of color development. In addition, the inventors have found that the method of colorimetric quantification, such as photoelectrically colorimetrically, and the above filtration membrane contribute to solving the problems, and have made the present invention based on this finding.

すなわち、本発明は、以下のとおりのものである。
(1)鉛イオン選択捕捉能を有する繊維状リン酸セリウム単独或いは該繊維状リン酸セリウムと天然繊維及び/又は合成繊維との複合体からなるか、或いは該繊維状リン酸セリウム単独或いは該繊維状リン酸セリウムと他の繊維状物とを水に分散したスラリーをろ過器に取り付けたろ紙上に全面的に供し、ろ過処理に付し、乾燥してなるろ過膜。
(2)前記(1)記載のろ過膜に、鉛イオン含有検体試料液を通して鉛イオンを選択的に捕捉し、濃縮させた後、ろ過膜を顕色試薬溶液と接触させて発色させ、発色度を比色定量することを特徴とする鉛イオンの簡易定量方法。
(3)複合体が不織布である前記(2)記載の方法。
(4)鉛イオン含有検体試料液がpH1.5〜8に調整されたものである前記(2)又は(3)記載の方法。
(5)鉛イオンの濃縮操作の際に、鉛イオン含有検体試料液中の共存金属イオンの妨害抑止にマスキング剤を用いる前記(2)ないし(4)のいずれかに記載の方法。
(6)発色度を比色定量するのを、発色させた色の濃さを標準のそれと比較することにより行う前記(2)ないし(5)のいずれかに記載の方法。
That is, the present invention is as follows.
(1) Fibrous cerium phosphate having lead ion selective capturing ability alone or a composite of the fibrous cerium phosphate and natural fiber and / or synthetic fiber, or the fibrous cerium phosphate alone or the fiber A filter membrane obtained by applying a slurry in which water-like cerium phosphate and other fibrous materials are dispersed in water onto a filter paper attached to a filter, subjecting the slurry to filtration, and drying.
(2) After selectively capturing and concentrating lead ions through the lead ion-containing specimen sample solution on the filtration membrane described in (1) above, the filtration membrane is brought into contact with the developing reagent solution to develop a color, and the degree of color development A simple method for quantitative determination of lead ions, characterized by colorimetric determination.
(3) The method according to (2) above, wherein the composite is a nonwoven fabric.
(4) The method according to (2) or (3) above, wherein the lead ion-containing specimen sample solution is adjusted to pH 1.5-8.
(5) The method according to any one of (2) to (4) , wherein a masking agent is used to suppress interference with coexisting metal ions in the lead ion-containing sample liquid during the lead ion concentration operation.
(6) The method according to any one of (2) to (5) , wherein the color development degree is colorimetrically determined by comparing the darkness of the developed color with that of a standard.

本発明方法に用いるろ過膜には、鉛イオン選択捕捉能を有する繊維状リン酸セリウムが不可欠であり、該繊維状リン酸セリウムは結晶構造のものであるのが好ましい。ろ過膜は、繊維状リン酸セリウムだけで網組みするなどして作製したものであってもよいし、また、繊維状リン酸セリウムと、他の繊維状物である、天然繊維及び/又は合成繊維とを組み合わせた複合体として網組み成形したり、不織布成形したり、バインダーを添加してプレス成形したりするなどして作製したものであってもよい。
複合体に用いられる天然繊維としては、セルロース繊維が好ましく、天然繊維、中でもセルロース繊維の併用により、ろ過性が良くなる。複合体における天然繊維の割合、中でもセルロース繊維の割合は10〜95質量%の範囲とするのが望ましい。この割合が少なすぎるとろ過性が良好でなくなるし、また、多すぎても鉛イオンの捕捉能が低下する。
また、合成繊維としては、ナイロン、ポリエステル、ポリプロピレン、ポリビニリデンクロライド、ポリテトラフルオロエチレン、ポリエーテルスルホン等が好ましい。
For the filtration membrane used in the method of the present invention, fibrous cerium phosphate having lead ion selective capturing ability is indispensable, and it is preferable that the fibrous cerium phosphate has a crystal structure. The filtration membrane may be produced by netting only with fibrous cerium phosphate, or natural fiber and / or synthetic fiber cerium phosphate and other fibrous materials. It may be produced by forming a net as a composite combined with fibers, forming a nonwoven fabric, or adding a binder and press forming.
Cellulose fibers are preferred as natural fibers used in the composite, and filterability is improved by the combined use of natural fibers, especially cellulose fibers. The ratio of natural fibers in the composite, particularly the ratio of cellulose fibers, is preferably in the range of 10 to 95% by mass. If this ratio is too small, the filterability will not be good, and if it is too large, the ability to trap lead ions will decrease.
Moreover, as a synthetic fiber, nylon, polyester, polypropylene, polyvinylidene chloride, polytetrafluoroethylene, polyethersulfone, etc. are preferable.

ろ過膜としては、ろ紙状薄膜が好ましく、これを作製するには、繊維状リン酸セリウム、好ましくはその結晶構造のものを水に分散したスラリー、或いは繊維状リン酸セリウム、好ましくはその結晶構造のものと、他の繊維状物、例えばセルロース繊維等とを水に分散した混合スラリーをろ過器に取り付けたろ紙上に全面的に供し、ろ過処理に付し、乾燥するか、あるいはさらにこのようにした後、ろ紙からはがすなどの通常の紙すき手法によるのがよい。   The filter membrane is preferably a filter paper-like thin film. To produce this, a slurry of fibrous cerium phosphate, preferably its crystal structure dispersed in water, or fibrous cerium phosphate, preferably its crystal structure And a mixed slurry in which other fibrous materials, such as cellulose fibers, are dispersed in water, are provided on a filter paper attached to a filter, and are subjected to filtration treatment, dried, or further After that, it is preferable to use a normal paper cutting method such as peeling from filter paper.

ろ過膜の厚さはその機能を有する限り特に制限されないが、通常10μm〜5mm、好ましくは20μm〜2mm、中でも50μm〜1mmの範囲で選ばれる。
ろ過膜は、上記紙すき手法による場合、長いリン酸セリウム結晶繊維同士、例えば長さ数10μmの該繊維同士が絡み合いながら比較的隙間のある凝集形態をなしていることが電子顕微鏡で観察される。
The thickness of the filtration membrane is not particularly limited as long as it has the function, but is usually selected in the range of 10 μm to 5 mm, preferably 20 μm to 2 mm, especially 50 μm to 1 mm.
In the case of the above-mentioned paper-making method, it is observed with an electron microscope that the filtration membrane is in an aggregated form with relatively gaps while long cerium phosphate crystal fibers, for example, the fibers having a length of several tens of μm are entangled with each other.

ろ過膜は、それに鉛イオン含有検体試料液を通してろ過すると、ろ過膜を構成する繊維状リン酸セリウム結晶或いは該部分により、鉛イオンが選択的に捕捉され、濃縮されるようになる。
ろ過膜は、セパラブルフィルターに取り付けて用いるのが好ましい。
ろ過膜に通液する鉛イオン含有検体試料液については、そのpHを適宜調整するのが好ましく、通常pHは1.5〜9.0の範囲で選ばれるが、共存イオンの妨害を避けて鉛イオンを選択的に分離するにはpHを1.5〜8、中でも1.5〜4.0の範囲とするのが望ましい。
鉛イオン含有検体試料液としては、例えば水道水、井戸水等の上水や飲料水、工場用水、地下水、河川水、鉱山水、排水などが挙げられる。
When the filtration membrane is filtered through a lead ion-containing specimen sample solution, lead ions are selectively captured and concentrated by the fibrous cerium phosphate crystals or the portion constituting the filtration membrane.
The filtration membrane is preferably used by being attached to a separable filter.
It is preferable to adjust the pH of the lead ion-containing specimen sample solution to be passed through the filtration membrane as appropriate. Usually, the pH is selected in the range of 1.5 to 9.0. In order to selectively separate ions, it is desirable that the pH is in the range of 1.5 to 8, particularly 1.5 to 4.0.
Examples of the lead ion-containing specimen sample solution include tap water, drinking water, etc., drinking water, factory water, ground water, river water, mine water, drainage, and the like.

また、通液時に共存イオンの妨害を抑止するため、マスキング剤を用いるのが好ましい。
マスキング剤としては、シュウ酸、コハク酸などのジカルボン酸塩や鉄イオンを隠蔽するヒドロキサム酸、タイロン、エチレンジアミン四酢酸やニトリロトリ酢酸等のコンプレクサンに代表されるキレート化剤などが挙げられる。
通液速度については特に制限されないが、鉛イオンの定量的な吸着のためには毎分20ml以下とするのが望ましい。
Further, it is preferable to use a masking agent in order to suppress interference of coexisting ions during liquid flow.
Examples of the masking agent include dicarboxylic acid salts such as oxalic acid and succinic acid, and hydroxamic acid that conceals iron ions, chelating agents such as Tyrone, ethylenediaminetetraacetic acid, and nitrilotriacetic acid.
There is no particular limitation on the liquid passing speed, but it is preferably 20 ml / min or less for quantitative adsorption of lead ions.

鉛イオンの濃縮されたろ過膜は、顕色試薬溶液と接触させると発色する。この発色の色調やその濃さの程度、換言すれば濃淡を比色定量することにより、鉛イオンの濃度を求めることが可能になる。   A filtration membrane enriched with lead ions develops color when brought into contact with a developer reagent solution. It is possible to obtain the concentration of lead ions by colorimetrically determining the color tone and the degree of the color density, in other words, the shade.

顕色試薬溶液は、顕色試薬をその良溶媒に溶解させたものであって、顕色試薬としては、鉛イオンと反応して色を変化させるもの、例えば鉛イオンと反応し、鉛イオンと安定な着色化合物、着色沈殿を生成するものであれば特に制限されないが、好ましくは、鉛イオンはリン酸セリウムに強固に結合されているので、これをさらに強い力で引き剥がしうる試薬や沈殿を生成しうる試薬を選ぶのがよく、このような試薬としては、硫化水素水、硫化ナトリウム、硫化カリウム、クロム酸カリウム、ヨウ化カリウムなどの発色性沈殿試薬や、鉛イオンと選択的にキレートを形成して発色するキレート化剤、例えばジチゾン、ジエチルジチオカルバミン酸などが挙げられる。   The developer solution is a solution in which a developer is dissolved in a good solvent. The developer is a reagent that reacts with lead ions to change color, for example, reacts with lead ions, Although it is not particularly limited as long as it produces a stable colored compound and colored precipitate, preferably, since lead ions are firmly bound to cerium phosphate, a reagent or precipitate that can be peeled off with a stronger force is preferably used. It is preferable to select a reagent that can be generated. Examples of such a reagent include chromogenic precipitation reagents such as hydrogen sulfide water, sodium sulfide, potassium sulfide, potassium chromate, potassium iodide, and chelate selectively with lead ions. Chelating agents that form and develop color, such as dithizone and diethyldithiocarbamic acid.

発色操作において、発色させた色の濃さは、色調比較表により目視でも判断できるが、デンシトメーター、TLCスキャナー、色彩色差計などの計測器により数値化するのが定量に適している。
顕色試薬に硫化ナトリウムを用いて鉛イオンを硫化物として比色する際には、ろ過膜に共吸着した他のイオン、例えばFe(III)イオン等の発色による妨害を避けるため、希塩酸ないし希硫酸溶液、例えば濃度1〜2M程度のものに適当な時間、例えば0.5〜1分間さらすことで、希酸に溶解しにくい硫化鉛を残留させることができる。
In the coloring operation, the darkness of the developed color can be judged visually by using a color tone comparison table, but it is suitable for quantification to digitize with a measuring instrument such as a densitometer, a TLC scanner, or a color difference meter.
When colorimetrically using lead sulfide as a color developer using sodium sulfide as a developer, dilute hydrochloric acid or dilute to avoid interference due to coloration of other ions co-adsorbed on the filter membrane, such as Fe (III) ions. By exposing to a sulfuric acid solution, for example, having a concentration of about 1 to 2 M for an appropriate time, for example, 0.5 to 1 minute, lead sulfide that is hardly dissolved in dilute acid can be left.

本発明方法によれば、現行の水質基準値での判別が可能な高感度で、現場での分析の容易な、簡便で汎用性のあるものとして、鉛イオンを簡易に定量することができ、本発明のろ過膜はこのような方法に用いて有効であるAccording to the method of the present invention, the lead ion can be easily quantified as high-sensitivity that can be discriminated with the current water quality standard value, easy on-site analysis, simple and versatile , The filtration membrane of the present invention is effective for such a method .

次に、実施例により本発明を実施するための最良の形態を説明する。   Next, the best mode for carrying out the present invention will be described by way of examples.

95℃に保った6Mリン酸水溶液200mlを攪拌し、この中に硫酸セリウム4g(0.05モル)を1M硫酸200mlに溶解した溶液を毎分3mlの速度で滴下し、薄黄色の沈殿物を生成させた。滴下終了後、攪拌を止め、この沈殿物を7時間95℃で熟成させたところ、リン酸セリウムの微細な繊維状結晶が析出した。これをろ紙でろ過し、水でよく洗浄した後、乾燥し、ろ紙からはがしてフィルター状の薄膜成形体を得た。   200 ml of 6M phosphoric acid aqueous solution maintained at 95 ° C. was stirred, and a solution of 4 g (0.05 mol) of cerium sulfate dissolved in 200 ml of 1M sulfuric acid was added dropwise thereto at a rate of 3 ml / min. Generated. After completion of the dropwise addition, the stirring was stopped and the precipitate was aged at 95 ° C. for 7 hours. As a result, fine fibrous crystals of cerium phosphate were precipitated. This was filtered with a filter paper, washed well with water, dried, and peeled off from the filter paper to obtain a filter-like thin film molded body.

実施例1と同様にして得たリン酸セリウムの繊維状結晶1.6gに、セルロース繊維粉末(市販のNo.5ろ紙を水中で破砕したもの)3.8gと水200mlを加え、ミキサーでよく混合した。得られたスラリーを遠心分離し、上澄みを捨てて調整したスラリーをろ過器に取り付けたNo.5ろ紙(直径15cm)により吸引ろ過し、水洗した後、乾燥し、フィルター状の薄膜成形体を得た。
この薄膜成形体の電子顕微鏡写真を図1に示す。
Add 3.8 g of cellulose fiber powder (commercially No. 5 filter paper crushed in water) and 200 ml of water to 1.6 g of cerium phosphate fibrous crystals obtained in the same manner as in Example 1, and use a mixer. Mixed. The obtained slurry was centrifuged, the supernatant was discarded and the prepared slurry was attached to a filter. The solution was suction filtered with 5 filter paper (diameter: 15 cm), washed with water, and dried to obtain a filter-like thin film molded body.
An electron micrograph of this thin film molded body is shown in FIG.

実施例2で得た薄膜成形体を直径およそ3cmの小片に切り出し、セパラブルフィルター(図2、直径0.5cm、ろ過面積0.13cm2)にはさんで作製したろ過材に、上から各種濃度の鉛イオン含有検水(酢酸緩衝液にてpH3.5に調製したもの)100mlをそれぞれペリスターポンプで毎分10ml送液し、ろ過した後、水洗、乾燥し、鉛イオンの濃縮されたろ過材を得た。
このろ過材より薄膜成形体を取り出し、0.5%硫化ナトリウム水溶液に浸したところ、黒色の硫化物が黒色スポットとして検出された。鉛イオン含有検水中の鉛イオン濃度を5、10、50、100、500ppbと変化させた場合の結果を図3に写真で示す。
The thin film molded body obtained in Example 2 was cut into small pieces having a diameter of about 3 cm, and various kinds of filter materials were produced from above on the filter medium that was sandwiched between separable filters (diameter 0.5 cm, filtration area 0.13 cm 2 ). 100 ml of lead ion-containing test water having a concentration (adjusted to pH 3.5 with an acetate buffer solution) was sent to each 10 ml with a peristaltic pump, filtered, washed with water, dried, and lead ions were concentrated. A filter medium was obtained.
When the thin film molded body was taken out from the filter medium and immersed in a 0.5% sodium sulfide aqueous solution, black sulfide was detected as a black spot. The results when the lead ion concentration in the lead ion-containing test water is changed to 5, 10, 50, 100, and 500 ppb are shown in FIG.

実施例3で得た黒色スポットを、TLCスキャナー、色彩色差計を用い、400nmから600nmの間の波長で相対反射吸収を測定した。その反射吸収のスポットの直径分の積分値を鉛イオン含有検水中の鉛イオン濃度に対してプロットした結果を図4に示す。 The relative reflection absorption of the black spot obtained in Example 3 was measured at a wavelength between 400 nm and 600 nm using a TLC scanner and a color difference meter. FIG. 4 shows the result of plotting the integrated value of the reflection absorption spot diameter against the lead ion concentration in the lead ion-containing test water.

実施例2で得た直径およそ3cmの薄膜成形体の小片を、セパラブルフィルター(ろ過面積0.2cm2)にはさんで作製したろ過材に、上から鉛イオン100ppbと、鉄(III)1ppm(1.8×10-5M)ならびに鉄の50倍濃度のイミノジ酢酸(9×10-4M)を含有し、pH3.5に調製された鉛イオン含有検水100mlを、ペリスターポンプを用いて毎分10mlで送液し、ろ過した。鉛イオン含有検水をろ過し、水洗した後に薄膜成形体を取り出し、0.5%硫化ナトリウム水溶液に浸し、黒色の硫化物として顕色させた。黒色の強度は、Fe(III)イオンを含まない場合と同等であった。 A small piece of a thin-film molded body having a diameter of about 3 cm obtained in Example 2 was sandwiched between a separable filter (filtration area: 0.2 cm 2 ) and filtered from above, with lead ions of 100 ppb and iron (III) of 1 ppm. (1.8 × 10 −5 M) as well as 50 ml of iron iminodiacetic acid (9 × 10 −4 M) and adjusted to pH 3.5, 100 ml of lead ion-containing test water was added to the peristaltic pump. Used and sent at 10 ml / min and filtered. After the lead ion-containing test water was filtered and washed with water, the thin film molded article was taken out, immersed in a 0.5% aqueous sodium sulfide solution, and developed as a black sulfide. The intensity of black was the same as when no Fe (III) ion was contained.

東北地方の廃鉱山の下を流域とする河川の現場で河川水を採取し、そのpHを3.5に調整して、鉛イオン含有検水を調製した。この検水を、製造例2で得た直径およそ3cmの薄膜成形体の小片をセパラブルフィルター(ろ過面積0.2cm2)にはさんで作製したろ過材に、上からペリスターポンプで毎分10ml送液し、ろ過、水洗した後、薄膜成形体を取り出し、0.5%硫化ナトリウム水溶液に浸したところ、鉛硫化物が生成され、黒色に顕色した。この黒色の相対強度の積分値を、実施例の検量線にあてはめると、およそ鉛イオン濃度が10ppbに相当するものであった。同じ試料について別途ICP−MS分析した結果、鉛イオン濃度は14ppbであった。両者の濃度値は近似することから、本発明方法は鉛イオン濃度のおよその簡易な判定方法として利用しうることが分る。 River water was collected at a river site where the basin was located under an abandoned mine in the Tohoku region, the pH was adjusted to 3.5, and lead ion-containing test water was prepared. This test water was applied to a filter medium made by sandwiching a small piece of a thin-film molded body having a diameter of about 3 cm obtained in Production Example 2 with a separable filter (filtration area: 0.2 cm 2 ), and from the top with a peristaltic pump. After 10 ml of liquid was fed, filtered and washed with water, the thin film molded article was taken out and immersed in a 0.5% aqueous sodium sulfide solution. As a result, lead sulfide was produced and developed black. When the integrated value of the black relative intensity was applied to the calibration curve of Example 4 , the lead ion concentration was approximately equivalent to 10 ppb. As a result of separate ICP-MS analysis on the same sample, the lead ion concentration was 14 ppb. Since the concentration values of both are approximated, it can be seen that the method of the present invention can be used as a simple method for determining the lead ion concentration.

本発明は、排水や河川水、飲料水などの水溶液中に微量に存在する鉛イオンを、現行の水質基準値を満たすか否かを判別しうるに足る高感度で、現場で容易に分析しうるので、簡便で汎用性のある比色定量に利用しうる。 The present invention analyzes lead ions present in trace amounts in an aqueous solution such as drainage, river water, and drinking water with high sensitivity sufficient to determine whether or not the current water quality standard value is satisfied, and is easily analyzed in the field. since ur, it may be utilized in certain specific Irojo amount versatile in simple.

実施例2の薄膜成形体の電子顕微鏡写真。The electron micrograph of the thin film molded object of Example 2. FIG . 実施例3のろ過用のセパラブルフィルター。The separable filter for filtration of Example 3 . 実施例3の種々の濃度の鉛イオンを顕色した結果を示す写真。 The photograph which shows the result of having developed the lead ion of various density | concentration of Example 3. FIG . 実施例3で得た黒色スポットについての相対反射吸収の積分値と検水中の鉛イオン濃度との関係を示すグラフ。 The graph which shows the relationship between the integrated value of the relative reflection absorption about the black spot obtained in Example 3 , and the lead ion concentration in test water.

Claims (6)

鉛イオン選択捕捉能を有する繊維状リン酸セリウム単独或いは該繊維状リン酸セリウムと天然繊維及び/又は合成繊維との複合体からなるか、或いは該繊維状リン酸セリウム単独或いは該繊維状リン酸セリウムと他の繊維状物とを水に分散したスラリーをろ過器に取り付けたろ紙上に全面的に供し、ろ過処理に付し、乾燥してなるろ過膜。The fibrous cerium phosphate having a lead ion selective capturing ability alone or a composite of the fibrous cerium phosphate and natural fibers and / or synthetic fibers, or the fibrous cerium phosphate alone or the fibrous phosphate A filter membrane obtained by subjecting slurry, in which cerium and other fibrous materials are dispersed in water, to the entire surface of a filter paper attached to a filter, subjecting to filtration, and drying. 請求項1記載のろ過膜に、鉛イオン含有検体試料液を通して鉛イオンを選択的に捕捉し、濃縮させた後、ろ過膜を顕色試薬溶液と接触させて発色させ、発色度を比色定量することを特徴とする鉛イオンの簡易定量方法。 The lead ion is selectively captured through the lead ion-containing specimen sample solution and concentrated on the filtration membrane according to claim 1, and then the filter membrane is brought into contact with a developing reagent solution to develop a color, and the degree of color development is determined colorimetrically. A simple method for quantitative determination of lead ions. 複合体が不織布である請求項記載の方法。 The method according to claim 2 , wherein the composite is a nonwoven fabric. 鉛イオン含有検体試料液がpH1.5〜8に調整されたものである請求項2又は3記載の方法。 The method according to claim 2 or 3 , wherein the lead ion-containing specimen sample solution is adjusted to pH 1.5-8. 鉛イオンの濃縮操作の際に、鉛イオン含有検体試料液中の共存金属イオンの妨害抑止にマスキング剤を用いる請求項2ないし4のいずれかに記載の方法。 The method according to any one of claims 2 to 4 , wherein a masking agent is used to suppress interference with coexisting metal ions in the lead ion-containing sample liquid during the lead ion concentration operation. 発色度を比色定量するのを、発色させた色の濃さを標準のそれと比較することにより行う請求項2ないし5のいずれかに記載の方法。 6. The method according to claim 2 , wherein the color development is colorimetrically determined by comparing the density of the developed color with that of a standard.
JP2004199795A 2004-07-06 2004-07-06 Filtration membrane and simple determination method of lead ion using the same Expired - Fee Related JP4189821B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004199795A JP4189821B2 (en) 2004-07-06 2004-07-06 Filtration membrane and simple determination method of lead ion using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004199795A JP4189821B2 (en) 2004-07-06 2004-07-06 Filtration membrane and simple determination method of lead ion using the same

Publications (3)

Publication Number Publication Date
JP2006023132A JP2006023132A (en) 2006-01-26
JP2006023132A5 JP2006023132A5 (en) 2007-05-17
JP4189821B2 true JP4189821B2 (en) 2008-12-03

Family

ID=35796509

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004199795A Expired - Fee Related JP4189821B2 (en) 2004-07-06 2004-07-06 Filtration membrane and simple determination method of lead ion using the same

Country Status (1)

Country Link
JP (1) JP4189821B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4747017B2 (en) * 2006-03-31 2011-08-10 柴田科学株式会社 Transmitted light amount measuring device, relative absorbance measuring device, and measuring methods thereof
JP4964887B2 (en) * 2006-08-28 2012-07-04 興和株式会社 Reagent for measuring lead concentration and method for measuring lead concentration
JP5139395B2 (en) * 2009-10-19 2013-02-06 株式会社共立理化学研究所 Simple analyzer of lead ion and analysis method of lead ion using the analyzer
JP5899085B2 (en) * 2011-09-22 2016-04-06 アークレイ株式会社 Heavy metal recovery method and heavy metal recovery reagent used therefor
CN104285146B (en) * 2012-08-27 2016-04-27 株式会社吴羽 The appraisal procedure of polymkeric substance and the manufacture method of polymkeric substance
JP7007986B2 (en) * 2018-04-26 2022-01-25 アークレイ株式会社 Plasma spectroscopic analysis method
CN112945950A (en) * 2021-03-08 2021-06-11 唐山三友化工股份有限公司 Limit analysis method for enriching heavy metals in food additive sodium carbonate by using microporous filter membrane

Also Published As

Publication number Publication date
JP2006023132A (en) 2006-01-26

Similar Documents

Publication Publication Date Title
Menger et al. Sensors for detecting per-and polyfluoroalkyl substances (PFAS): A critical review of development challenges, current sensors, and commercialization obstacles
Cho et al. Selective colorimetric detection of dissolved ammonia in water via modified Berthelot’s reaction on porous paper
Achterberg et al. Automated voltammetric system for shipboard determination of metal speciation in sea water
JP2007327886A (en) Method for quantifying hexavalent chromium in water
JPWO2008066003A1 (en) Nickel and / or copper determination method and apparatus used therefor
Raghu et al. Chemically functionalized glassy carbon spheres: a new covalent bulk modified composite electrode for the simultaneous determination of lead and cadmium
JP2007327887A (en) Ion sensor and ion detection method
Wang et al. Label-free detection of sulfide ions based on fluorescence quenching of unmodified core–shell Au@ Ag nanoclusters
JP4883577B2 (en) Chemical sensor material
JP4189821B2 (en) Filtration membrane and simple determination method of lead ion using the same
CN103439267A (en) Detection reagent combination and detection method of bivalent mercury ions
Takahashi et al. Dithizone nanofiber-coated membrane for filtration-enrichment and colorimetric detection of trace Hg (II) ion
Tavallali et al. Developing a new method of 4-(2-pyridylazo)-resorcinol immobilization on triacetylcellulose membrane for selective determination of Ga3+ in water samples
Suarez et al. Chitosan-modified cotton thread for the preconcentration and colorimetric trace determination of Co (II)
CN102368053A (en) Detection method of lead ion
Mahendra et al. Investigation of a Cu (II) fibre optic chemical sensor using fast sulphon black F (FSBF) immobilised onto XAD-7
Moustafa et al. A highly selective bulk optode based on 6-{4-(2, 4-dihydroxy-phenyl) diazenyl) phenyl}-2-oxo-4-phenyl-1, 2-dihydro-pyridine-3-carbonitrile incorporating chromoionophore V for determination of nano levels of cadmium
Chen et al. SERS sensing of sulfide based on the sulfidation of silver nanoparticles
CN111579510B (en) Light sensing film and method for rapidly and quantitatively detecting Cd (II), cu (II) and Zn (II) selectively
Jian-feng et al. Ultra-sensitive fluorescence determination of chromium (VI) in aqueous solution based on selectively etching of protein-stabled gold nanoclusters
JP5781937B2 (en) Determination of lead
Savitha et al. Adsorptive preconcentration integrated with colorimetry for ultra-sensitive detection of lead and copper
Chitbankluai et al. based colorimetric sensor for potassium ion detection in urine by crown ether modified gold nanoparticles
Mulec et al. Study of interferences and procedures for their removal in the spectrophotometric determination of ammonium and selected anions in coloured wastewater samples
Riso et al. Determination of dissolved iron (III) in estuarine and coastal waters by adsorptive stripping chronopotentiometry (SCP)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061013

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070326

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080808

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080828

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080904

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110926

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110926

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120926

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120926

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130926

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees