JP4189483B2 - Alumina material for catalyst support - Google Patents

Alumina material for catalyst support Download PDF

Info

Publication number
JP4189483B2
JP4189483B2 JP2002237255A JP2002237255A JP4189483B2 JP 4189483 B2 JP4189483 B2 JP 4189483B2 JP 2002237255 A JP2002237255 A JP 2002237255A JP 2002237255 A JP2002237255 A JP 2002237255A JP 4189483 B2 JP4189483 B2 JP 4189483B2
Authority
JP
Japan
Prior art keywords
alumina
surface area
specific surface
particles
heat resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002237255A
Other languages
Japanese (ja)
Other versions
JP2004073998A (en
Inventor
貴行 吉田
拓哉 矢野
昌大 後藤
修一 間舩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Electronics Materials Co Ltd
Original Assignee
Dowa Electronics Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Electronics Materials Co Ltd filed Critical Dowa Electronics Materials Co Ltd
Priority to JP2002237255A priority Critical patent/JP4189483B2/en
Publication of JP2004073998A publication Critical patent/JP2004073998A/en
Application granted granted Critical
Publication of JP4189483B2 publication Critical patent/JP4189483B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Catalysts (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は,触媒担体等に好適な,大きい比表面積と優れた耐熱性を有する粉状のアルミナ材料に関する。
【0002】
【従来の技術】
従来より,自動車排ガス浄化用触媒等の担体材料として,耐熱性の良い活性アルミナが広く使用されている。このような活性アルミナの製法として,各種の方法が知られているが,その代表的なものとして,アルミン酸ナトリウム等のアルカリ性アルミニウム溶液の酸による中和,或いは酸性アルミニウム溶液のアルカリによる中和等の「中和法」で澱物を得る方法,バイヤープロセスで得られた水酸化アルミニウムの熱分解法(バイヤー法),更にはアルミニウムアルコキシドの加水分解法等があり,いずれも各種の触媒担体に適した活性アルミナが製造されている。
【0003】
自動車排ガス浄化用触媒は,活性アルミナに白金等の貴金属を担持させて構成されるが,高活性な触媒を得るには,貴金属の分散性を良くして貴金属粒子を微粒子化することがで重要である。そのためには,担体の比表面積が大きくなければならない。貴金属を担体に含浸させるさいに,担体の比表面積が大きいほど,貴金属が分散して微粒子化できるからである。これまでも,担体の比表面積を高めるための研究が行われており,例えば,特許第2930665号には,アルミナゾル溶液を霧化して焼成することで高い比表面積を有するアルミナが作製できると教示している。
【0004】
また,自動車排ガス浄化用触媒は1000℃以上の高温での使用に耐えられることが要求される。このためには耐熱性の優れた触媒担体が不可欠である。触媒担体に広く使用されているγ−Al23 は1000℃を超える高温下では,γ相からα相への相変態が進むことが知られている。この相変態が起きるとそれに伴ってアルミナの比表面積が減少し,これに伴って貴金属粒子が粒成長し,失活してしまうことがある。このようなことから,担体の耐熱性を高める研究についても広く行われており,例えば特許第2590433号では,ベーマイトゾルをゲル化し,オートクレーブ中でエタノール超臨界乾燥を行うことによって,高い耐熱性を有するアルミナを製造する方法を開示している。特開平6−218282号公報は,ゾル−ゲル法で得られたアルミナ前駆体ゲルを水熱または水蒸気処理することで耐熱性に優れたアルミナ多孔体を得る方法を開示している。
【0005】
【発明が解決しようとする課題】
前記の特許公報に提案された触媒担体用アルミナの製法にはそれぞれ特徴があるが,比表面積が300m2/g以上で且つ耐熱性の優れたアルミナを工業的に大量生産する方法にまで発展させるには種々の問題がある。例えば,特許第2930665号の方法でも比表面積が300m2/g以上のものを安定して製造することは困難であり,特許第2590433号の製法では超臨界乾燥法が高温高圧を必要として大量生産性,製造コストの面での問題があり,特開平6−218282号公報の方法でも焼成後のアルミナの比表面積が十分に高くならず,水熱処理による高温での加熱処理工程を必要とするため,工程が煩雑となり製造コストが高くならざるを得ない。
【0006】
本発明は,このような問題を克服し,従来のものの限界を超えた大きな比表面積を有しかつ耐熱性に優れたアルミナ担体を安価に提供することを目的としたものである。
【0007】
【課題を解決するための手段】
【0008】
本発明者らは,前記課題を解決すべく種々の試験研究を重ねてきたが,アルミナの微粒子の形態を薄片状すなわち厚さが極めて薄いフイルム状にすることに成功した。これにより比表面積が非常に大きな粉体とすることができ,しかも耐熱性に優れたγ−Al23 粉を工業的有利に得ることができた。すなわち,本発明によれば,厚さ20nm以下,好ましくは10nm以下のフイルム状の粒子が集合してなり,BET法による比表面積が350m2/g 以上の粉体からなる触媒担体用アルミナ材料を提供する。このアルミナ材料はγ−Al23 の結晶構造を有し,大気雰囲気中1000℃×3時間の加熱後でもBET法による比表面積120m2/g 以上を保持することができる。
【0009】
このような薄片状微粒子の集合からなる比表面積の極めて大きい耐熱性に優れたアルミナ材料を製造するには、酸性のAl金属塩水溶液とアルカリ水溶液を液のpHが一定となるように反応させて、厚みが20nm以下のフイルム状の粒子の集合体からなるアルミニウム化合物を析出させ、この析出物を液から分離して水洗したあと、有機溶媒で洗浄して該析出物中の水分を有機溶媒で置換し、次いで有機溶媒を乾燥除去したうえ400〜1000℃の温度で加熱処理する方法によるのがよい。
【0010】
【発明の実施の形態】
本発明に従うアルミナはγ−Al23 結晶を有する微粒子からなり,その粒子は,厚さが20nm以下,好ましくは10nm以下のフイルム状である点に特徴がある。実際には数nmといった厚みであることもでき,あまりに薄いので透過型電子顕微鏡観察では粒子境界の明暗がはっきりしないこともある。図1にその例を示した(後記の実施例1で得られたもの)。図1は,本発明に従う1個のフイルム状のアルミナ粒子を,試料台を水平に対して+30°,0°,−30°傾斜させて同じ部分を撮影したTEM像3枚を対比したものである(倍率は30万倍)。粒子の境界については必ずしも明確ではないが,例えば図1の丸印で囲われた同じ部分について観察すると,+30°→0°→−30と傾くにつれて,平面的に広がりのある部分がだんだんに線状に変化していることがわかる。すなわち,線状に見える部分は,フイルム状物質の厚み部分を示していると考えてよい。
【0011】
このような厚みが数nmといったγ−Al23 のフイルム状粒子はこれまで知られていない。図1の粒子は厚みが数nmのフイルム状であり,そのフイルム面の大きさは必ずしも明確ではない(布がまとわりついたような状態にある)が,最大長さで約150〜200nm(0.15〜0.20μm)程度であろう。本発明に従うフイルム状粒子について,この面の大きさについては必ずしも特定されないが,これが大きいほど1個の粒子の比表面積は大きくなる筈である。
【0012】
このようなフイルム状の粒子(これを一次粒子という)の多数が集合して(絡み合って)一つの集合体(二次粒子という)を形成する。この二次粒子の大きさは様々であるが,例えば,径が0.1μmから〜数μm程度の立体的な形態となる。さらに,この二次粒子が集まり合って,さらに大きな凝集体(例えば径が1〜数10μm程度の凝集体)を形成する場合もある。
【0013】
いずれにしても,厚みの極めて薄いフイルム状の一次粒子が互いに絡み合って多くの隙間をもったポーラスな二次粒子や凝集体を形成するので,単位重さ当りの表面積は極めて大きくなり,BET法による比表面積が350m2/gを超えるもの,好ましくは400m2/g以上のものが得られる。1g当りの表面積が400m2以上にもなるγ−Al23 粉体はこれまで例がないと考えられる。
【0014】
そして,このような二次粒子や凝集体は,一次粒子がフイルム状であるが故に粒子同士の接触点が極めて少ないという特徴がある。また二次粒子同士の接触点も少なくなる。この結果,高温にさらされた場合にも,粒子間同士の焼結が進みにくいという性質がある。したがって,例えば1000℃に3時間加熱された場合でも,後記の実施例に示すように,γ−Al23 からα−Al23 に相変態することが抑制される。このことは,高温に曝された場合でも,γ相からα相への相変態による比表面積の減少を起こし難いことを意味する。したがって,本発明に従うアルミナ材料は自動車排ガス浄化用触媒の担体に使用された場合に,高温下での使用でも高い比表面積を維持するので,従来品のような比表面積の低下による触媒活性低下を招くようなことが回避できる。
【0015】
このような厚みが20nm以下,好ましくは10nm以下のフイルム状のγ−Al23 微粒子からなる比表面積の大きな耐熱性のよい粉状アルミナ材料は,次のような工程,すなわち,
(1) アルミナ先駆物質の析出工程,
(2) アルミナ先駆物質の水分置換工程,および
(3) 無水のアルミナ先駆物質をγ−Al23 に変態させる加熱処理工程
を経ることによって製造することができる。以下に,これらの工程を順に説明する。
【0016】
(1) アルミナ先駆物質の析出工程:この工程ではアルミニウム金属塩水溶液から中和反応で殿物を生成させる。そのさいの反応条件を適切に制御すると,厚みが20nm以下好ましくは10nm以下のフイルム状の粒子からなる殿物(アルミナ先駆物質という)を生成させることができる。
【0017】
アルミナの原料となるアルミニウム金属塩水溶液として,酸性のAl金属塩水溶液を用いる場合にはアルカリ溶液と反応させ,アルカリ性のAl金属塩水溶液を用いる場合には酸溶液と反応させる。酸性のAl金属塩水溶液を用いる場合のAl金属塩としては,代表的には硝酸アルミニウム,硫酸アルミニウムまたは塩化アルミニウムが挙げられ,そのほか,リン酸アルミニウム,酢酸アルミニウムなども使用できる。これらと反応させるアルカリ剤としては,水酸化ナトリウム,アンモニア,炭酸ナトリウム,炭酸アンモニウム等が使用できる。他方,アルカリ性のAl金属塩水溶液を用いる場合のAl金属塩としては代表的にはアルミン酸ナトリウムが挙げられ,そのほか,アルミン酸カリウムなども使用できる。これらと反応させる酸としては,硫酸,硝酸,塩酸等の無機酸が好適である。
【0018】
いずれにしても,(a)Al金属塩水溶液と(b)アルカリ水溶液または酸水溶液とを反応させることにより,アルミナ先駆物質(アルミニウム化合物)を析出させるが,その反応に供する両反応液(a)と(b)を一挙に反応させるのではなく,両反応液(a)と(b)を時間をかけて少量づつ(好ましくは連続的に)反応容器に内に供給し,両反応液(a)と(b)の供給速度(流量)を,反応容器内の液のpHが或る一定の値に維持されるように調節する。
【0019】
液のpHがほぼ一定の値に維持されるように,両反応液(a)と(b)を供給すると,厚みが20nm以下,好ましくは10nm以下のフイルム状の粒子からなる物質(アルミナ先駆物質)が合成されることがわかった。このものは疑ベーマイトの結晶構造を有している。このアルミナ先駆物質を得るためには,前記のpHが7〜12の範囲のある値,好ましくは7.5〜9.5の範囲の或る値となるように制御するのがよい。pHが12を超えると,フィルム状の擬ベーマイトの他に,結晶性の良い柱状の形状を有するバイヤライトが生成してしまって本発明の目的が達成できなくなる。他方,pHが7以下の酸性領域では,球状で非晶質なものが生成し,この場合にも本発明の目的が達成できなくなる。反応温度は特に限定されないが,40〜80℃の範囲,好ましくは50〜70℃の或る一定の温度に維持するのが好ましい。反応温度が40℃より低いか,または80℃を超えると先駆物質の各粒子のフイルム形状がくずれる可能性が高くなる。
【0020】
(2) アルミナ先駆物質の水分置換工程,
この工程では,前工程の反応で得られた液中の析出物を液から分離(ろ別)し,そのケーキをよく水洗したあと,そのケーキを有機溶媒によって洗浄することにより,ケーキの含水分を有機溶媒で置換させる。有機溶媒としては,メタノール,エタノール,プロパノール等のアルコール類,あるいはアセトン等の水溶性の有機溶剤が使用できる。
【0021】
この有機溶媒による水の置換が不十分であると,すなわち,ケーキ中に水分が残存すると,乾燥時に水の表面張力による粒子間凝集が発生し,嵩高のケーキとはならなくなる。また,次工程の加熱処理のさいに,水分が存在すると,アルミナ先駆物質の粒子が有する極薄のフイルム形状を変化させたり,γ−Al23 への変態が良好に行われ難くなる。これに対して,ケーキ中の含水分が十分に有機溶媒で置換されていると,これを乾燥したときに,各粒子同士の凝集が起こらずに,非常に嵩高のケーキとなり,これを次工程の加熱処理に供したときに,該アルミナ先駆物質が有しているフイルム形状がほぼそのままγ−Al23 に継承される。
【0022】
(3) 無水のアルミナ先駆物質をγ−Al23 に変態させる加熱処理工程,
この工程は,前工程で得られた有機溶媒で置換された無水のアルミナ先駆物質を乾燥処理して有機溶媒を蒸発除去したうえ,そのケーキを400〜1000℃の温度に加熱する工程である。加熱雰囲気は大気雰囲気であればよい。加熱温度が400℃未満ではγ−Al23 への変態が不十分となる場合がある。他方,加熱温度が1000℃を超えるような高温になると,アルミナ先駆物質が有する厚み20nm以下のフイルム状の粒子形状がくずれたり,粒子同士の部分的な焼結が発生したりして,高い比表面積をもつγ−Al23 を得るのが困難となることに加え,高温維持による作業の負担増と省エネルギーの点でも不利となる。加熱処理されたものはそのままでも,場合によっては軽度の解砕機で解砕処理することにより,厚さ20nm以下のフイルム状の粒子が集合したものからなりBET法による比表面積が350m2/g 以上のγ−Al23 の粉体からなる本発明の触媒担体用アルミナ材料となり得る。
【0023】
このようにして得られたアルミナ粉は,比表面積が350m2/g以上,場合によっては400m2/g以上と高いので,前記したとおり,触媒担体用として極めて有益である。すなわち比表面積が高いので白金等の貴金属を含浸担持させる場合に貴金属を良好に分散させて微粒子化することができ,このために,反応ガスと貴金属触媒との接触面積が増大して高い触媒活性を維持することができるようになる。また1000℃を超える高温下でも高い比表面積を維持できる(耐熱性に優れる)ので,比表面積が低下したときに発生する貴金属粒子同士の粒成長が回避され,高温使用における触媒の失活が回避できる。
【0024】
このような大きな比表面積と優れた耐熱性は,厚さ10nm以下の薄いフィルム状の一次粒子が立体的に集まりあって,例えば0.1〜0.5μm程度の2次粒子を形成し,更にその2次粒子が集まりあって1〜10μmほどの集合体を形成する構造を有する場合に特に顕著に現れる。この構造は,アルミナ前駆体(擬ベーマイト)の形状がそのまま加熱処理後のγ−Al23 に引き継がれることによって形成される。本発明者らは,1 次粒子間の空隙や,2次粒子間の空隙が多いため,高い比表面積を有するアルミナが得られたものと考えている。このアルミナは嵩密度が低く,1 次粒子同士の接触点および2次粒子同士の接触点が極めて少なくなっているので,高温下でさらされた場合にも粒子間焼結が進みにくく,α−Al23 の相変態が抑制されるために高温でも高い比表面積を有し,耐熱性にも優れると考えられる。
【0025】
【実施例】
〔実施例1〕
硝酸アルミニウム9水和物を,Al濃度が1.3wt%となるようにイオン交換水に溶解して,アルミニウム水溶液を作製した。反応容器に600mLのイオン交換水を仕込み,攪拌しながら60℃まで昇温・保持した。この状態で,その反応容器に前記のアルミニウム水溶液を10g/minの速度で連続的に添加し,それと同時に,22wt%のアンモニア水を,pHが8.5に保たれるように添加速度を調整しながら添加してアルミナ前駆体スラリーを得た。
【0026】
得られたスラリーをビフネル漏斗で吸引ろ過した後,そのケーキをイオン交換水を用いて洗浄した。さらに,洗浄後のケーキをエタノールで洗浄処理することにより,ケーキ中の水分の実質上全てをエタノールで置換した。このものをXRDプロファイル回折したところ,擬ベーマイトの結晶構造を有することがわかった。また,透過型電子顕微鏡による観察により,厚みが数nmのフィルム状粒子の集合体であることがが確認できた。
【0027】
前記のエタノールで置換されたケーキを,110℃で5時間乾燥させた後に電気炉に装入し,大気中で500℃×3 時間の焼成処理を行った。焼成された粉末をXRDプロファイル回折したところ,γ−Al23 結晶構造を有することがわかった。またこのものを透過型電子顕微鏡観察の結果,図1に示したように,厚みが数nmの薄いフィルム状粒子の集合体であることが確認された。図1は,本文で説明したとおり,試料台を±30°傾斜させて撮影したものである。さらに,BET法による比表面積は422m2/g であった。
【0028】
このγ−Al23 粉を,大気中で1000℃×3 時間加熱処理する耐熱試験に供した。この耐熱試験後の粉末についてBET法による比表面積を測定したところ142m2/g であった。また耐熱試験後のアルミナは,XRDプロファイル回折によれば,γ−Al23 およびθ−Al23 のピークが認められた。この耐熱試験後のアルミナのXRDプロファイル回折チャートを,後述の比較例1のものと対比して,図2に示した。
【0029】
〔実施例2〕
アンモニア水の添加にさいして,pHが7.5に保たれるように添加した以外は実施例1を繰り返した。実施例1と同様に,焼成された粉末をXRDプロファイル回折したところ,γ−Al23 結晶構造を有することがわかった。また,透過型電子顕微鏡観察の結果,厚みが数nmの薄いフィルム状粒子の集合体であることが確認され,BET法による比表面積は450m2/g であった。
【0030】
このγ−Al23 粉を,実施例1と同様の耐熱試験に供し,耐熱試験後の粉末についてBET法による比表面積を測定したところ148m2/g であった。耐熱試験後のアルミナは,XRDプロファイル回折においてγ−Al23 およびθ−Al23 のピークが認められた。
【0031】
〔実施例3〕
硝酸アルミニウムに代えて硫酸アルミニウムを用いてAl濃度が1.3wt%のアルミニウム水溶液を作製した以外は,実施例1を繰り返した。実施例1と同様に,焼成された粉末をXRDプロファイル回折したところ,γ−Al23 結晶構造を有することがわかった。また,透過型電子顕微鏡観察の結果,厚みが数nmの薄いフィルム状粒子の集合体であることが確認され,BET法による比表面積は461m2/g であった。
【0032】
このγ−Al23 粉を,実施例1と同様の耐熱試験に供し,耐熱試験後の粉末についてBET法による比表面積を測定したところ140m2/g であった。耐熱試験後のアルミナは,XRDプロファイル回折においてγ−Al23 およびθ−Al23 のピークが認められた。
【0033】
〔実施例4〕
反応容器内でのアルミニウム水溶液とアンモニア水との反応温度を70℃に変更した以外は,実施例1を繰り返した。実施例1と同様に,焼成された粉末をXRDプロファイル回折したところ,γ−Al23 結晶構造を有することがわかった。また,透過型電子顕微鏡観察の結果,厚みが数nmの薄いフィルム状粒子の集合体であることが確認され,BET法による比表面積は462m2/g であった。
【0034】
このγ−Al23 粉を,実施例1と同様の耐熱試験に供し,耐熱試験後の粉末についてBET法による比表面積を測定したところ151m2/g であった。耐熱試験後のアルミナは,XRDプロファイル回折においてγ−Al23 およびθ−Al23 のピークが認められた。
【0035】
〔実施例5〕
アルミニウム水溶液のAl濃度が3.9wt%となるように,硝酸アルミニウム9水和物をイオン交換水に溶解した以外は,実施例1を繰り返した。実施例1と同様に,焼成された粉末をXRDプロファイル回折したところ,γ−Al23 結晶構造を有することがわかった。また,透過型電子顕微鏡観察の結果,厚みが数nmの薄いフィルム状粒子の集合体であることが確認され,BET法による比表面積は422m2/g であった。
【0036】
このγ−Al23 粉を,実施例1と同様の耐熱試験に供し,耐熱試験後の粉末についてBET法による比表面積を測定したところ138m2/g であった。耐熱試験後のアルミナは,XRDプロファイル回折においてγ−Al23 およびθ−Al23 のピークが認められた。
【0037】
〔比較例1〕
硝酸アルミニウム9水和物143.5gを3Lの水に溶解し,Al濃度が0.32wt%のアルミニウム水溶液を作製した。この溶液を60℃の温度に保持した状態で,22wt%アンモニア水180gを一挙に添加した後,3 時間熟成させてアルミナ前駆体スラリーを得た。アンモニア添加後のpHは8.4であった。
【0038】
得られたスラリーをビフネル漏斗で吸引ろ過した後,そのケーキをイオン交換水を用いて洗浄した。さらに,洗浄後のケーキをエタノールで洗浄処理することにより,ケーキ中の水分の実質上全てをエタノールで置換した。このものをXRDプロファイル回折したところ,擬ベーマイトの結晶構造を有することがわかったが,透過型電子顕微鏡による観察によると,長軸長さがほぼ20〜120nmの針状(短軸長さは20nm以下)の形状を有する微粒子の集合体からなることが確認された。
【0039】
前記のエタノールで置換されたケーキを,110℃で5時間乾燥させた後に電気炉に装入し,大気中で500℃×3 時間の焼成処理を行った。焼成された粉末をXRDプロファイル回折したところ,γ−Al23 結晶構造を有することがわかったが,透過型電子顕微鏡観察の結果,粒径が2〜5nmのほぼ球状に近い微粒子が緻密に凝集した集合体であることが確認され,BET法による比表面積は307m2/g であった。
【0040】
このγ−Al23 粉を,大気中で1000℃×3 時間加熱処理する耐熱試験に供した。この耐熱試験後の粉末についてBET法による比表面積を測定したところ93m2/g であった。また耐熱試験後のアルミナは,XRDプロファイル回折によるとγ−Al23 およびθ−Al23 のピークと,α−Al23 のピークが認められた。そのチャートを図2に実施例1のものと対比して示した。
【0041】
〔比較例2〕
アンモニア水180gを,一挙に添加するのではなく,一定の添加速度で20分間かけて添加した以外は,比較例1を繰り返した。アンモニア水添加後の液のpHは8.7であった。比較例1と同様にエタノールで洗浄処理してケーキ中の水分をエタノールで置換し,このものをXRDプロファイル回折したところ,バイヤライトの結晶構造を有することがわかった。また,透過型電子顕微鏡によると,比較例1のものよりも短軸径が大きく(0.1〜10μm程度),長軸径が1〜20μm程度のほぼ柱状の形状を有する微粒子の集合体からなることが確認された。
【0042】
このエタノールで置換されたケーキを,110℃で5時間乾燥させた後に電気炉に装入し,大気中で500℃×3 時間の焼成処理を行った。焼成された粉末をXRDプロファイル回折したところ,γ−Al23 結晶構造を有することがわかったが,透過型電子顕微鏡観察の結果,粒径が20〜500nmのほぼ球状に近い微粒子が緻密に凝集した集合体であることが確認され,BET法による比表面積は288m2/g であった。
【0043】
このγ−Al23 粉を,大気中で1000℃×3 時間加熱処理する耐熱試験に供した。この耐熱試験後の粉末についてBET法による比表面積を測定したところ74m2/g であった。また耐熱試験後のアルミナは,XRDプロファイル回折によるとγ−Al23 およびθ−Al23 のピークと,α−Al23 のピークが認められた。
【0044】
表1に,実施例1〜5および比較例1〜2の加熱処理後のBET値(比表面積)と耐熱試験後のBET値(比表面積)を対比して示した。表中の従来例1および2のものは,市販品のアルミナゾル(従来例1)と市販品のベーマイト(従来性2)について,500℃×3時間の加熱処理を行ったものと,それを実施例と同じ耐熱試験に供したときの,それぞれのBET値である。
【0045】
【表1】

Figure 0004189483
【0046】
表1の結果から,実施例1〜5のアルミナは,比較例1〜2および従来例1〜2のアルミナに比べて,極めて大きな比表面積を有することがわかる。また,その耐熱性も良好であり,高温下でも比表面積が低下する割合が少ない。また図2より,耐熱試験後における実施例1のアルミナはα−Al23 のピークは認められないが,比較例1のアルミナはα−Al23 のピークが存在しており高温下でα−Al23 への相変態が進むことがわかる。
【0047】
【発明の効果】
以上説明したように,本発明によると,比表面積が大きくかつ耐熱性の優れたアルミナが提供され,このものは自動車排ガス用触媒等の担体用として好適である。また,本発明に従うアルミナは工業的有利な方法で製造できるので安価で且つ大量生産が可能である。
【図面の簡単な説明】
【図1】本発明に従う同じアルミナ粒子を試料台を傾斜させて撮影した透過電子顕微鏡写真である。
【図2】本発明に従うアルミナ粉体を1000℃×3時間の熱処理したあとに測定したXRDフロファイル回折チャートを,比較例のものと対比して示したものである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a powdery alumina material suitable for a catalyst carrier or the like and having a large specific surface area and excellent heat resistance.
[0002]
[Prior art]
Conventionally, activated alumina having good heat resistance has been widely used as a carrier material for automobile exhaust gas purification catalysts and the like. Various methods are known as methods for producing such activated alumina. Typical examples thereof include neutralization of an alkaline aluminum solution such as sodium aluminate with an acid or neutralization of an acidic aluminum solution with an alkali. There are a method of obtaining starch by the “neutralization method” of No. 1, a thermal decomposition method of the aluminum hydroxide obtained by the Bayer process (Buyer method), and a hydrolysis method of aluminum alkoxide. Suitable activated alumina has been produced.
[0003]
Automobile exhaust gas purification catalysts are made by loading precious metals such as platinum on activated alumina. To obtain highly active catalysts, it is important to improve the dispersibility of precious metals and make the precious metal particles finer. It is. For this purpose, the specific surface area of the carrier must be large. This is because when the carrier is impregnated with the noble metal, the larger the specific surface area of the carrier, the more the noble metal can be dispersed to form fine particles. Until now, research for increasing the specific surface area of the support has been conducted. For example, Japanese Patent No. 2930665 teaches that an alumina having a high specific surface area can be produced by atomizing and firing an alumina sol solution. ing.
[0004]
In addition, automobile exhaust gas purification catalysts are required to withstand use at high temperatures of 1000 ° C. or higher. For this purpose, a catalyst carrier having excellent heat resistance is indispensable. It is known that γ-Al 2 O 3 widely used for catalyst supports undergoes phase transformation from γ phase to α phase at high temperatures exceeding 1000 ° C. When this phase transformation occurs, the specific surface area of the alumina decreases accordingly, and the noble metal particles may grow and be deactivated accordingly. For this reason, research to increase the heat resistance of the carrier has been widely conducted. For example, in Patent No. 2590433, boehmite sol is gelled and ethanol supercritical drying is performed in an autoclave, thereby achieving high heat resistance. Disclosed is a method for producing alumina having the same. JP-A-6-218282 discloses a method of obtaining an alumina porous body excellent in heat resistance by subjecting an alumina precursor gel obtained by a sol-gel method to hydrothermal or steam treatment.
[0005]
[Problems to be solved by the invention]
Each of the methods for producing catalyst support alumina proposed in the above-mentioned patent publications has its own characteristics, but it is further developed into a method for industrially mass-producing alumina having a specific surface area of 300 m 2 / g or more and excellent heat resistance. Has various problems. For example, it is difficult to stably produce a product having a specific surface area of 300 m 2 / g or more even with the method of Patent No. 2930665, and in the production method of Patent No. 2590433, the supercritical drying method requires high temperature and high pressure for mass production. However, the specific surface area of alumina after firing is not sufficiently high even in the method of Japanese Patent Laid-Open No. 6-218282, and a heat treatment step at high temperature by hydrothermal treatment is required. , The process becomes complicated and the production cost must be high.
[0006]
An object of the present invention is to overcome such problems and to provide an alumina carrier having a large specific surface area exceeding the limit of the conventional one and excellent in heat resistance at low cost.
[0007]
[Means for Solving the Problems]
[0008]
The inventors of the present invention have made various test studies to solve the above-mentioned problems, but have succeeded in making the shape of the alumina fine particles into a flaky shape, that is, an extremely thin film. As a result, it was possible to obtain a powder having a very large specific surface area and to obtain γ-Al 2 O 3 powder excellent in heat resistance industrially advantageous. That is, according to the present invention, there is provided an alumina material for a catalyst carrier comprising a powder having a film surface having a thickness of 20 nm or less, preferably 10 nm or less, and having a specific surface area measured by the BET method of 350 m 2 / g or more. provide. This alumina material has a crystal structure of γ-Al 2 O 3 and can maintain a specific surface area of 120 m 2 / g or more by the BET method even after heating at 1000 ° C. for 3 hours in the air atmosphere.
[0009]
In order to produce an alumina material having an extremely large specific surface area and consisting of a collection of such flaky fine particles and excellent in heat resistance, an acidic Al metal salt aqueous solution and an alkaline aqueous solution are reacted so that the pH of the solution becomes constant. Then, an aluminum compound consisting of an aggregate of film-like particles having a thickness of 20 nm or less is precipitated, and the precipitate is separated from the liquid and washed with water, and then washed with an organic solvent to remove moisture in the precipitate with the organic solvent. It is preferable to use a method in which the organic solvent is dried and removed, followed by heat treatment at a temperature of 400 to 1000 ° C.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
The alumina according to the present invention comprises fine particles having γ-Al 2 O 3 crystals, and the particles are characterized in that they are film-like having a thickness of 20 nm or less, preferably 10 nm or less. Actually, the thickness can be as small as several nanometers, and since it is too thin, the light and darkness of the particle boundary may not be clear by observation with a transmission electron microscope. An example is shown in FIG. 1 (obtained in Example 1 described later). FIG. 1 compares three TEM images of a film-like alumina particle according to the present invention, in which the sample stage is tilted + 30 °, 0 °, and −30 ° with respect to the horizontal and the same part is photographed. Yes (magnification is 300,000 times). The boundary of the particles is not always clear, but for example, when the same part surrounded by a circle in FIG. 1 is observed, as the inclination is + 30 ° → 0 ° → −30, the part that expands in a plane gradually becomes a line. It can be seen that the shape has changed. That is, it can be considered that the portion that looks linear shows the thickness portion of the film-like substance.
[0011]
A film-like particle of γ-Al 2 O 3 having such a thickness of several nm has not been known so far. The particles in FIG. 1 are film-like with a thickness of several nanometers, and the size of the film surface is not necessarily clear (the cloth is in a state of clinging), but the maximum length is about 150 to 200 nm (0. 15 to 0.20 μm). For the film-like particles according to the present invention, the size of this surface is not necessarily specified, but the specific surface area of one particle should increase as this increases.
[0012]
A large number of such film-like particles (referred to as primary particles) are aggregated (entangled) to form one aggregate (referred to as secondary particles). Although the size of the secondary particles is various, for example, it becomes a three-dimensional form with a diameter of about 0.1 μm to about several μm. Further, the secondary particles may gather to form a larger aggregate (for example, an aggregate having a diameter of about 1 to several tens of μm).
[0013]
In any case, extremely thin film-shaped primary particles are entangled with each other to form porous secondary particles or aggregates with many gaps, so the surface area per unit weight becomes extremely large, and the BET method A specific surface area of more than 350 m 2 / g, preferably 400 m 2 / g or more is obtained. Γ-Al 2 O 3 powder having a surface area per gram of 400 m 2 or more is considered to be unprecedented.
[0014]
Such secondary particles and aggregates are characterized by extremely few contact points between the particles because the primary particles are film-like. Moreover, the contact point between secondary particles also decreases. As a result, even when exposed to high temperatures, sintering between particles is difficult to proceed. Therefore, even when heated to, for example, 1000 ° C. for 3 hours, the phase transformation from γ-Al 2 O 3 to α-Al 2 O 3 is suppressed as shown in the examples described later. This means that even when exposed to high temperatures, it is difficult to cause a reduction in specific surface area due to phase transformation from γ phase to α phase. Therefore, when the alumina material according to the present invention is used as a carrier for an automobile exhaust gas purification catalyst, it maintains a high specific surface area even when used at a high temperature. Invitation can be avoided.
[0015]
Such a heat-resistant powdery alumina material having a large specific surface area and composed of film-like γ-Al 2 O 3 fine particles having a thickness of 20 nm or less, preferably 10 nm or less, has the following steps:
(1) Alumina precursor precipitation process,
(2) Moisture replacement process of alumina precursor, and
(3) It can be manufactured through a heat treatment step in which an anhydrous alumina precursor is transformed into γ-Al 2 O 3 . Hereinafter, these steps will be described in order.
[0016]
(1) Alumina precursor precipitation step: In this step, a precipitate is produced from the aqueous aluminum metal salt solution by a neutralization reaction. By appropriately controlling the reaction conditions at that time, it is possible to produce a film (called an alumina precursor) composed of film-like particles having a thickness of 20 nm or less, preferably 10 nm or less.
[0017]
When an acidic Al metal salt aqueous solution is used as an aluminum metal salt aqueous solution as an alumina raw material, it is reacted with an alkali solution, and when an alkaline Al metal salt aqueous solution is used, it is reacted with an acid solution. Typical examples of the Al metal salt in the case of using an acidic Al metal salt aqueous solution include aluminum nitrate, aluminum sulfate, and aluminum chloride. In addition, aluminum phosphate, aluminum acetate, and the like can also be used. Sodium hydroxide, ammonia, sodium carbonate, ammonium carbonate, etc. can be used as the alkali agent to be reacted with these. On the other hand, as the Al metal salt in the case of using an alkaline Al metal salt aqueous solution, sodium aluminate is typically mentioned, and in addition, potassium aluminate or the like can also be used. As the acid to be reacted with these, inorganic acids such as sulfuric acid, nitric acid and hydrochloric acid are suitable.
[0018]
In any case, (a) an aluminum metal salt aqueous solution and (b) an alkali aqueous solution or an acid aqueous solution are reacted to precipitate an alumina precursor (aluminum compound). Both reaction solutions (a) used for the reaction And (b) are not reacted all at once, but both reaction liquids (a) and (b) are fed into the reaction vessel little by little (preferably continuously) over time, and both reaction liquids (a ) And (b) are adjusted so that the pH of the liquid in the reaction vessel is maintained at a certain value.
[0019]
When both reaction liquids (a) and (b) are supplied so that the pH of the liquid is maintained at a substantially constant value, a substance composed of film-like particles having a thickness of 20 nm or less, preferably 10 nm or less (alumina precursor) ) Was synthesized. This has a crystal structure of suspicious boehmite. In order to obtain this alumina precursor, the pH should be controlled to a certain value in the range of 7 to 12, preferably a certain value in the range of 7.5 to 9.5. When the pH exceeds 12, bayerite having a columnar shape with good crystallinity is generated in addition to the film-like pseudoboehmite, and the object of the present invention cannot be achieved. On the other hand, in the acidic region where the pH is 7 or less, a spherical and amorphous product is formed, and in this case also, the object of the present invention cannot be achieved. The reaction temperature is not particularly limited, but it is preferably maintained at a certain temperature in the range of 40 to 80 ° C, preferably 50 to 70 ° C. When the reaction temperature is lower than 40 ° C. or exceeds 80 ° C., the film shape of each particle of the precursor is likely to be broken.
[0020]
(2) Moisture replacement process of alumina precursor,
In this step, the precipitate in the liquid obtained in the reaction of the previous step is separated (filtered out) from the liquid, and the cake is thoroughly washed with water, and then the cake is washed with an organic solvent to thereby remove the moisture content of the cake. Is replaced with an organic solvent. As the organic solvent, alcohols such as methanol, ethanol and propanol, or water-soluble organic solvents such as acetone can be used.
[0021]
If the water is not sufficiently replaced with the organic solvent, that is, if water remains in the cake, intergranular aggregation occurs due to the surface tension of water during drying, and the cake does not become bulky. In addition, if water is present during the heat treatment in the next step, it is difficult to change the ultrathin film shape of the particles of the alumina precursor or to transform into γ-Al 2 O 3 satisfactorily. On the other hand, if the moisture content in the cake is sufficiently substituted with an organic solvent, when the cake is dried, the particles do not agglomerate and become a very bulky cake. When subjected to this heat treatment, the film shape of the alumina precursor is almost inherited by γ-Al 2 O 3 .
[0022]
(3) a heat treatment step for transforming anhydrous alumina precursor to γ-Al 2 O 3 ;
In this step, the anhydrous alumina precursor substituted with the organic solvent obtained in the previous step is dried to evaporate and remove the organic solvent, and the cake is heated to a temperature of 400 to 1000 ° C. The heating atmosphere may be an air atmosphere. If the heating temperature is less than 400 ° C., transformation to γ-Al 2 O 3 may be insufficient. On the other hand, when the heating temperature is higher than 1000 ° C., the film-like particle shape of the alumina precursor having a thickness of 20 nm or less is broken, or partial sintering of the particles occurs. In addition to making it difficult to obtain γ-Al 2 O 3 having a surface area, it is disadvantageous in terms of increased work burden and energy saving due to maintaining high temperatures. Even if the heat-treated material is used as it is, it is composed of a collection of film-like particles having a thickness of 20 nm or less by crushing with a mild crusher. The specific surface area by the BET method is 350 m 2 / g or more. Thus, it can be an alumina material for a catalyst carrier of the present invention comprising a powder of γ-Al 2 O 3 .
[0023]
The alumina powder thus obtained has a high specific surface area of 350 m 2 / g or higher, and in some cases as high as 400 m 2 / g or higher, and as described above, is extremely useful as a catalyst carrier. In other words, since the specific surface area is high, when the noble metal such as platinum is impregnated and supported, the noble metal can be well dispersed and finely divided. For this reason, the contact area between the reaction gas and the noble metal catalyst is increased, resulting in high catalytic activity. Will be able to maintain. In addition, since a high specific surface area can be maintained even at high temperatures exceeding 1000 ° C. (excellent heat resistance), grain growth between noble metal particles that occurs when the specific surface area decreases is avoided, and deactivation of the catalyst at high temperatures is avoided. it can.
[0024]
Such a large specific surface area and excellent heat resistance are obtained by three-dimensionally gathering thin film-like primary particles having a thickness of 10 nm or less to form secondary particles of, for example, about 0.1 to 0.5 μm. This is particularly noticeable when the secondary particles gather to form an aggregate of about 1 to 10 μm. This structure is formed when the shape of the alumina precursor (pseudo boehmite) is directly transferred to γ-Al 2 O 3 after the heat treatment. The present inventors believe that alumina having a high specific surface area was obtained because there were many voids between primary particles and voids between secondary particles. This alumina has a low bulk density, and the contact points between the primary particles and the contact points between the secondary particles are extremely few, so inter-particle sintering is difficult to proceed even when exposed at high temperatures. Since the phase transformation of Al 2 O 3 is suppressed, it has a high specific surface area even at high temperatures and is considered to be excellent in heat resistance.
[0025]
【Example】
[Example 1]
Aluminum nitrate nonahydrate was dissolved in ion-exchanged water so that the Al concentration was 1.3 wt% to prepare an aluminum aqueous solution. A reaction vessel was charged with 600 mL of ion-exchanged water, and the temperature was raised and maintained at 60 ° C. while stirring. In this state, the above aqueous aluminum solution was continuously added to the reaction vessel at a rate of 10 g / min, and at the same time, the addition rate of 22 wt% ammonia water was adjusted so that the pH was maintained at 8.5. While adding, an alumina precursor slurry was obtained.
[0026]
The obtained slurry was suction filtered with a Bifnel funnel, and then the cake was washed with ion-exchanged water. Furthermore, by washing the cake after washing with ethanol, substantially all of the moisture in the cake was replaced with ethanol. When this was subjected to XRD profile diffraction, it was found to have a pseudoboehmite crystal structure. Moreover, it was confirmed by observation with a transmission electron microscope that it was an aggregate of film-like particles having a thickness of several nm.
[0027]
The ethanol-substituted cake was dried at 110 ° C. for 5 hours, and then charged in an electric furnace, and baked at 500 ° C. for 3 hours in the atmosphere. When the fired powder was subjected to XRD profile diffraction, it was found to have a γ-Al 2 O 3 crystal structure. As a result of observation with a transmission electron microscope, it was confirmed that this was an aggregate of thin film-like particles having a thickness of several nm as shown in FIG. FIG. 1 is a photograph taken with the sample stage tilted by ± 30 ° as described in the text. Further, the specific surface area by the BET method was 422 m 2 / g.
[0028]
This γ-Al 2 O 3 powder was subjected to a heat resistance test in which heat treatment was performed at 1000 ° C. for 3 hours in the air. It was 142 m < 2 > / g when the specific surface area by BET method was measured about the powder after this heat test. Moreover, the alumina after the heat resistance test showed peaks of γ-Al 2 O 3 and θ-Al 2 O 3 according to XRD profile diffraction. The XRD profile diffraction chart of alumina after this heat resistance test is shown in FIG. 2 in comparison with that of Comparative Example 1 described later.
[0029]
[Example 2]
Example 1 was repeated except that ammonia water was added so that the pH was maintained at 7.5. As in Example 1, when the baked powder was subjected to XRD profile diffraction, it was found to have a γ-Al 2 O 3 crystal structure. As a result of observation with a transmission electron microscope, it was confirmed to be an aggregate of thin film-like particles having a thickness of several nm, and the specific surface area by the BET method was 450 m 2 / g.
[0030]
This γ-Al 2 O 3 powder was subjected to a heat resistance test similar to that in Example 1, and the specific surface area of the powder after the heat resistance test measured by the BET method was 148 m 2 / g. In the alumina after the heat resistance test, peaks of γ-Al 2 O 3 and θ-Al 2 O 3 were observed in XRD profile diffraction.
[0031]
Example 3
Example 1 was repeated except that aluminum sulfate was used instead of aluminum nitrate to produce an aluminum aqueous solution having an Al concentration of 1.3 wt%. As in Example 1, when the baked powder was subjected to XRD profile diffraction, it was found to have a γ-Al 2 O 3 crystal structure. Further, as a result of observation with a transmission electron microscope, it was confirmed to be an aggregate of thin film-like particles having a thickness of several nm, and the specific surface area by the BET method was 461 m 2 / g.
[0032]
The γ-Al 2 O 3 powder was subjected to a heat resistance test similar to that in Example 1, and the specific surface area of the powder after the heat resistance test was measured by the BET method to be 140 m 2 / g. In the alumina after the heat resistance test, peaks of γ-Al 2 O 3 and θ-Al 2 O 3 were observed in XRD profile diffraction.
[0033]
Example 4
Example 1 was repeated except that the reaction temperature of the aqueous aluminum solution and aqueous ammonia in the reaction vessel was changed to 70 ° C. As in Example 1, when the baked powder was subjected to XRD profile diffraction, it was found to have a γ-Al 2 O 3 crystal structure. As a result of observation with a transmission electron microscope, it was confirmed to be an aggregate of thin film-like particles having a thickness of several nm, and the specific surface area by the BET method was 462 m 2 / g.
[0034]
This γ-Al 2 O 3 powder was subjected to the same heat resistance test as in Example 1, and the specific surface area of the powder after the heat resistance test measured by the BET method was 151 m 2 / g. In the alumina after the heat resistance test, peaks of γ-Al 2 O 3 and θ-Al 2 O 3 were observed in XRD profile diffraction.
[0035]
Example 5
Example 1 was repeated except that aluminum nitrate nonahydrate was dissolved in ion-exchanged water so that the Al concentration of the aqueous aluminum solution was 3.9 wt%. As in Example 1, when the baked powder was subjected to XRD profile diffraction, it was found to have a γ-Al 2 O 3 crystal structure. Further, as a result of observation with a transmission electron microscope, it was confirmed to be an aggregate of thin film-like particles having a thickness of several nm, and the specific surface area by the BET method was 422 m 2 / g.
[0036]
This γ-Al 2 O 3 powder was subjected to a heat resistance test similar to that of Example 1, and the specific surface area of the powder after the heat resistance test measured by the BET method was 138 m 2 / g. In the alumina after the heat resistance test, peaks of γ-Al 2 O 3 and θ-Al 2 O 3 were observed in XRD profile diffraction.
[0037]
[Comparative Example 1]
143.5 g of aluminum nitrate nonahydrate was dissolved in 3 L of water to prepare an aluminum aqueous solution having an Al concentration of 0.32 wt%. With this solution kept at a temperature of 60 ° C., 180 g of 22 wt% aqueous ammonia was added all at once and then aged for 3 hours to obtain an alumina precursor slurry. The pH after addition of ammonia was 8.4.
[0038]
The obtained slurry was suction filtered with a Bifnel funnel, and then the cake was washed with ion-exchanged water. Furthermore, by washing the cake after washing with ethanol, substantially all of the moisture in the cake was replaced with ethanol. When this was XRD profile diffracted, it was found that it had a pseudoboehmite crystal structure. However, according to observation with a transmission electron microscope, the needle had a major axis length of approximately 20 to 120 nm (the minor axis length was 20 nm). It was confirmed to be composed of an aggregate of fine particles having the following shape:
[0039]
The ethanol-substituted cake was dried at 110 ° C. for 5 hours, and then charged in an electric furnace, and baked at 500 ° C. for 3 hours in the atmosphere. XRD profile diffraction of the fired powder revealed that it had a γ-Al 2 O 3 crystal structure. As a result of transmission electron microscope observation, fine particles close to a sphere with a particle size of 2 to 5 nm were dense. It was confirmed that the aggregate was an aggregate, and the specific surface area by the BET method was 307 m 2 / g.
[0040]
This γ-Al 2 O 3 powder was subjected to a heat resistance test in which heat treatment was performed at 1000 ° C. for 3 hours in the air. It was 93 m < 2 > / g when the specific surface area by BET method was measured about the powder after this heat test. In addition, the alumina after the heat resistance test showed peaks of γ-Al 2 O 3 and θ-Al 2 O 3 and α-Al 2 O 3 according to XRD profile diffraction. The chart is shown in FIG. 2 in comparison with that of Example 1.
[0041]
[Comparative Example 2]
Comparative Example 1 was repeated except that 180 g of aqueous ammonia was not added all at once but at a constant addition rate over 20 minutes. The pH of the solution after addition of aqueous ammonia was 8.7. In the same manner as in Comparative Example 1, the cake was washed with ethanol, the water in the cake was replaced with ethanol, and this was subjected to XRD profile diffraction. As a result, it was found to have a bayerite crystal structure. Further, according to the transmission electron microscope, the short axis diameter is larger than that of Comparative Example 1 (about 0.1 to 10 μm) and the aggregate of fine particles having a substantially columnar shape having a long axis diameter of about 1 to 20 μm. It was confirmed that
[0042]
The cake replaced with ethanol was dried at 110 ° C. for 5 hours, and then charged in an electric furnace, and baked at 500 ° C. for 3 hours in the atmosphere. XRD profile diffraction of the fired powder revealed that it had a γ-Al 2 O 3 crystal structure. As a result of transmission electron microscope observation, fine particles close to a sphere with a particle size of 20 to 500 nm were dense. It was confirmed that the aggregate was an aggregate, and the specific surface area by the BET method was 288 m 2 / g.
[0043]
This γ-Al 2 O 3 powder was subjected to a heat resistance test in which heat treatment was performed at 1000 ° C. for 3 hours in the air. It was 74 m < 2 > / g when the specific surface area by BET method was measured about the powder after this heat test. In addition, the alumina after the heat resistance test showed peaks of γ-Al 2 O 3 and θ-Al 2 O 3 and α-Al 2 O 3 according to XRD profile diffraction.
[0044]
In Table 1, the BET value (specific surface area) after the heat treatment of Examples 1 to 5 and Comparative Examples 1 and 2 is compared with the BET value (specific surface area) after the heat resistance test. Conventional examples 1 and 2 in the table are those obtained by subjecting commercially available alumina sol (conventional example 1) and commercially available boehmite (conventional 2) to 500 ° C x 3 hours of heat treatment. Each BET value when subjected to the same heat test as the example.
[0045]
[Table 1]
Figure 0004189483
[0046]
From the results of Table 1, it can be seen that the aluminas of Examples 1 to 5 have an extremely large specific surface area compared to the aluminas of Comparative Examples 1 and 2 and Conventional Examples 1 and 2. In addition, its heat resistance is good, and the rate of specific surface area reduction is low even at high temperatures. Also from FIG. 2, but not observed peaks of alpha-Al 2 O 3 alumina of Example 1 after heat resistance test, high temperature and alumina of Comparative Example 1 exist peaks of alpha-Al 2 O 3 It can be seen that the phase transformation to α-Al 2 O 3 proceeds.
[0047]
【The invention's effect】
As described above, according to the present invention, alumina having a large specific surface area and excellent heat resistance is provided, which is suitable for a carrier such as an automobile exhaust gas catalyst. Moreover, since the alumina according to the present invention can be produced by an industrially advantageous method, it is inexpensive and can be mass-produced.
[Brief description of the drawings]
FIG. 1 is a transmission electron micrograph of the same alumina particles according to the present invention taken with an inclined sample stage.
FIG. 2 shows an XRD profiling diffraction chart measured after heat-treating the alumina powder according to the present invention at 1000 ° C. for 3 hours in comparison with the comparative example.

Claims (4)

厚さ20nm以下のフイルム状の粒子が集合してなり、BET法による比表面積が350m2/g以上の粉体からなる触媒担体用アルミナ材料。An alumina material for a catalyst support, comprising film-like particles having a thickness of 20 nm or less, and a powder having a specific surface area of 350 m 2 / g or more by BET method. 該アルミナ材料は、大気雰囲気中1000℃×3時間の加熱後でも、BET法による比表面積120m2/g以上を保持する請求項1に記載のアルミナ材料。The alumina material according to claim 1, wherein the alumina material maintains a specific surface area of 120 m 2 / g or more by the BET method even after heating at 1000 ° C for 3 hours in an air atmosphere. 酸性のAl金属塩水溶液とアルカリ水溶液を液のpHが一定となるように反応させて、厚みが20nm以下のフイルム状の粒子の集合体からなるアルミニウム化合物を析出させ、この析出物を液から分離して水洗したあと、有機溶媒で洗浄して該析出物中の水分を有機溶媒で置換し、次いで有機溶媒を乾燥除去したうえ400〜1000℃の温度で加熱処理する請求項1に記載のアルミナ材料の製造法。 An acidic Al metal salt aqueous solution and an alkaline aqueous solution are reacted so that the pH of the solution is constant to precipitate an aluminum compound comprising an aggregate of film-like particles having a thickness of 20 nm or less, and the precipitate is separated from the solution. 2. The alumina according to claim 1, wherein the alumina is washed with water and then washed with an organic solvent to replace the water in the precipitate with the organic solvent, and then the organic solvent is dried and removed, followed by heat treatment at a temperature of 400 to 1000 ° C. Material manufacturing method. アルミニウム化合物は、液のpHが7〜12の範囲で一定となるように両反応液を反応させて析出させる請求項3に記載のアルミナ材料の製造法。The method for producing an alumina material according to claim 3, wherein the aluminum compound is precipitated by reacting both reaction liquids so that the pH of the liquid becomes constant in the range of 7-12 .
JP2002237255A 2002-08-16 2002-08-16 Alumina material for catalyst support Expired - Fee Related JP4189483B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002237255A JP4189483B2 (en) 2002-08-16 2002-08-16 Alumina material for catalyst support

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002237255A JP4189483B2 (en) 2002-08-16 2002-08-16 Alumina material for catalyst support

Publications (2)

Publication Number Publication Date
JP2004073998A JP2004073998A (en) 2004-03-11
JP4189483B2 true JP4189483B2 (en) 2008-12-03

Family

ID=32021068

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002237255A Expired - Fee Related JP4189483B2 (en) 2002-08-16 2002-08-16 Alumina material for catalyst support

Country Status (1)

Country Link
JP (1) JP4189483B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103736524B (en) * 2013-09-30 2016-06-01 四川蜀泰化工科技有限公司 The preparation method of hydrocarbon conversion catalyst carrier

Also Published As

Publication number Publication date
JP2004073998A (en) 2004-03-11

Similar Documents

Publication Publication Date Title
Aruna et al. Nanosize rutile titania particle synthesis viaa hydrothermal method without mineralizers
Gouma et al. Anatase‐to‐rutile transformation in titania powders
Yang et al. Hydrothermal synthesis of nanosized titania powders: influence of tetraalkyl ammonium hydroxides on particle characteristics
JP5066090B2 (en) Method of coating metal (M2) oxide ultrafine particles on the surface of metal (M1) oxide particles
US4898843A (en) Titanate powder and process for producing the same
KR20060132894A (en) Nano-structured particles with high thermal stability
CN1209789A (en) Nanostructured oxides and hydroxides and method of synthesis therefor
MXPA05010632A (en) Nanoporous ultrafine alpha-alumina powders and sol-gel process of preparing the same.
Eslami et al. Synthesis and characterization of CuO nanoparticles by the chemical liquid deposition method and investigation of its catalytic effect on the thermal decomposition of ammonium perchlorate
JP4399592B2 (en) Zirconium oxide crystal particles and production method thereof
JP2017506155A (en) TiO2-based catalyst precursor material, its production and its use
DJURICIC et al. Thermal stability of transition phases in zirconia-doped alumina
JP4281943B2 (en) Method for producing plate-like alumina particles
Susanti et al. Comparison of the morphology and structure of WO 3 nanomaterials synthesized by a sol-gel method followed by calcination or hydrothermal treatment
JPH0472774B2 (en)
JP2022530512A (en) Nanobarium titanate crystallite and its manufacturing method, barium titanate powder and its manufacturing method
JP4189483B2 (en) Alumina material for catalyst support
Darab et al. Continuous hydrothermal processing of nano-crystalline particulates for chemical-mechanical planarization
KR100407805B1 (en) Metal catalysts for production of carbon nano fiber/nano tube and preparation method of the same
JPH03141115A (en) Production of fine yttrium oxide powder
Djuričić et al. Preparation and properties of alumina-ceria nano-nano composites
JPH0925119A (en) Production of heat resistant transition alumina
JP5093647B2 (en) Method for producing metal oxide porous body having mesopores and micropores, metal oxide porous body having mesopores and micropores, and gas purification material using the same
Ong et al. Effects of Chemical Species on the Crystallization Behavior of a Sol‐Derived Zirconia Precursor
Behera et al. Studies on the Low-Temperature Synthesis of Fine α-Al 2 O 3 Powder by Precipitation Route

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050606

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070702

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070807

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071002

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080805

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080818

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080818

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080821

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080818

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110926

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120926

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130926

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees