JP4188897B2 - Virus infection / proliferation inhibitor - Google Patents
Virus infection / proliferation inhibitorInfo
- Publication number
- JP4188897B2 JP4188897B2 JP2004280262A JP2004280262A JP4188897B2 JP 4188897 B2 JP4188897 B2 JP 4188897B2 JP 2004280262 A JP2004280262 A JP 2004280262A JP 2004280262 A JP2004280262 A JP 2004280262A JP 4188897 B2 JP4188897 B2 JP 4188897B2
- Authority
- JP
- Japan
- Prior art keywords
- cys
- arg
- peptide
- ala
- lys
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 230000009385 viral infection Effects 0.000 title claims description 22
- 239000003112 inhibitor Substances 0.000 title description 6
- 230000005727 virus proliferation Effects 0.000 title description 4
- 108090000765 processed proteins & peptides Proteins 0.000 claims description 85
- 239000000126 substance Substances 0.000 claims description 26
- 208000036142 Viral infection Diseases 0.000 claims description 11
- 239000004480 active ingredient Substances 0.000 claims description 9
- 239000003966 growth inhibitor Substances 0.000 claims description 9
- 230000002829 reductive effect Effects 0.000 claims description 8
- 150000003839 salts Chemical class 0.000 claims description 5
- 241000283690 Bos taurus Species 0.000 description 32
- 210000004027 cell Anatomy 0.000 description 20
- 102000004196 processed proteins & peptides Human genes 0.000 description 19
- DTQVDTLACAAQTR-UHFFFAOYSA-N Trifluoroacetic acid Chemical compound OC(=O)C(F)(F)F DTQVDTLACAAQTR-UHFFFAOYSA-N 0.000 description 16
- 241000700605 Viruses Species 0.000 description 15
- 230000000840 anti-viral effect Effects 0.000 description 15
- 208000015181 infectious disease Diseases 0.000 description 14
- 238000000034 method Methods 0.000 description 13
- 230000000694 effects Effects 0.000 description 12
- 238000003786 synthesis reaction Methods 0.000 description 12
- 241000701022 Cytomegalovirus Species 0.000 description 11
- 230000015572 biosynthetic process Effects 0.000 description 9
- 238000004128 high performance liquid chromatography Methods 0.000 description 9
- 230000035755 proliferation Effects 0.000 description 9
- 239000011347 resin Substances 0.000 description 8
- 229920005989 resin Polymers 0.000 description 8
- 210000002966 serum Anatomy 0.000 description 7
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 6
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 6
- 241000725303 Human immunodeficiency virus Species 0.000 description 6
- 239000002609 medium Substances 0.000 description 6
- 239000000203 mixture Substances 0.000 description 6
- 239000002504 physiological saline solution Substances 0.000 description 6
- 210000002700 urine Anatomy 0.000 description 6
- 102000008133 Iron-Binding Proteins Human genes 0.000 description 5
- 108010035210 Iron-Binding Proteins Proteins 0.000 description 5
- 239000003443 antiviral agent Substances 0.000 description 5
- 210000004899 c-terminal region Anatomy 0.000 description 5
- 239000012634 fragment Substances 0.000 description 5
- 230000002401 inhibitory effect Effects 0.000 description 5
- 238000002347 injection Methods 0.000 description 5
- 239000007924 injection Substances 0.000 description 5
- 239000000243 solution Substances 0.000 description 5
- 241000712461 unidentified influenza virus Species 0.000 description 5
- -1 9-fluorenylmethyloxycarbonyl (Fmoc) group Chemical group 0.000 description 4
- 206010011831 Cytomegalovirus infection Diseases 0.000 description 4
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 4
- 241000699670 Mus sp. Species 0.000 description 4
- 150000001413 amino acids Chemical group 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 4
- 235000013601 eggs Nutrition 0.000 description 4
- 238000010828 elution Methods 0.000 description 4
- 125000006239 protecting group Chemical group 0.000 description 4
- 230000001954 sterilising effect Effects 0.000 description 4
- 238000004659 sterilization and disinfection Methods 0.000 description 4
- 238000011282 treatment Methods 0.000 description 4
- WFDIJRYMOXRFFG-UHFFFAOYSA-N Acetic anhydride Chemical compound CC(=O)OC(C)=O WFDIJRYMOXRFFG-UHFFFAOYSA-N 0.000 description 3
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 3
- 239000004471 Glycine Substances 0.000 description 3
- 102000007079 Peptide Fragments Human genes 0.000 description 3
- 108010033276 Peptide Fragments Proteins 0.000 description 3
- 230000000844 anti-bacterial effect Effects 0.000 description 3
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 3
- 230000035931 haemagglutination Effects 0.000 description 3
- 239000002953 phosphate buffered saline Substances 0.000 description 3
- 235000010482 polyoxyethylene sorbitan monooleate Nutrition 0.000 description 3
- 229920000053 polysorbate 80 Polymers 0.000 description 3
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 3
- 235000018102 proteins Nutrition 0.000 description 3
- 102000004169 proteins and genes Human genes 0.000 description 3
- 108090000623 proteins and genes Proteins 0.000 description 3
- 239000000523 sample Substances 0.000 description 3
- 239000000600 sorbitol Substances 0.000 description 3
- 230000003612 virological effect Effects 0.000 description 3
- VYMPLPIFKRHAAC-UHFFFAOYSA-N 1,2-ethanedithiol Chemical compound SCCS VYMPLPIFKRHAAC-UHFFFAOYSA-N 0.000 description 2
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 2
- 108010026206 Conalbumin Proteins 0.000 description 2
- 241000287828 Gallus gallus Species 0.000 description 2
- 208000031886 HIV Infections Diseases 0.000 description 2
- 208000037357 HIV infectious disease Diseases 0.000 description 2
- 241000699666 Mus <mouse, genus> Species 0.000 description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 2
- 239000004793 Polystyrene Substances 0.000 description 2
- 239000012980 RPMI-1640 medium Substances 0.000 description 2
- PBCJIPOGFJYBJE-UHFFFAOYSA-N acetonitrile;hydrate Chemical compound O.CC#N PBCJIPOGFJYBJE-UHFFFAOYSA-N 0.000 description 2
- 230000037396 body weight Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 201000010099 disease Diseases 0.000 description 2
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 239000012894 fetal calf serum Substances 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 235000013305 food Nutrition 0.000 description 2
- 230000009422 growth inhibiting effect Effects 0.000 description 2
- 208000033519 human immunodeficiency virus infectious disease Diseases 0.000 description 2
- 238000001727 in vivo Methods 0.000 description 2
- 238000011534 incubation Methods 0.000 description 2
- 229920002223 polystyrene Polymers 0.000 description 2
- 230000003449 preventive effect Effects 0.000 description 2
- 239000011550 stock solution Substances 0.000 description 2
- 125000005931 tert-butyloxycarbonyl group Chemical group [H]C([H])([H])C(OC(*)=O)(C([H])([H])[H])C([H])([H])[H] 0.000 description 2
- HNKJADCVZUBCPG-UHFFFAOYSA-N thioanisole Chemical compound CSC1=CC=CC=C1 HNKJADCVZUBCPG-UHFFFAOYSA-N 0.000 description 2
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 1
- 208000030507 AIDS Diseases 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- 101000798100 Bos taurus Lactotransferrin Proteins 0.000 description 1
- 101000766308 Bos taurus Serotransferrin Proteins 0.000 description 1
- 102000014914 Carrier Proteins Human genes 0.000 description 1
- 108091006905 Human Serum Albumin Proteins 0.000 description 1
- 102000008100 Human Serum Albumin Human genes 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 1
- 206010020751 Hypersensitivity Diseases 0.000 description 1
- 241001500351 Influenzavirus A Species 0.000 description 1
- 108010063045 Lactoferrin Proteins 0.000 description 1
- 102100032241 Lactotransferrin Human genes 0.000 description 1
- 102000014171 Milk Proteins Human genes 0.000 description 1
- 108010011756 Milk Proteins Proteins 0.000 description 1
- NIPNSKYNPDTRPC-UHFFFAOYSA-N N-[2-oxo-2-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(CNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 NIPNSKYNPDTRPC-UHFFFAOYSA-N 0.000 description 1
- 108091005804 Peptidases Proteins 0.000 description 1
- 239000004365 Protease Substances 0.000 description 1
- 102100037486 Reverse transcriptase/ribonuclease H Human genes 0.000 description 1
- 210000001744 T-lymphocyte Anatomy 0.000 description 1
- 102000004338 Transferrin Human genes 0.000 description 1
- 108090000901 Transferrin Proteins 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000001154 acute effect Effects 0.000 description 1
- 238000003556 assay Methods 0.000 description 1
- 108091008324 binding proteins Proteins 0.000 description 1
- 229940072440 bovine lactoferrin Drugs 0.000 description 1
- 238000004113 cell culture Methods 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 238000002512 chemotherapy Methods 0.000 description 1
- 210000000991 chicken egg Anatomy 0.000 description 1
- 238000003776 cleavage reaction Methods 0.000 description 1
- 238000006482 condensation reaction Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 239000012228 culture supernatant Substances 0.000 description 1
- 238000012258 culturing Methods 0.000 description 1
- 239000007857 degradation product Substances 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- MGHPNCMVUAKAIE-UHFFFAOYSA-N diphenylmethanamine Chemical compound C=1C=CC=CC=1C(N)C1=CC=CC=C1 MGHPNCMVUAKAIE-UHFFFAOYSA-N 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 210000003743 erythrocyte Anatomy 0.000 description 1
- 230000001605 fetal effect Effects 0.000 description 1
- 210000002950 fibroblast Anatomy 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000010353 genetic engineering Methods 0.000 description 1
- 230000009036 growth inhibition Effects 0.000 description 1
- 206010022000 influenza Diseases 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 238000011081 inoculation Methods 0.000 description 1
- 239000011630 iodine Substances 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- CSSYQJWUGATIHM-IKGCZBKSSA-N l-phenylalanyl-l-lysyl-l-cysteinyl-l-arginyl-l-arginyl-l-tryptophyl-l-glutaminyl-l-tryptophyl-l-arginyl-l-methionyl-l-lysyl-l-lysyl-l-leucylglycyl-l-alanyl-l-prolyl-l-seryl-l-isoleucyl-l-threonyl-l-cysteinyl-l-valyl-l-arginyl-l-arginyl-l-alanyl-l-phenylal Chemical compound C([C@H](N)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CS)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(C)C)C(=O)NCC(=O)N[C@@H](C)C(=O)N1CCC[C@H]1C(=O)N[C@@H](CO)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CS)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](C)C(=O)N[C@@H](CC=1C=CC=CC=1)C(O)=O)C1=CC=CC=C1 CSSYQJWUGATIHM-IKGCZBKSSA-N 0.000 description 1
- 229940078795 lactoferrin Drugs 0.000 description 1
- 235000021242 lactoferrin Nutrition 0.000 description 1
- 210000004698 lymphocyte Anatomy 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 235000013336 milk Nutrition 0.000 description 1
- 239000008267 milk Substances 0.000 description 1
- 210000004080 milk Anatomy 0.000 description 1
- 235000021239 milk protein Nutrition 0.000 description 1
- 230000035772 mutation Effects 0.000 description 1
- 239000013642 negative control Substances 0.000 description 1
- 244000309711 non-enveloped viruses Species 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 238000010647 peptide synthesis reaction Methods 0.000 description 1
- 239000000546 pharmaceutical excipient Substances 0.000 description 1
- 239000013641 positive control Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000002062 proliferating effect Effects 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 102000005962 receptors Human genes 0.000 description 1
- 108020003175 receptors Proteins 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 239000012488 sample solution Substances 0.000 description 1
- 230000007017 scission Effects 0.000 description 1
- 150000003384 small molecules Chemical group 0.000 description 1
- 238000010532 solid phase synthesis reaction Methods 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 239000000829 suppository Substances 0.000 description 1
- 230000004083 survival effect Effects 0.000 description 1
- 208000024891 symptom Diseases 0.000 description 1
- 230000009885 systemic effect Effects 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 238000002560 therapeutic procedure Methods 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 239000012581 transferrin Substances 0.000 description 1
- 238000002054 transplantation Methods 0.000 description 1
- 238000002255 vaccination Methods 0.000 description 1
Landscapes
- Peptides Or Proteins (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
Description
本発明は、副作用の少ないペプチド性のウィルス感染・増殖抑制剤に関する。 The present invention relates to a peptidic viral infection / proliferation inhibitor with few side effects.
ウィルス感染による疾患の克服のために、これまで多くの努力がなされてきた。しかし近年、世界的にも猛威をふるっているヒト免疫不全ウィルス(HIV)や毎年流行するインフルエンザウィルスのようにいまだ有効な予防法や治療法の無いものもある。ウィルス感染による疾患に対する治療法として抗ウィルス剤による化学療法がある。しかし現在のところ、全身的に投与され明白な効果を示す抗ウィルス剤はほとんど無い。その理由として、ウィルスは細胞内で増殖し、増殖のための機能をほとんど細胞に依存している。つまりウィルスは感染後、その増殖を治療すべき人体の構成細胞自体の増殖機能を利用して行っている。従ってウィルスの増殖を抑える化学物質の多くは細胞にも作用して毒性を示すからである。抗ウィルス剤の問題点としては上述のように薬剤の選択毒性が低いこと以外にもウィルス感染症の特徴から由来するいくつかの問題点がある。特に急性・全身性のウィルス感染症では、症状が現れる時期がウィルスの体内増殖のピークが過ぎてしまった後なので、むしろウィルスの感染を阻止し増殖を抑制する物質が求められている。この様なウィルスの感染を防御する方法としてワクチンの予防接種による方法があるが、この方法はしばしばアレルギー反応や種々の副作用を示すことが知られており、しかもウィルスの変異に対しては対処できないのが現実である。 Many efforts have been made to overcome diseases caused by viral infection. However, in recent years, there are those that still have no effective preventive or therapeutic methods, such as the human immunodeficiency virus (HIV), which is prevalent in the world, and the influenza virus that is prevalent every year. Chemotherapy with antiviral drugs is a treatment for diseases caused by viral infection. However, at present, there are few antiviral agents that are administered systemically and show a clear effect. The reason for this is that the virus grows inside the cell, and its function for growth is almost dependent on the cell. In other words, after infection, the virus makes use of the proliferation function of the constituent cells of the human body whose proliferation should be treated. Therefore, many chemical substances that suppress the growth of viruses also act on cells and are toxic. Problems with antiviral agents include several problems derived from the characteristics of viral infections other than the low selective toxicity of drugs as described above. Particularly in acute and systemic viral infections, since the time when symptoms appear after the peak of viral in vivo growth has passed, there is a need for substances that rather prevent viral infection and suppress the growth. There is a method of vaccination as a method to protect against such viral infections, but this method is often known to show allergic reactions and various side effects, and it cannot cope with viral mutations. Is the reality.
この様な状況において、本発明者らは、ラクトフェリン(以下、LFと呼ぶこともある。)、トランスフェリン、オボトランスフェリンなど鉄結合能を有するタンパク質が、インフルエンザウィルスやサイトメガロウィルス(CMV)の感染・増殖を抑制することを見出し特許を出願した(例えば、特許文献1参照。)。LFは、乳中に分泌される鉄結合性のタンパク質で抗菌活性があることが知られている。LFは、ヒトおよびウシ由来のものについて詳細な研究が行われており、ヒトLF、ウシLFともその全アミノ酸配列がすでに決定されている(例えば、非特許文献1及び2参照。)。また、LF等の乳タンパク質を有効成分とする抗ウィルス剤が開示されており、この中にLFが、外被性ウィルスおよび非外被性ウィルスに対して有効であることが記載されている(例えば、特許文献2参照。)。また最近、本発明者らは、HIVに対するこれら鉄結合性タンパク質の感染・増殖抑制効果についても確認し、LFを有効成分とするHIV感染・増殖抑制剤について特許出願を行った(例えば、特許文献3参照。)。 Under such circumstances, the present inventors have found that proteins having iron-binding ability such as lactoferrin (hereinafter sometimes referred to as LF), transferrin, ovotransferrin, etc. are infected with influenza virus or cytomegalovirus (CMV). A patent application was filed (for example, refer to Patent Document 1). LF is an iron-binding protein secreted into milk and is known to have antibacterial activity. LF has been studied in detail for human and bovine origin, and the entire amino acid sequence of human LF and bovine LF has already been determined (see, for example, Non-Patent Documents 1 and 2). In addition, an antiviral agent containing milk protein such as LF as an active ingredient is disclosed, and it is described therein that LF is effective against enveloped viruses and non-enveloped viruses ( For example, see Patent Document 2.) Recently, the present inventors also confirmed the infection / proliferation inhibitory effect of these iron-binding proteins on HIV and filed a patent application for an HIV infection / proliferation inhibitor containing LF as an active ingredient (for example, patent literature 3).
この様に、LFなどの鉄結合性タンパク質はウィルスの感染・増殖抑制効果を持つことが次第に明らかとなり、抗ウィルス剤として、その実用化が期待されてきた。これらタンパク質が実際に感染・増殖抑制剤として用いられるためには、(i)体内に投与した場合、抗原性の点で問題が無いこと、(ii)大量に供給できること、が必要である。これらの鉄結合性タンパク質のうち、ウシLFやウシトランスフェリン、又は鶏卵から得られるオボトランスフェリンは大量に供給できるが、人体内に投与した場合抗原性を示すという問題がある。一方、ヒトLFは抗原性に関しては問題無いが、大量に供給することは困難である。
この様な問題を解決するために、本発明者らはLF由来のペプチドフラグメントのうち、次に示す〔化4〕および〔化5〕が抗ウィルス活性を持つことを見出し特許出願を行った(例えば、特許文献4参照。)。
Thus, iron binding proteins such as LF have gradually been found to have an effect of suppressing infection and proliferation of viruses, and their practical application as antiviral agents has been expected. In order for these proteins to be actually used as infection / proliferation inhibitors, it is necessary that (i) when administered in the body, there is no problem in antigenicity, and (ii) they can be supplied in large quantities. Among these iron-binding proteins, bovine LF, bovine transferrin, or ovotransferrin obtained from chicken eggs can be supplied in large quantities, but there is a problem that it exhibits antigenicity when administered into the human body. On the other hand, human LF has no problem regarding antigenicity, but is difficult to supply in large quantities.
In order to solve such problems, the present inventors have found that the following [Chemical 4] and [Chemical 5] among the LF-derived peptide fragments have antiviral activity and filed a patent application ( For example, see Patent Document 4.)
[化4]
Cys-Phe-Gln-Trp-Gln-Arg-Asn-Met-Arg-Lys-Val-Arg-Gly-Pro-Pro-Val-Ser-Cys
(ただし、式中Cys は還元型でもよく、またペプチド内の2個のCysが−S−S−結合して酸化型となってもよい。)
[Chemical 4]
Cys-Phe-Gln-Trp-Gln-Arg-Asn-Met-Arg-Lys-Val-Arg-Gly-Pro-Pro-Val-Ser-Cys
(However, in the formula, Cys may be a reduced form, or two Cys in a peptide may be -SS-bonded to form an oxidized form.)
[化5]
Cys-Arg-Arg-Trp-Gln-Trp-Arg-Met-Lys-Lys-Leu-Gly-Ala-Pro-Ser-Ile-Thr-Cys
(ただし、式中Cys は還元型でもよく、またペプチド内の2個のCysが−S−S−結合して酸化型となってもよい。)
[Chemical 5]
Cys-Arg-Arg-Trp-Gln-Trp-Arg-Met-Lys-Lys-Leu-Gly-Ala-Pro-Ser-Ile-Thr-Cys
(However, in the formula, Cys may be a reduced form, or two Cys in a peptide may be -SS-bonded to form an oxidized form.)
これらのペプチドはそれぞれヒトLFの20〜37残基およびウシLFの19〜36残基に相当するもので、分子内のS−S結合は抗ウィルス活性に必須ではなかった。これらのペプチドは天然のLFに比べて極めて鎖長が短いため、化学合成や遺伝子操作による合成により容易に供給することができる。またマウスを用いた感染防御試験においては、CMVの感染を完全に抑制するのに必要な〔化4〕および〔化5〕のペプチド量は0.1g/体重kgであった。 These peptides correspond to 20-37 residues of human LF and 19-36 residues of bovine LF, respectively, and intramolecular S—S bonds were not essential for antiviral activity. Since these peptides have an extremely short chain length compared to natural LF, they can be easily supplied by chemical synthesis or synthesis by genetic manipulation. In addition, in the infection protection test using mice, the amount of peptide of [Chemical Formula 4] and [Chemical Formula 5] necessary for completely suppressing the CMV infection was 0.1 g / kg body weight.
LFフラグメントに関するこれまでの知見としては、ヒトLFの1〜50残基部分がLF分子の受容体結合領域であるとする報告(例えば、非特許文献3参照。)、ヒトLFの4〜52に相当するペプチドがLFとリンパ球の結合を阻害したという報告(例えば、非特許文献4参照。)、ヒトLFの1〜47残基に相当するペプチドおよびウシLFの17〜41残基に相当するペプチドが抗菌活性をもつという報告(例えば、非特許文献5参照。)などがあるが、抗ウィルス活性についての記載は無い。またこの抗菌活性に関して、ヒトLFの19〜29残基あるいはウシLF18〜28残基部分を含むペプチド(例えば、特許文献5参照。)、また、ヒトLFの21〜26残基あるいはウシLF20〜24残基部分を含むペプチド(例えば、特許文献6参照。)、ウシLFの21〜25残基あるいはウシLF25〜29残基部分を含むペプチド(例えば、特許文献7参照。)、ウシLFの20〜24残基部分を含むペプチド(例えば、特許文献8参照。)についてそれぞれ記載されているが、いずれも本発明の抗ウィルス効果に必須な部位とは異なっている。
本発明は、体内に投与した場合に、抗原性の点で問題が無く、大量に供給できるLFフラグメントよりなる、強力な抗ウィルス活性を有するウィルス感染・増殖抑制剤を提供することを課題とする。 An object of the present invention is to provide a virus infection / proliferation inhibitor having a strong antiviral activity, which comprises an LF fragment which can be supplied in a large amount without any problem in antigenicity when administered into the body. .
本発明者らは、従来のLFフラグメントよりもさらに強力な抗ウイルス活性を有するLFフラグメントを得る目的で、いくつかのLFフラグメントを化学的に合成し、その抗ウィルス活性を検討することで、ウシLFの抗ウィルス活性に関する必須部分を検索した。その結果、ウシLFでは次の〔化6〕で示される24〜39残基部分が抗ウィルス活性に必須であることを見出した。なお以後のLFペプチドの残基の番号は天然のウシラクトフェリンのアミノ酸配列に付与された番号を用いる。 In order to obtain an LF fragment having a stronger antiviral activity than the conventional LF fragment, the present inventors chemically synthesized several LF fragments and examined their antiviral activity, The essential part regarding the antiviral activity of LF was searched. As a result, in bovine LF, the 24-39 residue part represented by the following [Chemical Formula 6] was found to be essential for antiviral activity. In addition, the number assigned to the amino acid sequence of natural bovine lactoferrin is used as the residue number of the LF peptide thereafter.
[化6]
Trp-Arg-Met-Lys-Lys-Leu-Gly-Ala-Pro-Ser-Ile-Thr-Cys-Val-Arg-Arg
[Chemical 6]
Trp-Arg-Met-Lys-Lys-Leu-Gly-Ala-Pro-Ser-Ile-Thr-Cys-Val-Arg-Arg
本発明者らは、この活性部分を含み、さらに高活性な抗ウィルスペプチドを開発する目的で、〔化6〕に示したペプチドを中心にN端側およびC端側にペプチド鎖を延長したところ、ウシLFでは1〜52残基〔化7〕に相当する部分および24〜51残基〔化8〕に相当する部分がこれまで知られていたLF由来ペプチドに比べて顕著に高活性であることを見出した。
For the purpose of developing a highly active antiviral peptide containing this active moiety, the present inventors have extended the peptide chain to the N-terminal side and the C-terminal side with the peptide shown in [Chem. 6] as the center. , at a significantly higher activity than LF derived peptide corresponding parts have been known heretofore to the part and 24-51 residues corresponding to the bovine LF 1 to 5 2 residues [Formula 7] [Chemical 8] I found out.
[化7]
Ala-Pro-Arg-Lys-Asn-Val-Arg-Trp-Cys-Thr-Ile-Ser-Gln-Pro-Asp-Ser-Phe-Lys-Cys-Arg-Arg-Trp-Gln-Trp-Arg-Met-Lys-Lys-Leu-Gly-Ala-Pro-Ser-Ile-Thr-Cys-Val-Arg-Arg-Ala-Phe-Ala-Leu-Glu-Cys-Ile-Arg-Ala-Ile-Ala-Glu-Lys
[Chemical 7]
Ala-Pro-Arg-Lys-Asn-Val-Arg-Trp-Cys-Thr-Ile-Ser-Gln-Pro-Asp-Ser-Phe-Lys-Cys-Arg-Arg-Trp-Gln-Trp-Arg- Met-Lys-Lys-Leu-Gly-Ala-Pro-Ser-Ile-Thr-Cys-Val-Arg-Arg-Ala-Phe-Ala-Leu-Glu-Cys-Ile-Arg-Ala-Ile-Ala- Glu-Lys
[化8]
Trp-Arg-Met-Lys-Lys-Leu-Gly-Ala-Pro-Ser-Ile-Thr-Cys-Val-Arg-Arg-Ala-Phe-Ala-Leu-Glu-Cys-Ile-Arg-Ala-Ile-Ala-Glu
[Chemical 8]
Trp-Arg-Met-Lys-Lys-Leu-Gly-Ala-Pro-Ser-Ile-Thr-Cys-Val-Arg-Arg-Ala-Phe-Ala-Leu-Glu-Cys-Ile-Arg-Ala- Ile-Ala-Glu
また、これらのペプチドフラグメントのうち〔化7〕は、分子内に2つのS−S結合をもつことができるが、このS−S結合はウイルス活性の発現には必須ではなく、S−S結合は存在していても、存在していなくとも良い。
従って、〔化7〕のCys は還元型であってもあるいは相互にS−S結合して酸化型になってもよい。
Of these peptide fragments, [Chemical Formula 7] can have two SS bonds in the molecule, but this SS bond is not essential for the expression of viral activity. May or may not exist.
Therefore, Cys in [Chemical Formula 7] may be in a reduced form or may be in an oxidized form by S—S bond with each other.
本発明の実施により、ウィルス感染・増殖抑制剤が提供される。
本発明によるウィルス感染・増殖阻止作用のある組成物の作用効果を要約すると次のとおりである。
(1)ウィルスの感染を防ぐことができ、また、既感染者に対しては、体内でさらにウィルスが増殖して感染細胞が増加することを防ぐことができる。
(2)通常食品として摂取している成分を有効成分とする組成であるため、投与することによる副作用の心配が少ない。
(3)低分子であるため、LFなどの結合性タンパク質に比べ化学合成法などで比較的容易にしかも大量に調製できる。ゆえに特定の患者の治療に使用が限定されることがなく、広くウィルスの感染・増殖を予防することもできる。
本発明のウィルス感染・増殖抑制剤は、インフルエンザあるいはエイズの予防または治療や臓器移植の際のサイトメガロウィルス感染防御に有用である。
By carrying out the present invention, a virus infection / growth inhibitor is provided.
The effects of the composition having a virus infection / growth inhibitory action according to the present invention are summarized as follows.
(1) It is possible to prevent virus infection, and for an already infected person, it is possible to prevent the virus from further proliferating in the body and increase the number of infected cells.
(2) Since it is a composition having an active ingredient as an ingredient that is usually ingested as a food, there is little concern about side effects due to administration.
(3) Since it is a small molecule, it can be prepared relatively easily and in a large amount by a chemical synthesis method or the like as compared with binding proteins such as LF. Therefore, the use is not limited to treatment of a specific patient, and it is possible to widely prevent infection and proliferation of viruses.
The virus infection / growth inhibitor of the present invention is useful for the prevention or treatment of influenza or AIDS and the protection against cytomegalovirus infection during organ transplantation.
本発明は、次の〔化9〕で表されるペプチドを有効成分とするウィルス感染・増殖抑制剤に関する。
また、このペプチドは薬理的に許容される塩の形態であってもよい。
The present invention relates to a viral infection and proliferation inhibitor containing, as an active ingredient, represented Lupe peptide by the following formula 9.
The peptide may be in the form of a pharmacologically acceptable salt.
[化9]
Trp-Arg-Met-Lys-Lys-Leu-Gly-Ala-Pro-Ser-Ile-Thr-Cys-Val-Arg-Arg
[Chemical 9]
T rp-Arg-Met-Lys-Lys-Leu-Gly-Ala-Pro-Ser-Ile-Thr-Cys-Val-Arg-Ar g
また〔化9〕に示す配列を基にN末端側およびC末端側にペプチド鎖を延長したペプチドを有効成分とすることができる。このようなペプチドとしては、例えば、前記した、〔化7〕、〔化8〕に示すペプチドが例示される。さらにこれらの薬理的に許容される塩、例えば塩酸塩、酢酸塩なども用いることができる。〔化9〕に示すペプチドは、ウシLFの24〜39残基に相当する配列であり、前述のように本発明における抗ウィルス活性に必須な領域である。以下本発明のウィルス感染・増殖抑制剤中の有効成分のLF由来のアミノ酸配列を含むペプチドは、ウシLF(24−51)のようにLF中のアミノ酸配列の番号で記載する。
本発明のペプチドを得るためには、通常の化学合成による方法、LFのプロテアーゼ分解物から単離する方法、遺伝子組み換えによる方法などいずれによっても良い。さらに、市販のペプチドシンセサイザー等の合成装置を用いて直鎖ペプチドを得た後、通常の方法でS−S結合を形成させることもできるし、S−S結合を形成させなくても良い。
Further, a peptide obtained by extending the peptide chain to the N-terminal side and C-terminal side based on the sequence shown in [Chemical 9] can be used as an active ingredient. Examples of such peptides include the peptides shown in [Chemical Formula 7] and [Chemical Formula 8] described above. Furthermore, pharmacologically acceptable salts thereof such as hydrochloride and acetate can also be used. The peptide represented by [Chemical 9] is a sequence corresponding to residues 24 to 39 of bovine LF, and is a region essential for antiviral activity in the present invention as described above. Hereinafter, a peptide containing an amino acid sequence derived from LF as an active ingredient in the virus infection / growth inhibitor of the present invention is described by the number of the amino acid sequence in LF, such as bovine LF (24-51).
In order to obtain the peptide of the present invention, any of ordinary chemical synthesis, isolation from LF protease degradation products, genetic recombination, etc. may be used. Furthermore, after obtaining a linear peptide using a commercially available synthesis apparatus such as a peptide synthesizer, an SS bond may be formed by a usual method, or an SS bond may not be formed.
これらのペプチドまたはペプチド誘導体は単独もしくは賦型剤、安定剤を添加して製剤化することができる。本発明のウィルス感染・増殖抑制剤は、経口、注射、座薬として投与することができる。通常は、成人1日あたり0.1〜1.0gを投与することにより効果を示す。またこれらのペプチドは、従来から食品素材として用いられているタンパク質の一部なので安全性の面でも問題無い。特にウシ由来のペプチドフラグメントは、その抗原性が低いため実用上好ましい。 These peptides or peptide derivatives can be formulated singly or by adding an excipient or stabilizer. The viral infection / growth inhibitor of the present invention can be administered orally, as an injection, or as a suppository. Usually, the effect is shown by administering 0.1 to 1.0 g per day for an adult. Moreover, since these peptides are part of proteins conventionally used as food materials, there is no problem in terms of safety. In particular, bovine-derived peptide fragments are preferred in practice because of their low antigenicity.
以下に本発明によるウィルス感染・増殖抑制剤について実施例により詳細に説明する。なお、合成は、泉谷ら著「ペプチド合成の基礎と実験」(1985年丸善刊)p194-233に記載の方法に従い固相合成法にて行った。 The virus infection / growth inhibitor according to the present invention will be described in detail below with reference to examples. The synthesis was carried out by solid phase synthesis according to the method described in Izumiya et al., “Basics and Experiments of Peptide Synthesis” (1985 Maruzen) p194-233.
ウシLF(24−39)の合成
ペプチドシンセサイザー431A(ABI社)により、パラヒドロキシメチルフェノキシメチルポリスチレン(HMP)樹脂を用い、9−フルオレニルメチルオキシカルボニル(Fmoc)基をアミノ末端の保護基としてC末端側から遂次ペプチド鎖を延長することにより0.25mmolスケールで直鎖保護ペプチドを合成した。得られたHMP樹脂結合保護ペプチド1340mgをフェノール、1,2−エタンジチオール、チオアニソール存在下、トリフルオロ酢酸(TFA)によりペプチドのHMP樹脂からの切り離しと保護基の除去を同時に行った。減圧濃縮によりTFAを除去した後、エチルエーテルで粗ペプチドを結晶化させ、これを5%酢酸に溶解し凍結乾燥を行った。得られた直鎖粗ペプチド543mgは、HPLC〔カラム:オクタデシル4PW(21.5×150mm,東ソー社),溶出:0.1%TFAを含む水−アセトニトリルにてグラジエント溶出〕により精製し直鎖精製ペプチド367mgを得た。得られた精製ペプチドの純度は、HPLCによる分析の結果90%であった。
Synthesis of bovine LF (24-39) Using peptide synthesizer 431A (ABI), parahydroxymethylphenoxymethyl polystyrene (HMP) resin was used, and the 9-fluorenylmethyloxycarbonyl (Fmoc) group was used as the amino-terminal protecting group. A linear protected peptide was synthesized on a 0.25 mmol scale by extending the sequential peptide chain from the C-terminal side. In the presence of phenol, 1,2-ethanedithiol, and thioanisole, 1340 mg of the obtained HMP resin-bound protected peptide was simultaneously cleaved from the HMP resin and removed with a trifluoroacetic acid (TFA). After removing TFA by concentration under reduced pressure, the crude peptide was crystallized with ethyl ether, dissolved in 5% acetic acid, and lyophilized. 543 mg of the obtained linear crude peptide was purified by HPLC [column: octadecyl 4PW (21.5 × 150 mm, Tosoh Corp.), elution: gradient elution with water-acetonitrile containing 0.1% TFA]. 367 mg of peptide was obtained. The purity of the obtained purified peptide was 90% as a result of analysis by HPLC.
ウシLF(24−51)の合成
実施例1と同様の方法で合成し、純度93%のウシLF(24−51)の鎖状ペプチド432mgを得た。
Synthesis of bovine LF (24-51) Synthesis was carried out in the same manner as in Example 1 to obtain 432 mg of a chain peptide of bovine LF (24-51) having a purity of 93%.
N−アセチル−ウシLF(24−39)−アミド(Ac−ウシLF(24−39)−NH2)の合成
ペプチドシンセサイザー431A(ABI社)によりベンズヒドリルアミン樹脂を用い第3ブチルオキシカルボニル(t−Boc)基をアミノ末端の保護基としてC末端側から遂次ペプチド鎖を延長することにより0.25mmolスケールで合成を行った。縮合反応をすべて終えた後、アミノ末端のt−Boc基を除去し、無水酢酸でこれをアセチル化した。HF処理によりペプチドの樹脂からの切り離しと保護基の除去を同時に行った。減圧濃縮によりHFを除去し目的の粗Ac−ウシLF(24−39)−NH2を得た。この粗ペプチドを実施例1と同様にしてHPLCで精製し、純度91%の精製ペプチド42mgを得た。
Synthesis of N-acetyl-bovine LF (24-39) -amide (Ac-bovine LF (24-39) -NH 2 ) Using benzhydrylamine resin with peptide synthesizer 431A (ABI), tert-butyloxycarbonyl (t Synthesis was performed on a 0.25 mmol scale by sequentially extending the peptide chain from the C-terminal side using the -Boc) group as a protective group at the amino terminal. After all the condensation reactions were completed, the amino terminal t-Boc group was removed, and this was acetylated with acetic anhydride. Cleavage of the peptide from the resin and removal of the protecting group were performed simultaneously by HF treatment. Reduced pressure to remove the HF to give the crude Ac- bovine LF (24-39) -NH 2 purposes Concentration. This crude peptide was purified by HPLC in the same manner as in Example 1 to obtain 42 mg of a purified peptide having a purity of 91%.
ウシLF(1−52)、〔19Cys(Acm),36Cys(Acm) 〕ウシLF(1−52)および〔9CysSH,19Cys(Acm),36Cys(Acm),45CysSH〕ウシLF(1−52)の合成
ペプチドシンセサイザー431A(ABI社)により、パラヒドロキシメチルフェノキシメチルポリスチレン(HMP)樹脂を用い、9−フルオレニルメチルオキシカルボニル(Fmoc)基をアミノ末端の保護基とし、19Cys および36Cys のSH基をアセトアミドメチル(Acm)基で保護してC末端側から遂次ペプチド鎖を延長することにより0.25mmolスケールで直鎖保護ペプチドを合成した。得られたHMP樹脂結合保護ペプチド2767mgをフェノール、1,2−エタンジチオール、チオアニソール存在下、トリフルオロ酢酸(TFA)によりペプチドのHMP樹脂からの切り離しと保護基の除去を同時に行った。減圧濃縮によりTFAを除去した後、エチルエーテルで粗ペプチドを結晶化させ、これを5%酢酸に溶解し凍結乾燥を行った。得られた直鎖粗ペプチド865mgは、HPLC〔カラム:オクタデシル4PW(21.5×150mm,東ソー社),溶出:0.1%TFAを含む水−アセトニトリルにてグラジエント溶出〕により精製し、直鎖精製ペプチド〔9CysSH,19Cys( Acm),36Cys(Acm),45CysSH 〕ウシLF(1−52)589mgを得た。得られた精製ペプチドの純度は、HPLCによる分析の結果95%であった。
このペプチドをフェリシアン化カリウム存在下空気酸化により9Cys,45CysにS−S結合を形成させ、さらにHPLCにて精製することで、純度88%の〔19Cys(Acm),36Cys(Acm) 〕ウシLF(1−52)467mgを得た。
さらにこのペプチドをヨウ素処理しAcm基の除去とS−S結合の形成を同時に行い、HPLCで精製することでウシLF(1−52)101mgを得た。HPLCによる分析の結果、このペプチドの純度は87%であった。
Bovine LF (1-5 2 ), [ 19 Cys (Acm), 36 Cys (Acm)] Bovine LF (1-5 2 ) and [ 9 CysSH, 19 Cys (Acm), 36 Cys (Acm), 45 CysSH] Synthesis of bovine LF (1-5 2 ) Using peptide synthesizer 431A (ABI), parahydroxymethylphenoxymethyl polystyrene (HMP) resin was used, and the 9-fluorenylmethyloxycarbonyl (Fmoc) group was protected at the amino terminal. A linear protected peptide was synthesized on a 0.25 mmol scale by protecting the 19 Cys and 36 Cys SH groups with an acetamidomethyl (Acm) group and extending the sequential peptide chain from the C-terminal side. In the presence of phenol, 1,2-ethanedithiol and thioanisole, 2767 mg of the obtained HMP resin-bound protected peptide was simultaneously cleaved from the HMP resin and removed from the protecting group with trifluoroacetic acid (TFA). After removing TFA by concentration under reduced pressure, the crude peptide was crystallized with ethyl ether, dissolved in 5% acetic acid, and lyophilized. The obtained linear crude peptide (865 mg) was purified by HPLC [column: octadecyl 4PW (21.5 × 150 mm, Tosoh Corp.), elution: gradient elution with water-acetonitrile containing 0.1% TFA]. purified peptide [9 CysSH, 19 Cys (Acm) , 36 Cys (Acm), 45 CysSH ] to give the bovine LF (1-5 2) 589mg. The purity of the obtained purified peptide was 95% as a result of analysis by HPLC.
This peptide was oxidized by air in the presence of potassium ferricyanide to form an S—S bond at 9 Cys, 45 Cys, and further purified by HPLC to obtain a purity of 88% [ 19 Cys (Acm), 36 Cys (Acm)] 467 mg of bovine LF (1-5 2 ) was obtained.
Further, this peptide was treated with iodine to simultaneously remove the Acm group and form an S—S bond, and purified by HPLC to obtain 101 mg of bovine LF (1-5 2 ). As a result of analysis by HPLC, the purity of this peptide was 87%.
ウィルス感染・増殖抑制剤の製造
上記実施例1〜4の方法により得たペプチドの注射製剤の生産例を示す。
(1)ウシLF(24−39) 4g
ツイーン80 2mg
グリシン 2g
上記組成を注射用生理食塩水に溶解し、全量を20mlに調製し、滅菌後、バイアル瓶に2ml ずつ分注し、凍結乾燥密封した。
(2)ウシLF(24−51) 4g
ツイーン80 1mg
ソルビトール 2g
グリシン 1g
上記組成を注射用生理食塩水に溶解し、全量を20mlに調製し、滅菌後、バイアル瓶に2ml ずつ分注し、凍結乾燥密封した。
Production of virus infection / growth inhibitor An example of producing a peptide injection preparation obtained by the methods of Examples 1 to 4 is shown.
(1) Bovine LF (24-39) 4g
Tween 80 2mg
Glycine 2g
The above composition was dissolved in physiological saline for injection, and the total volume was adjusted to 20 ml. After sterilization, 2 ml was dispensed into vials, and freeze-dried and sealed.
(2) Bovine LF (24-51) 4g
Tween 80 1mg
Sorbitol 2g
Glycine 1g
The above composition was dissolved in physiological saline for injection, and the total volume was adjusted to 20 ml. After sterilization, 2 ml was dispensed into vials, and freeze-dried and sealed.
(3)ウシLF(1−52) 4g
ツイーン80 1mg
ソルビトール 2g
グリシン 1g
上記組成を注射用生理食塩水に溶解し、全量を20mlに調製し、滅菌後、バイアル瓶に2ml ずつ分注し、凍結乾燥密封した。
(4)Ac−ウシLF(24−39)−NH2 4g
ソルビトール 4g
ヒト血清アルブミン 50mg
上記組成をpH7.0 の0.01M のPBS で溶解し、全量を20mlに調製し、滅菌後、バイアル瓶に2ml ずつ分注し、凍結乾燥密封した。
(3) Bovine LF (1-5 2 ) 4 g
Tween 80 1mg
Sorbitol 2g
Glycine 1g
The above composition was dissolved in physiological saline for injection, and the total volume was adjusted to 20 ml. After sterilization, 2 ml was dispensed into vials, and freeze-dried and sealed.
(4) Ac- bovine LF (24-39) -NH 2 4g
Sorbitol 4g
Human serum albumin 50mg
The above composition was dissolved in 0.01 M PBS of pH 7.0, and the total volume was adjusted to 20 ml. After sterilization, 2 ml was dispensed into vials, and freeze-dried and sealed.
以下に実験例を示し、本発明の効果をさらに詳細に説明する。 Experimental examples are shown below, and the effects of the present invention will be described in more detail.
LF由来ペプチドのサイトメガロウィルス(CMV)に対する感染・増殖抑制効果
方法:LF由来ペプチドを2%血清添加MEM培地に溶解し、濾過滅菌しストック溶液とした。このストック溶液を必要に応じて2%血清添加MEM培地により希釈して用いた。ヒト胎児繊維芽細胞(HEL細胞)を試料を含む2%血清添加MEM培地に懸濁させ10分間インキュベートした。遠心分離により細胞を取り出し、さらに2%血清添加MEM培地で細胞を2回洗浄した後、細胞を2%血清添加MEM培地に懸濁させた。これにヒトCMV(TANAKA株)を添加し、24時間培養後、ヒトCMV陽性血清で蛍光染色し、細胞へのヒトCMVの吸着能力を測定した。
Infection / growth inhibitory effect of LF-derived peptide against cytomegalovirus (CMV) Method: LF-derived peptide was dissolved in MEM medium supplemented with 2% serum and sterilized by filtration to obtain a stock solution. This stock solution was diluted with MEM medium supplemented with 2% serum as necessary. Human fetal fibroblasts (HEL cells) were suspended in MEM medium containing 2% serum containing the sample and incubated for 10 minutes. The cells were removed by centrifugation, and further washed twice with MEM medium supplemented with 2% serum, and then suspended in MEM medium supplemented with 2% serum. Human CMV (TANAKA strain) was added thereto, cultured for 24 hours, and then fluorescently stained with human CMV positive serum to measure the ability of human CMV to be adsorbed to cells.
結果:表1にヒトLF由来ペプチドのCMVに対する感染・増殖阻害効果を示す。表1に示すペプチドのうち抗ウィルス活性をもつペプチドに共通する配列から、25〜40残基部分が活性に必須な構造を含むものと推察された。これは、ウシLFの場合24〜39残基部分に相当する。また表2では、ウシLF由来ペプチドがCMVの感染・増殖を、コントロールと比較して90%阻害するのに必要な最少濃度を示している。この結果より、本発明によるペプチドは、天然のLFやこれまで知られていたLF由来のペプチドより低濃度で抗ウィルス効果を示すことが明らかとなった。なおここで使用したペプチドのうち本発明を構成するペプチド以外のものについても、実施例1に示した方法と同様にして化学的に合成したものであり、その純度はHPLCによる分析の結果いずれも85%以上であることを確認している。 Results: Table 1 shows the infection / growth inhibitory effect of human LF-derived peptides on CMV. From the sequences common to peptides having antiviral activity among the peptides shown in Table 1, it was speculated that the 25 to 40 residue portion contains a structure essential for activity. This corresponds to the 24-39 residue part in the case of bovine LF. Table 2 also shows the minimum concentration required for bovine LF-derived peptides to inhibit 90% of CMV infection / growth compared to controls. From this result, it was revealed that the peptide according to the present invention exhibits an antiviral effect at a lower concentration than natural LF and LF-derived peptides known so far. Of the peptides used here, those other than the peptides constituting the present invention were also chemically synthesized in the same manner as in the method shown in Example 1, and the purity thereof was determined as a result of analysis by HPLC. It is confirmed that it is 85% or more.
[表1]
ヒトLF由来ペプチドのCMVに対する感染増殖阻害効果
__________________________________________________________
ペプチド*1 S−S結合 感染阻害率(%)
__________________________________________________________
LF(1-52) 10Cys-46Cys,20Cys-37Cys 95
LF(1-52) 10Cys-46Cys, 95
LF(1-52) 97
LF(18-52) 24
LF(25-52) 91
LF(1-40) 97
LF(28-40) 0
LF(19-31) 2
LF(2-19) 14
LF(4-29) 0
LF(18-42) 97
__________________________________________________________
*1 ペプチド濃度は、0.5mg/ml
[Table 1]
Inhibitory growth inhibition effect of human LF-derived peptide on CMV
__________________________________________________________
Peptide * 1 SS bond Infection inhibition rate (%)
__________________________________________________________
LF (1-52) 10 Cys- 46 Cys, 20 Cys- 37 Cys 95
LF (1-52) 10 Cys- 46 Cys, 95
LF (1-52) 97
LF (18-52) 24
LF (25-52) 91
LF (1-40) 97
LF (28-40) 0
LF (19-31) 2
LF (2-19) 14
LF (4-29) 0
LF (18-42) 97
__________________________________________________________
* 1 Peptide concentration is 0.5mg / ml
[表2]
[Table 2]
LF由来ペプチドのHIVに対する感染・増殖抑制効果
方法:HIVの一株であるHTLV−IIIB持続感染株であるMOLT−4/HTLV−IIIB(以下MT−4と略記する)細胞の培養上清をウィルス液として用いた。上清は−80℃に保存した。検定に用いる細胞はヒトT細胞系のMT−4を用いた。MT−4は10%牛胎児血清(FCS)を含むRPMI1640培地を用いて継代した。試料(LF由来ペプチド)は、培地(RPMI1640)に溶解し目的の濃度として細胞に1ml添加した。60分間インキュベートした後、HIVをmoi(細胞/感染ウィルス比)=0.01となるようにMT−4細胞に感染させ、3×105/mlに調製した細胞液を1ml加えた。細胞を3日間培養後、HIV感染細胞を間接蛍光抗体法を用いて測定した。
HIV感染細胞は、HIV感染患者血清を一次抗体とした間接蛍光抗体法で測定した。蛍光顕微鏡下で細胞500個以上を観察し、蛍光染色された細胞の割合を算出した。なお、陽性コントロールとして試料を加えずに培養したHIV感染MT−4細胞、陰性コントロールとしてウィルス液を添加しない細胞培養を同時に行った。
Infection / Proliferation Inhibitory Effect of LF Derived Peptide on HIV Method: Culture supernatant of MOLT-4 / HTLV-III B (hereinafter abbreviated as MT-4) cell which is a HTLV-III B persistently infected strain of HIV Was used as a virus solution. The supernatant was stored at -80 ° C. Cells used for the assay were human T cell line MT-4. MT-4 was passaged using RPMI 1640 medium containing 10% fetal calf serum (FCS). The sample (LF-derived peptide) was dissolved in a medium (RPMI1640) and 1 ml was added to the cells as a target concentration. After incubation for 60 minutes, MT-4 cells were infected with HIV so that moi (cell / infection virus ratio) = 0.01, and 1 ml of a cell solution prepared to 3 × 10 5 / ml was added. After culturing the cells for 3 days, HIV-infected cells were measured using the indirect fluorescent antibody method.
HIV-infected cells were measured by the indirect fluorescent antibody method using HIV-infected patient serum as a primary antibody. More than 500 cells were observed under a fluorescence microscope, and the ratio of fluorescently stained cells was calculated. In addition, HIV-infected MT-4 cells cultured without adding a sample as a positive control and cell culture without adding a virus solution as a negative control were simultaneously performed.
結果:実験結果を表3に示す。結果はHIVの感染を90%阻止するのに必要な濃度を示している。この結果より、本発明によるペプチドは、天然のLFやこれまで知られていたLF由来のペプチドより低濃度で抗ウィルス効果を示すことが明らかとなった。 Results: The experimental results are shown in Table 3. The results show the concentration required to prevent HIV infection by 90%. From this result, it was revealed that the peptide according to the present invention exhibits an antiviral effect at a lower concentration than natural LF and LF-derived peptides known so far.
[表3]
[Table 3]
LF由来ペプチドのインフルエンザウィルスに対する感染・増殖抑制効果
方法:インフルエンザウィルスに対するLF由来ペプチドの感染・増殖抑制効果は、ウィルス実験学総論、国立予防衛生研究所学友会編、p.113−129 丸善(1973)に従い、ふ化鶏卵内培養法によって行った。ヒトLF、ウシLFおよび実施例1−3で調製したペプチドを生理食塩水に溶解し、濾過滅菌した。卵令10日のふ化鶏卵25個を5個ずつ5群にわけ、コントロール群には生理食塩水のみを、他の群には試料溶液100μlを尿液腔内に接種した。3時間後、各ふ化鶏卵にインフルエンザウィルスA/PR/8/34のウィルス液100μlを尿液腔内に接種した。なおここで用いたウィルス量は、尿液腔内に接種した後採取した尿液を64倍希釈した溶液で赤血球凝集(HA)反応を示すことのできるウィルス量である。2日後それぞれの卵を氷室中で一夜静置しその後尿液を採取した。得られた尿液を生理食塩水で段階的に希釈しこれにヒヨコ安定化赤血球(武田薬品)を加え、HA反応を行うことでウィルスを定量した。
Infection / Proliferation Inhibitory Effect of LF-Derived Peptide on Influenza Virus Method: The infection / proliferation-inhibitory effect of LF-derived peptide on influenza virus is described in General Research on Virus Experiments, National Institute of Preventive Health, edited by the Alumni Association, p. 113-129 According to Maruzen (1973), it was carried out by the incubation method of hatched chicken eggs. Human LF, bovine LF and the peptide prepared in Example 1-3 were dissolved in physiological saline and sterilized by filtration. Twenty-five eggs hatched on the 10th day of the ages were divided into 5 groups of 5; the control group was inoculated with physiological saline alone, and the other group was inoculated with 100 μl of the sample solution into the urine cavity. Three hours later, 100 µl of a virus solution of influenza virus A / PR / 8/34 was inoculated into each urine cavity of each hatched chicken egg. The amount of virus used here is the amount of virus that can show a hemagglutination (HA) reaction in a solution obtained by diluting the urine fluid collected after inoculation into the urine cavity 64 times. Two days later, each egg was left overnight in an ice chamber, and then urine was collected. The obtained urine was diluted stepwise with physiological saline, chick-stabilized red blood cells (Takeda Pharmaceutical) were added thereto, and virus was quantified by performing HA reaction.
結果:実験結果を表4に示す。結果はインフルエンザウィルスの感染を90%阻止するのに必要な濃度を示している。この結果より、本発明によるペプチドは、天然のLFやこれまで知られていたLF由来のペプチドより低濃度で抗ウィルス効果を示すことが明らかとなった。 Results: The experimental results are shown in Table 4. The results indicate the concentration required to block 90% of influenza virus infection. From this result, it was revealed that the peptide according to the present invention exhibits an antiviral effect at a lower concentration than natural LF and LF-derived peptides known so far.
[表4]
[Table 4]
in vivoにおけるCMV感染防御試験
方法:4週令雄のBalbc/AJclマウス(1群10匹)を用いた。リン酸緩衝生理食塩水(PBS)に試料を溶かし、マウス腹腔内に投与した。6時間後、1×106PFUのマウスCMVを腹腔内に投与し、10日後のマウスの生存率で感染防御率を評価した。
In Vivo CMV Infection Protection Test Method: 4-week-old male Balbc / AJcl mice (10 per group) were used. Samples were dissolved in phosphate buffered saline (PBS) and administered intraperitoneally to mice. Six hours later, 1 × 10 6 PFU of mouse CMV was intraperitoneally administered, and the protection rate was evaluated based on the survival rate of the mice after 10 days.
結果:実験結果を表5に示す。本発明によるペプチドは0.01g/体重kg以上の投与でマウスCMVに対して感染防御効果をもつことが明らかとなった。 Results: Table 5 shows the experimental results. It was revealed that the peptide according to the present invention has an infection protective effect against mouse CMV when administered at a dose of 0.01 g / kg body weight or more.
[表5]
[Table 5]
Claims (3)
[化1]
Trp-Arg-Met-Lys-Lys-Leu-Gly-Ala-Pro-Ser-Ile-Thr-Cys-Val-Arg-Arg A virus infection / growth inhibitor comprising a peptide represented by the following [Chemical Formula 1] or a pharmacologically acceptable salt thereof as an active ingredient.
[Chemical 1]
T rp-Arg-Met-Lys-Lys-Leu-Gly-Ala-Pro-Ser-Ile-Thr-Cys-Val-Arg-Ar g
[化2]
Ala-Pro-Arg-Lys-Asn-Val-Arg-Trp-Cys-Thr-Ile-Ser-Gln-Pro-Asp-Ser-Phe-Lys-Cys-Arg-Arg-Trp-Gln-Trp-Arg-Met-Lys-Lys-Leu-Gly-Ala-Pro-Ser-Ile-Thr-Cys-Val-Arg-Arg-Ala-Phe-Ala-Leu-Glu-Cys-Ile-Arg-Ala-Ile-Ala-Glu-Lys
(ただし、式中Cysは還元型でもよく、またペプチド内の2個のCysが結合して−S−S−結合を形成した酸化型であってもよい) Viral infection / growth inhibitor comprising the peptide represented by the following [Chemical Formula 2] or a pharmacologically acceptable salt thereof as an active ingredient
[Chemical 2]
Ala-Pro-Arg-Lys-Asn-Val-Arg-Trp-Cys-Thr-Ile-Ser-Gln-Pro-Asp-Ser-Phe-Lys-Cys-Arg-Arg-Trp-Gln-Trp-Arg- Met-Lys-Lys-Leu-Gly-Ala-Pro-Ser-Ile-Thr-Cys-Val-Arg-Arg-Ala-Phe-Ala-Leu-Glu-Cys-Ile-Arg-Ala-Ile-Ala- Glu-Lys
(However, in the formula, Cys may be a reduced form, or may be an oxidized form in which two Cys in a peptide are bonded to form an -S-S- bond)
[化3]
Trp-Arg-Met-Lys-Lys-Leu-Gly-Ala-Pro-Ser-Ile-Thr-Cys-Val-Arg-Arg-Ala-Phe-Ala-Leu-Glu-Cys-Ile-Arg-Ala-Ile-Ala-Glu
(ただし、式中Cysは還元型でもよく、またペプチド内の2個のCysが結合して−S−S−結合を形成した酸化型であってもよい) Viral infection / growth inhibitor comprising the peptide represented by the following [Chemical Formula 3] or a pharmacologically acceptable salt thereof as an active ingredient
[Chemical 3]
Trp-Arg-Met-Lys-Lys-Leu-Gly-Ala-Pro-Ser-Ile-Thr-Cys-Val-Arg-Arg-Ala-Phe-Ala-Leu-Glu-Cys-Ile-Arg-Ala- Ile-Ala-Glu
(However, in the formula, Cys may be a reduced form, or may be an oxidized form in which two Cys in a peptide are bonded to form an -S-S- bond)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004280262A JP4188897B2 (en) | 2004-09-27 | 2004-09-27 | Virus infection / proliferation inhibitor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004280262A JP4188897B2 (en) | 2004-09-27 | 2004-09-27 | Virus infection / proliferation inhibitor |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP24028493A Division JP3770624B2 (en) | 1993-09-02 | 1993-09-02 | Virus infection / proliferation inhibitor |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005008645A JP2005008645A (en) | 2005-01-13 |
JP4188897B2 true JP4188897B2 (en) | 2008-12-03 |
Family
ID=34101557
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004280262A Expired - Lifetime JP4188897B2 (en) | 2004-09-27 | 2004-09-27 | Virus infection / proliferation inhibitor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4188897B2 (en) |
-
2004
- 2004-09-27 JP JP2004280262A patent/JP4188897B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2005008645A (en) | 2005-01-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU2005254736B2 (en) | Oligomeric peptides and their use for the treatment of HIV infections | |
JP3100005B2 (en) | Human immunodeficiency virus infection / growth inhibitor | |
ZA200607735B (en) | Casein derived peptides and therapeutic uses thereof | |
EP1797112B1 (en) | Inhibitors of hepatitits c virus | |
JP3312946B2 (en) | Virus infection / growth inhibitor | |
JP2011523634A (en) | Peptides, peptidomimetics and their derivatives, their production and their use for preparing pharmaceutical compositions with therapeutic and / or prophylactic activity | |
CA3191819A1 (en) | Methods and compositions for delivery of biotin to mitochondria | |
JP3770624B2 (en) | Virus infection / proliferation inhibitor | |
US20130237476A1 (en) | Adipose tissue targeted peptides | |
JP3506274B2 (en) | New peptides and immunostimulants | |
US20070042962A1 (en) | Peptide dependent upregulation of telomerase expression | |
JP4188897B2 (en) | Virus infection / proliferation inhibitor | |
CN117120459A (en) | Antiinfective bicyclic peptide ligands | |
JPWO2007034678A1 (en) | New antibacterial peptide | |
US20020192780A1 (en) | Novel anti-inflammatory peptides | |
JP2011519957A (en) | Peptides and their derivatives, their production and their use for preparing pharmaceutical compositions with therapeutic and / or prophylactic activity | |
JP2011519958A (en) | Peptides and their derivatives, their production and their use for preparing pharmaceutical compositions with therapeutic and / or prophylactic activity | |
US20230235301A1 (en) | Compounds and Methods for Treating, Ameliorating, or Preventing Herpes Ocular Keratitis | |
JPH0680697A (en) | Natural type polypeptide having activity to inhibit human neutrophile esterase and medical preparation containing the same | |
AU2012200012B8 (en) | Inhibitors of hepatitis C virus | |
CN104311644A (en) | Polypeptide, method for improving stability of polypeptide, pharmaceutical composition and application of polypeptide in preparation of medicaments | |
EP1171607B1 (en) | Streptokinase fragments and their use for inhibiting cell death | |
BR112021008797A2 (en) | POLYPEPTIDES FOR THE TREATMENT OF STRESS, IMMUNORECTION, AND STROKE SYNDROMES | |
JPH07206701A (en) | Agent for suppressing infection and proliferation of human t cell leukemia virus | |
WO2012101614A1 (en) | Antiviral peptides |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20041005 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070903 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20071102 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080208 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080407 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20080522 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080723 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080814 |
|
A911 | Transfer of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20080819 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080908 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080911 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110919 Year of fee payment: 3 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110919 Year of fee payment: 3 |
|
R371 | Transfer withdrawn |
Free format text: JAPANESE INTERMEDIATE CODE: R371 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110919 Year of fee payment: 3 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120919 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130919 Year of fee payment: 5 |