JP4188897B2 - Virus infection / proliferation inhibitor - Google Patents

Virus infection / proliferation inhibitor

Info

Publication number
JP4188897B2
JP4188897B2 JP2004280262A JP2004280262A JP4188897B2 JP 4188897 B2 JP4188897 B2 JP 4188897B2 JP 2004280262 A JP2004280262 A JP 2004280262A JP 2004280262 A JP2004280262 A JP 2004280262A JP 4188897 B2 JP4188897 B2 JP 4188897B2
Authority
JP
Japan
Prior art keywords
cys
arg
peptide
ala
lys
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004280262A
Other languages
Japanese (ja)
Other versions
JP2005008645A (en
Inventor
功博 川崎
俊一 堂迫
一人 長谷川
亘 持地
重明 田中
直樹 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Snow Brand Milk Products Co Ltd
Original Assignee
Snow Brand Milk Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Snow Brand Milk Products Co Ltd filed Critical Snow Brand Milk Products Co Ltd
Priority to JP2004280262A priority Critical patent/JP4188897B2/en
Publication of JP2005008645A publication Critical patent/JP2005008645A/en
Application granted granted Critical
Publication of JP4188897B2 publication Critical patent/JP4188897B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Peptides Or Proteins (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Description

本発明は、副作用の少ないペプチド性のウィルス感染・増殖抑制剤に関する。   The present invention relates to a peptidic viral infection / proliferation inhibitor with few side effects.

ウィルス感染による疾患の克服のために、これまで多くの努力がなされてきた。しかし近年、世界的にも猛威をふるっているヒト免疫不全ウィルス(HIV)や毎年流行するインフルエンザウィルスのようにいまだ有効な予防法や治療法の無いものもある。ウィルス感染による疾患に対する治療法として抗ウィルス剤による化学療法がある。しかし現在のところ、全身的に投与され明白な効果を示す抗ウィルス剤はほとんど無い。その理由として、ウィルスは細胞内で増殖し、増殖のための機能をほとんど細胞に依存している。つまりウィルスは感染後、その増殖を治療すべき人体の構成細胞自体の増殖機能を利用して行っている。従ってウィルスの増殖を抑える化学物質の多くは細胞にも作用して毒性を示すからである。抗ウィルス剤の問題点としては上述のように薬剤の選択毒性が低いこと以外にもウィルス感染症の特徴から由来するいくつかの問題点がある。特に急性・全身性のウィルス感染症では、症状が現れる時期がウィルスの体内増殖のピークが過ぎてしまった後なので、むしろウィルスの感染を阻止し増殖を抑制する物質が求められている。この様なウィルスの感染を防御する方法としてワクチンの予防接種による方法があるが、この方法はしばしばアレルギー反応や種々の副作用を示すことが知られており、しかもウィルスの変異に対しては対処できないのが現実である。   Many efforts have been made to overcome diseases caused by viral infection. However, in recent years, there are those that still have no effective preventive or therapeutic methods, such as the human immunodeficiency virus (HIV), which is prevalent in the world, and the influenza virus that is prevalent every year. Chemotherapy with antiviral drugs is a treatment for diseases caused by viral infection. However, at present, there are few antiviral agents that are administered systemically and show a clear effect. The reason for this is that the virus grows inside the cell, and its function for growth is almost dependent on the cell. In other words, after infection, the virus makes use of the proliferation function of the constituent cells of the human body whose proliferation should be treated. Therefore, many chemical substances that suppress the growth of viruses also act on cells and are toxic. Problems with antiviral agents include several problems derived from the characteristics of viral infections other than the low selective toxicity of drugs as described above. Particularly in acute and systemic viral infections, since the time when symptoms appear after the peak of viral in vivo growth has passed, there is a need for substances that rather prevent viral infection and suppress the growth. There is a method of vaccination as a method to protect against such viral infections, but this method is often known to show allergic reactions and various side effects, and it cannot cope with viral mutations. Is the reality.

この様な状況において、本発明者らは、ラクトフェリン(以下、LFと呼ぶこともある。)、トランスフェリン、オボトランスフェリンなど鉄結合能を有するタンパク質が、インフルエンザウィルスやサイトメガロウィルス(CMV)の感染・増殖を抑制することを見出し特許を出願した(例えば、特許文献1参照。)。LFは、乳中に分泌される鉄結合性のタンパク質で抗菌活性があることが知られている。LFは、ヒトおよびウシ由来のものについて詳細な研究が行われており、ヒトLF、ウシLFともその全アミノ酸配列がすでに決定されている(例えば、非特許文献1及び2参照。)。また、LF等の乳タンパク質を有効成分とする抗ウィルス剤が開示されており、この中にLFが、外被性ウィルスおよび非外被性ウィルスに対して有効であることが記載されている(例えば、特許文献2参照。)。また最近、本発明者らは、HIVに対するこれら鉄結合性タンパク質の感染・増殖抑制効果についても確認し、LFを有効成分とするHIV感染・増殖抑制剤について特許出願を行った(例えば、特許文献3参照。)。   Under such circumstances, the present inventors have found that proteins having iron-binding ability such as lactoferrin (hereinafter sometimes referred to as LF), transferrin, ovotransferrin, etc. are infected with influenza virus or cytomegalovirus (CMV). A patent application was filed (for example, refer to Patent Document 1). LF is an iron-binding protein secreted into milk and is known to have antibacterial activity. LF has been studied in detail for human and bovine origin, and the entire amino acid sequence of human LF and bovine LF has already been determined (see, for example, Non-Patent Documents 1 and 2). In addition, an antiviral agent containing milk protein such as LF as an active ingredient is disclosed, and it is described therein that LF is effective against enveloped viruses and non-enveloped viruses ( For example, see Patent Document 2.) Recently, the present inventors also confirmed the infection / proliferation inhibitory effect of these iron-binding proteins on HIV and filed a patent application for an HIV infection / proliferation inhibitor containing LF as an active ingredient (for example, patent literature 3).

この様に、LFなどの鉄結合性タンパク質はウィルスの感染・増殖抑制効果を持つことが次第に明らかとなり、抗ウィルス剤として、その実用化が期待されてきた。これらタンパク質が実際に感染・増殖抑制剤として用いられるためには、(i)体内に投与した場合、抗原性の点で問題が無いこと、(ii)大量に供給できること、が必要である。これらの鉄結合性タンパク質のうち、ウシLFやウシトランスフェリン、又は鶏卵から得られるオボトランスフェリンは大量に供給できるが、人体内に投与した場合抗原性を示すという問題がある。一方、ヒトLFは抗原性に関しては問題無いが、大量に供給することは困難である。
この様な問題を解決するために、本発明者らはLF由来のペプチドフラグメントのうち、次に示す〔化4〕および〔化5〕が抗ウィルス活性を持つことを見出し特許出願を行った(例えば、特許文献4参照。)。
Thus, iron binding proteins such as LF have gradually been found to have an effect of suppressing infection and proliferation of viruses, and their practical application as antiviral agents has been expected. In order for these proteins to be actually used as infection / proliferation inhibitors, it is necessary that (i) when administered in the body, there is no problem in antigenicity, and (ii) they can be supplied in large quantities. Among these iron-binding proteins, bovine LF, bovine transferrin, or ovotransferrin obtained from chicken eggs can be supplied in large quantities, but there is a problem that it exhibits antigenicity when administered into the human body. On the other hand, human LF has no problem regarding antigenicity, but is difficult to supply in large quantities.
In order to solve such problems, the present inventors have found that the following [Chemical 4] and [Chemical 5] among the LF-derived peptide fragments have antiviral activity and filed a patent application ( For example, see Patent Document 4.)

[化4]
Cys-Phe-Gln-Trp-Gln-Arg-Asn-Met-Arg-Lys-Val-Arg-Gly-Pro-Pro-Val-Ser-Cys
(ただし、式中Cys は還元型でもよく、またペプチド内の2個のCysが−S−S−結合して酸化型となってもよい。)
[Chemical 4]
Cys-Phe-Gln-Trp-Gln-Arg-Asn-Met-Arg-Lys-Val-Arg-Gly-Pro-Pro-Val-Ser-Cys
(However, in the formula, Cys may be a reduced form, or two Cys in a peptide may be -SS-bonded to form an oxidized form.)

[化5]
Cys-Arg-Arg-Trp-Gln-Trp-Arg-Met-Lys-Lys-Leu-Gly-Ala-Pro-Ser-Ile-Thr-Cys
(ただし、式中Cys は還元型でもよく、またペプチド内の2個のCysが−S−S−結合して酸化型となってもよい。)
[Chemical 5]
Cys-Arg-Arg-Trp-Gln-Trp-Arg-Met-Lys-Lys-Leu-Gly-Ala-Pro-Ser-Ile-Thr-Cys
(However, in the formula, Cys may be a reduced form, or two Cys in a peptide may be -SS-bonded to form an oxidized form.)

これらのペプチドはそれぞれヒトLFの20〜37残基およびウシLFの19〜36残基に相当するもので、分子内のS−S結合は抗ウィルス活性に必須ではなかった。これらのペプチドは天然のLFに比べて極めて鎖長が短いため、化学合成や遺伝子操作による合成により容易に供給することができる。またマウスを用いた感染防御試験においては、CMVの感染を完全に抑制するのに必要な〔化4〕および〔化5〕のペプチド量は0.1g/体重kgであった。   These peptides correspond to 20-37 residues of human LF and 19-36 residues of bovine LF, respectively, and intramolecular S—S bonds were not essential for antiviral activity. Since these peptides have an extremely short chain length compared to natural LF, they can be easily supplied by chemical synthesis or synthesis by genetic manipulation. In addition, in the infection protection test using mice, the amount of peptide of [Chemical Formula 4] and [Chemical Formula 5] necessary for completely suppressing the CMV infection was 0.1 g / kg body weight.

LFフラグメントに関するこれまでの知見としては、ヒトLFの1〜50残基部分がLF分子の受容体結合領域であるとする報告(例えば、非特許文献3参照。)、ヒトLFの4〜52に相当するペプチドがLFとリンパ球の結合を阻害したという報告(例えば、非特許文献4参照。)、ヒトLFの1〜47残基に相当するペプチドおよびウシLFの17〜41残基に相当するペプチドが抗菌活性をもつという報告(例えば、非特許文献5参照。)などがあるが、抗ウィルス活性についての記載は無い。またこの抗菌活性に関して、ヒトLFの19〜29残基あるいはウシLF18〜28残基部分を含むペプチド(例えば、特許文献5参照。)、また、ヒトLFの21〜26残基あるいはウシLF20〜24残基部分を含むペプチド(例えば、特許文献6参照。)、ウシLFの21〜25残基あるいはウシLF25〜29残基部分を含むペプチド(例えば、特許文献7参照。)、ウシLFの20〜24残基部分を含むペプチド(例えば、特許文献8参照。)についてそれぞれ記載されているが、いずれも本発明の抗ウィルス効果に必須な部位とは異なっている。
特開平2−233619号公報 特開平1−233226号公報 特願平4−220635号 特願平5−069210号 特開平5−078392号公報 特開平5−148295号公報 特開平5−148296号公報 特開平5−148297号公報 M.W. Rey et al., NeucleicAcid Res., Vol.18, 5288,1990 P.E. Mead et al., Neucleic Acid Res.,Vol.18,7167,1990 B.F. Anderson et al.,J.Mol.Biol.,209,711,1989 D.Legrand et al., Biochemistry,31,9243,1992 W.Bellamy et al., Biochem.Biophys.Acta,1121, 130,1992
As a previous finding regarding the LF fragment, a report that the 1-50 residue portion of human LF is the receptor binding region of the LF molecule (see, for example, Non-Patent Document 3), Human LF 4 to 52 A report that the corresponding peptide inhibited the binding of LF and lymphocytes (see, for example, Non-Patent Document 4), a peptide corresponding to residues 1 to 47 of human LF, and residues 17 to 41 of bovine LF There are reports that peptides have antibacterial activity (see, for example, Non-Patent Document 5), but there is no description of antiviral activity. In addition, regarding this antibacterial activity, a peptide containing 19 to 29 residues of human LF or a portion of 18 to 28 residues of bovine LF (see, for example, Patent Document 5), 21 to 26 residues of human LF or 20 to 24 of bovine LF. Peptides containing a residue part (for example, see Patent Document 6), peptides containing 21 to 25 residues of bovine LF or bovine LF 25 to 29 residue parts (see, for example, Patent Document 7), 20 to 20 of bovine LF Peptides containing a 24-residue part (for example, refer to Patent Document 8) are described, but each is different from a site essential for the antiviral effect of the present invention.
JP-A-2-233619 JP-A-1-233226 Japanese Patent Application No. 4-262035 Japanese Patent Application No. 5-069210 JP-A-5-078392 JP-A-5-148295 JP-A-5-148296 JP-A-5-148297 MW Rey et al., NeucleicAcid Res., Vol.18, 5288,1990 PE Mead et al., Neucleic Acid Res., Vol. 18, 7167, 1990 BF Anderson et al., J. Mol. Biol., 209, 711, 1989 D. Legrand et al., Biochemistry, 31,9243,1992 W. Bellamy et al., Biochem. Biophys. Acta, 1121, 130, 1992

本発明は、体内に投与した場合に、抗原性の点で問題が無く、大量に供給できるLFフラグメントよりなる、強力な抗ウィルス活性を有するウィルス感染・増殖抑制剤を提供することを課題とする。   An object of the present invention is to provide a virus infection / proliferation inhibitor having a strong antiviral activity, which comprises an LF fragment which can be supplied in a large amount without any problem in antigenicity when administered into the body. .

本発明者らは、従来のLFフラグメントよりもさらに強力な抗ウイルス活性を有するLFフラグメントを得る目的で、いくつかのLFフラグメントを化学的に合成し、その抗ウィルス活性を検討することで、ウシLFの抗ウィルス活性に関する必須部分を検索した。その結果、ウシLFでは次の〔化6〕で示される24〜39残基部分が抗ウィルス活性に必須であることを見出した。なお以後のLFペプチドの残基の番号は天然のウシラクトフェリンのアミノ酸配列に付与された番号を用いる。   In order to obtain an LF fragment having a stronger antiviral activity than the conventional LF fragment, the present inventors chemically synthesized several LF fragments and examined their antiviral activity, The essential part regarding the antiviral activity of LF was searched. As a result, in bovine LF, the 24-39 residue part represented by the following [Chemical Formula 6] was found to be essential for antiviral activity. In addition, the number assigned to the amino acid sequence of natural bovine lactoferrin is used as the residue number of the LF peptide thereafter.

[化6]
Trp-Arg-Met-Lys-Lys-Leu-Gly-Ala-Pro-Ser-Ile-Thr-Cys-Val-Arg-Arg
[Chemical 6]
Trp-Arg-Met-Lys-Lys-Leu-Gly-Ala-Pro-Ser-Ile-Thr-Cys-Val-Arg-Arg

本発明者らは、この活性部分を含み、さらに高活性な抗ウィルスペプチドを開発する目的で、〔化6〕に示したペプチドを中心にN端側およびC端側にペプチド鎖を延長したところ、ウシLFでは1〜5残基〔化7〕に相当する部分および24〜51残基〔化8〕に相当する部分がこれまで知られていたLF由来ペプチドに比べて顕著に高活性であることを見出した。
For the purpose of developing a highly active antiviral peptide containing this active moiety, the present inventors have extended the peptide chain to the N-terminal side and the C-terminal side with the peptide shown in [Chem. 6] as the center. , at a significantly higher activity than LF derived peptide corresponding parts have been known heretofore to the part and 24-51 residues corresponding to the bovine LF 1 to 5 2 residues [Formula 7] [Chemical 8] I found out.

[化7]
Ala-Pro-Arg-Lys-Asn-Val-Arg-Trp-Cys-Thr-Ile-Ser-Gln-Pro-Asp-Ser-Phe-Lys-Cys-Arg-Arg-Trp-Gln-Trp-Arg-Met-Lys-Lys-Leu-Gly-Ala-Pro-Ser-Ile-Thr-Cys-Val-Arg-Arg-Ala-Phe-Ala-Leu-Glu-Cys-Ile-Arg-Ala-Ile-Ala-Glu-Lys
[Chemical 7]
Ala-Pro-Arg-Lys-Asn-Val-Arg-Trp-Cys-Thr-Ile-Ser-Gln-Pro-Asp-Ser-Phe-Lys-Cys-Arg-Arg-Trp-Gln-Trp-Arg- Met-Lys-Lys-Leu-Gly-Ala-Pro-Ser-Ile-Thr-Cys-Val-Arg-Arg-Ala-Phe-Ala-Leu-Glu-Cys-Ile-Arg-Ala-Ile-Ala- Glu-Lys

[化8]
Trp-Arg-Met-Lys-Lys-Leu-Gly-Ala-Pro-Ser-Ile-Thr-Cys-Val-Arg-Arg-Ala-Phe-Ala-Leu-Glu-Cys-Ile-Arg-Ala-Ile-Ala-Glu
[Chemical 8]
Trp-Arg-Met-Lys-Lys-Leu-Gly-Ala-Pro-Ser-Ile-Thr-Cys-Val-Arg-Arg-Ala-Phe-Ala-Leu-Glu-Cys-Ile-Arg-Ala- Ile-Ala-Glu

また、これらのペプチドフラグメントのうち〔化7〕は、分子内に2つのS−S結合をもつことができるが、このS−S結合はウイルス活性の発現には必須ではなく、S−S結合は存在していても、存在していなくとも良い。
従って、〔化7〕のCys は還元型であってもあるいは相互にS−S結合して酸化型になってもよい。
Of these peptide fragments, [Chemical Formula 7] can have two SS bonds in the molecule, but this SS bond is not essential for the expression of viral activity. May or may not exist.
Therefore, Cys in [Chemical Formula 7] may be in a reduced form or may be in an oxidized form by S—S bond with each other.

本発明の実施により、ウィルス感染・増殖抑制剤が提供される。
本発明によるウィルス感染・増殖阻止作用のある組成物の作用効果を要約すると次のとおりである。
(1)ウィルスの感染を防ぐことができ、また、既感染者に対しては、体内でさらにウィルスが増殖して感染細胞が増加することを防ぐことができる。
(2)通常食品として摂取している成分を有効成分とする組成であるため、投与することによる副作用の心配が少ない。
(3)低分子であるため、LFなどの結合性タンパク質に比べ化学合成法などで比較的容易にしかも大量に調製できる。ゆえに特定の患者の治療に使用が限定されることがなく、広くウィルスの感染・増殖を予防することもできる。
本発明のウィルス感染・増殖抑制剤は、インフルエンザあるいはエイズの予防または治療や臓器移植の際のサイトメガロウィルス感染防御に有用である。
By carrying out the present invention, a virus infection / growth inhibitor is provided.
The effects of the composition having a virus infection / growth inhibitory action according to the present invention are summarized as follows.
(1) It is possible to prevent virus infection, and for an already infected person, it is possible to prevent the virus from further proliferating in the body and increase the number of infected cells.
(2) Since it is a composition having an active ingredient as an ingredient that is usually ingested as a food, there is little concern about side effects due to administration.
(3) Since it is a small molecule, it can be prepared relatively easily and in a large amount by a chemical synthesis method or the like as compared with binding proteins such as LF. Therefore, the use is not limited to treatment of a specific patient, and it is possible to widely prevent infection and proliferation of viruses.
The virus infection / growth inhibitor of the present invention is useful for the prevention or treatment of influenza or AIDS and the protection against cytomegalovirus infection during organ transplantation.

本発明は、次の〔化9〕で表されるペプチドを有効成分とするウィルス感染・増殖抑制剤に関する。
また、このペプチドは薬理的に許容される塩の形態であってもよい。

The present invention relates to a viral infection and proliferation inhibitor containing, as an active ingredient, represented Lupe peptide by the following formula 9.
The peptide may be in the form of a pharmacologically acceptable salt.

[化9]
Trp-Arg-Met-Lys-Lys-Leu-Gly-Ala-Pro-Ser-Ile-Thr-Cys-Val-Arg-Arg
[Chemical 9]
T rp-Arg-Met-Lys-Lys-Leu-Gly-Ala-Pro-Ser-Ile-Thr-Cys-Val-Arg-Ar g

また〔化9〕に示す配列を基にN末端側およびC末端側にペプチド鎖を延長したペプチドを有効成分とすることができる。このようなペプチドとしては、例えば、前記した、〔化7〕、〔化8〕に示すペプチドが例示される。さらにこれらの薬理的に許容される塩、例えば塩酸塩、酢酸塩なども用いることができる。〔化9〕に示すペプチドは、ウシLFの24〜39残基に相当する配列であり、前述のように本発明における抗ウィルス活性に必須な領域である。以下本発明のウィルス感染・増殖抑制剤中の有効成分のLF由来のアミノ酸配列を含むペプチドは、ウシLF(24−51)のようにLF中のアミノ酸配列の番号で記載する。
本発明のペプチドを得るためには、通常の化学合成による方法、LFのプロテアーゼ分解物から単離する方法、遺伝子組み換えによる方法などいずれによっても良い。さらに、市販のペプチドシンセサイザー等の合成装置を用いて直鎖ペプチドを得た後、通常の方法でS−S結合を形成させることもできるし、S−S結合を形成させなくても良い。
Further, a peptide obtained by extending the peptide chain to the N-terminal side and C-terminal side based on the sequence shown in [Chemical 9] can be used as an active ingredient. Examples of such peptides include the peptides shown in [Chemical Formula 7] and [Chemical Formula 8] described above. Furthermore, pharmacologically acceptable salts thereof such as hydrochloride and acetate can also be used. The peptide represented by [Chemical 9] is a sequence corresponding to residues 24 to 39 of bovine LF, and is a region essential for antiviral activity in the present invention as described above. Hereinafter, a peptide containing an amino acid sequence derived from LF as an active ingredient in the virus infection / growth inhibitor of the present invention is described by the number of the amino acid sequence in LF, such as bovine LF (24-51).
In order to obtain the peptide of the present invention, any of ordinary chemical synthesis, isolation from LF protease degradation products, genetic recombination, etc. may be used. Furthermore, after obtaining a linear peptide using a commercially available synthesis apparatus such as a peptide synthesizer, an SS bond may be formed by a usual method, or an SS bond may not be formed.

これらのペプチドまたはペプチド誘導体は単独もしくは賦型剤、安定剤を添加して製剤化することができる。本発明のウィルス感染・増殖抑制剤は、経口、注射、座薬として投与することができる。通常は、成人1日あたり0.1〜1.0gを投与することにより効果を示す。またこれらのペプチドは、従来から食品素材として用いられているタンパク質の一部なので安全性の面でも問題無い。特にウシ由来のペプチドフラグメントは、その抗原性が低いため実用上好ましい。   These peptides or peptide derivatives can be formulated singly or by adding an excipient or stabilizer. The viral infection / growth inhibitor of the present invention can be administered orally, as an injection, or as a suppository. Usually, the effect is shown by administering 0.1 to 1.0 g per day for an adult. Moreover, since these peptides are part of proteins conventionally used as food materials, there is no problem in terms of safety. In particular, bovine-derived peptide fragments are preferred in practice because of their low antigenicity.

以下に本発明によるウィルス感染・増殖抑制剤について実施例により詳細に説明する。なお、合成は、泉谷ら著「ペプチド合成の基礎と実験」(1985年丸善刊)p194-233に記載の方法に従い固相合成法にて行った。   The virus infection / growth inhibitor according to the present invention will be described in detail below with reference to examples. The synthesis was carried out by solid phase synthesis according to the method described in Izumiya et al., “Basics and Experiments of Peptide Synthesis” (1985 Maruzen) p194-233.

ウシLF(24−39)の合成
ペプチドシンセサイザー431A(ABI社)により、パラヒドロキシメチルフェノキシメチルポリスチレン(HMP)樹脂を用い、9−フルオレニルメチルオキシカルボニル(Fmoc)基をアミノ末端の保護基としてC末端側から遂次ペプチド鎖を延長することにより0.25mmolスケールで直鎖保護ペプチドを合成した。得られたHMP樹脂結合保護ペプチド1340mgをフェノール、1,2−エタンジチオール、チオアニソール存在下、トリフルオロ酢酸(TFA)によりペプチドのHMP樹脂からの切り離しと保護基の除去を同時に行った。減圧濃縮によりTFAを除去した後、エチルエーテルで粗ペプチドを結晶化させ、これを5%酢酸に溶解し凍結乾燥を行った。得られた直鎖粗ペプチド543mgは、HPLC〔カラム:オクタデシル4PW(21.5×150mm,東ソー社),溶出:0.1%TFAを含む水−アセトニトリルにてグラジエント溶出〕により精製し直鎖精製ペプチド367mgを得た。得られた精製ペプチドの純度は、HPLCによる分析の結果90%であった。
Synthesis of bovine LF (24-39) Using peptide synthesizer 431A (ABI), parahydroxymethylphenoxymethyl polystyrene (HMP) resin was used, and the 9-fluorenylmethyloxycarbonyl (Fmoc) group was used as the amino-terminal protecting group. A linear protected peptide was synthesized on a 0.25 mmol scale by extending the sequential peptide chain from the C-terminal side. In the presence of phenol, 1,2-ethanedithiol, and thioanisole, 1340 mg of the obtained HMP resin-bound protected peptide was simultaneously cleaved from the HMP resin and removed with a trifluoroacetic acid (TFA). After removing TFA by concentration under reduced pressure, the crude peptide was crystallized with ethyl ether, dissolved in 5% acetic acid, and lyophilized. 543 mg of the obtained linear crude peptide was purified by HPLC [column: octadecyl 4PW (21.5 × 150 mm, Tosoh Corp.), elution: gradient elution with water-acetonitrile containing 0.1% TFA]. 367 mg of peptide was obtained. The purity of the obtained purified peptide was 90% as a result of analysis by HPLC.

ウシLF(24−51)の合成
実施例1と同様の方法で合成し、純度93%のウシLF(24−51)の鎖状ペプチド432mgを得た。
Synthesis of bovine LF (24-51) Synthesis was carried out in the same manner as in Example 1 to obtain 432 mg of a chain peptide of bovine LF (24-51) having a purity of 93%.

N−アセチル−ウシLF(24−39)−アミド(Ac−ウシLF(24−39)−NH2)の合成
ペプチドシンセサイザー431A(ABI社)によりベンズヒドリルアミン樹脂を用い第3ブチルオキシカルボニル(t−Boc)基をアミノ末端の保護基としてC末端側から遂次ペプチド鎖を延長することにより0.25mmolスケールで合成を行った。縮合反応をすべて終えた後、アミノ末端のt−Boc基を除去し、無水酢酸でこれをアセチル化した。HF処理によりペプチドの樹脂からの切り離しと保護基の除去を同時に行った。減圧濃縮によりHFを除去し目的の粗Ac−ウシLF(24−39)−NH2を得た。この粗ペプチドを実施例1と同様にしてHPLCで精製し、純度91%の精製ペプチド42mgを得た。
Synthesis of N-acetyl-bovine LF (24-39) -amide (Ac-bovine LF (24-39) -NH 2 ) Using benzhydrylamine resin with peptide synthesizer 431A (ABI), tert-butyloxycarbonyl (t Synthesis was performed on a 0.25 mmol scale by sequentially extending the peptide chain from the C-terminal side using the -Boc) group as a protective group at the amino terminal. After all the condensation reactions were completed, the amino terminal t-Boc group was removed, and this was acetylated with acetic anhydride. Cleavage of the peptide from the resin and removal of the protecting group were performed simultaneously by HF treatment. Reduced pressure to remove the HF to give the crude Ac- bovine LF (24-39) -NH 2 purposes Concentration. This crude peptide was purified by HPLC in the same manner as in Example 1 to obtain 42 mg of a purified peptide having a purity of 91%.

ウシLF(1−5)、〔19Cys(Acm),36Cys(Acm) 〕ウシLF(1−5)および〔CysSH,19Cys(Acm),36Cys(Acm),45CysSH〕ウシLF(1−5)の合成
ペプチドシンセサイザー431A(ABI社)により、パラヒドロキシメチルフェノキシメチルポリスチレン(HMP)樹脂を用い、9−フルオレニルメチルオキシカルボニル(Fmoc)基をアミノ末端の保護基とし、19Cys および36Cys のSH基をアセトアミドメチル(Acm)基で保護してC末端側から遂次ペプチド鎖を延長することにより0.25mmolスケールで直鎖保護ペプチドを合成した。得られたHMP樹脂結合保護ペプチド2767mgをフェノール、1,2−エタンジチオール、チオアニソール存在下、トリフルオロ酢酸(TFA)によりペプチドのHMP樹脂からの切り離しと保護基の除去を同時に行った。減圧濃縮によりTFAを除去した後、エチルエーテルで粗ペプチドを結晶化させ、これを5%酢酸に溶解し凍結乾燥を行った。得られた直鎖粗ペプチド865mgは、HPLC〔カラム:オクタデシル4PW(21.5×150mm,東ソー社),溶出:0.1%TFAを含む水−アセトニトリルにてグラジエント溶出〕により精製し、直鎖精製ペプチド〔CysSH,19Cys( Acm),36Cys(Acm),45CysSH 〕ウシLF(1−5)589mgを得た。得られた精製ペプチドの純度は、HPLCによる分析の結果95%であった。
このペプチドをフェリシアン化カリウム存在下空気酸化によりCys,45CysにS−S結合を形成させ、さらにHPLCにて精製することで、純度88%の〔19Cys(Acm),36Cys(Acm) 〕ウシLF(1−5)467mgを得た。
さらにこのペプチドをヨウ素処理しAcm基の除去とS−S結合の形成を同時に行い、HPLCで精製することでウシLF(1−5)101mgを得た。HPLCによる分析の結果、このペプチドの純度は87%であった。
Bovine LF (1-5 2 ), [ 19 Cys (Acm), 36 Cys (Acm)] Bovine LF (1-5 2 ) and [ 9 CysSH, 19 Cys (Acm), 36 Cys (Acm), 45 CysSH] Synthesis of bovine LF (1-5 2 ) Using peptide synthesizer 431A (ABI), parahydroxymethylphenoxymethyl polystyrene (HMP) resin was used, and the 9-fluorenylmethyloxycarbonyl (Fmoc) group was protected at the amino terminal. A linear protected peptide was synthesized on a 0.25 mmol scale by protecting the 19 Cys and 36 Cys SH groups with an acetamidomethyl (Acm) group and extending the sequential peptide chain from the C-terminal side. In the presence of phenol, 1,2-ethanedithiol and thioanisole, 2767 mg of the obtained HMP resin-bound protected peptide was simultaneously cleaved from the HMP resin and removed from the protecting group with trifluoroacetic acid (TFA). After removing TFA by concentration under reduced pressure, the crude peptide was crystallized with ethyl ether, dissolved in 5% acetic acid, and lyophilized. The obtained linear crude peptide (865 mg) was purified by HPLC [column: octadecyl 4PW (21.5 × 150 mm, Tosoh Corp.), elution: gradient elution with water-acetonitrile containing 0.1% TFA]. purified peptide [9 CysSH, 19 Cys (Acm) , 36 Cys (Acm), 45 CysSH ] to give the bovine LF (1-5 2) 589mg. The purity of the obtained purified peptide was 95% as a result of analysis by HPLC.
This peptide was oxidized by air in the presence of potassium ferricyanide to form an S—S bond at 9 Cys, 45 Cys, and further purified by HPLC to obtain a purity of 88% [ 19 Cys (Acm), 36 Cys (Acm)] 467 mg of bovine LF (1-5 2 ) was obtained.
Further, this peptide was treated with iodine to simultaneously remove the Acm group and form an S—S bond, and purified by HPLC to obtain 101 mg of bovine LF (1-5 2 ). As a result of analysis by HPLC, the purity of this peptide was 87%.

ウィルス感染・増殖抑制剤の製造
上記実施例1〜4の方法により得たペプチドの注射製剤の生産例を示す。
(1)ウシLF(24−39) 4g
ツイーン80 2mg
グリシン 2g
上記組成を注射用生理食塩水に溶解し、全量を20mlに調製し、滅菌後、バイアル瓶に2ml ずつ分注し、凍結乾燥密封した。
(2)ウシLF(24−51) 4g
ツイーン80 1mg
ソルビトール 2g
グリシン 1g
上記組成を注射用生理食塩水に溶解し、全量を20mlに調製し、滅菌後、バイアル瓶に2ml ずつ分注し、凍結乾燥密封した。
Production of virus infection / growth inhibitor An example of producing a peptide injection preparation obtained by the methods of Examples 1 to 4 is shown.
(1) Bovine LF (24-39) 4g
Tween 80 2mg
Glycine 2g
The above composition was dissolved in physiological saline for injection, and the total volume was adjusted to 20 ml. After sterilization, 2 ml was dispensed into vials, and freeze-dried and sealed.
(2) Bovine LF (24-51) 4g
Tween 80 1mg
Sorbitol 2g
Glycine 1g
The above composition was dissolved in physiological saline for injection, and the total volume was adjusted to 20 ml. After sterilization, 2 ml was dispensed into vials, and freeze-dried and sealed.

(3)ウシLF(1−5) 4g
ツイーン80 1mg
ソルビトール 2g
グリシン 1g
上記組成を注射用生理食塩水に溶解し、全量を20mlに調製し、滅菌後、バイアル瓶に2ml ずつ分注し、凍結乾燥密封した。
(4)Ac−ウシLF(24−39)−NH2 4g
ソルビトール 4g
ヒト血清アルブミン 50mg
上記組成をpH7.0 の0.01M のPBS で溶解し、全量を20mlに調製し、滅菌後、バイアル瓶に2ml ずつ分注し、凍結乾燥密封した。
(3) Bovine LF (1-5 2 ) 4 g
Tween 80 1mg
Sorbitol 2g
Glycine 1g
The above composition was dissolved in physiological saline for injection, and the total volume was adjusted to 20 ml. After sterilization, 2 ml was dispensed into vials, and freeze-dried and sealed.
(4) Ac- bovine LF (24-39) -NH 2 4g
Sorbitol 4g
Human serum albumin 50mg
The above composition was dissolved in 0.01 M PBS of pH 7.0, and the total volume was adjusted to 20 ml. After sterilization, 2 ml was dispensed into vials, and freeze-dried and sealed.

以下に実験例を示し、本発明の効果をさらに詳細に説明する。   Experimental examples are shown below, and the effects of the present invention will be described in more detail.

実験例1Experimental example 1

LF由来ペプチドのサイトメガロウィルス(CMV)に対する感染・増殖抑制効果
方法:LF由来ペプチドを2%血清添加MEM培地に溶解し、濾過滅菌しストック溶液とした。このストック溶液を必要に応じて2%血清添加MEM培地により希釈して用いた。ヒト胎児繊維芽細胞(HEL細胞)を試料を含む2%血清添加MEM培地に懸濁させ10分間インキュベートした。遠心分離により細胞を取り出し、さらに2%血清添加MEM培地で細胞を2回洗浄した後、細胞を2%血清添加MEM培地に懸濁させた。これにヒトCMV(TANAKA株)を添加し、24時間培養後、ヒトCMV陽性血清で蛍光染色し、細胞へのヒトCMVの吸着能力を測定した。
Infection / growth inhibitory effect of LF-derived peptide against cytomegalovirus (CMV) Method: LF-derived peptide was dissolved in MEM medium supplemented with 2% serum and sterilized by filtration to obtain a stock solution. This stock solution was diluted with MEM medium supplemented with 2% serum as necessary. Human fetal fibroblasts (HEL cells) were suspended in MEM medium containing 2% serum containing the sample and incubated for 10 minutes. The cells were removed by centrifugation, and further washed twice with MEM medium supplemented with 2% serum, and then suspended in MEM medium supplemented with 2% serum. Human CMV (TANAKA strain) was added thereto, cultured for 24 hours, and then fluorescently stained with human CMV positive serum to measure the ability of human CMV to be adsorbed to cells.

結果:表1にヒトLF由来ペプチドのCMVに対する感染・増殖阻害効果を示す。表1に示すペプチドのうち抗ウィルス活性をもつペプチドに共通する配列から、25〜40残基部分が活性に必須な構造を含むものと推察された。これは、ウシLFの場合24〜39残基部分に相当する。また表2では、ウシLF由来ペプチドがCMVの感染・増殖を、コントロールと比較して90%阻害するのに必要な最少濃度を示している。この結果より、本発明によるペプチドは、天然のLFやこれまで知られていたLF由来のペプチドより低濃度で抗ウィルス効果を示すことが明らかとなった。なおここで使用したペプチドのうち本発明を構成するペプチド以外のものについても、実施例1に示した方法と同様にして化学的に合成したものであり、その純度はHPLCによる分析の結果いずれも85%以上であることを確認している。   Results: Table 1 shows the infection / growth inhibitory effect of human LF-derived peptides on CMV. From the sequences common to peptides having antiviral activity among the peptides shown in Table 1, it was speculated that the 25 to 40 residue portion contains a structure essential for activity. This corresponds to the 24-39 residue part in the case of bovine LF. Table 2 also shows the minimum concentration required for bovine LF-derived peptides to inhibit 90% of CMV infection / growth compared to controls. From this result, it was revealed that the peptide according to the present invention exhibits an antiviral effect at a lower concentration than natural LF and LF-derived peptides known so far. Of the peptides used here, those other than the peptides constituting the present invention were also chemically synthesized in the same manner as in the method shown in Example 1, and the purity thereof was determined as a result of analysis by HPLC. It is confirmed that it is 85% or more.

[表1]
ヒトLF由来ペプチドのCMVに対する感染増殖阻害効果
__________________________________________________________
ペプチド*1 S−S結合 感染阻害率(%)
__________________________________________________________
LF(1-52) 10Cys-46Cys,20Cys-37Cys 95
LF(1-52) 10Cys-46Cys, 95
LF(1-52) 97
LF(18-52) 24
LF(25-52) 91
LF(1-40) 97
LF(28-40) 0
LF(19-31) 2
LF(2-19) 14
LF(4-29) 0
LF(18-42) 97
__________________________________________________________
*1 ペプチド濃度は、0.5mg/ml
[Table 1]
Inhibitory growth inhibition effect of human LF-derived peptide on CMV
__________________________________________________________
Peptide * 1 SS bond Infection inhibition rate (%)
__________________________________________________________
LF (1-52) 10 Cys- 46 Cys, 20 Cys- 37 Cys 95
LF (1-52) 10 Cys- 46 Cys, 95
LF (1-52) 97
LF (18-52) 24
LF (25-52) 91
LF (1-40) 97
LF (28-40) 0
LF (19-31) 2
LF (2-19) 14
LF (4-29) 0
LF (18-42) 97
__________________________________________________________
* 1 Peptide concentration is 0.5mg / ml

[表2]
[Table 2]

実験例2Experimental example 2

LF由来ペプチドのHIVに対する感染・増殖抑制効果
方法:HIVの一株であるHTLV−IIIB持続感染株であるMOLT−4/HTLV−IIIB(以下MT−4と略記する)細胞の培養上清をウィルス液として用いた。上清は−80℃に保存した。検定に用いる細胞はヒトT細胞系のMT−4を用いた。MT−4は10%牛胎児血清(FCS)を含むRPMI1640培地を用いて継代した。試料(LF由来ペプチド)は、培地(RPMI1640)に溶解し目的の濃度として細胞に1ml添加した。60分間インキュベートした後、HIVをmoi(細胞/感染ウィルス比)=0.01となるようにMT−4細胞に感染させ、3×105/mlに調製した細胞液を1ml加えた。細胞を3日間培養後、HIV感染細胞を間接蛍光抗体法を用いて測定した。
HIV感染細胞は、HIV感染患者血清を一次抗体とした間接蛍光抗体法で測定した。蛍光顕微鏡下で細胞500個以上を観察し、蛍光染色された細胞の割合を算出した。なお、陽性コントロールとして試料を加えずに培養したHIV感染MT−4細胞、陰性コントロールとしてウィルス液を添加しない細胞培養を同時に行った。
Infection / Proliferation Inhibitory Effect of LF Derived Peptide on HIV Method: Culture supernatant of MOLT-4 / HTLV-III B (hereinafter abbreviated as MT-4) cell which is a HTLV-III B persistently infected strain of HIV Was used as a virus solution. The supernatant was stored at -80 ° C. Cells used for the assay were human T cell line MT-4. MT-4 was passaged using RPMI 1640 medium containing 10% fetal calf serum (FCS). The sample (LF-derived peptide) was dissolved in a medium (RPMI1640) and 1 ml was added to the cells as a target concentration. After incubation for 60 minutes, MT-4 cells were infected with HIV so that moi (cell / infection virus ratio) = 0.01, and 1 ml of a cell solution prepared to 3 × 10 5 / ml was added. After culturing the cells for 3 days, HIV-infected cells were measured using the indirect fluorescent antibody method.
HIV-infected cells were measured by the indirect fluorescent antibody method using HIV-infected patient serum as a primary antibody. More than 500 cells were observed under a fluorescence microscope, and the ratio of fluorescently stained cells was calculated. In addition, HIV-infected MT-4 cells cultured without adding a sample as a positive control and cell culture without adding a virus solution as a negative control were simultaneously performed.

結果:実験結果を表3に示す。結果はHIVの感染を90%阻止するのに必要な濃度を示している。この結果より、本発明によるペプチドは、天然のLFやこれまで知られていたLF由来のペプチドより低濃度で抗ウィルス効果を示すことが明らかとなった。   Results: The experimental results are shown in Table 3. The results show the concentration required to prevent HIV infection by 90%. From this result, it was revealed that the peptide according to the present invention exhibits an antiviral effect at a lower concentration than natural LF and LF-derived peptides known so far.

[表3]
[Table 3]

実験例3Experimental example 3

LF由来ペプチドのインフルエンザウィルスに対する感染・増殖抑制効果
方法:インフルエンザウィルスに対するLF由来ペプチドの感染・増殖抑制効果は、ウィルス実験学総論、国立予防衛生研究所学友会編、p.113−129 丸善(1973)に従い、ふ化鶏卵内培養法によって行った。ヒトLF、ウシLFおよび実施例1−3で調製したペプチドを生理食塩水に溶解し、濾過滅菌した。卵令10日のふ化鶏卵25個を5個ずつ5群にわけ、コントロール群には生理食塩水のみを、他の群には試料溶液100μlを尿液腔内に接種した。3時間後、各ふ化鶏卵にインフルエンザウィルスA/PR/8/34のウィルス液100μlを尿液腔内に接種した。なおここで用いたウィルス量は、尿液腔内に接種した後採取した尿液を64倍希釈した溶液で赤血球凝集(HA)反応を示すことのできるウィルス量である。2日後それぞれの卵を氷室中で一夜静置しその後尿液を採取した。得られた尿液を生理食塩水で段階的に希釈しこれにヒヨコ安定化赤血球(武田薬品)を加え、HA反応を行うことでウィルスを定量した。
Infection / Proliferation Inhibitory Effect of LF-Derived Peptide on Influenza Virus Method: The infection / proliferation-inhibitory effect of LF-derived peptide on influenza virus is described in General Research on Virus Experiments, National Institute of Preventive Health, edited by the Alumni Association, p. 113-129 According to Maruzen (1973), it was carried out by the incubation method of hatched chicken eggs. Human LF, bovine LF and the peptide prepared in Example 1-3 were dissolved in physiological saline and sterilized by filtration. Twenty-five eggs hatched on the 10th day of the ages were divided into 5 groups of 5; the control group was inoculated with physiological saline alone, and the other group was inoculated with 100 μl of the sample solution into the urine cavity. Three hours later, 100 µl of a virus solution of influenza virus A / PR / 8/34 was inoculated into each urine cavity of each hatched chicken egg. The amount of virus used here is the amount of virus that can show a hemagglutination (HA) reaction in a solution obtained by diluting the urine fluid collected after inoculation into the urine cavity 64 times. Two days later, each egg was left overnight in an ice chamber, and then urine was collected. The obtained urine was diluted stepwise with physiological saline, chick-stabilized red blood cells (Takeda Pharmaceutical) were added thereto, and virus was quantified by performing HA reaction.

結果:実験結果を表4に示す。結果はインフルエンザウィルスの感染を90%阻止するのに必要な濃度を示している。この結果より、本発明によるペプチドは、天然のLFやこれまで知られていたLF由来のペプチドより低濃度で抗ウィルス効果を示すことが明らかとなった。   Results: The experimental results are shown in Table 4. The results indicate the concentration required to block 90% of influenza virus infection. From this result, it was revealed that the peptide according to the present invention exhibits an antiviral effect at a lower concentration than natural LF and LF-derived peptides known so far.

[表4]
[Table 4]

実験例4Experimental Example 4

in vivoにおけるCMV感染防御試験
方法:4週令雄のBalbc/AJclマウス(1群10匹)を用いた。リン酸緩衝生理食塩水(PBS)に試料を溶かし、マウス腹腔内に投与した。6時間後、1×106PFUのマウスCMVを腹腔内に投与し、10日後のマウスの生存率で感染防御率を評価した。
In Vivo CMV Infection Protection Test Method: 4-week-old male Balbc / AJcl mice (10 per group) were used. Samples were dissolved in phosphate buffered saline (PBS) and administered intraperitoneally to mice. Six hours later, 1 × 10 6 PFU of mouse CMV was intraperitoneally administered, and the protection rate was evaluated based on the survival rate of the mice after 10 days.

結果:実験結果を表5に示す。本発明によるペプチドは0.01g/体重kg以上の投与でマウスCMVに対して感染防御効果をもつことが明らかとなった。   Results: Table 5 shows the experimental results. It was revealed that the peptide according to the present invention has an infection protective effect against mouse CMV when administered at a dose of 0.01 g / kg body weight or more.

[表5]
[Table 5]

Claims (3)

次の〔化1〕で表されるペプチド又はその薬理学的に許容される塩を有効成分とするウィルス感染・増殖抑制剤。
[化1]
Trp-Arg-Met-Lys-Lys-Leu-Gly-Ala-Pro-Ser-Ile-Thr-Cys-Val-Arg-Arg
A virus infection / growth inhibitor comprising a peptide represented by the following [Chemical Formula 1] or a pharmacologically acceptable salt thereof as an active ingredient.
[Chemical 1]
T rp-Arg-Met-Lys-Lys-Leu-Gly-Ala-Pro-Ser-Ile-Thr-Cys-Val-Arg-Ar g
次の〔化2〕で表されるペプチド又はその薬理学的に許容される塩を有効成分とするウィルス感染・増殖抑制剤
[化2]
Ala-Pro-Arg-Lys-Asn-Val-Arg-Trp-Cys-Thr-Ile-Ser-Gln-Pro-Asp-Ser-Phe-Lys-Cys-Arg-Arg-Trp-Gln-Trp-Arg-Met-Lys-Lys-Leu-Gly-Ala-Pro-Ser-Ile-Thr-Cys-Val-Arg-Arg-Ala-Phe-Ala-Leu-Glu-Cys-Ile-Arg-Ala-Ile-Ala-Glu-Lys
(ただし、式中Cysは還元型でもよく、またペプチド内の2個のCysが結合して−S−S−結合を形成した酸化型であってもよい)
Viral infection / growth inhibitor comprising the peptide represented by the following [Chemical Formula 2] or a pharmacologically acceptable salt thereof as an active ingredient
[Chemical 2]
Ala-Pro-Arg-Lys-Asn-Val-Arg-Trp-Cys-Thr-Ile-Ser-Gln-Pro-Asp-Ser-Phe-Lys-Cys-Arg-Arg-Trp-Gln-Trp-Arg- Met-Lys-Lys-Leu-Gly-Ala-Pro-Ser-Ile-Thr-Cys-Val-Arg-Arg-Ala-Phe-Ala-Leu-Glu-Cys-Ile-Arg-Ala-Ile-Ala- Glu-Lys
(However, in the formula, Cys may be a reduced form, or may be an oxidized form in which two Cys in a peptide are bonded to form an -S-S- bond)
次の〔化3〕で表されるペプチド又はその薬理学的に許容される塩を有効成分とするウィルス感染・増殖抑制剤
[化3]
Trp-Arg-Met-Lys-Lys-Leu-Gly-Ala-Pro-Ser-Ile-Thr-Cys-Val-Arg-Arg-Ala-Phe-Ala-Leu-Glu-Cys-Ile-Arg-Ala-Ile-Ala-Glu
(ただし、式中Cysは還元型でもよく、またペプチド内の2個のCysが結合して−S−S−結合を形成した酸化型であってもよい)
Viral infection / growth inhibitor comprising the peptide represented by the following [Chemical Formula 3] or a pharmacologically acceptable salt thereof as an active ingredient
[Chemical 3]
Trp-Arg-Met-Lys-Lys-Leu-Gly-Ala-Pro-Ser-Ile-Thr-Cys-Val-Arg-Arg-Ala-Phe-Ala-Leu-Glu-Cys-Ile-Arg-Ala- Ile-Ala-Glu
(However, in the formula, Cys may be a reduced form, or may be an oxidized form in which two Cys in a peptide are bonded to form an -S-S- bond)
JP2004280262A 2004-09-27 2004-09-27 Virus infection / proliferation inhibitor Expired - Lifetime JP4188897B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004280262A JP4188897B2 (en) 2004-09-27 2004-09-27 Virus infection / proliferation inhibitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004280262A JP4188897B2 (en) 2004-09-27 2004-09-27 Virus infection / proliferation inhibitor

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP24028493A Division JP3770624B2 (en) 1993-09-02 1993-09-02 Virus infection / proliferation inhibitor

Publications (2)

Publication Number Publication Date
JP2005008645A JP2005008645A (en) 2005-01-13
JP4188897B2 true JP4188897B2 (en) 2008-12-03

Family

ID=34101557

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004280262A Expired - Lifetime JP4188897B2 (en) 2004-09-27 2004-09-27 Virus infection / proliferation inhibitor

Country Status (1)

Country Link
JP (1) JP4188897B2 (en)

Also Published As

Publication number Publication date
JP2005008645A (en) 2005-01-13

Similar Documents

Publication Publication Date Title
AU2005254736B2 (en) Oligomeric peptides and their use for the treatment of HIV infections
JP3100005B2 (en) Human immunodeficiency virus infection / growth inhibitor
ZA200607735B (en) Casein derived peptides and therapeutic uses thereof
EP1797112B1 (en) Inhibitors of hepatitits c virus
JP3312946B2 (en) Virus infection / growth inhibitor
JP2011523634A (en) Peptides, peptidomimetics and their derivatives, their production and their use for preparing pharmaceutical compositions with therapeutic and / or prophylactic activity
CA3191819A1 (en) Methods and compositions for delivery of biotin to mitochondria
JP3770624B2 (en) Virus infection / proliferation inhibitor
US20130237476A1 (en) Adipose tissue targeted peptides
JP3506274B2 (en) New peptides and immunostimulants
US20070042962A1 (en) Peptide dependent upregulation of telomerase expression
JP4188897B2 (en) Virus infection / proliferation inhibitor
CN117120459A (en) Antiinfective bicyclic peptide ligands
JPWO2007034678A1 (en) New antibacterial peptide
US20020192780A1 (en) Novel anti-inflammatory peptides
JP2011519957A (en) Peptides and their derivatives, their production and their use for preparing pharmaceutical compositions with therapeutic and / or prophylactic activity
JP2011519958A (en) Peptides and their derivatives, their production and their use for preparing pharmaceutical compositions with therapeutic and / or prophylactic activity
US20230235301A1 (en) Compounds and Methods for Treating, Ameliorating, or Preventing Herpes Ocular Keratitis
JPH0680697A (en) Natural type polypeptide having activity to inhibit human neutrophile esterase and medical preparation containing the same
AU2012200012B8 (en) Inhibitors of hepatitis C virus
CN104311644A (en) Polypeptide, method for improving stability of polypeptide, pharmaceutical composition and application of polypeptide in preparation of medicaments
EP1171607B1 (en) Streptokinase fragments and their use for inhibiting cell death
BR112021008797A2 (en) POLYPEPTIDES FOR THE TREATMENT OF STRESS, IMMUNORECTION, AND STROKE SYNDROMES
JPH07206701A (en) Agent for suppressing infection and proliferation of human t cell leukemia virus
WO2012101614A1 (en) Antiviral peptides

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041005

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070903

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071102

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080407

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080522

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080723

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080814

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080819

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080908

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080911

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110919

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110919

Year of fee payment: 3

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110919

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120919

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130919

Year of fee payment: 5