JP4187692B2 - High temperature durable polymer solid electrolyte membrane - Google Patents

High temperature durable polymer solid electrolyte membrane Download PDF

Info

Publication number
JP4187692B2
JP4187692B2 JP2004199396A JP2004199396A JP4187692B2 JP 4187692 B2 JP4187692 B2 JP 4187692B2 JP 2004199396 A JP2004199396 A JP 2004199396A JP 2004199396 A JP2004199396 A JP 2004199396A JP 4187692 B2 JP4187692 B2 JP 4187692B2
Authority
JP
Japan
Prior art keywords
electrolyte membrane
polymer
solid electrolyte
water
poly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004199396A
Other languages
Japanese (ja)
Other versions
JP2006024389A (en
Inventor
健裕 古賀
義行 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Chemicals Corp
Original Assignee
Asahi Kasei Chemicals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Chemicals Corp filed Critical Asahi Kasei Chemicals Corp
Priority to JP2004199396A priority Critical patent/JP4187692B2/en
Publication of JP2006024389A publication Critical patent/JP2006024389A/en
Application granted granted Critical
Publication of JP4187692B2 publication Critical patent/JP4187692B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

本発明は、燃料電池用隔膜として有用なフッ素系高分子固体電解質膜に関する。   The present invention relates to a fluorine-based polymer solid electrolyte membrane useful as a fuel cell membrane.

近年、電解質として高分子固体電解質膜を用いた燃料電池が、小型軽量化が可能であり、かつ比較的低温でも高い出力密度が得られることから注目され、特に自動車用途に向けた開発が加速されている。
このような目的に用いられる高分子固体電解質膜材料には、優れたプロトン伝導度、適度な保水性、水素ガス、酸素ガス等に対するガスバリア性などが要求される。このような要件を満たす材料として、スルホン酸基やホスホン酸基を主鎖、あるいは側鎖の末端に有する高分子が種々検討され、例えば非特許文献1に記載されるように、多くの材料が提案されてきている。
しかし、実際の燃料電池運転条件下では、電極において高い酸化力を有する活性酸素種が発生し、特に長期に渡り燃料電池を安定に運転させるためには、このような過酷な酸化雰囲気下での耐久性が要求される。現在までに提案されている多くの炭化水素系材料は、燃料電池の運転の初期特性に関しては優れた特性を示すものが多いが、長期運転に関しては充分な耐性が示せない。
In recent years, fuel cells using solid polymer electrolyte membranes as electrolytes have attracted attention because they can be reduced in size and weight, and high power density can be obtained even at relatively low temperatures, and development for automotive applications in particular has been accelerated. ing.
The polymer solid electrolyte membrane material used for such purposes is required to have excellent proton conductivity, appropriate water retention, gas barrier properties against hydrogen gas, oxygen gas, and the like. As materials satisfying such requirements, various polymers having a sulfonic acid group or a phosphonic acid group at the main chain or at the end of the side chain have been studied. For example, as described in Non-Patent Document 1, many materials are available. Has been proposed.
However, under actual fuel cell operating conditions, active oxygen species with high oxidizing power are generated at the electrode, and in order to operate the fuel cell stably over a long period of time, it is necessary to operate under such a harsh oxidizing atmosphere. Durability is required. Many of the hydrocarbon-based materials that have been proposed so far often exhibit excellent characteristics with respect to the initial characteristics of the fuel cell operation, but do not exhibit sufficient resistance for long-term operation.

このため、現在、実用化に向けた検討としては、下記一般式(1):

Figure 0004187692
(式中、mは0〜3、nは1〜5、k、lは1以上の整数で、1.5≦k/l≦14)
で表されるパーフルオロカーボンスルホン酸ポリマーが主に採用されている。
これらのパーフルオロカーボンスルホン酸ポリマー膜は、骨格が全フッ素化されているために化学的に極めて高い耐久性を示し、先述の炭化水素系膜に比べ、より過酷な運転条件でも使用することが可能である。 For this reason, the following general formula (1):
Figure 0004187692
(In the formula, m is 0 to 3, n is 1 to 5, k and l are integers of 1 or more, and 1.5 ≦ k / l ≦ 14)
The perfluorocarbon sulfonic acid polymer represented by the following is mainly employed.
These perfluorocarbon sulfonic acid polymer membranes exhibit extremely high chemical durability due to the fully fluorinated skeleton, and can be used even in harsh operating conditions compared to the hydrocarbon membranes described above. It is.

しかし、これらのパーフルオロカーボンスルホン酸ポリマーは、ガラス転移点が実使用温度域に近いことが良く知られ、この結果、室温程度での運転では充分な物理強度をもつが、90℃以上の温度領域では物理強度が不十分である。実際に、よく研究に用いられるパーフルオロカーボンスルホン酸ポリマー膜として、Nafion(デュポン社 商品名)やAciplex(旭化成社 商品名)、Flemion(旭硝子社 商品名)などがあるが、これらの膜は充分な加湿環境の下で90℃を超えた範囲で運転しようとすると安定な発電ができなかった。 この問題を解決させるため、パーフルオロカーボンスルホン酸ポリマーのスルホン酸基の一部をイミド架橋化した架橋膜が開発された(例えば、特許文献1)が、架橋構造が共有結合で形成されているため、架橋度が高くなると非常に脆くなる傾向があり、好ましいものとは言えなかった。
さらに、PTFE多孔膜などで補強を施した膜(例えば特許文献2、3)も開発され、未補強の膜に比べると高い力学強度を発揮しているが、やはり90℃以上の高温での連続運転には耐えなかった。
However, it is well known that these perfluorocarbon sulfonic acid polymers have a glass transition point close to the actual use temperature range. As a result, the perfluorocarbon sulfonic acid polymer has sufficient physical strength when operated at room temperature, but the temperature range of 90 ° C. or higher. Then, physical strength is insufficient. Actually, there are Nafion (DuPont product name), Aciplex (Asahi Kasei product name), and Flemion (Asahi Glass product name) as perfluorocarbon sulfonic acid polymer membranes often used for research, but these membranes are sufficient. When trying to operate in a humidified environment at a temperature exceeding 90 ° C, stable power generation was not possible. In order to solve this problem, a crosslinked film in which a part of the sulfonic acid group of the perfluorocarbon sulfonic acid polymer is imide-crosslinked has been developed (for example, Patent Document 1), but the crosslinked structure is formed by a covalent bond. When the degree of cross-linking is high, it tends to be very brittle and it cannot be said that it is preferable.
Further, a membrane reinforced with a PTFE porous membrane or the like (for example, Patent Documents 2 and 3) has been developed and exhibits higher mechanical strength than an unreinforced membrane, but it is also continuously at a high temperature of 90 ° C. or higher. I couldn't stand driving.

特表2001−522401公報Special table 2001-522401 特開平8−162132公報JP-A-8-162132 特公昭63−61337公報Japanese Patent Publication No. 63-61337 O.Savadogo、 Jounal of New Materials for Electrochemical Systems I、47−66(1998)O. Savadogo, Journal of New Materials for Electrochemical Systems I, 47-66 (1998)

本発明は、90℃以上の高温でも安定に作動可能な燃料電池用高分子固体電解質膜を提供するものである。   The present invention provides a solid polymer electrolyte membrane for a fuel cell that can be stably operated even at a high temperature of 90 ° C. or higher.

本発明者は上記課題を解決すべく、鋭意検討した結果、パーフルオロカーボンスルホン酸ポリマーを主体とする膜に、脂肪族炭化水素あるいは芳香族炭化水素を基本骨格とし、主鎖あるいは側鎖部に、アミノ基を二つ以上有する添加剤を含有することを特徴とする高分子固体電解質膜を用いた場合、イオン的な架橋が形成され、架橋により膜に一定以上脆性を与えることなく、これまで安定な使用ができなかった高温の領域でも安定に使用可能であることを見出し、本発明をなすに至った。
すなわち、本発明はパーフルオロカーボンスルホン酸ポリマーと、添加剤とからなる高分子固体電解質膜であって、該パーフルオロカーボンスルホン酸ポリマーが高分子固体電解質に対し、60%以上99.9%以下の重量分率を占め、かつ該添加剤がフタロシアニ
ンであることを特徴とする高分子固体電解質膜である。
As a result of diligent studies to solve the above-mentioned problems, the inventor has a membrane mainly composed of a perfluorocarbon sulfonic acid polymer, an aliphatic hydrocarbon or an aromatic hydrocarbon as a basic skeleton, and a main chain or a side chain portion. When a polymer solid electrolyte membrane characterized by containing an additive having two or more amino groups is used, ionic cross-linking is formed, and the cross-linking does not give the membrane more than a certain degree of brittleness. It was found that it can be stably used even in a high-temperature region where it could not be used, and the present invention was made.
That is, the present invention is a polymer solid electrolyte membrane comprising a perfluorocarbon sulfonic acid polymer and an additive, wherein the perfluorocarbon sulfonic acid polymer has a weight of 60% or more and 99.9% or less with respect to the polymer solid electrolyte. And the additive is phthalocyanine
It is a polymer solid electrolyte membrane characterized by being.

本発明の高分子固体電解質膜を用いることにより、これまで通常のフッ素系イオン交換膜では充分な耐性がなかった高温での力学的物性が向上し、燃料電池の運転が可能となる効果を有する。   By using the solid polymer electrolyte membrane of the present invention, the mechanical properties at high temperatures, which have not been sufficiently resistant with conventional fluorine ion exchange membranes, are improved, and the fuel cell can be operated. .

以下に本発明の高分子固体電解質膜をより詳細に説明する。
本発明で用いられる高分子固体電解質膜は、パーフルオロカーボンスルホン酸ポリマーと、脂肪族炭化水素あるいは芳香族炭化水素を基本骨格とし、主鎖あるいは側鎖部に、アミノ基を二つ以上有する添加剤からなるものである。ここでパーフルオロカーボンスルホン酸ポリマーは具体的には、下記一般式(1)で表される。
The polymer solid electrolyte membrane of the present invention will be described in detail below.
The polymer solid electrolyte membrane used in the present invention is an additive having a perfluorocarbon sulfonic acid polymer and an aliphatic hydrocarbon or an aromatic hydrocarbon as a basic skeleton, and having two or more amino groups in the main chain or side chain. It consists of Here, the perfluorocarbon sulfonic acid polymer is specifically represented by the following general formula (1).

Figure 0004187692
(式中、mは0〜3、nは1〜5、k、lは1以上の整数で、1.5≦k/l≦14)
Figure 0004187692
(In the formula, m is 0 to 3, n is 1 to 5, k and l are integers of 1 or more, and 1.5 ≦ k / l ≦ 14)

このポリマーは、通常、パーフルオロビニルエーテルモノマーとテトラフルオロエチレン(TFE)を共重合して得られる熱可塑性の下記一般式(2)で表されるパーフルオロカーボンスルホニルフルオライドポリマーを加水分解反応を施すことによって得られる。   This polymer is usually obtained by subjecting a thermoplastic perfluorocarbonsulfonyl fluoride polymer represented by the following general formula (2) obtained by copolymerizing a perfluorovinyl ether monomer and tetrafluoroethylene (TFE) to a hydrolysis reaction. Obtained by.

Figure 0004187692
(式中、mは0〜3、nは1〜5、k、lは1以上の整数で、1.5≦k/l≦14)
Figure 0004187692
(In the formula, m is 0 to 3, n is 1 to 5, k and l are integers of 1 or more, and 1.5 ≦ k / l ≦ 14)

次に本発明の高分子固体電解質膜で用いられる添加剤は脂肪族炭化水素あるいは芳香族炭化水素を基本骨格とし、主鎖あるいは側鎖部に、アミノ基を二つ以上有するものである、ここで二つ以上のアミノ基は、一級アミンであることが好ましいが、二級、三級のものであっても構わないし、これらの任意の組合せでも構わない。またアミノ基が環構造の一部をなしていても構わない。
このような添加剤に用い得る一部を例示する。
基本骨格が脂肪族炭化水素からなるものとしては、ポリアリルアミン、ポリアクリルアミド、アミノポリアクリルアミド、ポリエチレンイミン、ポリオキシエチレンアルキルアミン、poly(lysyl-lysyl-valine)、poly(2-aminoethyl methacrylate) 、poly(lysine)、polymethacrylamide、poly(oxy[[3-(2-aminoethylamino)propyl](hydroxy)silanediyl]) 、poly[oxy[(3-aminopropyl)(hydroxy)silanediyl]] 、
poly(3-aminomethyl-4-carboxybut-1-ene-1,4-diyl) 、
poly(trans-3-aminomethyl-4-carboxybut-1-ene-1,4-diyl)、poly[1-(carbamoylmethyl)ethylene] 、
poly(2-acrylamido-2-methyl propane sulphonamide)、キトサン等の高分子化合物やエチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、ペンタエチレンヘキサミン、1,4−ジアミノブタン、1,2−ジアミノプロパン、1,3−ジアミノプロパン、ピペラジン、ジメチルピペラジン、ビス(アミノプロピル)ピペラジン、2−アミノメチルピペリジン、ジアミノマレオニトリル、グアニジン塩類などの低分子化合物が挙げられる。
Next, the additive used in the polymer solid electrolyte membrane of the present invention has an aliphatic hydrocarbon or aromatic hydrocarbon as a basic skeleton, and has two or more amino groups in the main chain or side chain portion. The two or more amino groups are preferably primary amines, but may be secondary or tertiary, or any combination thereof. The amino group may form part of the ring structure.
Some examples that may be used for such additives are illustrated.
The basic skeleton consists of aliphatic hydrocarbons such as polyallylamine, polyacrylamide, aminopolyacrylamide, polyethyleneimine, polyoxyethylene alkylamine, poly (lysyl-lysyl-valine), poly (2-aminoethyl methacrylate), poly (lysine), polymethacrylamide, poly (oxy [[3- (2-aminoethylamino) propyl] (hydroxy) silanediyl]), poly [oxy [(3-aminopropyl) (hydroxy) silanediyl]],
poly (3-aminomethyl-4-carboxybut-1-ene-1,4-diyl),
poly (trans-3-aminomethyl-4-carboxybut-1-ene-1,4-diyl), poly [1- (carbamoylmethyl) ethylene],
Polymer compounds such as poly (2-acrylamido-2-methylpropane sulphonamide), chitosan, ethylenediamine, diethylenetriamine, triethylenetetramine, tetraethylenepentamine, pentaethylenehexamine, 1,4-diaminobutane, 1,2-diaminopropane 1,3-diaminopropane, piperazine, dimethylpiperazine, bis (aminopropyl) piperazine, 2-aminomethylpiperidine, diaminomaleonitrile, guanidine salts and the like.

基本骨格が芳香族構造からなるものとしては、ポリアニリン、ポリアミンサルホン、グアナミン樹脂、
poly[iminocarbonyl[4,6-bis(sulfooxy)1,3-phenylene]carbonylimino(4,4'-diaminobiphenyl-3,3'-diyl)]、
poly[[1-(4,6-diamino-1,3,5-triazin-2-yl)piperidine-3,5-diyl]methylene] poly[methylene-(2,6-diamino)-3,5-toluene] 、
poly[(3-amino-1,4-phenylene)iminocarbonyl(2-carboxy-1,4-phenylene)[bis(trifluoromethyl)methylene]carbonylimino(2-amino-1,4-phenylene)]
poly(oxy-3-amino-1,4-phenylenesulfonyl-2-amino-1,4-phenyleneoxy-1,4-phenylene(dimethylmethylene)-1,4-phenylene)、
poly(oxybiphenyl-4,4'-diyloxy-3-amino-1,4-phenylenesulfonyl-2-amino-1,4-phenylene)、
poly(oxy-1,4-phenylenesulfonyl-1,4-phenyleneoxy-2-amino-1,4-phenylene(dimethylmethylene)-3-amino-1,4-phenylene)、
poly(2,2'-diamino-5-hexadecylbiphenyl-3,3'-diyl)、
poly(p-aminophenylacetylene) 、
poly(oxy-3-amino-1,4-phenylenesulfonyl-1,4-phenyleneoxy-1,4-phenylene(dimethylmethylene)-1,4-phenylene)、
poly[(1,3-dioxoisoindoline-2,5-diyl)carbonyl(1,3-dioxoisoindoline-5,2-diyl)-1,3-phenyleneimino(6-amino-1,3,5-triazine-2,4-diyl)imino-1,3-phenylene] 、
poly[nitrilo(1-amino-2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9-hexadecafluoro-10-iminodec-10-yl-1-ylidene)]、
poly[nitrilo(1-amino-2,2,3,3,4,4,5,5,6,6,7,7-dodecafluoro-8-iminooct-8-yl-1-ylidene)]、
poly[(4-amino-4H-1,2,4-triazole-3,5-diyl)octane-1,8-diyl] poly[(4-amino-4H-1,2,4-triazole-3,5-diyl)decane-1,10-diyl]、
poly[(4-amino-4H-1,2,4-triazole-3,5-diyl)heptane-1,7-diyl]、poly[(4-amino-4H-1,2,4-triazole-3,5-diyl)hexane-1,6-diyl] 、
poly[(4-amino-4H-1,2,4-triazole-3,5-diyl)pentane-1,5-diyl]、
poly(2-amino-3-methoxy-1,4-phenylene) 、
poly(2-amino-1,3-phenylene) 、
poly[(p-aminophenoxy)(phenoxy)phosphazene]、
poly[(4-amino-4H-1,2,4-triazole-3,5-diyl)butane-1,4-diyl] 、
や下記一般式(3)で表される
As the basic skeleton consisting of an aromatic structure, polyaniline, polyamine sulfone, guanamine resin,
poly [iminocarbonyl [4,6-bis (sulfooxy) 1,3-phenylene] carbonylimino (4,4'-diaminobiphenyl-3,3'-diyl)],
poly [[1- (4,6-diamino-1,3,5-triazin-2-yl) piperidine-3,5-diyl] methylene] poly [methylene- (2,6-diamino) -3,5- toluene]
poly [(3-amino-1,4-phenylene) iminocarbonyl (2-carboxy-1,4-phenylene) [bis (trifluoromethyl) methylene] carbonylimino (2-amino-1,4-phenylene)]
poly (oxy-3-amino-1,4-phenylenesulfonyl-2-amino-1,4-phenyleneoxy-1,4-phenylene (dimethylmethylene) -1,4-phenylene),
poly (oxybiphenyl-4,4'-diyloxy-3-amino-1,4-phenylenesulfonyl-2-amino-1,4-phenylene),
poly (oxy-1,4-phenylenesulfonyl-1,4-phenyleneoxy-2-amino-1,4-phenylene (dimethylmethylene) -3-amino-1,4-phenylene),
poly (2,2'-diamino-5-hexadecylbiphenyl-3,3'-diyl),
poly (p-aminophenylacetylene),
poly (oxy-3-amino-1,4-phenylenesulfonyl-1,4-phenyleneoxy-1,4-phenylene (dimethylmethylene) -1,4-phenylene),
poly [(1,3-dioxoisoindoline-2,5-diyl) carbonyl (1,3-dioxoisoindoline-5,2-diyl) -1,3-phenyleneimino (6-amino-1,3,5-triazine-2, 4-diyl) imino-1,3-phenylene],
poly [nitrilo (1-amino-2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9-hexadecafluoro-10-iminodec-10-yl- 1-ylidene)],
poly [nitrilo (1-amino-2,2,3,3,4,4,5,5,6,6,7,7-dodecafluoro-8-iminooct-8-yl-1-ylidene)],
poly [(4-amino-4H-1,2,4-triazole-3,5-diyl) octane-1,8-diyl] poly [(4-amino-4H-1,2,4-triazole-3, 5-diyl) decane-1,10-diyl],
poly [(4-amino-4H-1,2,4-triazole-3,5-diyl) heptane-1,7-diyl], poly [(4-amino-4H-1,2,4-triazole-3 , 5-diyl) hexane-1,6-diyl],
poly [(4-amino-4H-1,2,4-triazole-3,5-diyl) pentane-1,5-diyl],
poly (2-amino-3-methoxy-1,4-phenylene),
poly (2-amino-1,3-phenylene),
poly [(p-aminophenoxy) (phenoxy) phosphazene],
poly [(4-amino-4H-1,2,4-triazole-3,5-diyl) butane-1,4-diyl],
Or the following general formula (3)

Figure 0004187692
(式中、- Rは-CH3N(CH3)2 、-CH2N(CH3)3Cl 、-CH2N(CH3)2(CH3CH2OH)Cl 、-CONHCH2CH2CH2N(CH3)2
Figure 0004187692
(In the formula, -R is -CH 3 N (CH 3 ) 2 , -CH 2 N (CH 3 ) 3 Cl, -CH 2 N (CH 3 ) 2 (CH 3 CH 2 OH) Cl, -CONHCH 2 CH 2 CH 2 N (CH 3 ) 2 )

塩基性陰イオン交換樹脂等の高分子化合物やピラジン、メチルピラジン、ジメチルピラジン、アミノピリジン、N,N’―ジー2−ナフチルーp−フェニレンジアミン、トルイレンジアミン、フェニレンジアミン、ジアミノアントラキノン、ジアニシジン、キシリレンジアミン、ジアミノ安息香酸、ジアミノトルエン、ジアミノジフェニルエーテル、o−トリジン、ベンゾグアナミン、アセトグアナミン、4,4’−ジアミノー3,3’−ジエチルジフェニルメタン、4,4’−ジアミノー3,3’−ジメチルジフェニルメタン、1,8−ジアザビシクロウンデセン、2−アミノメチルピペリジン、メラミン、ベンゾイミダゾールおよびその置換体、イミダゾールおよびその置換体、2−メルカプトベンズイミダゾールおよびその置換体、フタロシアニンなどの低分子化合物が挙げられる。
上記の添加剤のうち、基本骨格が芳香族構造を持つものの方が継続的な耐熱性を有するためより好ましい。
本発明の高分子固体電解質は、上述のパーフルオロカーボンスルホン酸ポリマーと添加剤とからなるもので、パーフルオロカーボンスルホン酸ポリマーが高分子固体電解質に対し、60%以上99.9%以下、より好ましくは70%以上99.5%以下の重量分率を占めることを特徴とする高分子固体電解質膜である。
High molecular compounds such as basic anion exchange resins, pyrazine, methylpyrazine, dimethylpyrazine, aminopyridine, N, N'-g-2-naphthyl-p-phenylenediamine, toluylenediamine, phenylenediamine, diaminoanthraquinone, dianisidine, xylidine Range amine, diaminobenzoic acid, diaminotoluene, diaminodiphenyl ether, o-tolidine, benzoguanamine, acetoguanamine, 4,4'-diamino-3,3'-diethyldiphenylmethane, 4,4'-diamino-3,3'-dimethyldiphenylmethane, 1,8-diazabicycloundecene, 2-aminomethylpiperidine, melamine, benzimidazole and substituted products thereof, imidazole and substituted products thereof, 2-mercaptobenzimidazole and substituted products thereof, phthalose Low molecular compounds such as Nin and the like.
Among the above additives, those having a basic skeleton having an aromatic structure are more preferable because they have continuous heat resistance.
The polymer solid electrolyte of the present invention comprises the above-mentioned perfluorocarbon sulfonic acid polymer and an additive, and the perfluorocarbon sulfonic acid polymer is 60% or more and 99.9% or less, more preferably, with respect to the polymer solid electrolyte. A solid polymer electrolyte membrane characterized by occupying a weight fraction of 70% or more and 99.5% or less.

ここでパーフルオロカーボンスルホン酸ポリマーの重量分率が60%未満であると、電解質膜として重要な性能であるプロトン伝導度が著しく低下し、好ましくなく、99.9%を超えると添加剤を加えたことによるガラス転移点上昇等の力学特性向上の効果が不十分となり好ましくない。
本発明の高分子固体電解質膜を製造する方法は、上記パーフルオロカーボンスルホン酸ポリマーと少なくとも二つのカチオン残基を分子内に持つ添加剤を含有させることが出来れば特に製造方法にこだわることはないが、以下に製造方法の一部を例示すると、
Here, when the weight fraction of the perfluorocarbon sulfonic acid polymer is less than 60%, the proton conductivity, which is an important performance as an electrolyte membrane, is remarkably lowered, and when it exceeds 99.9%, an additive is added. This is not preferable because the effect of improving mechanical properties such as an increase in glass transition point is insufficient.
The method for producing the solid polymer electrolyte membrane of the present invention is not particularly limited to the production method as long as the perfluorocarbonsulfonic acid polymer and an additive having at least two cation residues in the molecule can be contained. The following is an example of a part of the manufacturing method:

1)パーフルオロカーボンスルホン酸ポリマーを水と炭化水素系アルコールあるいは含フッ素アルコールの混合溶剤や、ジメチルホルムアミド、ジメチルアセトアミドなどのアミド系溶剤を代表例とする溶剤に溶解した溶液1と、添加剤を溶剤に溶解した溶液2を混合し、支持フィルムなどに流延した後、加熱等により溶剤を除去し、さらに必要に応じ、水洗、酸洗などを施し製膜する方法、
2)パーフルオロカーボンスルホン酸ポリマーと添加剤を同時に溶剤に溶解し、その溶液を支持フィルムなどに流延した後、加熱などにより溶剤を除去し、必要に応じ、水洗、酸洗等を施すことにより製膜する方法、
1) Solution 1 in which perfluorocarbon sulfonic acid polymer is dissolved in a mixed solvent of water and hydrocarbon alcohol or fluorine-containing alcohol or an amide solvent such as dimethylformamide or dimethylacetamide as a representative example, and an additive as a solvent After mixing the solution 2 dissolved in the solution and casting it on a support film, etc., the solvent is removed by heating or the like, and if necessary, water washing, pickling, etc. are performed to form a film,
2) By dissolving the perfluorocarbon sulfonic acid polymer and additives in a solvent at the same time, casting the solution on a support film, etc., removing the solvent by heating, etc., and washing with water, pickling, etc. as necessary Film forming method,

3)パーフルオロカーボンスルホン酸ポリマーの前駆体であるパーフルオロカーボンスルホニルフルオライドポリマーと添加剤を押出し機やプラストミルなどを用いて溶融混練し
、これをTダイや平板プレス等によりフィルム状に製膜した後、ケン化、H化、水洗を施すことにより製膜する方法、
4)パーフルオロカーボンスルホン酸ポリマーの前駆体であるパーフルオロカーボンスルホニルフルオライドポリマーをTダイや平板プレス等を用いてフィルム状に製膜した後、ケン化、H化、水洗を施すことにより製膜し、この膜を添加剤を溶解した溶液中に浸漬したのちに、溶剤を加熱などにより除去し、必要に応じ、水洗、酸洗を施すことにより製膜する方法等が挙げられる。
さらに上記のようにして得られた高分子固体電解質膜は、より強固なイオン結合を達成することを目的として、加熱アニールを施しても構わない。また、分子鎖を配向させ、強度をより向上させること等を目的として、延伸操作を施しても差し支えない。
3) After the perfluorocarbon sulfonyl fluoride polymer, which is a precursor of the perfluorocarbon sulfonic acid polymer, and the additive are melt-kneaded using an extruder, a plastmill, etc., and formed into a film using a T-die or flat plate press , Saponification, H conversion, a method of forming a film by washing with water,
4) After the perfluorocarbon sulfonyl fluoride polymer, which is a precursor of the perfluorocarbon sulfonic acid polymer, is formed into a film using a T-die or a flat plate press, the film is formed by saponification, hydrogenation, and washing with water. Examples of the method include forming the film by immersing the film in a solution in which the additive is dissolved, and then removing the solvent by heating and washing with water and pickling as necessary.
Furthermore, the polymer solid electrolyte membrane obtained as described above may be subjected to heat annealing for the purpose of achieving stronger ionic bonds. In addition, a stretching operation may be performed for the purpose of orienting molecular chains and further improving the strength.

以下、本発明を実施例、参考例、比較例に基いて詳細に説明する。当然の事ながら、これら実施例、参考例、比較例は本発明の権利範囲を不当に制限するものではない。
参考例1)
Aciplex−SS900(パーフルオロカーボンスルホン酸ポリマー 旭化成社製
商品名、 固形分濃度5%、固形分EW910)20gにジメチルホルムアミド10gを加えた後、ロータリーエバポレータを用いて溶媒を10g留去した。この溶液にポリアリルアミン(aldrich社製、重量平均分子量(Mw)約65,000、20wt%水溶液から水を除去したもの)0.1gをジメチルホルムアミド20gに溶解した溶液の2gを室温下混合し、混合溶液を得た。この混合溶液をガラスシャーレ内に20g入れ160℃に設定したホットプレート上で2時間加熱することにより溶剤を除去し、フィルム状物を得た。このフィルム状物をの70℃の熱水中で1時間処理し、続いて2mol/lの塩酸中で60℃で1時間処理し、さらに70℃の熱水中で1時間処理した後に室温下で風乾して、厚み約57μmの複合高分子固体電解質膜を得た。この高分子固体電解質膜を5cm×5mmに切出し、オリエンテック社製レオバイブロンを用い、35Hzの周波数で30℃〜300℃まで10℃/分の昇温速度で動的粘弾性挙動を測定した。その結果、tanδで見たα分散のピーク温度が130℃であった。また、7cm×1cmに切出したサンプルを東洋精機社製の引張りクリープ測定器を用い、120℃、荷重16kg/cm2 におけるクリープ特性曲線を測定したところ、20時間後のクリープ変形量はおよそ80%であった。さらにこの膜の80℃水中におけるプロトン伝導度を測定したところ、0.20S/cmであった。
Hereinafter, the present invention will be described in detail based on Examples , Reference Examples, and Comparative Examples . Of course, these examples, reference examples, comparative examples are not intended to unduly limit the scope of the present invention.
( Reference Example 1)
10 g of dimethylformamide was added to 20 g of Aciplex-SS900 (trade name, solid content concentration 5%, solid content EW910, manufactured by Asahi Kasei Co., Ltd.), and 10 g of the solvent was distilled off using a rotary evaporator. To this solution, 2 g of a solution of 0.1 g of polyallylamine (aldrich, weight average molecular weight (Mw) of about 65,000, water removed from 20 wt% aqueous solution) dissolved in 20 g of dimethylformamide was mixed at room temperature, A mixed solution was obtained. 20 g of this mixed solution was put in a glass petri dish and heated on a hot plate set at 160 ° C. for 2 hours to remove the solvent, thereby obtaining a film-like product. This film was treated in hot water at 70 ° C. for 1 hour, subsequently treated in 2 mol / l hydrochloric acid at 60 ° C. for 1 hour, further treated in hot water at 70 ° C. for 1 hour, and then at room temperature. And dried in air to obtain a composite polymer solid electrolyte membrane having a thickness of about 57 μm. This polymer solid electrolyte membrane was cut out to 5 cm × 5 mm, and the dynamic viscoelastic behavior was measured at 30 ° C. to 300 ° C. at a rate of 10 ° C./min at a frequency of 35 Hz using a Levibron manufactured by Orientec. As a result, the peak temperature of α dispersion as viewed from tan δ was 130 ° C. Moreover, when a creep characteristic curve at 120 ° C. and a load of 16 kg / cm 2 was measured for a sample cut into 7 cm × 1 cm using a tensile creep measuring instrument manufactured by Toyo Seiki Co., the creep deformation after 20 hours was about 80%. Met. Furthermore, when the proton conductivity of the membrane in 80 ° C. water was measured, it was 0.20 S / cm.

ここで、80℃における伝導度は次のようにして求めた。電解質膜を80℃の湯中で処理した後に、膨潤状態のまま幅1cm、長さ7cmに切出し、厚みT を測定した。このサンプルを膨潤状態のまま伝導度を測定する2端子式の伝導度測定セルに装着した。このセルを80℃のイオン交換水中に浸漬し、交流インピーダンス法により周波数10kHzにおける抵抗値R を測定し、以下の式からプロトン伝導度σを算出した。
σ=L /(R ×T ×W )
σ:プロトン伝導度(S/cm)
T :厚み(cm)
R :抵抗値(Ω)
L :2端子間距離(=5cm)
W :サンプル幅(=1cm)
Here, the conductivity at 80 ° C. was determined as follows. After the electrolyte membrane was treated in hot water at 80 ° C., it was cut into a 1 cm width and a 7 cm length in a swollen state, and the thickness T was measured. This sample was attached to a two-terminal conductivity measuring cell for measuring conductivity in a swollen state. This cell was immersed in 80 ° C. ion-exchanged water, the resistance value R at a frequency of 10 kHz was measured by the AC impedance method, and the proton conductivity σ was calculated from the following equation.
σ = L / (R × T × W)
σ: Proton conductivity (S / cm)
T: Thickness (cm)
R: Resistance value (Ω)
L: Distance between two terminals (= 5cm)
W: Sample width (= 1 cm)

参考例2)
Aciplex−SS900(パーフルオロカーボンスルホン酸ポリマー 旭化成社製
商品名、固形分濃度5%、固形分EW910)20gにジメチルホルムアミド10gを加えた後、ロータリーエバポレータを用いて溶媒を10g留去した。この溶液にポリアリ
ルアミン(aldrich社製、重量平均分子量(Mw)約65,000、20wt%水溶液から水を除去したもの)0.1gをジメチルホルムアミド20gに溶解した溶液を室温下混合し、混合溶液を得た。この混合溶液をガラスシャーレ内に20g入れ160℃に設定したホットプレート上で2時間加熱することにより溶剤を除去し、フィルム状物を得た。このフィルム状物をの70℃の熱水中で1時間処理し、続いて2mol/lの塩酸中で60℃で1時間処理し、さらに70℃の熱水中で1時間処理した後に室温下で風乾して、厚み約30μmの複合高分子固体電解質膜を得た。この高分子固体電解質膜を5cm×5mmに切出し、参考例1と同様の方法でバイブロン、引張クリープ、80℃水中でのプロトン伝導度を測定したところ、tanδで見たα分散のピーク温度が135℃であり、20時間後のクリープ変形量はおよそ60%、80℃水中におけるプロトン伝導度は、0.18S/cmであった。
( Reference Example 2)
After adding 10 g of dimethylformamide to 20 g of Aciplex-SS900 (trade name, solid content concentration 5%, solid content EW910, manufactured by Asahi Kasei Corporation, perfluorocarbon sulfonic acid polymer), 10 g of the solvent was distilled off using a rotary evaporator. A solution prepared by dissolving 0.1 g of polyallylamine (aldrich, weight-average molecular weight (Mw) of about 65,000, water removed from 20 wt% aqueous solution) in 20 g of dimethylformamide was mixed at room temperature, and mixed solution Got. 20 g of this mixed solution was put in a glass petri dish and heated on a hot plate set at 160 ° C. for 2 hours to remove the solvent, thereby obtaining a film-like product. This film was treated in hot water at 70 ° C. for 1 hour, subsequently treated in 2 mol / l hydrochloric acid at 60 ° C. for 1 hour, further treated in hot water at 70 ° C. for 1 hour, and then at room temperature. And dried in air to obtain a composite polymer solid electrolyte membrane having a thickness of about 30 μm. This polymer solid electrolyte membrane was cut into 5 cm × 5 mm, and proton conductivity in vibron, tensile creep and 80 ° C. water was measured in the same manner as in Reference Example 1. As a result, the peak temperature of α dispersion observed by tan δ was 135. The creep deformation after 20 hours was approximately 60%, and the proton conductivity in water at 80 ° C. was 0.18 S / cm.

(比較例1)
Aciplex−SS900(パーフルオロカーボンスルホン酸ポリマー 旭化成社製
商品名、固形分濃度5%、固形分EW910)をガラスシャーレ内に20g入れ、160℃に設定したホットプレート上で2時間加熱することにより溶剤を除去し、フィルム状物を得た。このフィルム状物をの70℃の熱水中で1時間処理し、続いて2mol/lの塩酸中で60℃で1時間処理し、さらに70℃の熱水中で1時間処理した後に室温下で風乾して、厚み約50μmの複合高分子固体電解質膜を得た。この高分子固体電解質膜を5cm×5mmに切出し、参考例1と同様の方法でバイブロン、引張クリープ、80℃水中でのプロトン伝導度を測定したところ、tanδで見たα分散のピーク温度が118℃であり、20時間後のクリープ変形量はおよそ155%、80℃水中におけるプロトン伝導度は、0.21S/cmであった。
この結果と参考例1および2の結果の比較より、本発明の複合高分子固体電解質膜は耐熱性が高いことが確認された。
(Comparative Example 1)
20 g of Aciplex-SS900 (product name, solid content concentration 5%, solid content EW910, manufactured by Asahi Kasei Co., Ltd.) is placed in a glass petri dish and heated for 2 hours on a hot plate set at 160 ° C. Removal was performed to obtain a film. This film was treated in hot water at 70 ° C. for 1 hour, subsequently treated in 2 mol / l hydrochloric acid at 60 ° C. for 1 hour, further treated in hot water at 70 ° C. for 1 hour, and then at room temperature. And dried in air to obtain a composite polymer solid electrolyte membrane having a thickness of about 50 μm. This polymer solid electrolyte membrane was cut out to 5 cm × 5 mm, and proton conductivity in vibron, tensile creep and 80 ° C. water was measured in the same manner as in Reference Example 1. As a result, the peak temperature of α dispersion observed by tan δ was 118. The creep deformation after 20 hours was approximately 155%, and the proton conductivity in water at 80 ° C. was 0.21 S / cm.
From a comparison between this result and the results of Reference Examples 1 and 2, it was confirmed that the composite polymer solid electrolyte membrane of the present invention had high heat resistance.

参考例3)
Aciplex−SS900(パーフルオロカーボンスルホン酸ポリマー 旭化成社製
商品名、固形分濃度5%、固形分EW910)20gにジメチルホルムアミド10gを加えた後、ロータリーエバポレータを用いて溶媒を10g留去した。この溶液にポリアリルアミン(aldrich社、重量平均分子量(Mw)約65,000、20wt%水溶液から水を除去したもの)0.4gをジメチルホルムアミド20gに溶解した溶液を室温下混合し、混合溶液を得た。この混合溶液をガラスシャーレ内に20g入れ160℃に設定したホットプレート上で2時間加熱することにより溶剤を除去し、フィルム状物を得た。このフィルム状物をの70℃の熱水中で1時間処理し、続いて2mol/lの塩酸中で60℃で1時間処理し、さらに70℃の熱水中で1時間処理した後に室温下で風乾して、厚み約31μmの複合高分子固体電解質膜を得た。この高分子固体電解質膜を5cm×5mmに切出し、参考例1と同様の方法でバイブロン、引張クリープ、80℃水中でのプロトン伝導度を測定したところ、tanδで見たα分散のピーク温度が138℃であり、20時間後のクリープ変形量はおよそ40%、80℃水中におけるプロトン伝導度は、0.14S/cmであった。
( Reference Example 3)
After adding 10 g of dimethylformamide to 20 g of Aciplex-SS900 (trade name, solid content concentration 5%, solid content EW910, manufactured by Asahi Kasei Corporation, perfluorocarbon sulfonic acid polymer), 10 g of the solvent was distilled off using a rotary evaporator. A solution prepared by dissolving 0.4 g of polyallylamine (aldrich, weight average molecular weight (Mw) of about 65,000, water removed from 20 wt% aqueous solution) in 20 g of dimethylformamide was mixed at room temperature. Obtained. 20 g of this mixed solution was put in a glass petri dish and heated on a hot plate set at 160 ° C. for 2 hours to remove the solvent, thereby obtaining a film-like product. This film was treated in hot water at 70 ° C. for 1 hour, subsequently treated in 2 mol / l hydrochloric acid at 60 ° C. for 1 hour, further treated in hot water at 70 ° C. for 1 hour, and then at room temperature. And dried in air to obtain a composite polymer solid electrolyte membrane having a thickness of about 31 μm. Cut the solid polymer electrolyte membrane 5 cm × 5 mm, Vibron in the same manner as in Reference Example 1, the tensile creep was measured proton conductivity at 80 ° C. water peak temperature of α dispersion seen in tanδ 138 The creep deformation after 20 hours was approximately 40%, and the proton conductivity in water at 80 ° C. was 0.14 S / cm.

(比較例2)
Aciplex−SS900(パーフルオロカーボンスルホン酸ポリマー 旭化成社製
商品名、固形分濃度5%、固形分EW910)20gにジメチルホルムアミド10gを加えた後、ロータリーエバポレータを用いて溶媒を10g留去した。この溶液にポリアリルアミン(aldrich社製、重量平均分子量(Mw)約65,000、20wt%水溶液から水を除去したもの)1gをジメチルホルムアミド20gに溶解した溶液を室温下混合し、混合溶液を得た。この混合溶液をガラスシャーレ内に20g入れ160℃に設定したホットプレート上で2時間加熱することにより溶剤を除去し、フィルム状物を得た。
このフィルム状物をの70℃の熱水中で1時間処理し、続いて2mol/lの塩酸中で60℃で1時間処理し、さらに70℃の熱水中で1時間処理した後に室温下で風乾して、厚み約55μmの複合高分子固体電解質膜を得た。この高分子固体電解質膜を5cm×5mmに切出し、参考例1と同様の方法でバイブロン、引張クリープ、80℃水中でのプロトン伝導度を測定したところ、tanδで見たα分散のピーク温度が139℃であり、20時間後のクリープ変形量はおよそ36%、80℃水中におけるプロトン伝導度は、0.09S/cmであった。
(Comparative Example 2)
After adding 10 g of dimethylformamide to 20 g of Aciplex-SS900 (trade name, solid content concentration 5%, solid content EW910, manufactured by Asahi Kasei Corporation, perfluorocarbon sulfonic acid polymer), 10 g of the solvent was distilled off using a rotary evaporator. A solution in which 1 g of polyallylamine (aldrich, weight average molecular weight (Mw) of about 65,000, water was removed from a 20 wt% aqueous solution) dissolved in 20 g of dimethylformamide was mixed at room temperature to obtain a mixed solution. It was. 20 g of this mixed solution was put in a glass petri dish and heated on a hot plate set at 160 ° C. for 2 hours to remove the solvent, thereby obtaining a film-like product.
This film was treated in hot water at 70 ° C. for 1 hour, subsequently treated in 2 mol / l hydrochloric acid at 60 ° C. for 1 hour, further treated in hot water at 70 ° C. for 1 hour, and then at room temperature. And dried in air to obtain a composite polymer solid electrolyte membrane having a thickness of about 55 μm. This polymer solid electrolyte membrane was cut out to 5 cm × 5 mm, and proton conductivity in vibron, tensile creep and 80 ° C. water was measured in the same manner as in Reference Example 1. As a result, the peak temperature of α dispersion observed by tan δ was 139. The creep deformation after 20 hours was approximately 36%, and the proton conductivity in water at 80 ° C. was 0.09 S / cm.

参考例4)
ポリアリルアミンの代わりにポリアニリン(和光純薬工業社、コード番号581−66981)を用いた以外は参考例1と同様の方法で電解質膜を得た。参考例1と同様の方法でバイブロン、引張クリープ、80℃水中でのプロトン伝導度を測定したところ、tanδで見たα分散のピーク温度が132℃であり、20時間後のクリープ変形量はおよそ75%、80℃水中におけるプロトン伝導度を測定したところ、0.19S/cmであった。
( Reference Example 4)
An electrolyte membrane was obtained in the same manner as in Reference Example 1 except that polyaniline (Wako Pure Chemical Industries, code number 581-66981) was used instead of polyallylamine. When proton conductivity in water, tensile creep, and 80 ° C. water was measured in the same manner as in Reference Example 1, the peak temperature of α dispersion observed by tan δ was 132 ° C., and the amount of creep deformation after 20 hours was approximately The proton conductivity in water at 75% and 80 ° C. was measured to be 0.19 S / cm.

参考例5)
ポリアリルアミンの代わりにベンゾイミダゾール(和光純薬社製)を用いた以外は実施例1と同様の方法で電解質膜を得た。参考例1と同様の方法でバイブロン、引張クリープ、80℃水中でのプロトン伝導度を測定したところ、tanδで見たα分散のピーク温度が128℃であり、20時間後のクリープ変形量はおよそ85%、80℃水中におけるプロトン伝導度を測定したところ、0.19S/cmであった。
( Reference Example 5)
An electrolyte membrane was obtained in the same manner as in Example 1 except that benzimidazole (manufactured by Wako Pure Chemical Industries, Ltd.) was used instead of polyallylamine. When the proton conductivity in water, tensile creep, and 80 ° C. water was measured in the same manner as in Reference Example 1, the peak temperature of α dispersion observed by tan δ was 128 ° C., and the amount of creep deformation after 20 hours was approximately When the proton conductivity in water at 85% and 80 ° C. was measured, it was 0.19 S / cm.

(実施例
テトラフルオロエチレンとCF2=CFO(CF2)-SO2F との重合により得られた前駆体ポリマー(アルカリ加水分解・酸処理後のEw:730 )99g と、フタロシアニン亜鉛(和光純薬社より購入)1gをラボプラストミルで270 ℃で溶融混練を行い、冷却後、280 ℃の平板プレス機を用い、その20g をフィルム化した。このフィルムを水酸化カリウム(15重量%)とジメチルスルホキシド(30重量%)を溶解した水溶液中に、80℃で2時間接触させて、アルカリ加水分解処理を行った。 このフィルムをイオン交換水で洗浄し、その後、65℃の2N 塩酸水溶液中で2時間処理して、さらにイオン交換水で水洗後、風乾して厚み約67μmの電解質膜を得た。
この電解質膜に関して、参考例1と同様の方法でバイブロン、引張クリープ、80℃水中でのプロトン伝導度を測定したところ、tanδで見たα分散のピーク温度が141℃であり、20時間後のクリープ変形量はおよそ43%で、80℃水中におけるプロトン伝導度を測定したところ、0.22S/cmであった。
(Example 1 )
Tetrafluoroethylene and CF 2 = CFO (CF 2) ( after alkaline hydrolysis and acid treatment Ew: 730) polymerization obtained precursor polymer with -SO 2 F and 99 g, more zinc phthalocyanine (manufactured by Wako Pure Chemical Industries, (Purchase) 1g was melt kneaded at 270 ° C with a lab plast mill, and after cooling, 20g was formed into a film using a flat plate press at 280 ° C. This film was contacted in an aqueous solution in which potassium hydroxide (15% by weight) and dimethyl sulfoxide (30% by weight) were dissolved at 80 ° C. for 2 hours for alkali hydrolysis treatment. This film was washed with ion-exchanged water, then treated in a 2N aqueous hydrochloric acid solution at 65 ° C. for 2 hours, further washed with ion-exchanged water and air-dried to obtain an electrolyte membrane having a thickness of about 67 μm.
With respect to this electrolyte membrane, proton conductivity in vibron, tensile creep, and 80 ° C. water was measured in the same manner as in Reference Example 1. As a result, the peak temperature of α dispersion observed in tan δ was 141 ° C., and 20 hours later. The creep deformation was about 43%, and the proton conductivity measured in water at 80 ° C. was 0.22 S / cm.

(比較例3)
テトラフルオロエチレンとCF2=CFO(CF2)-SO2F との重合により得られた前駆体ポリマー(アルカリ加水分解・酸処理後のEw:730 )の20g を、280 ℃の平板プレス機を用い、フィルム化した。このフィルムを水酸化カリウム(15重量%)とジメチルスルホキシド(30重量%)を溶解した水溶液中に、80℃で2時間接触させて、アルカリ加水分解処理を行った。このフィルムをイオン交換水で洗浄し、その後、65℃の2N 塩酸水溶液中で2時間処理して、さらにイオン交換水で水洗後、風乾して厚み約67μmの電解質膜を得た。この電解質膜に関して、参考例1と同様の方法でバイブロン、引張クリープ、80℃水中でのプロトン伝導度を測定したところ、tanδで見たα分散のピーク温度が128℃であり、20時間後のクリープ変形量はおよそ68%で、80℃水中におけるプロトン伝導度を測定したところ、0.25S/cmであった。
以下に、実施例、参考例及び比較例を表1にまとめる。
(Comparative Example 3)
20 g of the precursor polymer (Ew after alkali hydrolysis and acid treatment: 730) obtained by polymerization of tetrafluoroethylene and CF 2 = CFO (CF 2 ) -SO 2 F was added to a flat plate press at 280 ° C. Used to form a film. This film was contacted in an aqueous solution in which potassium hydroxide (15% by weight) and dimethyl sulfoxide (30% by weight) were dissolved at 80 ° C. for 2 hours for alkali hydrolysis treatment. This film was washed with ion-exchanged water, then treated in a 2N aqueous hydrochloric acid solution at 65 ° C. for 2 hours, further washed with ion-exchanged water and air-dried to obtain an electrolyte membrane having a thickness of about 67 μm. With respect to this electrolyte membrane, proton conductivity in vibron, tensile creep and 80 ° C. water was measured in the same manner as in Reference Example 1. As a result, the peak temperature of α dispersion as seen by tan δ was 128 ° C., and 20 hours later. The creep deformation was about 68%, and the proton conductivity measured in water at 80 ° C. was 0.25 S / cm.
The examples , reference examples and comparative examples are summarized in Table 1 below.

Figure 0004187692
Figure 0004187692

本発明は、高温耐久性の向上作用を示し、燃料電池用の高分子固体電解質膜として好適である。   The present invention exhibits an effect of improving high temperature durability and is suitable as a polymer solid electrolyte membrane for a fuel cell.

Claims (1)

パーフルオロカーボンスルホン酸ポリマーと、添加剤とからなる高分子固体電解質膜であって、該パーフルオロカーボンスルホン酸ポリマーが高分子固体電解質に対し、60%以上99.9%以下の重量分率を占め、かつ該添加剤がフタロシアニンであることを特徴とする高分子固体電解質膜。 A polymer solid electrolyte membrane comprising a perfluorocarbon sulfonic acid polymer and an additive, wherein the perfluorocarbon sulfonic acid polymer occupies a weight fraction of 60% or more and 99.9% or less with respect to the polymer solid electrolyte, A solid polymer electrolyte membrane, wherein the additive is phthalocyanine .
JP2004199396A 2004-07-06 2004-07-06 High temperature durable polymer solid electrolyte membrane Active JP4187692B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004199396A JP4187692B2 (en) 2004-07-06 2004-07-06 High temperature durable polymer solid electrolyte membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004199396A JP4187692B2 (en) 2004-07-06 2004-07-06 High temperature durable polymer solid electrolyte membrane

Publications (2)

Publication Number Publication Date
JP2006024389A JP2006024389A (en) 2006-01-26
JP4187692B2 true JP4187692B2 (en) 2008-11-26

Family

ID=35797514

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004199396A Active JP4187692B2 (en) 2004-07-06 2004-07-06 High temperature durable polymer solid electrolyte membrane

Country Status (1)

Country Link
JP (1) JP4187692B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5062722B2 (en) * 2005-09-15 2012-10-31 独立行政法人物質・材料研究機構 Membrane for proton conductive fuel cell operable under anhydrous and high temperature, and method for producing the same
JP2007280845A (en) * 2006-04-10 2007-10-25 Kaneka Corp Electrolyte membrane, membrane-electrode assembly using it, and fuel cell
CN101563802B (en) * 2006-12-14 2012-07-18 旭硝子株式会社 Solid polymer electrolyte membrane for polymer electrolyte fuel cell and membrane electrode assembly
JP4986298B2 (en) * 2007-01-30 2012-07-25 富士フイルム株式会社 Method for producing solid electrolyte film and web-like solid electrolyte film
EP2719007A1 (en) * 2011-06-06 2014-04-16 Solvay Specialty Polymers Italy S.p.A. Stable ion exchange fluorinated polymers and membranes obtained therefrom

Also Published As

Publication number Publication date
JP2006024389A (en) 2006-01-26

Similar Documents

Publication Publication Date Title
Mader et al. Sulfonated polybenzimidazoles for high temperature PEM fuel cells
Li et al. A highly durable long side-chain polybenzimidazole anion exchange membrane for AEMFC
EP3490043B1 (en) Hydrocarbon-based cross-linked membrane in which nanoparticles are used, method for manufacturing said membrane, and fuel cell
Yao et al. Highly sulfonated co-polyimides containing hydrophobic cross-linked networks as proton exchange membranes
Wang et al. Considerations of the effects of naphthalene moieties on the design of proton-conductive poly (arylene ether ketone) membranes for direct methanol fuel cells
CN108586745B (en) Anion exchange membrane based on fluorinated polybenzimidazole and preparation method thereof
KR100819332B1 (en) Sulfonated poly(arylene ether) containing crosslinkable moity at end group, method of manufacturing the same, and polymer electrolyte membrane using the sulfonated poly(arylene ether) and the method
KR101892317B1 (en) Process for the preparation of cross-linked fluorinated polymers
EP3229302B1 (en) Polymer electrolyte membrane
Hu et al. Multi-block sulfonated poly (arylene ether nitrile) polymers bearing oligomeric benzotriazole pendants with exceptionally high H2/O2 fuel cell performance
KR101461417B1 (en) Perfluorosulfonic acid membrane modified with amine compounds and method for the preparation thereof
Li et al. Intermolecular ionic cross-linked sulfonated poly (ether ether ketone) membranes with excellent mechanical properties and selectivity for direct methanol fuel cells
KR20220088308A (en) Novel polyfluorene-based crosslinked block copolymer and preparation method thereof, anion exchange membrane for alkaline fuel cell using the same
Yao et al. Highly sulfonated co-polyimides containing cross-linkable hydrophobic tetrafluorostyrol side-groups for proton exchange membranes
CN109690695B (en) Solid polymer electrolyte membrane and method for producing same
JP4187692B2 (en) High temperature durable polymer solid electrolyte membrane
JP6150616B2 (en) Polymer electrolyte composition and polymer electrolyte membrane
JP2006253002A (en) Manufacturing method of ion exchange membrane
CN115917797A (en) Method for recycling solid articles comprising fluorinated polymers
KR100760452B1 (en) Poly(arylene ether) co-polymer and membrane using the same
Wang et al. Alternating Copolymer of Sulfonated Poly (ether ether ketone‐benzimidazole) s (SPEEK‐BI) Bearing Acid and Base Moieties
JP5168758B2 (en) Production method of ion exchange membrane
JP2005060516A (en) Fluorine-based ion exchange membrane
US9212246B1 (en) Methods of producing cross-linked polymer electrolyte membranes having free-radical scavengers
Zhang et al. Crosslinked tri-side-chain-type sulfonated poly (arylene ether ketones) with enhanced proton conductivity by a Friedel–Crafts acylation reaction

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070629

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080624

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080819

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080909

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080909

R150 Certificate of patent or registration of utility model

Ref document number: 4187692

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110919

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110919

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110919

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110919

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120919

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130919

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350