JP4186773B2 - Water supply facility management system and water supply facility management method - Google Patents

Water supply facility management system and water supply facility management method Download PDF

Info

Publication number
JP4186773B2
JP4186773B2 JP2003330897A JP2003330897A JP4186773B2 JP 4186773 B2 JP4186773 B2 JP 4186773B2 JP 2003330897 A JP2003330897 A JP 2003330897A JP 2003330897 A JP2003330897 A JP 2003330897A JP 4186773 B2 JP4186773 B2 JP 4186773B2
Authority
JP
Japan
Prior art keywords
residual chlorine
water
facility
value
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003330897A
Other languages
Japanese (ja)
Other versions
JP2005095735A5 (en
JP2005095735A (en
Inventor
浩人 横井
伊智朗 圓佛
晃治 陰山
直樹 原
幹雄 依田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2003330897A priority Critical patent/JP4186773B2/en
Publication of JP2005095735A publication Critical patent/JP2005095735A/en
Publication of JP2005095735A5 publication Critical patent/JP2005095735A5/ja
Application granted granted Critical
Publication of JP4186773B2 publication Critical patent/JP4186773B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/152Water filtration

Landscapes

  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Description

本発明は、上水道施設の管理システム及び上水道施設の管理方法に関する。   The present invention relates to a water supply facility management system and a water supply facility management method.

現在、水道水の水質基準項目は46項目、水質基準を補完する項目は48項目ある。水道事業体は給水栓,水源などで定期的にこれらの項目の測定を行い、上水道施設の管理に反映している。例えば、特開2002−11460号公報では、中央監視センターを設け、複数の水道事業体を対象として、水源,浄水場,配水施設の水質をモニタし、これらの情報を元に水質管理することとしている。管理のための計測項目としては、水源で油,濁度,有害物(バイオアッセイ)、浄水場でプロセスデータ,濁度,配水施設で残塩,濁度,色度などである。この方法により、管理が一元化され、各事業体における水質管理の精度を向上させることができるとしている。   Currently, there are 46 water quality standard items and 48 items that complement the water quality standards. Water utilities regularly measure these items at taps, water sources, etc., and reflect them in the management of water supply facilities. For example, in Japanese Patent Laid-Open No. 2002-11460, a central monitoring center is provided, water quality of water sources, water treatment plants, and water distribution facilities is monitored for a plurality of water supply entities, and water quality is managed based on these information. Yes. Measurement items for management include oil, turbidity, and harmful substances (bioassay) at the water source, process data at the water purification plant, turbidity, residual salt at the water distribution facility, turbidity, and chromaticity. According to this method, management is unified and the accuracy of water quality management in each business entity can be improved.

特開2002−11460号公報JP 2002-11460 A

現行の水質基準では全項目を定期的に計測する必要があり、多種・多数の水質計測を行うのは中小の水道事業体では維持管理業務全体における負荷が大きい状況であった。しかし、現在進められている水質基準の改正では、水源の違いや、水源水質の地域性を考慮し、水質項目の検査の省略が可能となることが盛り込まれている。検査の省略は管理業務の合理化につながるが、十分な根拠を元に省略できる項目を選定する必要がある。逆に、維持管理の負荷が増大する要因としては、施設の老朽化がある。建設から長期間運転を行ってきた処理場数が増加しており、これらの処理場を保有する自治体は、施設の更新または他の浄水施設との統廃合を行うこととなる。浄水施設が統廃合された場合、一水道事業体が管理する範囲は広がるため、水源から末端での管理の範囲は広域に渡り、負荷増加になる。   Under the current water quality standards, it is necessary to measure all items regularly, and many and many water quality measurements are under heavy load on the maintenance work in small and medium-sized water utilities. However, the current revision of water quality standards includes the possibility of omitting inspection of water quality items in consideration of differences in water sources and regional characteristics of water sources. Omission of inspection leads to rationalization of management work, but it is necessary to select items that can be omitted based on sufficient grounds. On the other hand, the factor that increases the maintenance load is the deterioration of the facilities. The number of treatment plants that have been operating for a long time since construction has increased, and the local governments that own these treatment plants will either renew facilities or consolidate with other water purification facilities. When a water purification facility is integrated and abolished, the range managed by one water supply entity widens, so the range of management from the water source to the end extends over a wide area, increasing the load.

一方で、おいしい水に対する需要家の要求があり、各地の浄水施設では活性炭やオゾンなどを用いた高度処理がなされている。しかし、水源水質が悪化傾向にあると同時に、油の流出やアンモニア性窒素の流入など水質事故は毎年一定件数発生している。そのため、水道事業体は情報公開の面からも、水源の水質,浄水施設での各工程の管理状態および送・配水施設が原因の赤水等の発生などに対して、浄水施設全体を十分把握している必要がある。   On the other hand, there is a demand from customers for delicious water, and advanced treatment using activated carbon, ozone, or the like is performed at water purification facilities in various places. However, the quality of the water source is on the decline, and at the same time, a certain number of water quality accidents such as oil spills and ammonia nitrogen inflows occur. For this reason, from the viewpoint of information disclosure, the water supply entity also fully understands the entire water purification facility, including the quality of the water source, the management status of each process at the water purification facility, and the occurrence of red water caused by the transmission / distribution facility. Need to be.

浄水施設における危害を予め分析し、危害原因を除去する工程の重点的な監視・管理・記録を行うHACCPの管理を適用することで、水質検査の省略,管理対象区域の広域化および綿密な水質管理を同時にかつ合理的に行うことが望まれる。また、浄水工程において重要な工程である殺菌工程に関して、残留塩素の実測および管網における残留塩素の分布の推定により、送・配水時の水道水のトレーサビリティーを確保できる、水道水の
HACCPによる管理システムを提供することが望まれる。
Applying HACCP management to analyze hazards in water purification facilities in advance and focus on monitoring, management, and recording of the process of removing the cause of harm, thereby eliminating the need for water quality inspections, widening the area to be managed, and thorough water quality It is desirable to perform management at the same time and rationally. In addition, with regard to the sterilization process, which is an important process in the water purification process, it is possible to ensure the traceability of tap water during transmission / distribution by actually measuring residual chlorine and estimating the distribution of residual chlorine in the pipe network. It would be desirable to provide a system.

浄水施設内で塩素剤を注入した後の残留塩素、配水施設における残留塩素および少なくとも1個所の給水栓における残留塩素を自動計測する残留塩素自動計測装置からの水質データを格納する水質データ格納手段と、水の残留塩素が、危害の種類毎に予め設定した残留塩素規定値内にあるか否かを診断する診断ルールを格納する診断ルール格納手段と、塩素剤を注入する前記浄水施設の殺菌工程および前記配水施設におけるプロセスデータを計測するプロセスデータ計測装置と前記プロセスデータを格納するプロセスデータ格納手段と、前記診断ルールにより、前記残留塩素自動計測装置によって計測した残留塩素が、危害の種類毎に予め設定した残留塩素規定値内にあるか否かを診断し、前記残留塩素規定値を逸脱した計測地点、逸脱した残留塩素計測値および逸脱した日時を記録する診断手段と、前記逸脱した計測地点、前記逸脱した残留塩素計測値および前記逸脱した日時を格納する残留塩素分布格納手段とを有することを特徴とする。 Water quality data storage means for storing water quality data from an automatic residual chlorine measuring device for automatically measuring residual chlorine after injecting a chlorine agent in a water purification facility, residual chlorine in a distribution facility, and residual chlorine in at least one water tap; , A diagnostic rule storage means for storing a diagnosis rule for diagnosing whether or not residual chlorine in water is within a predetermined residual chlorine specified value for each type of harm, and a sterilization process of the water purification facility for injecting a chlorine agent and a process data storage means for storing the process data and process data measuring device which measures the process data in the water distribution facility, by the diagnostic rule, the residual chlorine was measured by the residual chlorine automatic measuring apparatus for each type of hazard diagnose whether advance in the set within the residual chlorine prescribed value, the residual chlorine specified value deviant measurement point, deviates Characterized in that it has diagnostic means for recording the distillate chlorine measurements and deviant time, the deviant measurement point, and a residual chlorine distribution storing means to said the residual chlorine measured value and then the deviation deviates date to store .

上水道施設における管理の合理化、濃度分布を元にした送・配水時の水道水のトレーサビリティーの確保ができる。 Rationalization of management in water supply facilities, can ensure the traceability of tap water transmission and distribution at the time was based on the concentration distribution.

この目的を達成するために本発明の実施形態では、水道水の摂取によって発生すると想定される全ての危害を事前分析し、前記事前分析結果に基づき、危害発生を防止する上で一定以上の重要性を有する製造工程を予め特定しておき、前記製造工程の管理状況の連続的または相当の頻度でのモニタリング装置およびモニタリング結果の記録装置を有する管理システムとし、特に重要な殺菌工程に関連して、浄水施設内で塩素剤を注入後の残留塩素,配水施設における残留塩素および少なくとも1個所の給水栓における残留塩素自動計測装置と、塩素剤を注入する殺菌工程および配水施設におけるプロセスデータを計測するプロセスデータ計測装置とこれを格納するプロセスデータ格納手段と、残留塩素自動計測装置によって計測した残留塩素が、危害の種類毎に予め設定した残留塩素規定値内にあるか否かを診断ルールにより判断する診断手段と、この診断ルールを格納する診断ルール格納手段と、診断ルールにより、少なくとも残留塩素が規定値を逸脱した計測地点,残留塩素計測値および逸脱した日時を格納する残留塩素分布格納手段とを有する構成としたものである。このような構成であると、HACCPの管理による上水道施設における管理の合理化と共に、残留塩素の過剰または過少による危害発生の可能性が生じた点の発生状況が分かり、需要家への危害発生時の上水道施設の管理状況を説明することが容易となる。   In order to achieve this object, the embodiment of the present invention pre-analyzes all hazards that are assumed to occur due to ingestion of tap water, and based on the pre-analysis results, a certain level or more in preventing the occurrence of the hazards. A management system having a manufacturing device having a significance in advance and having a monitoring device and a monitoring result recording device for monitoring the management status of the manufacturing process continuously or at a considerable frequency, particularly related to the important sterilization step. Measures residual chlorine after injecting chlorine in water purification facilities, residual chlorine in water distribution facilities and residual chlorine in at least one water faucet, sterilization process for injecting chlorine agents and process data in water distribution facilities Process data measuring device, process data storage means for storing this, and residual chlorine measured by a residual chlorine automatic measuring device Diagnostic means for judging whether or not it is within the predetermined residual chlorine specified value for each type of harm, diagnostic rule storage means for storing this diagnostic rule, and at least residual chlorine is prescribed by the diagnostic rule The measurement point deviates from the value, the residual chlorine measurement value, and the residual chlorine distribution storage means for storing the date and time of departure. With such a configuration, it is possible to understand the situation of the occurrence of harm due to excess or deficiency of residual chlorine as well as rationalization of management in waterworks facilities by HACCP management, and at the time of harm to customers It becomes easy to explain the management status of waterworks facilities.

さらに、本発明の実施形態では、管網モデル,水道管路の管径,管路長,材質,管同士の接続関係,水の需要量パターンを格納する管網データ格納手段と、プロセスデータ,水質データおよび管網データを用いて、任意の時間毎の管路内の流量および残留塩素を推定する流量および残留塩素推定手段とを備え、流量および残留塩素推定手段によって得られた残留塩素推定値に対し、診断ルールを適用し、残留塩素推定値が規定値を逸脱した場合、少なくとも、逸脱した管路,前記管路における残留塩素および流下時間を格納する残留塩素分布格納手段と、水質データおよびプロセスデータを検索し表示する検索・表示手段と、診断ルールおよび危害の種類毎に設定する残留塩素規定値を入力編集するデータ編集手段とを有する構成としたものである。このような構成にすると、残留塩素の過剰または過少の発生およびその区域と、塩素剤を注入する殺菌工程および配水池の運転状況との対応が明確となるため、水道水のトレーサビリティーが得られる。   Further, in the embodiment of the present invention, a pipe network data storage means for storing a pipe network model, a pipe diameter of a water pipe, a pipe length, a material, a connection relation between pipes, a demand pattern of water, process data, Estimated residual chlorine value obtained by the flow rate and residual chlorine estimation means, comprising a flow rate and residual chlorine estimation means for estimating the flow rate and residual chlorine in the pipeline every arbitrary time using water quality data and pipe network data On the other hand, when the diagnosis rule is applied and the estimated residual chlorine value deviates from the specified value, at least the deviated pipe line, the residual chlorine distribution storage means for storing the residual chlorine and the flow time in the pipe line, water quality data and Search / display means for searching and displaying process data, and data editing means for inputting and editing residual chlorine specified values set for each diagnosis rule and hazard type A. With such a configuration, the traceability of tap water can be obtained because the occurrence of excess or low residual chlorine and its area, the sterilization process for injecting the chlorine agent, and the operation status of the reservoir are clarified. .

また、本発明の実施形態では、複数の浄水施設の相互の送・配水施設を連絡する配管を有する構成としている。異なる浄水施設を送水元とする水を融通しあう場合、水質の異なる水が混合するとともに、配水区域は実質的に広域化する。これにより、例えば末端での残留塩素が低濃度になったり、融通量に依存した管内の流速変化により滞留部が生じるなど、単一の浄水施設によりそれぞれ管理していた場合の残留塩素管理における運転管理経験が適用できなくなる場合が生じる。このような場合に本管理システムを適用することで、浄水施設や配水施設における殺菌工程の運転制御の影響のみならず、水の融通が残留塩素に与える影響を推定でき、施設の管理状態の把握に有効である。   Moreover, in embodiment of this invention, it is set as the structure which has piping which connects the mutual transmission and water distribution facilities of several water purification facilities. When water from different water purification facilities is interchanged, water with different water quality is mixed and the water distribution area is substantially widened. As a result, for example, the residual chlorine at the end becomes low concentration, or a stagnant part is generated due to the change in flow rate in the pipe depending on the amount of accommodation. Management experience may not be applicable. By applying this management system in such a case, it is possible to estimate not only the effects of sterilization process operation control in water purification facilities and water distribution facilities, but also the impact of water interchange on residual chlorine, and grasp the management status of the facility It is effective for.

また、本発明の実施形態では、異なる浄水施設から送水された水の融通時に、浄水施設が異なる水が混合する配管に残留塩素自動計測器を備える構成にしたものである。これにより、水融通による影響が大きい位置での残留塩素の実測値が得られるため、施設の管理状態の把握に有効である。   Moreover, in embodiment of this invention, at the time of interchange of the water sent from different water purification facilities, it is set as the structure provided with the residual chlorine automatic measuring device in the pipe | tube with which different water mixes water. As a result, an actual measurement value of residual chlorine at a position where the influence of water interchange is large is obtained, which is effective for grasping the management state of the facility.

また、本発明の実施形態では、降雨データの入手や、殺菌工程より前の工程における水のアンモニア濃度,濁度,TOC,過マンガン酸カリウム消費量,塩素要求量のうち少なくとも一種類の計測を連続で行う手段を備える構成にしたものである。これらの水質項目は殺菌工程において必要な塩素剤の注入量や、送・配水施設におけるトリハロメタン等の消毒副生成物の生成による残留塩素の消費量と関係がある。   In the embodiment of the present invention, the measurement of at least one of the ammonia concentration, turbidity, TOC, potassium permanganate consumption, and chlorine demand of water in the process prior to the sterilization process is obtained. It is configured to include means for performing continuously. These water quality items are related to the amount of chlorine agent required in the sterilization process and the consumption of residual chlorine due to the production of disinfection by-products such as trihalomethanes in the water supply and distribution facilities.

このような構成であると、送・配水施設または給水施設において水道水中の残留塩素が規定の範囲を逸脱したとき、その水道水を浄水処理,送・配水したプロセスデータを把握するのみでなく、原水水質に関する情報を知ることができる。そのため、これらのデータも用いることで残留塩素が規定の範囲を逸脱した原因の類推が容易になる。   With such a configuration, when residual chlorine in tap water deviates from the specified range at the water supply / distribution facility or water supply facility, not only the process data of purified water treatment, transmission / distribution of the tap water is grasped, You can get information on the quality of raw water. Therefore, by using these data, it becomes easy to estimate the cause of the residual chlorine deviating from the specified range.

また、本発明の実施形態では、上水道施設水質データおよび水質データ格納手段と、上水道施設機器仕様および機器仕様格納手段と、危害物質毒性データおよび危害物質毒性データの格納手段を有し、上水道施設プロセスデータ,上水道施設水質データおよび上水道施設機器仕様を用い、水道水によって需要家へ届く危害物質量を推定し、危害物質量と危害物質毒性データから人への危害の程度を評価する危害評価手段と、危害評価手段と危害物質毒性データを格納する危害評価モデル格納手段とを有する構成にしている。   In the embodiment of the present invention, water supply facility water quality data and water quality data storage means, water supply facility equipment specifications and equipment specification storage means, hazardous substance toxicity data and hazardous substance toxicity data storage means, water supply facility process Hazard assessment means to estimate the amount of hazardous substances reaching customers by tap water using the data, water supply facility water quality data and water supply facility equipment specifications, and to evaluate the degree of harm to humans from the amount of hazardous substances and hazardous substance toxicity data The apparatus has a hazard assessment means and a hazard assessment model storage means for storing hazardous substance toxicity data.

また、危害物質による危害評価の際に用いるデータとして、水源となる流域における農薬使用量データおよび特定事業場排出物質データのうち少なくとも一つを用いて、取水施設における水質を推定する手段を有する構成としている。   In addition, as a data to be used for hazard assessment by hazardous substances, it has a means to estimate the water quality at the water intake facility using at least one of the agricultural chemical usage data in the watershed serving as the water source and the specific plant emission data It is said.

さらに本発明の実施形態では、危害分析結果および機器仕様を用い、重点管理工程を選定する重要管理工程選定手段と、重要管理工程における対象危害物質の除去性能を計測するため、および前記重点管理工程後の危害物質の濃度を計測または推定するための、モニタリング方法を選定する、モニタリング方法選定手段と、選定したモニタリング方法により重点管理工程を管理する場合に必要なモニタリングの規定値を選定する、基準値選定手段と、を有する構成としている。このような構成であると、地域や水源による危害物質の量を考慮して施設の運転管理や水質計測が可能となるため、上水道施設の管理が合理化できる。   Furthermore, in the embodiment of the present invention, using the hazard analysis result and the equipment specification, the important management process selecting means for selecting the priority management process, measuring the removal performance of the target hazardous substance in the important management process, and the priority management process Criteria for selecting a monitoring method for measuring or estimating the concentration of the hazardous substance later, and for selecting a monitoring method selection means and a monitoring standard value necessary for managing the priority management process by the selected monitoring method And a value selection means. With such a configuration, it becomes possible to manage the operation of the facility and measure the water quality in consideration of the amount of hazardous substances depending on the region and the water source, so that the management of the water supply facility can be rationalized.

図1は本発明による上水道施設の管理システムにおける機能ブロック図を示す。   FIG. 1 is a functional block diagram of a water supply facility management system according to the present invention.

本実施例による上水道施設の管理システムは、計測機器と情報管理システム2000から成っており、大きく分けると、HACCPシステム1000,管網計算手段1100,データ編集手段30および表示手段31から構成されている。このうち、HACCPシステム1000と管網計算手段1100は、水質・プロセスデータ100,データ格納手段110,推定・診断手段120に分けられる。   The management system of the water supply facility according to the present embodiment includes a measuring device and an information management system 2000, and is roughly composed of a HACCP system 1000, a pipe network calculation unit 1100, a data editing unit 30, and a display unit 31. . Among these, the HACCP system 1000 and the pipe network calculation means 1100 are divided into water quality / process data 100, data storage means 110, and estimation / diagnosis means 120.

水質・プロセスデータ100は、水質データ2とプロセスデータ3からなる。残留塩素は残留塩素自動計測装置1A〜1Cから、プロセスデータは各施設から送られる。残留塩素自動計測器1A,1B,1Cは浄水施設内の殺菌工程51以降、配水施設52および給水施設53の各部にそれぞれ設置する。プロセスデータは殺菌工程51において供給される塩素剤の量や、処理水量や配水施設52における流量,水圧,水温などである。これらのデータは通信システム3000を利用してオンラインで収集するように構成されている。通信システム3000としては、専用回線の他に公衆電話回線,インターネット,光ファイバー通信ネットワーク等を用いることができる。   The water quality / process data 100 includes water quality data 2 and process data 3. Residual chlorine is sent from the automatic residual chlorine measuring devices 1A to 1C, and process data is sent from each facility. Residual chlorine automatic measuring instruments 1A, 1B, and 1C are installed in each part of the water distribution facility 52 and the water supply facility 53 after the sterilization step 51 in the water purification facility. The process data includes the amount of chlorine agent supplied in the sterilization step 51, the amount of treated water, the flow rate in the water distribution facility 52, water pressure, water temperature, and the like. These data are configured to be collected online using the communication system 3000. As the communication system 3000, in addition to a dedicated line, a public telephone line, the Internet, an optical fiber communication network, or the like can be used.

データ格納手段110は、水質データ格納手段11,プロセスデータ格納手段12,管網データ格納手段13,診断ルール格納手段14および残留塩素分布格納手段15から構成される。水質データ格納手段には残留塩素や水温の計測結果が記録される。また、プロセスデータ格納手段12には殺菌工程,配水施設におけるプロセス情報が記録される。一方、管網データ格納手段13には、管網計算を行うための、管網モデル,水道管路の管径,管路長,材質,管同士の接続関係,水圧,水の需要量パターンが記録されている。   The data storage unit 110 includes a water quality data storage unit 11, a process data storage unit 12, a pipe network data storage unit 13, a diagnostic rule storage unit 14, and a residual chlorine distribution storage unit 15. The water quality data storage means records residual chlorine and water temperature measurement results. The process data storage means 12 records process information in the sterilization process and the water distribution facility. On the other hand, the pipe network data storage means 13 contains pipe network models, pipe diameters, pipe lengths, materials, pipe connections, water pressure, and water demand patterns for pipe network calculations. It is recorded.

推定・診断手段120は、流量および残留塩素推定手段21,診断手段22、で構成される。流量および残留塩素推定手段21は、水質データ,プロセスデータおよび管網データから逐次管網内の流量,流下時間,残留塩素を計算する。診断手段22は、診断ルール格納手段14に予め設定したルールに従って、残留塩素の推定値および残留塩素の計測値に関する診断を行う。診断の結果は残留塩素分布格納手段15に格納される。   The estimation / diagnosis unit 120 includes a flow rate and residual chlorine estimation unit 21 and a diagnosis unit 22. The flow rate and residual chlorine estimation means 21 calculates the flow rate, flow time and residual chlorine in the sequential pipe network from the water quality data, process data and pipe network data. The diagnosing means 22 makes a diagnosis regarding the estimated value of residual chlorine and the measured value of residual chlorine according to a rule preset in the diagnostic rule storage means 14. The result of diagnosis is stored in the residual chlorine distribution storage means 15.

データ編集手段30は水質データ,プロセスデータ,管網データ,診断ルールの修正,変更時に用いるもので、配管の改修,敷設等による管網の変化に適宜対応する。検索・表示手段31は水質データ格納手段11,プロセスデータ格納手段12,管網データ格納手段13,診断ルール格納手段14および残留塩素分布格納手段15に記録された各種データから必要な情報を検索し、表示する。   The data editing means 30 is used when correcting or changing water quality data, process data, pipe network data, and diagnostic rules, and appropriately responds to changes in the pipe network due to pipe renovation and laying. The retrieval / display means 31 retrieves necessary information from various data recorded in the water quality data storage means 11, the process data storage means 12, the pipe network data storage means 13, the diagnostic rule storage means 14 and the residual chlorine distribution storage means 15. ,indicate.

図2に流量および残留塩素推定手段21におけるフローチャートを示す。データ読込み工程301において予想需要パターン,管網モデル,プロセスデータ,流量の実測値を読込み、流量計算を行う。次に、流量の実測値と推定値とを比較し、必要に応じて需要パターンを調整する。そして、流量計算の終了後、残留塩素濃度を推定する。   FIG. 2 shows a flow chart in the flow rate and residual chlorine estimation means 21. In the data reading process 301, the expected demand pattern, the pipe network model, the process data, and the actual measured value of the flow rate are read to calculate the flow rate. Next, the actual value and the estimated value of the flow rate are compared, and the demand pattern is adjusted as necessary. Then, after the flow rate calculation is completed, the residual chlorine concentration is estimated.

図3に診断手段22におけるフローチャートを示す。データ読込み工程401において残留塩素の規定値A1,A2(A1<A2),実測値,推定値、それぞれの範囲および流下時間をそれぞれ読込む。ここで、残留塩素の規定値A1は細菌や微生物による需要家への急性の重大な健康危害発生の可能性に関するものであり、この危害を危害1とする。実測値または推定値がA1より小さい場合はその管網の範囲での残留塩素が不足しており、配管内での細菌・微生物の汚染,増殖により、需要家への急性の重大な健康危害が生じるリスクが高くなる。一方、A2は、過剰な塩素による塩素臭の発生に関するものであり、この危害を危害2とする。実測値または推定値がA2より大きい場合は、過剰な塩素が水道水中に存在することになる。クリプトスポリジウム等の耐塩素性病原微生物を除いた細菌・微生物による危害の可能性は低いが、塩素臭が発生するため、急性の健康影響のリスクは低いものの、需要家には危害となる。   FIG. 3 shows a flowchart in the diagnostic means 22. In the data reading process 401, the specified values A1 and A2 (A1 <A2) of residual chlorine, measured values, estimated values, respective ranges and flow-down times are read. Here, the specified value A1 of residual chlorine relates to the possibility of acute serious health hazards to consumers due to bacteria and microorganisms. If the measured or estimated value is less than A1, there is a shortage of residual chlorine in the range of the pipe network, and there is an acute and serious health hazard to consumers due to bacterial and microbial contamination and growth in the pipe. Increased risk. On the other hand, A2 relates to generation of chlorine odor due to excessive chlorine, and this harm is designated as hazard 2. When the actual measurement value or the estimated value is larger than A2, excessive chlorine is present in the tap water. Although the possibility of harm by bacteria and microorganisms excluding chlorine-resistant pathogenic microorganisms such as Cryptosporidium is low, since the odor of chlorine is generated, the risk of acute health effects is low, but it is harmful to consumers.

次に、製造日算出工程402で配水管の位置と流下時間から、それぞれの水が浄水工程および配水池にあった日時を算出する。次に、残留塩素の実測値または推定値と規定値
A1とを比較する。A1より小さいものは実測値または推定値とその範囲および加工日算出工程で得られた日時を危害1の発生可能性があるものとして記録する。次に、残留塩素の実測値または推定値と規定値A2とを比較する。A2より大きいものは実測値または推定値とその範囲および加工日算出工程で得られた日時を危害2の発生可能性があるものとしてそれぞれ記録する。
Next, the date and time when each water was in the water purification process and the distribution reservoir is calculated from the position of the distribution pipe and the flow-down time in the manufacturing date calculation process 402. Next, the measured value or estimated value of residual chlorine is compared with the specified value A1. If the value is smaller than A1, the actual measurement value or the estimated value, its range, and the date and time obtained in the machining date calculation step are recorded as the possibility of occurrence of harm 1. Next, the measured value or estimated value of residual chlorine is compared with the specified value A2. If the value is larger than A2, the actual measurement value or the estimated value, its range, and the date and time obtained in the machining date calculation step are recorded as those that may cause harm 2.

本実施例によれば、上水道施設の管理にHACCPを適用することにより、危害原因を除去する工程の重点的な監視・管理・記録が適切に実施でき、管理が合理化される。また、本実施例によれば、残留塩素の過剰または過少の発生およびその区域と、塩素剤注入工程の運転状況との対応が明確になり、水道水のトレーサビリティーが得られる。また、本実施例によれば、複数の浄水施設間での水融通時の、残留塩素の実測および推定により、水質の異なる水が混合した場合の残留塩素の分布をより正確に把握し、運転条件との対応を得ることができ、広域での運用時の水道水のトレーサビリティーが得られる。   According to the present embodiment, by applying HACCP to the management of water supply facilities, it is possible to appropriately carry out the intensive monitoring, management and recording of the process of removing the cause of harm, thereby rationalizing the management. In addition, according to the present embodiment, the correspondence between the excessive or insufficient residual chlorine and its area and the operation status of the chlorine agent injection process becomes clear, and the traceability of tap water can be obtained. In addition, according to the present embodiment, the distribution of residual chlorine when water of different water quality is mixed is more accurately grasped by actual measurement and estimation of residual chlorine at the time of water interchange between a plurality of water purification facilities. It is possible to obtain the correspondence with the conditions, and to obtain the traceability of tap water during operation in a wide area.

図4に本発明による別の実施例のブロック図を示す。本実施例は図1で示した上水道施設の管理システムを、水の融通がなされている複数の上水道施設に適用する場合の例である。上水道施設A50および上水道施設B60には残留塩素自動計測装置1A〜1Fを設置する。また、上水道施設A50と上水道施設B60の間は送水工程以降に連結管64で連結されており、連結管64には残留塩素自動計測装置1Gが設置されている。残留塩素自動計測装置1A〜1Gによる計測データおよび上水道施設A50および上水道施設B60のプロセスデータはいずれも通信システム3000を介して送信され、水質データ格納手段11およびプロセスデータ格納手段12に記録される構成となっている。   FIG. 4 shows a block diagram of another embodiment according to the present invention. This embodiment is an example in which the water supply facility management system shown in FIG. 1 is applied to a plurality of water supply facilities where water is interchanged. Residual chlorine automatic measuring devices 1A to 1F are installed in the water supply facility A50 and the water supply facility B60. Further, the water supply facility A50 and the water supply facility B60 are connected by a connecting pipe 64 after the water supply process, and the residual chlorine automatic measuring device 1G is installed in the connecting pipe 64. The measurement data by the automatic residual chlorine measuring devices 1A to 1G and the process data of the water supply facility A50 and the water supply facility B60 are all transmitted via the communication system 3000 and recorded in the water quality data storage means 11 and the process data storage means 12. It has become.

この時、連結管64に設置する残留塩素自動計測装置1Gの設置場所は、連結管64の範囲内だけでなく、異なる上水道施設から融通される水が混入する配管であればよい。   At this time, the installation location of the automatic residual chlorine measuring device 1G installed in the connecting pipe 64 may be a pipe not only within the range of the connecting pipe 64 but also water mixed from different waterworks facilities.

また、残留塩素自動計測装置1Gを設置する配管の材質はいずれでもよいが、無ライニング管やモルタルライニング管など残留塩素濃度減少速度係数が大きな配管とすることで、送・配水中の残留塩素の分解の程度を詳しく評価することができる。   The piping for installing the residual chlorine automatic measuring device 1G may be any material, but by using a pipe with a large residual chlorine concentration reduction rate coefficient, such as a non-lining pipe or a mortar lining pipe, The degree of degradation can be evaluated in detail.

図5に本発明による別の実施例のブロック図を示す。本実施例は図1で示した上水道施設の管理システムに、原水のアンモニア濃度,濁度,TOC,過マンガン酸カリウム消費量,塩素要求量のうち少なくとも1項目を連続計測する、連続水質計測装置8および降雨量などの気象データを格納する外部要因格納手段16を備える構成としたものである。   FIG. 5 shows a block diagram of another embodiment according to the present invention. In this embodiment, a continuous water quality measuring device that continuously measures at least one of the ammonia concentration, turbidity, TOC, potassium permanganate consumption, and chlorine demand of raw water in the water supply facility management system shown in FIG. 8 and external factor storage means 16 for storing weather data such as rainfall.

図6に本発明による上水道施設の管理システムの別の実施例における機能ブロック図を示す。本発明による水道HACCP検討システム4000は、大きく分けると、水質・プロセスデータ100,データ格納手段110,推定・診断手段120,データ編集手段
30および表示手段31から構成される。
FIG. 6 shows a functional block diagram of another embodiment of a waterworks facility management system according to the present invention. The water supply HACCP examination system 4000 according to the present invention is roughly composed of water quality / process data 100, data storage means 110, estimation / diagnosis means 120, data editing means 30, and display means 31.

水質・プロセスデータ100は、プロセスデータ3,特定事業場排出物質データ4,農薬使用量データ5,水質データ6,気象データ7および危害物質毒性データ等から成る。これらのデータはデータ格納手段110の外部要因格納手段16,プロセスデータ格納手段12,水質データ格納手段11に格納される。   The water quality / process data 100 includes process data 3, specific workplace emission material data 4, agricultural chemical usage data 5, water quality data 6, meteorological data 7, and hazardous substance toxicity data. These data are stored in the external factor storage means 16, the process data storage means 12, and the water quality data storage means 11 of the data storage means 110.

データ格納手段110には、さらに危害評価モデル格納手段17,施設・機器仕様格納手段18,管理業務格納手段19を備える。   The data storage unit 110 further includes a hazard assessment model storage unit 17, a facility / equipment specification storage unit 18, and a management work storage unit 19.

危害評価モデル格納手段17には、水道において健康被害の原因となる危害物質毒性データ等と危害評価のルールを格納する。施設・機器仕様格納手段18には、施設の土木情報や電機品の仕様、および各処理工程における処理性能を格納する。ここで、各処理工程における処理性能は、一定値でもよいが、水源水質やプロセスの運転条件に応じた値を用いるのが望ましい。さらに、管理業務格納手段19は、施設を維持管理するための業務マニュアルや業務手順書,推定・診断手段120で得られたモニタリング条件等の情報を格納する。   The hazard assessment model storage means 17 stores toxicity substance toxicity data and the like and hazard assessment rules that cause health damage in the water supply. The facility / equipment specification storage means 18 stores the civil engineering information of the facility, the specifications of the electrical equipment, and the processing performance in each processing step. Here, the processing performance in each processing step may be a constant value, but it is desirable to use a value according to the quality of the water source water and the operating conditions of the process. Further, the management work storage unit 19 stores information such as a business manual and work procedure manual for maintaining and managing the facility, and monitoring conditions obtained by the estimation / diagnosis unit 120.

推定・診断手段120には、危害評価手段23,重点管理工程選定手段24,モニタリング方法選定手段25,基準値選定手段26を備える。   The estimation / diagnosis unit 120 includes a hazard assessment unit 23, a priority management process selection unit 24, a monitoring method selection unit 25, and a reference value selection unit 26.

データ編集手段30はデータ格納手段110の各種データを修正,変更する際に用いるもので、施設の変更,原水水質の変更等の変化に適宜対応するためのものである。検索・表示手段31はデータ格納手段110に記録された各種データから必要な情報を検索し、表示する。   The data editing means 30 is used when correcting or changing various data in the data storage means 110, and is used to appropriately cope with changes such as changes in facilities and changes in raw water quality. The retrieval / display unit 31 retrieves necessary information from various data recorded in the data storage unit 110 and displays it.

図7に危害評価手段23におけるフローチャートを示す。ここでは、それぞれの危害物質がどの程度の危害を有するかを評価する。   FIG. 7 shows a flowchart in the hazard assessment means 23. Here, how much harm each hazardous substance has is evaluated.

評価条件入力601において評価対象とする危害物質を入力する。ここには、病原性の細菌や微生物,ヒ素などの化学物質の他、濁度や色度といった需要家にとって危害となる指標も含む。次に、特定事業場からの危害物質の放流量,農薬の使用量または水源水質の分析データ,気象情報,処理水量,上水道施設の各処理工程の処理性能,薬剤の添加量,危害物質量,毒性データ等の情報を読込む。次に、上記データから取水における危害物質の濃度を算出する。次に、浄水工程,送・配水工程における薬剤の添加やろ過等により対象となる危害物質が水中に放出する場合の濃度を評価する。次に、仮に、危害物質が浄水施設,送・配水施設で除去されずに需要家まで到達した場合の危害指標を算出する(W1)。危害指標としては、需要家の推定リスクに健康被害の程度を乗じた簡単なものや、WHO提唱している参考許容値などが考えられる。次に、各工程での除去率を考慮した場合の危害指標を算出する(W2)。過去の水質データを用い、気象状況,施設の運転条件などが異なる場合の評価を行い、特異日における危害評価を用いてもよい。   In the evaluation condition input 601, the hazardous substance to be evaluated is input. This includes chemicals such as pathogenic bacteria, microorganisms, and arsenic, as well as indicators that are harmful to consumers such as turbidity and chromaticity. Next, the discharge amount of hazardous substances from specific business establishments, analytical data of agricultural chemical usage or water source water quality, weather information, amount of treated water, treatment performance of each treatment process of waterworks facilities, amount of chemicals added, amount of hazardous substances, Read information such as toxicity data. Next, the concentration of hazardous substances in water intake is calculated from the above data. Next, the concentration when the target hazardous substance is released into the water by adding chemicals, filtering, etc. in the water purification process and the sending / distributing process is evaluated. Next, if a hazardous substance reaches a consumer without being removed at a water purification facility or a transmission / distribution facility, a hazard index is calculated (W1). Hazard indicators can be simple ones that multiply the estimated risk of consumers by the degree of health damage, or reference tolerance values proposed by WHO. Next, a harm index is calculated when the removal rate in each process is taken into account (W2). You may use past water quality data to evaluate when the weather conditions, facility operating conditions, etc. are different, and use the hazard assessment on a specific day.

図8に重点管理工程選定手段24におけるフローチャートを示す。ここでは、危害評価結果を用いて、上水道施設における各処理工程のうち、特に重要な工程として管理する必要がある工程を選定する。   FIG. 8 shows a flowchart in the priority management process selection means 24. Here, the process which needs to be managed as a particularly important process is selected from each processing process in the water supply facility using the hazard evaluation result.

危害評価手段23で算出した危害指標と、ユーザーが設定した上限値(W0)と比較する。まず、W0とW1とを比較しW0がW1より大きければ、健康影響は小さいため、重要管理工程にはならない。W0がW1より小さければ、次にW0とW2の比較を行う。
W0がW2より小さければ、この危害物質の除去効率が一定以上の高い値をとる工程を抽出し、重要管理工程に設定する。W0がW2より小さい場合、評価を行った施設ではこの危害物質の除去が、需要家の許容できる範囲を超えていることになるため、運転条件の見直しなどのプロセスの改良を行い、再度評価する。
The hazard index calculated by the hazard assessment means 23 is compared with the upper limit value (W0) set by the user. First, W0 is compared with W1, and if W0 is larger than W1, the health effect is small, so it is not an important management process. If W0 is smaller than W1, then W0 and W2 are compared.
If W0 is smaller than W2, a process in which the harmful substance removal efficiency takes a high value above a certain level is extracted and set as an important management process. If W0 is smaller than W2, this hazardous substance removal will exceed the acceptable range of the customer at the evaluated facility, so the process will be improved and the process will be reviewed and evaluated again. .

図9にモニタリング方法選定手段25におけるフローチャートを示す。ここでは、設定した重点管理工程選定手段24の運転状態を監視するためのモニタリング方法を選定する。   FIG. 9 shows a flowchart in the monitoring method selection means 25. Here, a monitoring method for monitoring the operating state of the set priority management process selecting means 24 is selected.

水道における特徴は、浄水施設で製造した十分危害物質濃度が低い水に対し、送・配水施設または給水施設において危害物質が付加される可能性があること、配水施設での追加塩素注入を除いて付加された危害物質を除去する方法がないことである。   The water supply is characterized by the possibility that hazardous substances may be added to the water supply / distribution facility or water supply facility to the water with a sufficiently low concentration of the hazardous substance manufactured at the water purification facility, except for additional chlorine injection at the water distribution facility. There is no way to remove the added hazardous substances.

まず、重点管理工程選定手段24で選定した重点管理工程において、対象となる危害物質の除去状態を直接または間接に測定できるモニタリング方法の有無を判別する。ない場合は新たなモニタリング方法の検討を行う。モニタリング方法がある場合は、必要な頻度での計測が可能であるかを判断する。不可能な場合はモニタリング方法を再検討する。ある場合はその方法を重要管理工程でのモニタリング方法に選定する。   First, in the priority management process selected by the priority management process selection means 24, it is determined whether or not there is a monitoring method capable of directly or indirectly measuring the removal state of the target hazardous substance. If not, consider new monitoring methods. If there is a monitoring method, determine whether it is possible to measure at the required frequency. If this is not possible, review the monitoring method. If there is, select that method as the monitoring method in the critical management process.

次に、重要管理工程の後段の施設、例えば配水施設において、対象とする危害物質の濃度変化があるかを判断する。変化がない場合は、重要管理工程以降のモニタリングの設定は法で定める頻度とする。変化がある場合は、給水栓での連続計測の可否を判断する。連続測定が可能な場合はその方法をモニタリング方法に選定する。一方、連続測定ができない場合は、管網計算等により給水栓における有害物質の濃度の推定の可否を判断する。推定が可能な場合、給水栓における危害物質の定期的な分析と推定値により管理する。一方、推定ができない場合、モニタリング方法または計算による評価方法を再検討する。   Next, it is determined whether there is a change in the concentration of the target hazardous substance in a facility subsequent to the important management process, for example, a water distribution facility. If there is no change, the monitoring setting after the critical management process shall be the frequency specified by law. If there is a change, it is determined whether continuous measurement is possible with the water tap. If continuous measurement is possible, select that method as the monitoring method. On the other hand, if continuous measurement is not possible, it is determined whether or not the concentration of harmful substances in the faucet can be estimated by calculating the pipe network. If estimation is possible, manage by periodic analysis and estimation of hazardous substances in the faucet. On the other hand, if estimation is not possible, review the monitoring method or the evaluation method by calculation.

基準値選定手段26では、選定したモニタリング方法で対象とする重要管理工程の管理を行う時の基準値を算出し、この基準値を管理業務格納手段18に記録する。本実施例によれば、上水道施設の管理にHACCPを適用することにより、危害原因を除去する工程の重点的な監視・管理・記録が適切に実施でき、管理が合理化される。また、本実施例によれば、残留塩素の過剰または過少の発生およびその区域と、塩素剤注入工程の運転状況との対応が明確になり、水道水のトレーサビリティーが得られる。   The reference value selection means 26 calculates a reference value when managing the target important management process by the selected monitoring method, and records this reference value in the management work storage means 18. According to the present embodiment, by applying HACCP to the management of water supply facilities, it is possible to appropriately carry out the intensive monitoring, management and recording of the process of removing the cause of harm, thereby rationalizing the management. In addition, according to the present embodiment, the correspondence between the excessive or insufficient residual chlorine and its area and the operation status of the chlorine agent injection process becomes clear, and the traceability of tap water can be obtained.

また、本実施例によれば、複数の浄水施設間での水融通時の、残留塩素の実測および推定により、水質の異なる水が混合した場合の残留塩素の分布をより正確に把握し、運転条件との対応を得ることができ、広域での運用時の水道水のトレーサビリティーが得られる。   In addition, according to the present embodiment, the distribution of residual chlorine when water of different water quality is mixed is more accurately grasped by actual measurement and estimation of residual chlorine at the time of water interchange between a plurality of water purification facilities. It is possible to obtain the correspondence with the conditions, and to obtain the traceability of tap water during operation in a wide area.

上水道施設における管理の合理化と共に、濃度分布の推定を元にした送・配水時の水道水のトレーサビリティーの確保ができる。   In addition to streamlining management at waterworks facilities, it is possible to ensure traceability of tap water during transmission and distribution based on estimation of concentration distribution.

本発明による上水道施設の管理システムの一実施例を示す機能ブロック図。The functional block diagram which shows one Example of the management system of the waterworks facility by this invention. 流量および残留塩素推定手段において行われる処理フローの一例を示す説明図。Explanatory drawing which shows an example of the processing flow performed in a flow volume and a residual chlorine estimation means. 診断手段において行われる処理フローの一例を示す説明図。Explanatory drawing which shows an example of the processing flow performed in a diagnostic means. 本発明による上水道施設の管理システムの他の実施例を示す機能ブロック図。The functional block diagram which shows the other Example of the management system of the waterworks facility by this invention. 本発明による上水道施設の管理システムの他の実施例を示す機能ブロック図。The functional block diagram which shows the other Example of the management system of the waterworks facility by this invention. 本発明による上水道施設の管理システムの他の実施例を示す機能ブロック図。The functional block diagram which shows the other Example of the management system of the waterworks facility by this invention. 危害評価手段において行われる処理フローの一例を示す説明図。Explanatory drawing which shows an example of the processing flow performed in a hazard evaluation means. 重点管理工程選定手段において行われる処理フローの一例を示す説明図。Explanatory drawing which shows an example of the processing flow performed in a priority management process selection means. モニタリング方法選定手段において行われる処理フローの一例を示す説明図。Explanatory drawing which shows an example of the processing flow performed in the monitoring method selection means. 基準値選定手段において行われる処理フローの一例を示す説明図。Explanatory drawing which shows an example of the processing flow performed in a reference value selection means.

符号の説明Explanation of symbols

1A〜1G…残留塩素自動計測装置、8…連続水質計測装置、10A〜10D…プロセスデータ計測装置、100…水質・プロセスデータ、110…データ格納手段、120…推定・診断手段、1000…HACCPシステム、1100…管網計算手段、2000…情報管理システム、3000…通信システム、4000…水道HACCP検討システム。
DESCRIPTION OF SYMBOLS 1A-1G ... Residual chlorine automatic measuring device, 8 ... Continuous water quality measuring device, 10A-10D ... Process data measuring device, 100 ... Water quality / process data, 110 ... Data storage means, 120 ... Estimation / diagnosis means, 1000 ... HACCP system DESCRIPTION OF SYMBOLS 1100 ... Pipe network calculation means, 2000 ... Information management system, 3000 ... Communication system, 4000 ... Water supply HACCP examination system.

Claims (5)

浄水施設内で塩素剤を注入した後の残留塩素を自動計測する残留塩素自動計測装置と、前記浄水施設の下流側に配置された配水施設における残留塩素を自動計測する残留塩素自動計測装置および前記配水施設の下流側に配置された少なくとも1個所の給水栓における残留塩素を自動計測する残留塩素自動計測装置からの水質データを格納する水質データ格納手段と、水の残留塩素が、需要家に危害を与える残留塩素の規定値として危害の種類毎に予め設定した残留塩素規定値内にあるか否かを診断して、少なくとも需要家が利用する給水栓における残留塩素の測定値又は推定値を用いて残留塩素濃度の危害を診断する診断ルールを格納する診断ルール格納手段と、塩素剤を注入する前記浄水施設の殺菌工程におけるプロセスデータおよび前記配水施設におけるプロセスデータを計測するプロセスデータ計測装置により得られた前記プロセスデータを格納するプロセスデータ格納手段と、前記水質データ格納手段に格納された水質データ、前記プロセスデータ格納手段に格納されたプロセスデータから残留塩素を推定する流量および残留塩素推定手段を備え、前記診断ルール格納手段に格納された前記診断ルールにより、浄水施設内で塩素剤を注入した後に前記残留塩素自動計測装置によって計測した前記浄水施設内、配水施設、給水栓における残留塩素計測値或いは前記流量および残留塩素推定手段により推定された残留塩素推定値が、需要家に危害を与える残留塩素の規定値として危害の種類毎に予め設定した残留塩素規定値と比較して残留塩素規定値内にあるか否かを診断し、前記残留塩素規定値を逸脱した計測地点、逸脱した残留塩素計測値および逸脱した日時を記録する診断手段と、前記診断手段により診断された逸脱した計測地点、前記逸脱した残留塩素計測値或いは残留塩素推定値および前記逸脱した日時を格納する残留塩素分布格納手段とを有することを特徴とする上水道施設の管理システム。 An automatic residual chlorine measuring device that automatically measures residual chlorine after injecting a chlorine agent in a water purification facility, an automatic residual chlorine measuring device that automatically measures residual chlorine in a water distribution facility arranged downstream of the water purification facility, and the above Water quality data storage means for storing water quality data from an automatic residual chlorine measuring device that automatically measures residual chlorine at at least one water tap located downstream of the water distribution facility, and residual chlorine in the water are harmful to consumers Diagnose whether the specified value of residual chlorine is within the specified value of residual chlorine for each type of hazard as the specified value of residual chlorine, and use at least the measured value or estimated value of residual chlorine at the faucet used by consumers Diagnostic rule storage means for storing diagnostic rules for diagnosing the hazard of residual chlorine concentration, process data in the sterilization process of the water purification facility for injecting chlorine agent, and the above Process data storage means for storing the process data obtained by a process data measuring device for measuring process data in a water facility, water quality data stored in the water quality data storage means, and processes stored in the process data storage means with the flow rate and residual chlorine estimating means for estimating a residual chlorine from the data, by the diagnostic rule storage means stored in the said diagnostic rule, measured by the residual chlorine automatic measuring device after implantation of pesticides in water treatment facility wherein Residual chlorine measurement values in water purification facilities, distribution facilities, and faucets, or estimated residual chlorine values estimated by the flow rate and residual chlorine estimation means are pre- defined for each type of hazard as a specified value of residual chlorine that would harm consumers. compared to the set residual chlorine specified value to diagnose whether in residual chlorine prescribed value, The measurement point that deviated from the specified residual chlorine value, the diagnostic means for recording the deviated residual chlorine measurement value and the date and time of departure, the deviated measurement point diagnosed by the diagnostic means, the deviated residual chlorine measurement value or the residual chlorine A water supply facility management system comprising: a residual chlorine distribution storage means for storing an estimated value and the date and time of departure. 請求項1に記載の上水道施設の管理システムにおいて、配水施設から給水栓の管網の管網モデル,水道管路の管径,管路長,管同士の接続関係、及び水の需要量パターンの管網データを格納する管網データ格納手段と、前記水質データおよび前記プロセスデータを検索し表示する検索・表示手段と、前記診断ルールおよび危害の種類毎に設定する前記残留塩素規定値を入力編集するデータ編集手段とを有するものであって、前記プロセスデータ,前記水質データおよび前記管網データを用いて、前記流量および残留塩素推定手段により任意の時間毎の管路内の流量および残留塩素を推定し、前記診断手段により前記流量および残留塩素推定手段によって得られた残留塩素推定値が前記規定値内にあるか否かを前記診断ルールにより診断し、前記残留塩素推定値が前記残留塩素規定値を逸脱した管路、前記管路における残留塩素値および管網内の流下時間を記録し、前記残留塩素分布格納手段により前記規定値を逸脱した管路、前記管路における残留塩素および前記流下時間を、格納することを特徴とする上水道施設の管理システム。 In the management system of water supply facilities according to claim 1, the tube network model of a tube network hydrant from distribution water facilities, pipe diameter of water pipes, pipe length, connection relationship between the tubes, and demand pattern of water The pipe network data storage means for storing the pipe network data, the search / display means for searching and displaying the water quality data and the process data, and the residual chlorine specified value set for each type of diagnosis rule and hazard Data editing means for editing, using the process data, the water quality data and the pipe network data, the flow rate and residual chlorine in the pipeline every arbitrary time by the flow rate and residual chlorine estimation means The diagnosis means determines whether the flow rate and the estimated residual chlorine value obtained by the residual chlorine estimation means are within the specified value by the diagnosis means, Record the pipe line where the estimated residual chlorine value deviates from the residual chlorine specified value, the residual chlorine value in the pipe line and the flow down time in the pipe network, and the pipe line where the residual chlorine distribution storage means deviates from the specified value, A water supply facility management system that stores residual chlorine in the pipe and the flow-down time. 請求項1に記載の上水道施設の管理システムにおいて、前記配水施設には、複数の浄水施設で処理された水の融通を可能とする配管を含むことを特徴とする上水道施設の管理システム。   2. The water supply facility management system according to claim 1, wherein the water distribution facility includes pipes that allow accommodation of water treated in a plurality of water purification facilities. 3. 請求項1に記載の上水道施設の管理システムにおいて、前記配水施設には、複数の浄水施設で処理された水の融通を可能とする配管を含むものであって、該配管に残留塩素自動計測器を備えることを特徴とする、上水道施設の管理システム。   2. The water supply facility management system according to claim 1, wherein the water distribution facility includes a pipe that allows accommodation of water treated in a plurality of water purification facilities, and an automatic residual chlorine measuring instrument is provided in the pipe. 3. A management system for waterworks facilities, comprising: 請求項1に記載の上水道施設の管理システムにおいて、配水施設における残留塩素自動計測器の設置場所が残留塩素濃度減少速度係数の大きな無ライニング管またはモルタルライニング管であることを特徴とする上水道施設の管理システム。   The water supply facility management system according to claim 1, wherein the installation location of the automatic measuring device for residual chlorine in the water distribution facility is a non-lining pipe or a mortar lining pipe having a large residual chlorine concentration reduction rate coefficient. Management system.
JP2003330897A 2003-09-24 2003-09-24 Water supply facility management system and water supply facility management method Expired - Fee Related JP4186773B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003330897A JP4186773B2 (en) 2003-09-24 2003-09-24 Water supply facility management system and water supply facility management method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003330897A JP4186773B2 (en) 2003-09-24 2003-09-24 Water supply facility management system and water supply facility management method

Publications (3)

Publication Number Publication Date
JP2005095735A JP2005095735A (en) 2005-04-14
JP2005095735A5 JP2005095735A5 (en) 2006-02-09
JP4186773B2 true JP4186773B2 (en) 2008-11-26

Family

ID=34459689

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003330897A Expired - Fee Related JP4186773B2 (en) 2003-09-24 2003-09-24 Water supply facility management system and water supply facility management method

Country Status (1)

Country Link
JP (1) JP4186773B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103544404A (en) * 2013-11-15 2014-01-29 天津市滨海新区大港节约用水事务管理中心 Multiple-water-resource key-point damage control and safe water supply method
KR20210156101A (en) 2020-06-17 2021-12-24 서울특별시 Control Method for residual chlorine on Waterworks

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100735905B1 (en) 2006-06-07 2007-07-04 한국수자원공사 Potable type remote control rechlorination system using the ubiquitous technique
JP4964273B2 (en) * 2009-05-07 2012-06-27 株式会社日立製作所 Water treatment facility management system
JP6102403B2 (en) * 2013-03-26 2017-03-29 富士通株式会社 Chlorine information output program, chlorine information output method, and chlorine information output device
KR102120968B1 (en) * 2018-09-11 2020-06-10 한국수자원공사 Smart chlorination facility control system based on IoT and method thereof
CN112581338B (en) * 2020-12-09 2022-08-19 浙江清华长三角研究院 Water quality supervision method and system of rural sewage treatment facility based on multi-dimensional analysis

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103544404A (en) * 2013-11-15 2014-01-29 天津市滨海新区大港节约用水事务管理中心 Multiple-water-resource key-point damage control and safe water supply method
KR20210156101A (en) 2020-06-17 2021-12-24 서울특별시 Control Method for residual chlorine on Waterworks

Also Published As

Publication number Publication date
JP2005095735A (en) 2005-04-14

Similar Documents

Publication Publication Date Title
Besner et al. Understanding distribution system water quality
JP2009048384A (en) Facility management support system
KR101065488B1 (en) Block management method using real-time water network analysis of water supply
JP4469305B2 (en) Water quality management system
KR100893424B1 (en) Performance evaluation and rehabilitation of water networks and its method
JP4010514B2 (en) Water quality management method and water quality management system for tap water
JP6645908B2 (en) Water treatment equipment maintenance management support device and maintenance management support system
JP4186773B2 (en) Water supply facility management system and water supply facility management method
JP4358685B2 (en) Information utilization system in waterworks facilities
Haider et al. Source to tap risk assessment for intermittent water supply systems in arid regions: an integrated FTA—fuzzy FMEA methodology
Machell et al. Field studies and modeling exploring mean and maximum water age association to water quality in a drinking water distribution network
CA2531737A1 (en) Knowledge management system and methods for crude oil refining
JP4469313B2 (en) Pipe network chemical injection control device, pipe network chemical injection control method, and pipe network chemical injection control program
JP4141420B2 (en) Water treatment facility management apparatus, water treatment facility management method, and recording medium storing management program
JP4906799B2 (en) Automatic operation control system
JP2005095735A5 (en)
KR20110086527A (en) Management system for water distribution network employing fuzzy technology
KR101036335B1 (en) Performance diagnostic apparatus of integrated management system and the method thereof
JP2015059828A (en) Information system of water distribution network
JP6779815B2 (en) Water distribution management support system
Chaddeton et al. Planning a distribution system flushing program
CZ308414B6 (en) System for optimizing drinking water quality
US20100143187A1 (en) Drinking water systems monitoring and cleaning method
Belcaid et al. Chlorine Decay Modeling in a Water Distribution Network in Mohammedia City, Morocco
Baranowski et al. Case study analysis to identify and evaluate potential response initiatives in a drinking water distribution system following a contamination event

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051215

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051215

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060421

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20070927

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20071105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080304

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080425

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080520

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080707

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080728

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080819

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080901

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110919

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120919

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120919

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130919

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees