JP4186290B2 - Sample introduction device - Google Patents

Sample introduction device Download PDF

Info

Publication number
JP4186290B2
JP4186290B2 JP01218999A JP1218999A JP4186290B2 JP 4186290 B2 JP4186290 B2 JP 4186290B2 JP 01218999 A JP01218999 A JP 01218999A JP 1218999 A JP1218999 A JP 1218999A JP 4186290 B2 JP4186290 B2 JP 4186290B2
Authority
JP
Japan
Prior art keywords
gas
water
sample
analysis
volatile organic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP01218999A
Other languages
Japanese (ja)
Other versions
JP2000214053A (en
Inventor
茂夫 安居
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP01218999A priority Critical patent/JP4186290B2/en
Publication of JP2000214053A publication Critical patent/JP2000214053A/en
Application granted granted Critical
Publication of JP4186290B2 publication Critical patent/JP4186290B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Sampling And Sample Adjustment (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、特に水中の揮発性有機化合物の分析に用いて好適なガスクロマトグラフに関する。
【0002】
【従来の技術】
近年、地下水、河川水、或いは工場排水中のジクロロメタン等の有機塩素系溶剤に対する分析需要が高まっている。従来、これらの水中の微量揮発性有機化合物の濃度を測定するには、分析法としてはガスクロマトグラフィが一般的に用いられるが、これに試料を導入する方法としてヘッドスペース法が知られている。ヘッドスペース法は、試料水をセプタム蓋付きの試料ビンに上部に若干の空間を残した状態で封入し、これを所定の温度で所定時間保温した後、上部空間(ヘッドスペース)の気体をシリンジで採取して分析する方法である。分析の目的成分と水との蒸気圧の差を利用して、目的成分を液相(水中)から気相(ヘッドスペース)に取り出すことによって、ガスクロマトグラフィに適した気相でのサンプリングを可能にするものである。
【0003】
【発明が解決しようとする課題】
ヘッドスペース法は、上記のように、比較的簡単な手法で水中の揮発成分をサンプリングすることができるが、分析目的成分の気相中濃度と液相中濃度が平衡するのに長時間を要する。また、水中にも目的成分がある程度残ることによって気液平衡が成立するのであるから、水中の目的成分を全量取り出すことはできない。さらに、保温温度や保温時間を厳密に管理しないと十分な定量性を確保することができない、といういくつかの問題があった。本発明は、このような事情に鑑みてなされたものであり、水中の微量揮発性有機化合物をより短時間で、しかもほぼ全量を気相中に取り出して導入することができるガスクロマトグラフを提供することを目的とする。
【0004】
【課題を解決するための手段】
本発明は、上記課題を解決するために、ポンプによって送液されている揮発性有機化合物を含む試料水を加熱して気化させる気化器と、その出口側で前記試料水が気化した蒸気流に一定流量の不活性ガスを混合させるガス供給部と、これらの混合気流を冷却し水分を凝縮させる凝縮器と、凝縮水をガスから分離するセパレータとを備え、前記ガス成分を導入することを特徴としたガスクロマトグラフである。
【0005】
本発明になるガスクロマトグラフは、試料水を全量気化させて水蒸気とし、これに不活性ガスを混合した後、冷却して水分を凝縮除去することにより、微量の分析目的成分を気相として取り出す方法を用いているために、目的成分はほぼ全量が気相中に残るので定量性が高い。また、処理に要する時間も大幅に短縮される。
【0006】
【発明の実施の形態】
本発明の一実施の形態を図1に示す。図において1は定流量で送液する特性を持つポンプ(例えば、シリンジポンプ等)であって、試料容器2から試料水を気化器10に向けて1分間に数ml程の流量で送り出す。
【0007】
気化器10は一種の熱交換機であって、その内部の加熱コイル11は図示しない電熱ヒータにより、またはスチーム等の熱媒体によって加熱されているので、その中を流れる検水は周囲から熱を受けて気化し、水蒸気となって調圧室12に入る。調圧室12は気化に伴う圧力の急上昇を緩和し、また、不均一な気化による圧力変動を吸収して圧力を平滑化する役割を担う容器であり、気化器10の内部にあって加熱コイル11と同様に加熱されている。加熱コイル11内で十分に気化されずに残った水滴などもここで分離される。調圧室12を出た水蒸気の流れに、ガスボンベ3から供給される不活性ガス(ヘリウム、窒素等)が流量調整器4で一定流量に調整されて合流し、続いて、凝縮器20に入る。
【0008】
凝縮器20もまた熱交換機であって、その内部は冷却水23が、図示しないポンプによって強制循環されているので、冷却コイル21内を通る気体は冷却され、水蒸気は凝縮して水に戻り、セパレータ22に落ちる。セパレータ22の底部の排出口22bに設けたドレインバルブ24はこの時点では閉じているので、凝縮水はセパレータ22の底に溜まり、残りのガス成分(不活性ガスと試料水中の揮発性有機物質)はセパレータ22の上部の出口22aから流出し、ガスクロマトグラフ30に入る。即ち、ガスクロマトグラフ30のサンプル配管25(僅かに残る水蒸気が凝縮しないように保温されている)を経て、6ポートのガスサンプリングバルブ32の実線で示す流路を通り、計量管33を満たして流れ、ベント36から排出される。
【0009】
ガスクロマトグラフ30のキャリアガスは、不活性ガスのガスボンベ3から流量調整器31で調整され、ガスサンプリングバルブ32を通ってカラム34、検出器35へと流れる。ガスサンプリングバルブ32が時計方向に角度で60度回転すると、流路は実線で示す状態から点線で示す状態に切り替わり、キャリアガスの流れは計量管33を経由するように変わるので、計量管33内に残された計量管33の内容積で定まる一定量の前記のガス成分(不活性ガスと試料水中の揮発性有機物質)はキャリアガスによってカラム34の方へ運ばれることでガスクロマトグラフ30におけるサンプリングが行われる。
【0010】
ここでサンプリングされたガス成分の中で、不活性ガスはキャリアガスと同じ物質であるから分析の対象とはならず、試料水に由来する微量の揮発性有機物質のみがカラム34で各成分に分離され、その量が検出器35で電気信号に変えられ、図示しない記録装置等で記録され、或いは分析データとして処理される。この種の分析においては、検出器35としては水素炎イオン化検出器、またはエレクトロンキャプチャ検出器が多く用いられるが、これらの検出器はそれぞれ有機物質、ハロゲン化合物に対して選択的に感度を有する。従って、ガス成分中に僅かに残った水蒸気が検出器に達しても、検出器35の選択性のためデータとして出力されることはない。定量は、標準物質の既知濃度の水溶液を導入してキャリブレーションをすることにより可能である。
【0011】
サンプリング後は、ガスクロマトグラフ30による分析が行われている間に、ドレインバルブ24を開いてセパレータ22に溜まった水を排出し、また、試料容器2は次に分析すべき試料水の試料容器に取り替えられる。試料容器2の交換はリキッドハンドラ等の自動装置を利用すれば自動化が可能であり、また、上記の一連の分析操作もプログラム制御装置によって自動的に行うことができる。
【0012】
上記の例では、ガスクロマトグラフ30で実際に分析される試料量は、計量管33の内容積相当量(一般に数ml)に過ぎないが、計量管の代わりに、吸着剤を充填した公知の捕集管を用いると、より大量の有機物質を取り込んで分析に供することが可能となるので、検出感度をさらに高め、より微量の成分まで定量できるようになる。
【0013】
以上述べたように、本発明は、試料水を連続的に流しながら加熱気化させた後、不活性ガスを混合し、冷却して水分を除くことにより水よりも沸点の低い分析目的成分を不活性ガス中に取り出してガスクロマトグラフに導入し、分析することを骨子とするものであるから、装置構成の細部については図1に例示するものに限定されることなく、様々な変形が考えられる。そのような変形は、請求項1に示す範囲内で本発明に包含される。
【0014】
【発明の効果】
本発明は上記のように構成されているので、従来のヘッドスペース法では15〜60分を要していた水中の揮発性有機化合物の分析における前処理過程が、2〜3分で済むようになり、前処理を含めたトータルの分析時間を大幅に短縮することができる。それに加えて、試料水を一旦全量気化させるので、試料水中のほぼ全量の分析目的成分を気相中に取り出すことができ、従来法に比べて定量性に優れている。
【図面の簡単な説明】
【図1】本発明の一実施形態を示す図である。
【符号の説明】
1...ポンプ
2...試料容器
3...ガスボンベ
4...流量調整器
10...気化器
11...加熱コイル
12...調圧室
20...凝縮器
21...冷却コイル
22...セパレータ
30...ガスクロマトグラフ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a suitable gas chromatograph using a analysis of particular volatile organic compounds in water.
[0002]
[Prior art]
In recent years, there is an increasing demand for analysis of organic chlorinated solvents such as dichloromethane in groundwater, river water, or factory effluent. Conventionally, gas chromatography is generally used as an analytical method to measure the concentration of these trace volatile organic compounds in water, but the headspace method is known as a method for introducing a sample into this. In the headspace method, sample water is sealed in a sample bottle with a septum lid while leaving some space at the top, and this is kept at a predetermined temperature for a predetermined time, and then the gas in the upper space (headspace) is syringed. It is a method of collecting and analyzing with. Using the difference in vapor pressure between the target component of analysis and water, the target component is extracted from the liquid phase (in water) to the gas phase (headspace), enabling sampling in the gas phase suitable for gas chromatography. To do.
[0003]
[Problems to be solved by the invention]
As described above, the headspace method can sample volatile components in water by a relatively simple method. However, it takes a long time to equilibrate the concentration in the gas phase and the concentration in the liquid phase of the analysis target component. . Further, since the target component remains in water to some extent, gas-liquid equilibrium is established, so that the total amount of the target component in water cannot be extracted. Furthermore, there are some problems that sufficient quantitativeness cannot be ensured unless the temperature and temperature are strictly controlled. The present invention has been made in view of such circumstances, provide a gas chromatograph can be more quickly in water of trace volatile organic compounds, yet be introduced taking out almost all in the vapor phase The purpose is to do.
[0004]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present invention provides a vaporizer that heats and vaporizes sample water containing a volatile organic compound that is fed by a pump, and a vapor flow that vaporizes the sample water on the outlet side thereof. wherein a gas supply portion for mixing the inert gas at a constant flow rate, a condenser to cool the mixed gas stream to condense water, the condensed water and a separator for separating from the gas, introducing said gas component It is a gas chromatograph .
[0005]
The gas chromatograph according to the present invention is a method for extracting a trace amount of a target component for analysis as a gas phase by vaporizing the whole sample water to form water vapor, mixing it with an inert gas, and cooling to condense and remove the water. Therefore, almost all of the target component remains in the gas phase, so the quantitative property is high. Also, the time required for processing is greatly reduced.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of the present invention is shown in FIG. In the figure, reference numeral 1 denotes a pump (for example, a syringe pump) having a characteristic of feeding at a constant flow rate, and feeds sample water from the sample container 2 toward the vaporizer 10 at a flow rate of several ml per minute.
[0007]
The vaporizer 10 is a kind of heat exchanger, and the heating coil 11 in the vaporizer 10 is heated by an electric heater (not shown) or by a heat medium such as steam. Vaporizes into the pressure adjustment chamber 12 as water vapor. The pressure adjustment chamber 12 is a container that alleviates a sudden rise in pressure caused by vaporization and absorbs pressure fluctuations due to non-uniform vaporization, thereby smoothing the pressure. Heated in the same manner as 11. Water droplets remaining without being sufficiently vaporized in the heating coil 11 are also separated here. Inert gas (helium, nitrogen, etc.) supplied from the gas cylinder 3 is adjusted to a constant flow rate by the flow rate regulator 4 and merged with the flow of water vapor that has exited the pressure regulating chamber 12, and then enters the condenser 20. .
[0008]
The condenser 20 is also a heat exchanger, in which the cooling water 23 is forcedly circulated by a pump (not shown), so that the gas passing through the cooling coil 21 is cooled, the water vapor is condensed and returned to the water, It falls on the separator 22. Since the drain valve 24 provided at the outlet 22b at the bottom of the separator 22 is closed at this point, the condensed water accumulates at the bottom of the separator 22 and the remaining gas components (inert gas and volatile organic substances in the sample water). Flows out from the outlet 22 a at the top of the separator 22 and enters the gas chromatograph 30. That is, after passing through the sample pipe 25 of the gas chromatograph 30 (heated so that the slight remaining water vapor does not condense), it passes through the flow path indicated by the solid line of the 6-port gas sampling valve 32 and flows through the measuring pipe 33. The gas is discharged from the vent 36.
[0009]
The carrier gas of the gas chromatograph 30 is adjusted from the gas cylinder 3 of the inert gas by the flow rate regulator 31 and flows to the column 34 and the detector 35 through the gas sampling valve 32. When the gas sampling valve 32 is rotated 60 degrees in the clockwise direction, the flow path is switched from the state shown by the solid line to the state shown by the dotted line, and the flow of the carrier gas changes so as to pass through the measuring pipe 33. A certain amount of the gas component (inert gas and volatile organic substance in the sample water) determined by the inner volume of the measuring tube 33 remaining in the sample is transported toward the column 34 by the carrier gas, whereby sampling in the gas chromatograph 30 is performed. Is done.
[0010]
Among the gas components sampled here, the inert gas is the same substance as the carrier gas, so it is not subject to analysis, and only a small amount of volatile organic substances derived from the sample water are included in each component in the column 34. After being separated, the amount is converted into an electrical signal by the detector 35 and recorded by a recording device (not shown) or processed as analysis data. In this type of analysis, a flame ionization detector or an electron capture detector is often used as the detector 35, but these detectors are selectively sensitive to organic substances and halogen compounds, respectively. Therefore, even if a slight amount of water vapor remaining in the gas component reaches the detector, it is not output as data due to the selectivity of the detector 35. Quantification is possible by introducing an aqueous solution of a known concentration of a standard substance and performing calibration.
[0011]
After the sampling, while the analysis by the gas chromatograph 30 is being performed, the drain valve 24 is opened to discharge the water accumulated in the separator 22, and the sample container 2 becomes a sample container for the sample water to be analyzed next. Replaced. The replacement of the sample container 2 can be automated by using an automatic device such as a liquid handler, and the above-described series of analysis operations can be automatically performed by the program control device.
[0012]
In the above example, the amount of sample actually analyzed by the gas chromatograph 30 is only an amount equivalent to the internal volume of the measuring tube 33 (generally several ml), but instead of the measuring tube, a known trap packed with an adsorbent is used. When a collecting tube is used, a larger amount of an organic substance can be taken in and used for analysis, so that detection sensitivity can be further increased and even a trace amount of components can be quantified.
[0013]
As described above, according to the present invention, an analysis target component having a boiling point lower than that of water is eliminated by mixing and cooling an inert gas after sample water is continuously flowed and then cooling to remove moisture. Since it is essential to take it out into the active gas, introduce it into the gas chromatograph and analyze it, the details of the device configuration are not limited to those illustrated in FIG. 1, and various modifications are conceivable. Such variations are encompassed by the present invention within the scope of claim 1.
[0014]
【The invention's effect】
Since the present invention is configured as described above, the pretreatment process in the analysis of volatile organic compounds in water, which required 15 to 60 minutes in the conventional headspace method, can be completed in 2 to 3 minutes. Thus, the total analysis time including pre-processing can be greatly shortened. In addition, since the entire amount of the sample water is vaporized once, almost the entire amount of the analysis target component in the sample water can be taken out into the gas phase, which is superior in quantitative performance as compared with the conventional method.
[Brief description of the drawings]
FIG. 1 is a diagram showing an embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Pump 2 ... Sample container 3 ... Gas cylinder 4 ... Flow regulator 10 ... Vaporizer 11 ... Heating coil 12 ... Pressure regulation chamber 20 ... Condenser 21. ..Cooling coil 22 ... Separator 30 ... Gas chromatograph

Claims (1)

「ポンプによって送液されている揮発性有機化合物を含む試料水を加熱して気化させる気化器と、その出口側で前記試料水が気化した蒸気流に一定流量の不活性ガスを混合させるガス供給部と、これらの混合気流を冷却し水分を凝縮させる凝縮器と、凝縮水と前記揮発性有機化合物を含むガス成分を分離するセパレータとを備え、前記ガス成分を導入することを特徴としたガスクロマトグラフ“A vaporizer that heats and vaporizes sample water containing volatile organic compounds being pumped and a gas supply that mixes a constant flow of inert gas into the vapor stream vaporized from the sample water at its outlet side. And a condenser for cooling the mixed airflow to condense water, and a separator for separating the gas component containing the condensed water and the volatile organic compound, and introducing the gas component. Graph .
JP01218999A 1999-01-20 1999-01-20 Sample introduction device Expired - Lifetime JP4186290B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01218999A JP4186290B2 (en) 1999-01-20 1999-01-20 Sample introduction device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01218999A JP4186290B2 (en) 1999-01-20 1999-01-20 Sample introduction device

Publications (2)

Publication Number Publication Date
JP2000214053A JP2000214053A (en) 2000-08-04
JP4186290B2 true JP4186290B2 (en) 2008-11-26

Family

ID=11798468

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01218999A Expired - Lifetime JP4186290B2 (en) 1999-01-20 1999-01-20 Sample introduction device

Country Status (1)

Country Link
JP (1) JP4186290B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010169455A (en) * 2009-01-21 2010-08-05 Hitachi High-Technologies Corp Autosampler, liquid chromatograph, and valve
JP6192417B2 (en) * 2013-08-06 2017-09-06 大陽日酸株式会社 Low temperature reactor
CN105136958B (en) * 2015-09-15 2018-04-10 顾金华 VOCs concentration on-line monitoring devices
JP2017090225A (en) * 2015-11-09 2017-05-25 株式会社島津製作所 Gas analysis system
KR102020706B1 (en) 2017-01-20 2019-09-11 주식회사 엘지화학 Method for measuring moisture in a separator of a secondary battery
JP6825157B1 (en) * 2020-09-09 2021-02-03 環境電子株式会社 Automatic detection device for oil and mold odors and automatic poison monitoring device for fish with odor sensor

Also Published As

Publication number Publication date
JP2000214053A (en) 2000-08-04

Similar Documents

Publication Publication Date Title
US5470380A (en) Management device for gas chromatography sample concentration
JP4231480B2 (en) Compound pretreatment concentrator for gas chromatography
US10895565B2 (en) Analysis system and method for detecting volatile organic compounds in liquid
JP4903056B2 (en) Gas chromatograph
US6652625B1 (en) Analyte pre-concentrator for gas chromatography
US11247204B2 (en) Sample preconcentration system and method for use with gas chromatography
JP2006516717A5 (en)
CN103299183A (en) Device for preparing sample supplied to ion mobility sensor
JP4186290B2 (en) Sample introduction device
CN114755349A (en) Automatic analysis system and method for low-temperature double-column chromatography of atmospheric volatile organic compounds
JP2009180618A (en) Pretreatment apparatus and liquid chromatograph device
US20180246070A1 (en) Online chemical derivatization using a cooled programmed temperature vaporization inlet
US20110212536A1 (en) Method and apparatus for the isotope-ratio analysis
CN105911182B (en) The pretreating device and its analysis method of dimethyl fumarate are measured in textile
JP2005283317A (en) Gas analyzer
Apps et al. Trace analysis of complex organic mixtures using capillary gas‐liquid chromatography and the dynamic solvent effect
US6277649B1 (en) Recirculation analysis apparatus and method
CN113777201A (en) Method for analyzing aroma components in tobacco
JP2001337078A (en) Gas chromatography with automatic pretreating function
JPS62187250A (en) Capillary gas chromatographic apparatus for analyzing volatile component
JP3114926U (en) Flow controller and sample concentrator using the same
US10989697B2 (en) Breath analyzer
JP2006145383A (en) Atmospheric pressure chemical ionization mass spectrograph, and calibration method therefor
US6368559B1 (en) Device for analyzing organic compounds particularly in aqueous and gaseous samples
SU1122969A1 (en) Device for thermal desorption of concentrated impurities from concentrator to chromatographic column

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050302

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070724

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080520

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080722

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080819

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080901

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110919

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110919

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120919

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120919

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130919

Year of fee payment: 5

EXPY Cancellation because of completion of term