JP4184471B2 - Air tool power supply - Google Patents

Air tool power supply Download PDF

Info

Publication number
JP4184471B2
JP4184471B2 JP04448498A JP4448498A JP4184471B2 JP 4184471 B2 JP4184471 B2 JP 4184471B2 JP 04448498 A JP04448498 A JP 04448498A JP 4448498 A JP4448498 A JP 4448498A JP 4184471 B2 JP4184471 B2 JP 4184471B2
Authority
JP
Japan
Prior art keywords
air
power supply
power
temperature air
tool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP04448498A
Other languages
Japanese (ja)
Other versions
JPH11221779A (en
Inventor
弘和 寺本
Original Assignee
瓜生製作株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 瓜生製作株式会社 filed Critical 瓜生製作株式会社
Priority to JP04448498A priority Critical patent/JP4184471B2/en
Publication of JPH11221779A publication Critical patent/JPH11221779A/en
Application granted granted Critical
Publication of JP4184471B2 publication Critical patent/JP4184471B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Portable Power Tools In General (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、空気圧で操作されるインパクトレンチ、エアーグラインダ等のエアーツールに関するものである。
【0002】
【従来の技術】
エアーツールは、その機械的な機構部の駆動のための高圧空気のみならず、機構部を制御するために内蔵された電気回路、すなわち制御基板、表示ランプ等の作動のために電力を必要とする。
そこで、従来のエアーツールにおいて、内部電源を持たないものでは、高圧空気の供給管の他に給電コードを接続することで、別途電力を供給可能とする必要がある。
このほか、エアーツールに電力を供給するため、エアーツールの機体内に蓄電池を内蔵させた内部電源方式のものもある。
【0003】
【発明が解決しようとする課題】
ところで、上記前者の技術のように、高圧空気の供給管及び給電コードの2本の配線をエアーツールに接続することは、電源の確保のためのコードの引回しにより、エアーツールの操作性を悪くすることになる。また、後者の技術では、エアーツールの制御の高度化に伴う電気回路の消費電力の増大で、大容量の蓄電池が必要となり、蓄電池の内蔵に伴う重量の増大により、エアーツールの操作性が悪化するばかりでなく、電池交換や充電を必要とする。
【0004】
本発明は、上記問題点に鑑み、エアーツールの操作性を悪化させない軽量の内蔵式の電源装置を提供することを目的とする。
更に、本発明は、高圧空気を発電に利用する電源装置の内蔵に伴い得られる低温空気を利用して制御基板等の発熱部を冷却することを目的とする。
【0005】
【課題を解決するための手段】
上記目的を達成するため、本発明のエアーツールの電源装置は、空気圧で作動する機構部を備えたエアーツールの電源装置において、導入される高圧空気を分流して高温空気と低温空気を得る渦巻形分流器と、得られた高温空気と低温空気の導入による熱電効果で発電する熱電力発生器とを内蔵し、エアーツールの駆動に用いる高圧空気を使用して発電するとともに、前記熱電力発生器の低温空気側の空間を区画する隔壁を隔てて制御部の制御基板を配設し、該制御基板を、前記熱電力発生器から排気された低温空気及び隔壁を介して冷却するようにしたことを特徴とする。
【0006】
【発明の実施の形態】
以下、本発明のエアーツールの電源装置を図示の実施例に基づいて説明する。
【0007】
図1は、本発明のエアーツールの電源装置を適用したエアーツールの一例としての油圧式トルクレンチを示す。
このトルクレンチ1の機構部2は、回転トルクを発生するエアーモータ20と、エアーモータ20の回転トルクを打撃トルクに変換して主軸22に伝達する油圧式の打撃トルク発生装置21とを主たる機構として備えている。エアーモータ20を駆動する高圧空気は、ハンドル部10の供給路を通し、トリガー11操作のメインバルブとレバー12操作の正逆回転切換バルブを経てエアーモータ20に供給され、エアーモータ20を駆動した空気は、同じくハンドル部10を通る排気路を経て、排気口13から排出される構成が採られている。
【0008】
この油圧式トルクレンチ1は、装置の前方部に主軸22にかかるトルクを検出する磁歪式トルク検出機構33と、その制御基板34とを備え、更に、後方部にトルクレンチ1の制御のための制御部3を備えている。そして、制御部3には、制御基板30と、発光ダイオードからなる表示ランプ31と、小容量の蓄電池32が配設されている。
したがって、これらトルク検出機構33の制御基板34と制御部3は、その作動のための電源を必要とする。
【0009】
そこで、この装置では、エアーモータ20と制御部3との間に電源装置4を内蔵している。
この電源装置4は、油圧式トルクレンチ1に導入される高圧空気を分流して高温空気と低温空気を得る渦巻形分流器5と、得られた高温空気と低温空気の導入による温度差を負荷することで熱電効果により発電する熱電力発生器6を内蔵した発電手段とから構成されている。
【0010】
ここで、これら渦巻形分流器5と熱電力発生器6について簡単に説明する。 図2は渦巻形分流器5の構造を示す。
渦巻形分流器5は、一端が閉じた軸方向穴50aを有し、軸方向穴50aの一端近傍に複数の径方向排出孔50bを有する筒状の基体50と、基体50の一端にねじ込まれ、先端の円錐状部51aで径方向排出孔50bの開口部を絞り、排出量を調整する弁体51と、基体50の他端を閉じるノズル体52とで構成されている。ノズル体52は、前記軸方向穴50aより小径の軸方向孔52aを有し、軸方向孔52aは基体50との当接部で軸方向穴50aと同径に座繰られ、座繰り穴52bの外周に、座繰り穴52bに対して接線方向に延びる複数(図において6条)の細溝52cを形成するようにしている。
【0011】
このように構成された渦巻形分流器5は、細溝52cを通して高圧空気を軸方向穴50aに対する周方向の流れとして導入することで、軸方向穴50a内に旋回流を生じ、その末端の径方向孔50b側に、図2に実線矢印で示すように高温空気が排出され、軸方向孔52a側に、図2に点線矢印で示すように低温空気が排出される特性を有する。
【0012】
一方、図3は熱電力発生器6の構造を示す。
熱電力発生器6は、電流を運ぶキャリアが正孔のP型とキャリアが電子のN型の化合物半導体からなるP型素子61とN型素子62を、銅の接合電極を介して接合させたPN対の組を、熱のやりとり量を増大させるべく直列に多数接続して面状に配列し、接合電極の外側に、絶縁性が高く熱伝導率のよいアルミナ等のセラミック基板63を接合させた構成を有する。
【0013】
このように構成された熱電力発生器6は、セラミック基板63の一方を吸熱面Hとし、他方を放熱面Lとして両面に温度差を負荷することで、ゼーベック(Seebeck)効果により、熱エネルギを直接電気エネルギに変換して、接合電極の一端に接続したリード線64と、他端に接続されたしたリード線65間に熱起電力を発生する。
【0014】
図4は、こうした渦巻形分流器5と熱電力発生器6を内蔵した発電手段とを組み合わせた電源装置4を断面で示す。
渦巻形分流器5の接線方向細溝52cは、給気路70に接続され、軸方向孔52aは熱電力発生器6で仕切られた発電手段の一方の空間Aに接続路72で接続され、径方向孔50bは接続路71で発電手段の他方の空間Bに接続されている。そして、一方の空間Aからの低温空気の排出路73は、制御基板30等の発熱部を冷却すべく、制御基板30等を配設した制御部3を介してエアーツール1の排気口13に通じる排気路74に連通し、他方の空間Bからの高温空気の排出路76は、直接排気路74に連通している。
この場合、渦巻形分流器5へ高圧空気を導入する給気路70は、通常、エアーモータ20への吸気路から分岐する形態を採用するようにする。
また、渦巻形分流器5と熱電力発生器6を内蔵した発電手段の周囲に、必要に応じて、断熱材を配設することができる。
【0015】
こうした構成からなるトルクレンチ1において、トリガー11の操作により開始される高圧空気の給気は、渦巻形分流器5への供給で高温空気と低温空気とに分流されて、それぞれ発電手段の熱電力発生器6の吸熱面Hと放熱面Lとに沿って流れるように空間A及び空間Bに供給され、それにより熱電力発生器6は温度差を負荷されて発電する。
この発電により得られた電力は、制御部2、すなわち、制御基板30にリード線64,65を通して供給され、制御基板上の図示しないDC−DCコンバータ等で適宜の電圧とされて、直接、回路の作動に使用されるか、小容量の蓄電池32に蓄電しながら、それをバッファーとして回路の作動に使用される。
【0016】
また、熱電力発生器6で仕切られた発電手段の一方の空間Aからの低温空気の排出路73を、制御基板30等を配設した制御部3を介してエアーツール1の排気口13に通じる排気路74に連通することにより、制御基板30等の発熱部を冷却するようにする。
このように、制御基板30等の発熱部は、制御部3に導入される低温空気により、直接的に冷却されるとともに、発電手段の周囲に断熱材を配設しない場合には、発電手段の一方の空間Aと制御部3とを区画する隔壁Wを介して、間接的に冷却することができる。
【0017】
以上、本発明のエアーツールの電源装置を油圧式トルクレンチ適用した例について説明したが、この電源装置は、空気圧で操作されるインパクトレンチ、エアーグラインダ等のエアーツールの電源装置として広く適用することができるものである。
【0018】
【発明の効果】
本発明のエアーツールの電源装置によれば、該ツールを駆動するために供給される高圧空気から渦巻形分流器を用いて高温空気と低温空気を生成させ、それによる温度差を利用して熱電力発生器により発電させ、その電力で制御部を作動させて機構部を制御することができるため、制御用電力供給のための給電コードの接続を不要とし、しかも大型の蓄電池の内蔵によるエアーツールの重量増大を避けることができるため、エアーツールの操作性を向上させることができる。
【0019】
そして、熱電力発生器の低温空気側の空間を区画する隔壁を隔てて制御部の制御基板を配設し、該制御基板を、前記熱電力発生器から排気された低温空気及び隔壁を介して冷却することができ、これにより、制御基板の放熱を促し、基板の温度上昇を防いで、制御動作を安定させることができ、エアーツールの制御をより確実なものとすることができる。
【図面の簡単な説明】
【図1】 本発明の一実施例の電源装置を備えた油圧式トルクレンチの正面断面図である。
【図2】 同電源装置の渦巻形分流器を示し、(a)は正面断面図、(b)は(a)のA−A断面図である。
【図3】 同電源装置の熱電力発生器を示し、(a)は正面図、(b)は側面図である。
【図4】 同電源装置の正面断面図である。
【符号の説明】
1 油圧式トルクレンチ(エアーツール)
2 機構部
3 制御部
30 制御基板(発熱部)
4 電源装置
5 渦巻形分流器
6 熱電力発生器
7 低温空気排出路
8 排気路
9 高温空気排出路
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an air tool such as an impact wrench or an air grinder operated by air pressure.
[0002]
[Prior art]
An air tool requires not only high-pressure air for driving its mechanical mechanism, but also an electric circuit built in to control the mechanism, that is, power for operation of a control board, a display lamp, etc. To do.
Therefore, in a conventional air tool that does not have an internal power supply, it is necessary to separately supply power by connecting a power supply cord in addition to a high-pressure air supply pipe.
In addition, in order to supply electric power to the air tool, there is an internal power supply type in which a storage battery is built in the air tool body.
[0003]
[Problems to be solved by the invention]
By the way, as in the former technique, connecting the two wires of the high-pressure air supply pipe and the power supply cord to the air tool reduces the operability of the air tool by routing the cord for securing the power supply. It will be bad. In the latter technology, a large-capacity storage battery is required due to an increase in power consumption of the electric circuit accompanying the advancement of control of the air tool, and the operability of the air tool deteriorates due to the increase in weight associated with the built-in storage battery. As well as battery replacement and charging.
[0004]
In view of the above problems, an object of the present invention is to provide a lightweight built-in power supply device that does not deteriorate the operability of an air tool.
Furthermore, an object of the present invention is to cool a heat generating part such as a control board by using low-temperature air obtained by incorporating a power supply device that uses high-pressure air for power generation.
[0005]
[Means for Solving the Problems]
In order to achieve the above object, an air tool power supply device according to the present invention is a spiral device for diverting high-pressure air to be introduced to obtain high-temperature air and low-temperature air in a power supply device for an air tool provided with a pneumatically operated mechanism. A built-in type shunt and a thermal power generator that generates electricity by the thermoelectric effect obtained by introducing the obtained high-temperature air and low-temperature air, generates power using high-pressure air used to drive the air tool, and generates the thermal power A control board of the control unit is arranged across a partition wall that divides the space on the low-temperature air side of the cooler, and the control board is cooled via the low-temperature air exhausted from the thermal power generator and the partition wall. It is characterized by that.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a power supply device for an air tool according to the present invention will be described with reference to the illustrated embodiments.
[0007]
FIG. 1 shows a hydraulic torque wrench as an example of an air tool to which a power supply device for an air tool of the present invention is applied.
The mechanism portion 2 of the torque wrench 1 mainly includes an air motor 20 that generates rotational torque, and a hydraulic impact torque generating device 21 that converts the rotational torque of the air motor 20 into impact torque and transmits the impact torque to the main shaft 22. As prepared. The high-pressure air that drives the air motor 20 is supplied to the air motor 20 through the supply path of the handle portion 10 and through the main valve operated by the trigger 11 and the forward / reverse rotation switching valve operated by the lever 12, thereby driving the air motor 20. The air is similarly exhausted from the exhaust port 13 through the exhaust passage passing through the handle portion 10.
[0008]
The hydraulic torque wrench 1 is provided with a magnetostrictive torque detection mechanism 33 for detecting torque applied to the main shaft 22 at the front part of the apparatus and a control board 34 for controlling the torque wrench 1 at the rear part. A control unit 3 is provided. The control unit 3 is provided with a control board 30, a display lamp 31 made of a light emitting diode, and a small-capacity storage battery 32.
Therefore, the control board 34 and the control unit 3 of these torque detection mechanisms 33 require a power source for their operation.
[0009]
Therefore, in this device, the power supply device 4 is built in between the air motor 20 and the control unit 3.
The power supply unit 4, the spiral flow divider 5 to obtain a hot air and cold air to divert high-pressure air introduced into the hydraulic torque wrench 1, load the temperature difference by introduction of hot air and cold air obtained Thus, the power generation means includes a thermal power generator 6 that generates power by the thermoelectric effect.
[0010]
Here, the spiral shunt 5 and the thermal power generator 6 will be briefly described. FIG. 2 shows the structure of the spiral shunt 5.
The spiral flow divider 5 has an axial hole 50a with one end closed, a cylindrical base body 50 having a plurality of radial discharge holes 50b in the vicinity of one end of the axial hole 50a, and screwed into one end of the base body 50. In addition, a conical portion 51a at the front end constricts the opening portion of the radial discharge hole 50b, and includes a valve body 51 that adjusts the discharge amount and a nozzle body 52 that closes the other end of the base body 50. The nozzle body 52 has an axial hole 52a having a smaller diameter than the axial hole 50a. The axial hole 52a is countersunk to the same diameter as the axial hole 50a at a contact portion with the base body 50, and the countersink hole 52b. A plurality of (six strips in the figure) narrow grooves 52c extending in the tangential direction with respect to the counterbore hole 52b are formed on the outer periphery of the groove 52b.
[0011]
The spiral flow divider 5 configured as described above introduces high-pressure air as a circumferential flow with respect to the axial hole 50a through the narrow groove 52c, thereby generating a swirling flow in the axial hole 50a and having a diameter at the end thereof. direction hole 50b side, the hot air as indicated by the solid line arrow is discharged in Figure 2, the axial bore 52a side, has a characteristic of low temperature air is discharged as indicated by a dotted line arrow in FIG.
[0012]
On the other hand, FIG. 3 shows the structure of the thermal power generator 6.
The thermoelectric generator 6 has a P-type element 61 and an N-type element 62, which are made of an N-type compound semiconductor in which a carrier carrying current is a hole and a P-type carrier and is an electron, joined via a copper junction electrode. A large number of pairs of PN pairs are connected in series in order to increase the amount of heat exchange and arranged in a plane, and a ceramic substrate 63 such as alumina having high insulation and good thermal conductivity is bonded to the outside of the bonding electrode. Have a configuration.
[0013]
The thermoelectric power generator 6 configured in this way has one end of the ceramic substrate 63 as the heat absorbing surface H and the other as the heat radiating surface L, so that a temperature difference is applied to both surfaces, thereby generating thermal energy by the Seebeck effect. Directly converted into electrical energy, a thermoelectromotive force is generated between the lead wire 64 connected to one end of the bonding electrode and the lead wire 65 connected to the other end.
[0014]
FIG. 4 shows, in cross section, a power supply device 4 in which such a spiral flow shunt 5 and a power generation means incorporating a thermal power generator 6 are combined.
The tangential narrow groove 52 c of the spiral flow divider 5 is connected to the air supply path 70, and the axial hole 52 a is connected to one space A of the power generation means partitioned by the thermal power generator 6 through the connection path 72. The radial hole 50 b is connected to the other space B of the power generation means by a connection path 71. A low-temperature air discharge path 73 from one space A is connected to the exhaust port 13 of the air tool 1 via the control unit 3 provided with the control board 30 and the like so as to cool the heat generating part such as the control board 30. The exhaust passage 74 that communicates with the exhaust passage 74 and the exhaust passage 76 for discharging the high-temperature air from the other space B communicate with the exhaust passage 74 directly.
In this case, the air supply path 70 for introducing the high-pressure air into the spiral flow divider 5 usually adopts a form branched from the intake path to the air motor 20.
Further, if necessary, a heat insulating material can be disposed around the power generation means incorporating the spiral flow divider 5 and the thermal power generator 6.
[0015]
In the torque wrench 1 consisting of such construction, supply of the high pressure air which is initiated by operation of the trigger 11 is branched into a hot air and cold air supply to the spiral flow divider 5, heat power of each power generation means It is supplied to the space A and the space B so as to flow along the heat absorbing surface H and the heat radiating surface L of the generator 6, whereby the thermoelectric generator 6 is loaded with a temperature difference and generates power.
The electric power obtained by this power generation is supplied to the control unit 2, that is, the control board 30 through the lead wires 64 and 65, and is converted to an appropriate voltage by a DC-DC converter (not shown) on the control board, so that the circuit directly It is used for the operation of the circuit while storing it in the small capacity storage battery 32 and using it as a buffer.
[0016]
Further, a low-temperature air discharge path 73 from one space A of the power generation means partitioned by the thermal power generator 6 is connected to the exhaust port 13 of the air tool 1 through the control unit 3 provided with the control board 30 and the like. By communicating with the exhaust path 74 that communicates, the heat generating part such as the control board 30 is cooled.
As described above, the heat generating part such as the control board 30 is directly cooled by the low-temperature air introduced into the control part 3, and when no heat insulating material is provided around the power generating means, It can cool indirectly through the partition W which divides one space A and the control part 3. FIG.
[0017]
As mentioned above, although the example which applied the hydraulic torque wrench to the power supply apparatus of the air tool of this invention was demonstrated, this power supply apparatus is widely applied as a power supply apparatus of air tools, such as an impact wrench and an air grinder operated by air pressure. It is something that can be done.
[0018]
【The invention's effect】
According to the power supply device for an air tool of the present invention, high-temperature air and low-temperature air are generated from the high-pressure air supplied to drive the tool by using a spiral-type shunt, and the temperature difference caused thereby is used to generate heat. The power tool can be used to generate power and operate the controller with that power to control the mechanism, eliminating the need for a power supply cord for control power supply and a built-in large storage battery. Therefore, the operability of the air tool can be improved.
[0019]
Then, a control board of the control unit is disposed across a partition wall that divides the space on the low-temperature air side of the thermal power generator, and the control board is disposed via the low-temperature air exhausted from the thermal power generator and the partition wall. It is possible to cool, thereby accelerating the heat dissipation of the control board, preventing the temperature of the board from rising, stabilizing the control operation, and making the control of the air tool more reliable.
[Brief description of the drawings]
FIG. 1 is a front sectional view of a hydraulic torque wrench including a power supply device according to an embodiment of the present invention.
FIGS. 2A and 2B show a spiral shunt of the power supply device, in which FIG. 2A is a front cross-sectional view, and FIG.
FIGS. 3A and 3B show a thermal power generator of the power supply device, wherein FIG. 3A is a front view and FIG. 3B is a side view.
FIG. 4 is a front sectional view of the power supply device.
[Explanation of symbols]
1 Hydraulic torque wrench (air tool)
2 Mechanism part 3 Control part 30 Control board (heat generation part)
4 Power supply device 5 Spiral shunt 6 Thermal power generator 7 Low temperature air discharge path 8 Exhaust path 9 High temperature air discharge path

Claims (1)

空気圧で作動する機構部を備えたエアーツールの電源装置において、導入される高圧空気を分流して高温空気と低温空気を得る渦巻形分流器と、得られた高温空気と低温空気の導入による熱電効果で発電する熱電力発生器とを内蔵し、エアーツールの駆動に用いる高圧空気を使用して発電するとともに、前記熱電力発生器の低温空気側の空間を区画する隔壁を隔てて制御部の制御基板を配設し、該制御基板を、前記熱電力発生器から排気された低温空気及び隔壁を介して冷却するようにしたことを特徴とするエアーツールの電源装置。In a power supply device for an air tool equipped with a pneumatically operated mechanism, a spiral-type shunt that diverts the introduced high-pressure air to obtain high-temperature air and low-temperature air, and thermoelectric power generated by introducing the obtained high-temperature air and low-temperature air A thermal power generator that generates electricity by the effect, generates power using high-pressure air used to drive the air tool, and separates a partition partitioning a space on the low-temperature air side of the thermal power generator, A power supply device for an air tool, characterized in that a control board is provided and the control board is cooled via low-temperature air exhausted from the thermoelectric generator and a partition wall .
JP04448498A 1998-02-09 1998-02-09 Air tool power supply Expired - Fee Related JP4184471B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04448498A JP4184471B2 (en) 1998-02-09 1998-02-09 Air tool power supply

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04448498A JP4184471B2 (en) 1998-02-09 1998-02-09 Air tool power supply

Publications (2)

Publication Number Publication Date
JPH11221779A JPH11221779A (en) 1999-08-17
JP4184471B2 true JP4184471B2 (en) 2008-11-19

Family

ID=12692826

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04448498A Expired - Fee Related JP4184471B2 (en) 1998-02-09 1998-02-09 Air tool power supply

Country Status (1)

Country Link
JP (1) JP4184471B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010172980A (en) * 2009-01-27 2010-08-12 Honda Motor Co Ltd Multifunctional tool
JP5757172B2 (en) * 2011-06-16 2015-07-29 日立工機株式会社 Electric tool
EP3418003B1 (en) * 2014-08-20 2020-09-09 Tohnichi Mfg. Co., Ltd. Fastening tool

Also Published As

Publication number Publication date
JPH11221779A (en) 1999-08-17

Similar Documents

Publication Publication Date Title
US8492642B2 (en) System for controlling temperature of a secondary battery module
KR102226353B1 (en) Graphite thermoelectric and/or resistive thermal management systems and methods
KR102034337B1 (en) Thermoelectric-based thermal management of electrical devices
TW201043845A (en) Solar energy street lamp structure with air inlet
KR20120017983A (en) Structure for cooling parts of hev
CN106533263A (en) Multi-stage semiconductor thermoelectric power generation and cooling integrated system for hypersonic flight vehicle
JP4184471B2 (en) Air tool power supply
KR20220060516A (en) A Refrigerator Having a Thermo Electric Module Integrated with a Heat Pipe
CN101562415B (en) Generator
CA2492902A1 (en) Solar-powered temperature regulation system for the interior of an automobile/motor vehicle to solar-powered temperature regulation system for the interior of an automobile/motor vehicle
CN105444461A (en) Thermoelectric refrigerating unit and method for improving refrigerating efficiency of thermoelectric refrigerating unit
CN107120542A (en) The heat abstractor and method of a kind of high-powered LED lamp
CN111828132B (en) Radiator for generator set
JP3565434B2 (en) Fuel cell device having a fuel cell stack including an integrated polarity reversal protection diode
CN205901633U (en) Foldable biomass fuel thermoelectric generator
CN205961663U (en) Thermoelectric generator's heat dissipation mechanism and thermoelectric generator
KR20110115247A (en) Thermoelectric power generating heat exchanger
CN106253750A (en) Collapsible biomass fuel thermal generator
KR100634317B1 (en) Light emitting diode package
KR100475816B1 (en) Fan motor cooling device
CN201527989U (en) Bracket Improvement of light-emitting diode (LED)
JP2008043095A (en) Generator cooler and vehicle equipped therewith
CN110630916A (en) Satellite-borne high-power LED lamp phase change thermal control device and packaging method thereof
KR20090016057A (en) An air conditioner using solarbeam and thermoelement
CN106533264A (en) Hypersonic flight vehicle cooling and semiconductor thermoelectric power generation integrated system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080819

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080904

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110912

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120912

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120912

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130912

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees