JP4182394B2 - Washing apparatus and electrical equipment equipped with the washing apparatus - Google Patents

Washing apparatus and electrical equipment equipped with the washing apparatus Download PDF

Info

Publication number
JP4182394B2
JP4182394B2 JP2002145877A JP2002145877A JP4182394B2 JP 4182394 B2 JP4182394 B2 JP 4182394B2 JP 2002145877 A JP2002145877 A JP 2002145877A JP 2002145877 A JP2002145877 A JP 2002145877A JP 4182394 B2 JP4182394 B2 JP 4182394B2
Authority
JP
Japan
Prior art keywords
water
electrolyzer
time
electrolytic cell
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002145877A
Other languages
Japanese (ja)
Other versions
JP2003334153A (en
Inventor
輝男 中村
るみ 岡島
正史 長田
勝彦 石井
芳紀 若月
加津典 関根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Home Appliance Co Ltd
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Home Appliance Co Ltd
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Home Appliance Co Ltd, Mitsubishi Electric Corp filed Critical Mitsubishi Electric Home Appliance Co Ltd
Priority to JP2002145877A priority Critical patent/JP4182394B2/en
Publication of JP2003334153A publication Critical patent/JP2003334153A/en
Application granted granted Critical
Publication of JP4182394B2 publication Critical patent/JP4182394B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Washing And Drying Of Tableware (AREA)
  • Cleaning By Liquid Or Steam (AREA)
  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、水を電気分解した電解水を用いて、例えば食器等に付着した汚れを効果的に落とす洗浄装置およびその洗浄装置を備えた電気機器に関するものである。
【0002】
【従来の技術】
電解水を用いて汚れを落とす洗浄装置を利用した電気機器の一例として、例えば特許第3183118号公報に開示された発明があり、図9にその要部を示す。
【0003】
特許第3183118号公報に開示された食器洗浄機は、食器洗浄機40の本体の内部に洗浄槽が設けられ、その前面開口部は扉によって開閉自在に閉塞される。洗浄槽の内底部には、洗浄用ポンプに回転自在に取り付けられた噴射体が設けられており、洗浄用ポンプは、その吸入管の先端部を洗浄槽の底部下方に形成した貯水部内に臨ませるとともに、駆動用モータに接続されて駆動する。また、洗浄槽の内底部の噴射体の下方には、すすぎ水の加熱等に用いられる電気ヒータが配設され、汚れ検知センサからの検出出力に基づいて制御装置により通断電制御される。
【0004】
洗浄槽の上部外側には、本体外部の水源に給水管42を介して接続され、洗浄槽内への給水量を調整する給水弁等を内蔵した給水装置41が設けられており、給水管42の下流側には、水道水を電気分解して電解水を生成する創水装置43が配設されている。
【0005】
創水装置43は、その外殻を形成するケーシング30と、その内部をアルカリ水生成室32および酸性水生成室33とに区画する隔膜31と、各生成室32,33にそれぞれ配設された陰極である電極34および陽極である電極35と、両電極34,35から導出して電源38に接続された電線36,37とを備えており、制御装置からの駆動信号に基づいて電極34,35間に電圧を印加し、この電圧の印加によって、創水装置43に送られた水道水が電気分解されて、アルカリ水生成室32ではpH値が高くなってアルカリ水が生成され、酸性水生成室33ではpH値が低くなって酸性水が生成される。
【0006】
また、ケーシング30の上流側端は給水管42が接続され、ケーシング30の下流側端のアルカリ水生成室32には給水配管42aが接続されており、ケーシング30の下流側端の酸性水水生成室33には捨水配管44が接続されていて、捨水配管44の先端は、上端を洗浄槽の底部と連通連結した排水管の途中に接続されている。そして、この創水装置43の動作も制御装置によって制御され、創水装置43、給水装置41、給水管42、給水配管42aおよび捨水配管44によって食器洗浄機の洗浄装置が形成される。
【0007】
このように構成された食器洗浄機40は、使用者が図示しない操作スイッチを作動すると、制御装置が、給水装置41と、創水装置43と、洗浄用ポンプの駆動用モータと、電気ヒータとに駆動信号を送る。これによって、創水装置43の電極34,35間に電圧が印加されて水道水が電気分解され、アルカリ水生成室32内および酸性水生成室33内にそれぞれアルカリ水および酸性水が生成される。そして、アルカリ水のみが給水装置41を介して洗浄槽内に洗浄水として供給され、アルカリ水が食器等に付着している汚れ物質と積極的に反応して除去する。なお、酸性水生成室33内で生成された酸性水は、捨水配管44および排水管を通して外部に排水される。
【0008】
【発明が解決しようとする課題】
上記のような従来の食器洗浄機40は、その洗浄装置の創水装置43によって水道水を電気分解し、生成した電解水(アルカリ水)を用いて食器等の洗浄を行うので、アルカリ水が食器等に付着した汚れ物質と反応し、汚れを積極的に除去する。しかしながら、創水装置43は、アルカリ水である電解水を生成するために、陰極である電極34および陽極である電極35を有するため、電気分解時に陰極である電極34側に水素ガスの気泡が発生し、陽極である電極35側に酸素ガスの気泡が発生する。この両電極33,34間で発生した気泡は、それぞれの生成室32,33内に充満し、特に高い電解水(例えばpHの高いアルカリ水またはpHの低い酸性水)を生成する場合には多量に発生して充満する。
【0009】
図11は創水装置43のアルカリ水生成室32側の状態を示したもので、水の電気分解が行われると、アルカリ水生成室32内に水素ガスの気泡Kが発生し(図11の▲1▼)、ケーシング30の上部角部30aなどに溜まり始めて少しずつ大きくなり(図11の▲2▼〜▲4▼)、大きな気泡K1を形成する(図11の▲5▼)。細かい気泡Kは、生成されたアルカリ水とともに給水配管42aから排出されるものの、大きくなった気泡K1は、給水配管42aから排出されず、さらに大きくなって滞留する(図11の▲6▼,▲7▼)。
【0010】
このように、創水装置43のアルカリ水生成室32(酸性水生成室33)内に大きな気泡K1が形成されてしまうと、その部分には電解されるべき水道水が送られなくなるため、使われる電極33(電極34)の面積が狭くなり、その部分に電流が流れなくなって電気分解が行われなくなってしまう。
【0011】
つまり、図10に示すように、一定の電圧をかけても気泡K、特に大きな気泡K1によって使用面積が縮小された分だけ流れる電流も減ってしまい、アルカリ水生成室32内の水が入れ替わる時間Tの間電圧をかけても所定の電気量が得られず、電流の大きさに比例する電解水のpHも低下して所望のpHの電解水が得られない(例えば所望のpHが12の電解水が、pH10の電解水となってしまう)という問題があった。このように、電解水の生成効率が低下してしまうと、電解水による洗浄効率も低下してしまうおそれがあった。
【0012】
また、アルカリ水生成室32(酸性水生成室33)内で形成された大きな気泡K1が給水配管42aから排出した場合でも、その気泡K1が洗浄槽に排出されるため、その気泡K1によって洗浄槽内に供給されるアルカリ水を所定量送り込むことができないという問題があった。そして、所定量のアルカリ水が確保できない場合は、洗浄効率も低下してしまうおそれがあった。
【0013】
本発明は、上記のような課題を解決するためになされたもので、電気分解時に発生する気泡の滞留を防ぎ、所望のpHで所定量の電解水を確実に確保して洗浄効率の低下を防ぐことのできる洗浄装置およびその洗浄装置を備えた電気機器を提供することを目的としたものである。
【0014】
【課題を解決するための手段】
本発明に係る洗浄装置は、電気分解装置によって生成された電解水を用いて被洗浄物を洗浄する洗浄装置において、水が前記電気分解装置の電解槽に入って出るまでの間の水の移動速度と、電気分解時に前記電解槽で発生した気泡が前記電解槽を出るまでの間の気泡の移動速度とによって生じる時間差に相当する時間、またはこの時間よりも若干短い時間の間、前記電気分解装置の電極に電圧を印加して前記電気分解装置の前記電解槽内の水を電気分解させるとともに、電気分解時に前記電気分解装置の前記電解槽で発生した気泡が前記電解槽を出るまでの間に相当する時間、またはこの時間よりも若干短い時間の間、前記電極への電圧の印加を停止させ、前記電極への電圧の印加および停止を繰り返し行うようにしたものである。
【0015】
本発明に係る洗浄装置は、水を電気分解して電解水を生成する電気分解装置と、電気分解装置に水を供給する給水路と、電解水を急加熱して蒸気化し電解水の水滴とともに被洗浄物に噴射する蒸気発生噴射装置とを備え、水が前記電気分解装置の電解槽に入って出るまでの間の水の移動速度と、電気分解時に前記電解槽で発生した気泡が前記電解槽を出るまでの間の気泡の移動速度とによって生じる時間差に相当する時間、またはこの時間よりも若干短い時間の間、前記電気分解装置の電極に電圧を印加して電気分解装置の電解槽内の水を電気分解させるとともに、電気分解時に前記電気分解装置の前記電解槽で発生した気泡が前記電解槽を出るまでの間に相当する時間、またはこの時間よりも若干短い時間の間、前記電極への電圧の印加を停止させ、前記電極への電圧の印加および停止を繰り返し行うようにしたものである。
【0017】
本発明に係る洗浄装置の第1の所定時間は、電気分解装置の電解槽で生成された電解水が所望のpHとなるための電気量が得られるまでの間に相当する時間としたものである。
【0019】
本発明に係る洗浄装置は、電気分解装置によって生成された電解水を用いて被洗浄物を洗浄する洗浄装置において、電気分解装置の電解槽の内壁上部を円弧状または電解槽の周壁に向かって低くなるような傾斜状に形成したものである。
【0020】
本発明に係る電気機器は、前記洗浄装置を備えたものである。
【0021】
【発明の実施の形態】
実施の形態1.
図1は本発明の実施の形態1の概略的に示した構成図、図2は本発明の実施の形態1に係るボイラの断面図、図3は本発明の実施の形態1に係る電気分解装置の断面図である。
【0022】
図において、1は例えば食器洗浄機あるいは洗濯機などの電気機器に設置される洗浄装置で、細型シリンダ形状の蒸気発生噴射装置であるボイラ2と、ボイラ2に電気を供給する電源3と、一端がボイラ2の下流側に接続され他端に噴出口4aを有する噴出路4と、水を電気分解してアルカリ水および酸性水などの電解水を生成する電気分解装置5と、一端が電気分解装置5の下流側に接続され他端がボイラ2の上流側に接続されて、電気分解装置5で生成された電解水(例えばアルカリ水)を排出する第1の電解水排出路6と、一端が電気分解装置5の下流側に接続され、電気分解装置5で生成された電解水(例えば酸性水)を排出する第2の電解水排出路7と、一端が電気分解装置5の上流側に接続され他端が例えば水道の蛇口あるいは水槽などに接続されて、電気分解装置5に水を供給する給水路8と、給水路8の途中に設けられ電気分解装置5に水を供給するポンプ9とを備えている。なお、給水路8が水道の蛇口に接続された場合は、ポンプ9を省略してもよい。
【0023】
ボイラ2は、図2に示すように、内部に細型シリンダ状の空間である蒸発室12を有するフレーム11と、フレーム11の内部に埋め込まれフレーム11を加熱するヒータ13とを備えており、ボイラ2の一方の側である上流側には、蒸気室12に連通しその蒸気室12の径Rより小径の第1の電解水排出路6が接続され、ボイラ2の他方の側である下流側には、蒸気室12に連通しその蒸気室12の径Rより小径の噴出路4が接続されている。そして、第1の電解水排出路6からボイラ2に送られた電気分解装置5からの電解水(アルカリ水)をヒータ13により急加熱して蒸気化し、急激な体積膨張を利用して水滴が混合した状態で噴出口4aから噴射する。
【0024】
電気分解装置5は、図3に示すように、上流側である底部に給水路8が接続された電解槽14と、電解槽14の中央に設けられ電解槽14内を二分して2つの電解水生成室16,17を形成する親水性の隔膜15と、各電解水生成室16,17の隔膜15に対向する内壁にそれぞれ設けられた陰極である電極18および陽極である電極19と、各電極18,19からそれぞれ導出して電源10(図1参照)に接続された電線20,21とを備えており、電解槽14の天部で電解水生成室16の下流側には第1の電解水排出路6が接続され、電解槽14の天部で電解水生成室17の下流側には第2の電解水排出路7が接続されている。そして、両電極18,19間に直流電圧(例えばDC10V)を印加すると、2つの電極18,19間に電流が流れて電解槽14内の水を電気分解し、陰極の電極18が設けられた電解水生成室16にはアルカリの電解水であるアルカリ水が生成され、陽極の電極19が設けられた電解水生成室17には酸性の電解水である酸性水が生成されて、第1の電解水排出路6からアルカリ水が排出され、第2の電解水排出路7から酸性水が排出される。
【0025】
このように構成された実施の形態1に係る洗浄装置1を例えば食器洗浄機に設けて、この食器洗浄機を駆動すると、洗浄装置1のポンプ9も駆動して水が給水路8を通って電気分解装置5に送られ、電気分解装置5に入った水は図3の矢印に示すように各電解水生成室16,17に分かれて、各電解水生成室16,17を通過しながら電気分解され、各電解水生成室16,17で生成されたアルカリ水および酸性水が各電解水排出路6,7から排出される。このとき、生成される電解水(アルカリ水および酸性水)のpHは各電極18,19に流す電流の大きさに比例するため、pHの高いアルカリ水(pHの低い酸性水)を生成する場合は電流を多く流すなど、所望のpHに合わせて電流を流す。
【0026】
ついで、第1の電解水排出路6に排出されたアルカリ水はボイラ2に送られて、ボイラ2のヒータ13によって急加熱されて蒸気化され、水滴が混合した状態で図示しない汚れが付着した食器等に噴出口4aから高速噴射される。所定量のアルカリ水が噴射されると、食器洗浄機は洗浄・すすぎ用の水を図示しない給水ホースから洗浄槽内に給水し、汚れ物質と反応して除去したアルカリ水などを食器等から洗い流す洗浄・すすぎを行う。
【0027】
水の電気分解中、洗浄装置1の電気分解装置5の各電極18,19からはガスが発生して電解水生成室16,17内に気泡が広がり、押し出されることなく電解槽14の上部角部14aなど溜まり始める。そして、気泡は両電極18,19間に電流が流れている間中発生するため、電気分解が継続されているかぎり滞留した気泡はなくならない。そこで、一旦電極18,19間に電圧を印加するのを停止して気泡の発生を止め、各電解水生成室16,17を通過する水によって気泡を電解槽14から押し出し、気泡の滞留を防ぐようにする。つまり、この実施の形態1においては、各電極18,19に印加する(流す)電圧(電流)を制御することにより、発生した気泡による滞留を防いで電解水の生成効率の低下を防ぐように構成した。
【0028】
この各電極18,19間に印加する(流す)電圧(電流)の制御について、図4を用いて詳しく説明する。
図4は電気分解装置5の一方の電解水生成室16の斜視図であり、電解水生成室16の底部から入った水は、下から上に向かって流れる際に電気分解される。電気分解中、電解水生成室16内に気泡Kが発生するが、発生した気泡Kは浮力によってその気泡Kと同時に同じ位置から電解水生成室16内を上昇し始めたある水Wよりも速く水の中を上昇する。よって、静止水中の気泡Kの移動速度をvg[mm/sec]とし、ある水Wが電解水生成室16を通過する移動速度をν[mm/sec](ν=V/A、Vは電解水生成室16を通過する水の流量、Aは電解水生成室16の横断面積)とすると、電解水生成室16内を移動する水の中の気泡Kの移動速度は、水の移動速度νが加えられることになり、vg+ν[mm/sec]となる。これにより、電解水生成室16を同時に同じ位置から上昇し始めた水Wと気泡Kとには、電解水生成室16を出るのに時間差が生じる。
【0029】
一方、水の電気分解は、
2 O + e → 1/2H2 + OH-
1/2H2 O → 1/4O2 + H+ + e
であり、生成する電解水のH+ 基あるいはOH- 基のモル濃度をM[mol/L]、電解水生成室16内の水が入れ替わる時間をT[sec](T=H/ν、Hは電解水生成室16の高さ)、電気分解に必要な電気量をQ[c]、電圧(電流)を印加して(流して)いる時間をt[sec]、流れる電流をI[A]とすると、例えば1つのH+ 基を作るのに1個の電子(e)が必要で、電子1molの電気量は96500[c]であるので、Mモル濃度の電解水を作るには、電気量Qは
Q=M・96500
となる。
【0030】
また、電解水生成室16内の水を電気分解するのに必要な電流Iと電圧を印加している時間tは、電流Iが一定に流れるとはかぎらないため、電気量Qは次式で求められる電流Iを0から時間tまで積分した値となる。
【0031】
【数1】

Figure 0004182394
【0032】
そして、電流Iが一定ならば、電気量Qは
Q=I・t
となり、電流Iと時間tは、
I=M・96500/t
の式(イ)より求められる。
【0033】
ここで、電圧を印加している時間tと、電解水生成室16内の水が入れ替わる時間Tとが等しい(t=T)場合、水が電解水生成室16に入ってから出るまでの間中電気分解は行われ、常に気泡(ガス)が発生することになる。一方、電圧を印加している時間tが電解水生成室16内の水が入れ替わる時間Tより短い(t<T)場合は、ある水Wは時間tだけ電圧を印加すれば所望のモル濃度に電気分解されるため、時間T−tの間は電圧を印加する必要がなくなり、その間は気泡(ガス)も発生しない。
【0034】
上述したように、電解水生成室16を同時に同じ位置から上昇し始めた水Wと気泡Kとは電解水生成室16を出るのに時間差が生じるため、この時間差Δtを利用して電極に電圧を印加すれば発生した気泡K(ガス)は時間T−Δtの間で電解水生成室16から出ていくことになる。
つまり、気泡Kが電解水生成室16で発生して出ていくまでの時間Tkは、T・ν/(vg+ν)[sec]であり、時間差ΔtはT−Tkであるから、時間差Δtを電圧を印加している時間tとすると、
t=T−Tk=T−T・ν/(vg+ν)=T・vg/(vg+ν)
となる。
そして、この時間t=T・vg/(vg+ν)の間だけ電圧を印加して時間T−t(Tk)の間は電圧の印加を停止する電圧のON/OFF制御を繰り返すことにより、電解水生成室16内に発生した気泡Kは電圧の印加が停止している間に排出され、電解水生成室16に気泡Kがない状態で次の電気分解を行うことができる。
【0035】
つまり、図5および図6に示すように、電解水生成室16内に発生した気泡Kは、電圧が印加されている時間tの間継続して発生し(図6の▲1▼,▲2▼)、電圧の印加が停止されると発生しなくなって(図6の▲3▼)、電圧の印加が停止されている時間T−tの間に電解水生成室16内を上昇している水(アルカリ水)によって押し出され(図6の▲3▼〜▲5▼)、再び電圧が印加されている時間tの間は発生する(図6の▲6▼,▲7▼)。このように、電解水生成室16内に発生した気泡Kは電圧の印加が停止している間に確実に出ていき、電解水生成室16内に滞留することなく次の電気分解を行うことができる。
【0036】
なお、時間t=T・vg/(vg+ν)を上記の式(イ)に入れると、
I=M・96500/{T・vg/(vg+ν)}
となり、電圧を印加する時間tの間に所望のモル濃度(pH)の電解水を得るには上記式より電流の大きさが決まって、その大きさの電流を時間tの間流し続けると、所定の電気量が得られて所望のモル濃度(pH)の電解水が得られる。
【0037】
このように、気泡Kと水Wとは電解水生成室16,17を通過する速度に差があるため、速度差によって生じる時間差Δtの間、電極18,19間に電圧を印加するようにして、電圧のON/OFF制御を行うようにしたので、電気分解時に発生した気泡Kは、電圧の印加を停止しているときに電解水生成室16,17に滞留することなく排出され、気泡Kによる電極18,19の使用面積の縮小を防ぎ、所定の電気量が得られて、電解水の生成効率の低下を防ぐことができる。これにより、所望のpHで所定量の電解水を得ることができ、電解水による洗浄効率の低下を確実に防ぐことができる。
【0038】
なお、上述の実施の形態1では、時間差Δtの間電圧を印加し、時間T−Δtの間は電圧の印加を停止する場合を示したが、電圧の印加を停止する時間を若干短くして気泡Kが電解水生成室16,17からほぼ出きったころに電圧を印加するようにしてもよく、所定の電気量が得られる範囲で電圧を印加する時間を若干短くするようにしてもよい。これらの場合、電解水生成室16,17の上部に若干気泡Kが残るが、次の電気分解で発生した気泡Kは上部には達しないため、上昇してきた電解水によって気泡Kが滞留することなく確実に排出される。よって、これらの場合も同様の効果を奏する。
【0039】
また、上述の実施の形態1では、食器洗浄機に洗浄装置1を設けた場合を例示して説明したが、洗濯機など他の電気機器に設けてもよい。この場合も同様の効果を奏する。
【0040】
実施の形態2.
図7は本発明の実施の形態2に係る電気分解装置の電解槽の断面図である。この実施の形態2は、実施の形態1に係る電気分解装置5の電解槽14において、その内壁の上部角部14aを円弧状に形成したものである。
【0041】
このように構成したことにより、電気分解時に電解槽14(電解水生成室16,17)内に発生した気泡は、電解槽14から抜けやすくなって上部角部14aに滞留しにくくなり、気泡による電解水の生成効率の低下を防ぐことができて、電解水による洗浄効率の低下を確実に防ぐことができる。また、電気分解装置5への電圧のON/OFF制御を行えば、気泡の滞留を確実に防ぐことができ、気泡による電解水の生成効率の低下を防いで、電解水による洗浄効率の低下を防ぐことができる。
【0042】
なお、上述の実施の形態2では、電気分解装置5の電解槽14の内壁の上部角部14aを円弧状に形成した場合を示したが、図8に示すように、電解槽14の上部角部14aを内周壁から第1の電解水排出路6(第2の電解水排出路7)に向かって傾斜するように形成してもよい。この場合も同様の効果を奏する。
【0043】
【発明の効果】
以上のように本発明に係る洗浄装置は、電気分解装置によって生成された電解水を用いて被洗浄物を洗浄する洗浄装置において水が前記電気分解装置の電解槽に入って出るまでの間の水の移動速度と、電気分解時に前記電解槽で発生した気泡が前記電解槽を出るまでの間の気泡の移動速度とによって生じる時間差に相当する時間、またはこの時間よりも若干短い時間の間、前記電気分解装置の電極に電圧を印加して前記電気分解装置の前記電解槽内の水を電気分解させるとともに、電気分解時に前記電気分解装置の前記電解槽で発生した気泡が前記電解槽を出るまでの間に相当する時間、またはこの時間よりも若干短い時間の間、前記電極への電圧の印加を停止させ、前記電極への電圧の印加および停止を繰り返し行うようにしたので、常に気泡が発生するのを防ぐことができ、電解槽内での気泡の滞留を防ぐことができる。これにより、気泡による電極の使用面積の縮小を防いで、電解水の生成効率の低下を防ぐことができる洗浄装置が得られる。また、電解槽内に発生した気泡を電解槽からほぼ排出した状態で水の電気分解を開始することができ、電解槽内での気泡の滞留を防ぐことができる。これにより、気泡による電極の使用面積の縮小を防いで電解水の生成効率の低下を防ぐことができ、所定量の電解水が得られて洗浄効率の低下を防ぐことができる洗浄装置が得られる。
【0044】
本発明に係る洗浄装置は、水を電気分解して電解水を生成する電気分解装置と、電気分解装置に水を供給する給水路と、電解水を急加熱して蒸気化し電解水の水滴とともに被洗浄物に噴射する蒸気発生噴射装置とを備え、水が前記電気分解装置の電解槽に入って出るまでの間の水の移動速度と、電気分解時に前記電解槽で発生した気泡が前記電解槽を出るまでの間の気泡の移動速度とによって生じる時間差に相当する時間、またはこの時間よりも若干短い時間の間、前記電気分解装置の電極に電圧を印加して電気分解装置の電解槽内の水を電気分解させるとともに、電気分解時に前記電気分解装置の前記電解槽で発生した気泡が前記電解槽を出るまでの間に相当する時間、またはこの時間よりも若干短い時間の間、前記電極への電圧の印加を停止させ、前記電極への電圧の印加および停止を繰り返し行うようにしたので、上記と同様の効果を得ることができる。
【0046】
本発明に係る洗浄装置の前記電気分解装置の電極に電圧を印加する時間を、電気分解装置の電解槽で生成された電解水が所望のpHとなるための電気量が得られるまでの間に相当する時間としたので、電解槽に発生した気泡による電気量の低下を防ぐことができ、所望のpHの電解水を得ることができる。これにより、電解水による洗浄効率の低下を防ぐことができる洗浄装置が得られる。
【0048】
本発明に係る洗浄装置は、電気分解装置によって生成された電解水を用いて被洗浄物を洗浄する洗浄装置において、電気分解装置の電解槽の内壁上部を円弧状または電解槽の周壁に向かって低くなるような傾斜状に形成したので、電解槽に発生した気泡が排出しやすくなって気泡の滞留を防ぐことができ、電解水の生成効率の低下を防ぐことができる。これにより、電解水による洗浄効率の低下を防ぐことができる洗浄装置が得られる。
【0049】
本発明に係る電気機器は、前記洗浄装置を備えたので、電解水の生成効率の低下および電解水による洗浄効率の低下を防ぐことができる電気機器を得ることができる。
【図面の簡単な説明】
【図1】 本発明の実施の形態1の概略的に示した構成図である。
【図2】 本発明の実施の形態1に係るボイラの断面図である。
【図3】 本発明の実施の形態1に係る電気分解装置の断面図である。
【図4】 本発明の実施の形態1に係る電気分解装置の一方の電解水生成室の斜視図である。
【図5】 本発明の実施の形態1に係る電気分解装置の電極に対する電圧のON/OFF、電流および電気量を示す線図である。
【図6】 本発明の実施の形態1に係る電気分解装置の一方の電解水生成室の作用説明図である。
【図7】 本発明の実施の形態2に係る電気分解装置の断面図である。
【図8】 本発明の実施の形態2に係る電気分解装置の変形例を示す断面図である。
【図9】 従来の食器洗浄機の要部の説明図である。
【図10】 従来の食器洗浄機の創水装置に対する電圧、電流および電気量を示す線図である。
【図11】 従来の食器洗浄機の創水装置の作用説明図である。
【符号の説明】
1 洗浄装置、2 ボイラ、4a 噴出口、5 電気分解装置、6 第1の電解水排出路、7 第2の電解水排出路、8 給水路、14 電解槽、14a 上部角部、16,17 電解水生成室、18,19 電極、K 気泡、W 水。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a cleaning device that effectively removes, for example, dirt adhered to tableware and the like using electrolyzed water obtained by electrolyzing water, and an electrical apparatus including the cleaning device.
[0002]
[Prior art]
As an example of an electrical device using a cleaning device that removes dirt using electrolyzed water, there is an invention disclosed in, for example, Japanese Patent No. 3183118, and FIG.
[0003]
The dishwasher disclosed in Japanese Patent No. 3183118 is provided with a washing tub inside the main body of the dishwasher 40, and the front opening thereof is closed by a door so as to be freely opened and closed. A spray body rotatably attached to a cleaning pump is provided at the inner bottom of the cleaning tank, and the cleaning pump faces a water storage section formed at the tip of the suction pipe below the bottom of the cleaning tank. At the same time, it is connected to a drive motor for driving. In addition, an electric heater used for heating the rinse water is disposed below the jetting body at the inner bottom of the cleaning tank, and the electric power is controlled by the control device based on the detection output from the dirt detection sensor.
[0004]
A water supply device 41 that is connected to a water source outside the main body via a water supply pipe 42 and has a built-in water supply valve that adjusts the amount of water supplied to the cleaning tank is provided outside the upper portion of the cleaning tank. A water generating device 43 that electrolyzes tap water to generate electrolyzed water is disposed on the downstream side.
[0005]
The water generating device 43 is disposed in each of the generation chambers 32 and 33, the casing 30 that forms the outer shell thereof, the diaphragm 31 that divides the inside of the casing 30 into the alkaline water generation chamber 32 and the acidic water generation chamber 33. An electrode 34 serving as a cathode, an electrode 35 serving as an anode, and electric wires 36 and 37 derived from both electrodes 34 and 35 and connected to a power source 38 are provided. A voltage is applied between the two electrodes 35, and by applying this voltage, the tap water sent to the water generating device 43 is electrolyzed, and in the alkaline water production chamber 32, the pH value is increased to produce alkaline water. In the generation chamber 33, the pH value is lowered and acidic water is generated.
[0006]
A water supply pipe 42 is connected to the upstream end of the casing 30, and a water supply pipe 42 a is connected to the alkaline water generation chamber 32 at the downstream end of the casing 30, so that acidic water is generated at the downstream end of the casing 30. A drain pipe 44 is connected to the chamber 33, and the tip of the drain pipe 44 is connected to the middle of a drain pipe whose upper end is connected to the bottom of the washing tank. The operation of the water generating device 43 is also controlled by the control device, and the cleaning device of the dishwasher is formed by the water generating device 43, the water supply device 41, the water supply pipe 42, the water supply pipe 42 a and the drainage pipe 44.
[0007]
In the dishwasher 40 configured as described above, when the user operates an operation switch (not shown), the control device includes a water supply device 41, a water generating device 43, a motor for driving the cleaning pump, an electric heater, Send drive signal to. Thereby, a voltage is applied between the electrodes 34 and 35 of the water generating device 43 to electrolyze tap water, and alkaline water and acidic water are generated in the alkaline water generation chamber 32 and the acidic water generation chamber 33, respectively. . Then, only alkaline water is supplied as washing water into the washing tank through the water supply device 41, and the alkaline water actively reacts with and removes dirt substances adhering to tableware and the like. In addition, the acidic water produced | generated in the acidic water production | generation chamber 33 is drained outside through the waste water piping 44 and a drain pipe.
[0008]
[Problems to be solved by the invention]
In the conventional dishwasher 40 as described above, tap water is electrolyzed by the water generating device 43 of the washing device, and the generated electrolytic water (alkaline water) is used to wash the tableware and the like. It reacts with dirt substances attached to tableware, etc. and actively removes dirt. However, since the water generating device 43 includes the electrode 34 serving as a cathode and the electrode 35 serving as an anode in order to generate electrolyzed water that is alkaline water, bubbles of hydrogen gas are generated on the side of the electrode 34 serving as a cathode during electrolysis. Oxygen gas bubbles are generated on the side of the electrode 35 that is the anode. The bubbles generated between the electrodes 33 and 34 are filled in the respective generation chambers 32 and 33, and a large amount is generated particularly when high electrolytic water (for example, alkaline water having a high pH or acidic water having a low pH) is generated. Occurs and fills.
[0009]
FIG. 11 shows a state of the water generator 43 on the alkaline water generation chamber 32 side. When water electrolysis is performed, hydrogen gas bubbles K are generated in the alkaline water generation chamber 32 (see FIG. 11). {Circle around (1)} and begins to accumulate in the upper corner portion 30a of the casing 30 and gradually increases ((2) to (4) in FIG. 11) to form a large bubble K1 ((5) in FIG. 11). Although the fine bubbles K are discharged from the water supply pipe 42a together with the generated alkaline water, the enlarged bubbles K1 are not discharged from the water supply pipe 42a and become larger and stay ((6) and ▲ in FIG. 11). 7 ▼).
[0010]
Thus, if a large bubble K1 is formed in the alkaline water generation chamber 32 (acidic water generation chamber 33) of the water generating device 43, tap water to be electrolyzed cannot be sent to that portion. As a result, the area of the electrode 33 (electrode 34) is narrowed, and no current flows through that portion, so that electrolysis is not performed.
[0011]
That is, as shown in FIG. 10, even when a constant voltage is applied, the current flowing by the amount of use of the bubble K, particularly the large bubble K1, is reduced, and the time in which the water in the alkaline water generation chamber 32 is replaced is changed. Even if a voltage is applied during T, a predetermined amount of electricity cannot be obtained, and the pH of the electrolyzed water proportional to the magnitude of the current is also lowered, so that electrolyzed water having a desired pH cannot be obtained (for example, the desired pH is 12). There was a problem that the electrolyzed water becomes electrolyzed water having a pH of 10. Thus, if the production efficiency of electrolyzed water is lowered, there is a possibility that the washing efficiency with electrolyzed water is also lowered.
[0012]
Further, even when a large bubble K1 formed in the alkaline water generation chamber 32 (acidic water generation chamber 33) is discharged from the water supply pipe 42a, the bubble K1 is discharged to the cleaning tank. There was a problem that a predetermined amount of the alkaline water supplied into the inside could not be fed. And when the predetermined amount of alkaline water could not be secured, there was a possibility that cleaning efficiency might also fall.
[0013]
The present invention has been made to solve the above-described problems, and prevents the retention of bubbles generated during electrolysis, and ensures a predetermined amount of electrolyzed water at a desired pH, thereby reducing the cleaning efficiency. It is an object of the present invention to provide a cleaning device that can be prevented and an electric device including the cleaning device.
[0014]
[Means for Solving the Problems]
  A cleaning apparatus according to the present invention is a cleaning apparatus for cleaning an object to be cleaned using electrolyzed water generated by an electrolysis apparatus.It is generated by the movement speed of water until water enters and exits the electrolytic cell of the electrolysis device and the movement speed of bubbles until the bubbles generated in the electrolytic cell at the time of electrolysis exit the electrolytic cell. Time corresponding to the time difference or slightly shorter than this timeWhile applying the voltage to the electrode of the electrolysis device to electrolyze the water in the electrolytic cell of the electrolysis device,The time corresponding to the time required for bubbles generated in the electrolytic cell of the electrolysis apparatus during the electrolysis to exit the electrolytic cell, or a time slightly shorter than this timeDuring this time, the application of voltage to the electrode is stopped, and the application and stop of the voltage to the electrode are repeatedly performed.
[0015]
  The cleaning apparatus according to the present invention includes an electrolyzer that electrolyzes water to generate electrolyzed water, a water supply channel that supplies water to the electrolyzer, and rapidly evaporates the electrolyzed water to vaporize the electrolyzed water with water droplets A vapor generating and injecting device for injecting the object to be cleaned;It is generated by the movement speed of water until water enters and exits the electrolytic cell of the electrolysis device and the movement speed of bubbles until the bubbles generated in the electrolytic cell at the time of electrolysis exit the electrolytic cell. Time corresponding to the time difference or slightly shorter than this timeDuring the electrolysis of the water in the electrolyzer of the electrolyzer by applying a voltage to the electrode of the electrolyzer,The time corresponding to the time required for bubbles generated in the electrolytic cell of the electrolysis apparatus during the electrolysis to exit the electrolytic cell, or a time slightly shorter than this timeDuring this time, the application of voltage to the electrode is stopped, and the application and stop of the voltage to the electrode are repeatedly performed.
[0017]
The first predetermined time of the cleaning device according to the present invention is a time corresponding to the time until the amount of electricity required for the electrolyzed water generated in the electrolyzer of the electrolysis device to reach a desired pH is obtained. is there.
[0019]
The cleaning device according to the present invention is a cleaning device for cleaning an object to be cleaned using electrolyzed water generated by an electrolysis device, wherein the upper part of the inner wall of the electrolysis tank of the electrolysis device is arcuate or toward the peripheral wall of the electrolysis tank It is formed in an inclined shape that becomes lower.
[0020]
An electrical apparatus according to the present invention includes the cleaning device.
[0021]
DETAILED DESCRIPTION OF THE INVENTION
Embodiment 1 FIG.
FIG. 1 is a configuration diagram schematically showing Embodiment 1 of the present invention, FIG. 2 is a cross-sectional view of a boiler according to Embodiment 1 of the present invention, and FIG. 3 is an electrolysis according to Embodiment 1 of the present invention. It is sectional drawing of an apparatus.
[0022]
In the figure, reference numeral 1 denotes a cleaning device installed in an electric device such as a dishwasher or a washing machine, for example, a boiler 2 which is a thin cylinder-shaped steam generation and injection device, a power supply 3 for supplying electricity to the boiler 2, and one end. Is connected to the downstream side of the boiler 2 and has an outlet 4a at the other end, an electrolyzer 5 for electrolyzing water to produce electrolyzed water such as alkaline water and acidic water, and one end electrolyzed A first electrolyzed water discharge path 6 that is connected to the downstream side of the apparatus 5 and has the other end connected to the upstream side of the boiler 2 and discharges electrolyzed water (for example, alkaline water) generated by the electrolyzer 5, and one end Is connected to the downstream side of the electrolyzer 5, and the second electrolyzed water discharge path 7 for discharging the electrolyzed water (for example, acidic water) generated by the electrolyzer 5 and one end to the upstream side of the electrolyzer 5. The other end is connected, for example, a water tap or It is connected, such as a tank, and a water supply passage 8 for supplying water to the electrolyzer 5, and a pump 9 for supplying water to the electrolyzer 5 provided in the middle of the water supply passage 8. Note that the pump 9 may be omitted when the water supply channel 8 is connected to a tap.
[0023]
As shown in FIG. 2, the boiler 2 includes a frame 11 having an evaporation chamber 12 that is a narrow cylindrical space inside, and a heater 13 that is embedded in the frame 11 and heats the frame 11. A first electrolyzed water discharge path 6 having a diameter smaller than the diameter R of the steam chamber 12 is connected to the upstream side that is one side of the steam chamber 12, and the downstream side that is the other side of the boiler 2. The jet passage 4 is connected to the steam chamber 12 and has a diameter smaller than the diameter R of the steam chamber 12. Then, the electrolyzed water (alkaline water) from the electrolyzer 5 sent from the first electrolyzed water discharge path 6 to the boiler 2 is rapidly heated and vaporized by the heater 13, and water droplets are generated using the rapid volume expansion. It sprays from the jet nozzle 4a in the mixed state.
[0024]
As shown in FIG. 3, the electrolyzer 5 includes an electrolytic cell 14 in which a water supply channel 8 is connected to a bottom portion on the upstream side, and an electrolytic cell 14 provided in the center of the electrolytic cell 14 and divided into two in the electrolytic cell 14. A hydrophilic diaphragm 15 forming the water generation chambers 16, 17; an electrode 18 serving as a cathode and an electrode 19 serving as an anode provided on the inner wall of the electrolyzed water generation chambers 16, 17 facing the diaphragm 15; Electric wires 20 and 21 are respectively led out from the electrodes 18 and 19 and connected to the power source 10 (see FIG. 1), and the first portion is disposed at the top of the electrolytic cell 14 and downstream of the electrolyzed water generation chamber 16. The electrolyzed water discharge path 6 is connected, and the second electrolyzed water discharge path 7 is connected downstream of the electrolyzed water generation chamber 17 at the top of the electrolyzer 14. When a DC voltage (for example, DC 10 V) is applied between the electrodes 18 and 19, a current flows between the two electrodes 18 and 19 to electrolyze water in the electrolytic cell 14, and the cathode electrode 18 is provided. Alkaline water that is alkaline electrolyzed water is generated in the electrolyzed water generating chamber 16, and acidic water that is acidic electrolyzed water is generated in the electrolyzed water generating chamber 17 provided with the anode electrode 19. Alkaline water is discharged from the electrolyzed water discharge path 6, and acidic water is discharged from the second electrolyzed water discharge path 7.
[0025]
When the washing apparatus 1 according to the first embodiment configured as described above is provided in, for example, a dishwasher and the dishwasher is driven, the pump 9 of the washing apparatus 1 is also driven and water passes through the water supply path 8. The water that is sent to the electrolyzer 5 and enters the electrolyzer 5 is divided into the electrolyzed water generation chambers 16 and 17 as shown by the arrows in FIG. The alkaline water and acidic water that have been decomposed and generated in the electrolyzed water generation chambers 16 and 17 are discharged from the electrolyzed water discharge passages 6 and 7, respectively. At this time, since the pH of the generated electrolyzed water (alkaline water and acidic water) is proportional to the magnitude of the current flowing through each of the electrodes 18 and 19, alkaline water having a high pH (acid water having a low pH) is generated. Causes a large amount of current to flow, for example, to allow the current to flow according to the desired pH.
[0026]
Next, the alkaline water discharged to the first electrolyzed water discharge path 6 is sent to the boiler 2, is rapidly heated by the heater 13 of the boiler 2, is vaporized, and dirt (not shown) adheres in a state where water droplets are mixed. It is sprayed at high speed from the spout 4a to tableware or the like. When a predetermined amount of alkaline water is sprayed, the dishwasher supplies water for washing and rinsing from a water supply hose (not shown) into the washing tank, and rinses away alkaline water, etc. removed by reaction with dirt substances from the dishes. Wash and rinse.
[0027]
During the electrolysis of water, gas is generated from the electrodes 18 and 19 of the electrolyzer 5 of the cleaning device 1, and bubbles expand into the electrolyzed water generation chambers 16 and 17, and the upper corner of the electrolyzer 14 is not pushed out. The part 14a and the like start to accumulate. Since bubbles are generated while current is flowing between the electrodes 18 and 19, the remaining bubbles do not disappear as long as the electrolysis is continued. Therefore, the application of voltage between the electrodes 18 and 19 is temporarily stopped to stop the generation of bubbles, and the bubbles are pushed out of the electrolytic cell 14 by the water passing through the electrolyzed water generation chambers 16 and 17 to prevent the bubbles from staying. Like that. That is, in the first embodiment, by controlling the voltage (current) applied (flowed) to each of the electrodes 18 and 19, the retention due to the generated bubbles is prevented and the generation efficiency of the electrolyzed water is prevented from being lowered. Configured.
[0028]
The control of the voltage (current) applied (flowed) between the electrodes 18 and 19 will be described in detail with reference to FIG.
FIG. 4 is a perspective view of one electrolyzed water generation chamber 16 of the electrolyzer 5, and water entering from the bottom of the electrolyzed water generation chamber 16 is electrolyzed when flowing from bottom to top. During electrolysis, bubbles K are generated in the electrolyzed water generating chamber 16, but the generated bubbles K are faster than the water W that has started to rise in the electrolyzed water generating chamber 16 from the same position simultaneously with the bubbles K due to buoyancy. Ascend in the water. Therefore, the moving speed of the bubbles K in still water is vg [mm / sec], and the moving speed at which a certain water W passes through the electrolyzed water generating chamber 16 is ν [mm / sec] (ν = V / A, V is electrolysis). Assuming that the flow rate of water passing through the water generating chamber 16 and A is the cross-sectional area of the electrolyzed water generating chamber 16, the moving speed of the bubbles K in the water moving in the electrolyzed water generating chamber 16 is the water moving speed ν. Is added, and vg + ν [mm / sec] is obtained. As a result, there is a time difference between the water W and the bubbles K that have started to rise from the same position at the same time in the electrolyzed water generation chamber 16 before exiting the electrolyzed water generation chamber 16.
[0029]
On the other hand, water electrolysis
H2O + e → 1 / 2H2  + OH-
1 / 2H2O → 1 / 4O2  + H+  + E
H of the generated electrolyzed water+Group or OH-The molar concentration of the group is M [mol / L], the time that the water in the electrolyzed water generating chamber 16 is replaced is T [sec] (T = H / ν, where H is the height of the electrolyzed water generating chamber 16), and electrolysis is performed. If the required amount of electricity is Q [c], the time during which voltage (current) is applied (flowed) is t [sec], and the flowing current is I [A], for example, one H+One electron (e) is required to make a group, and the electric quantity of 1 mol of electrons is 96500 [c]. Therefore, to make electrolyzed water of M molar concentration, the electric quantity Q is
Q = M · 96500
It becomes.
[0030]
Further, since the current I and the time t during which the voltage necessary for electrolyzing the water in the electrolyzed water generation chamber 16 is applied are not always constant, the electric quantity Q is expressed by the following equation. The obtained current I is a value obtained by integrating from 0 to time t.
[0031]
[Expression 1]
Figure 0004182394
[0032]
If the current I is constant, the quantity of electricity Q is
Q = I · t
The current I and time t are
I = M · 96500 / t
(1)
[0033]
Here, when the time t during which the voltage is applied is equal to the time T during which the water in the electrolyzed water generation chamber 16 is replaced (t = T), the time from when the water enters the electrolyzed water generation chamber 16 until it exits. Medium electrolysis is performed, and bubbles (gas) are always generated. On the other hand, when the time t during which the voltage is applied is shorter than the time T during which the water in the electrolyzed water generation chamber 16 is replaced (t <T), a certain water W can be brought to a desired molar concentration if the voltage is applied only for the time t. Since it is electrolyzed, it is not necessary to apply a voltage during the time T-t, and no bubbles (gas) are generated during that time.
[0034]
As described above, since there is a time difference between the water W and the bubbles K that have started to rise from the same position in the electrolyzed water generation chamber 16 at the same time, the voltage is applied to the electrodes using this time difference Δt. Is applied, the generated bubbles K (gas) exit from the electrolyzed water generation chamber 16 during the time T-Δt.
That is, the time Tk until the bubble K is generated and exits in the electrolyzed water generation chamber 16 is T · ν / (vg + ν) [sec], and the time difference Δt is T−Tk. Is applied time t,
t = T−Tk = T−T · ν / (vg + ν) = T · vg / (vg + ν)
It becomes.
Then, the voltage is applied only during the time t = T · vg / (vg + ν), and the ON / OFF control of the voltage for stopping the voltage application during the time T−t (Tk) is repeated, whereby the electrolyzed water The bubbles K generated in the generation chamber 16 are discharged while the voltage application is stopped, and the next electrolysis can be performed without the bubbles K in the electrolyzed water generation chamber 16.
[0035]
That is, as shown in FIGS. 5 and 6, the bubble K generated in the electrolyzed water generating chamber 16 is continuously generated during the time t when the voltage is applied ((1) and (2) in FIG. 6). ▼), when the application of voltage is stopped, it does not occur ((3) in FIG. 6), and rises in the electrolyzed water generation chamber 16 during the time Tt when the application of voltage is stopped. It is pushed out by water (alkaline water) ((3) to (5) in FIG. 6) and is generated again during the time t when the voltage is applied ((6) and (7) in FIG. 6). As described above, the bubbles K generated in the electrolyzed water generation chamber 16 are reliably discharged while the voltage application is stopped, and the next electrolysis is performed without staying in the electrolyzed water generation chamber 16. Can do.
[0036]
In addition, when time t = T · vg / (vg + ν) is put into the above equation (A),
I = M · 96500 / {T · vg / (vg + ν)}
In order to obtain electrolyzed water having a desired molar concentration (pH) during the time t when the voltage is applied, the magnitude of the current is determined from the above formula, and when the current of that magnitude continues to flow for the time t, A predetermined amount of electricity is obtained, and electrolyzed water having a desired molar concentration (pH) is obtained.
[0037]
As described above, since there is a difference in the speed at which the bubbles K and the water W pass through the electrolyzed water generation chambers 16 and 17, a voltage is applied between the electrodes 18 and 19 during the time difference Δt caused by the speed difference. Since the voltage ON / OFF control is performed, the bubbles K generated during the electrolysis are discharged without staying in the electrolyzed water generation chambers 16 and 17 when the application of the voltage is stopped. Thus, the use area of the electrodes 18 and 19 can be prevented from being reduced, a predetermined amount of electricity can be obtained, and the generation efficiency of the electrolyzed water can be prevented from being lowered. Thereby, a predetermined amount of electrolyzed water can be obtained at a desired pH, and a reduction in cleaning efficiency due to the electrolyzed water can be reliably prevented.
[0038]
In the first embodiment, the voltage is applied for the time difference Δt and the voltage application is stopped for the time T−Δt. However, the time for stopping the voltage application is slightly shortened. The voltage may be applied when the bubble K almost comes out of the electrolyzed water generation chambers 16 and 17, or the voltage application time may be slightly shortened within a range where a predetermined amount of electricity can be obtained. . In these cases, although some bubbles K remain in the upper part of the electrolyzed water generation chambers 16 and 17, the bubbles K generated by the subsequent electrolysis do not reach the upper part, so that the bubbles K are retained by the rising electrolyzed water. It is surely discharged. Therefore, the same effect is obtained in these cases.
[0039]
Moreover, although the case where the washing | cleaning apparatus 1 was provided in the dishwasher was illustrated and demonstrated in above-mentioned Embodiment 1, you may provide in other electric equipments, such as a washing machine. In this case, the same effect is obtained.
[0040]
Embodiment 2. FIG.
FIG. 7 is a cross-sectional view of the electrolytic cell of the electrolyzer according to Embodiment 2 of the present invention. In the second embodiment, in the electrolytic cell 14 of the electrolyzer 5 according to the first embodiment, the upper corner portion 14a of the inner wall is formed in an arc shape.
[0041]
With this configuration, bubbles generated in the electrolytic cell 14 (electrolyzed water generation chambers 16 and 17) during electrolysis are easily removed from the electrolytic cell 14 and do not easily stay in the upper corner portion 14a. The generation efficiency of electrolyzed water can be prevented from decreasing, and the cleaning efficiency due to electrolyzed water can be reliably prevented from decreasing. In addition, if ON / OFF control of the voltage to the electrolyzer 5 is performed, it is possible to reliably prevent bubbles from staying, prevent a decrease in the generation efficiency of the electrolyzed water due to the bubbles, and reduce the cleaning efficiency due to the electrolyzed water. Can be prevented.
[0042]
In the second embodiment described above, the case where the upper corner portion 14a of the inner wall of the electrolytic cell 14 of the electrolyzer 5 is formed in an arc shape is shown. However, as shown in FIG. You may form the part 14a so that it may incline toward the 1st electrolyzed water discharge path 6 (2nd electrolyzed water discharge path 7) from an inner peripheral wall. In this case, the same effect is obtained.
[0043]
【The invention's effect】
  As described above, the cleaning device according to the present invention is a cleaning device that cleans an object to be cleaned using electrolyzed water generated by an electrolysis device.It is generated by the movement speed of water until water enters and exits the electrolytic cell of the electrolysis device and the movement speed of bubbles until the bubbles generated in the electrolytic cell at the time of electrolysis exit the electrolytic cell. Time corresponding to the time difference or slightly shorter than this timeWhile applying the voltage to the electrode of the electrolysis device to electrolyze the water in the electrolytic cell of the electrolysis device,The time corresponding to the time required for bubbles generated in the electrolytic cell of the electrolysis apparatus during the electrolysis to exit the electrolytic cell, or a time slightly shorter than this timeDuring this time, the voltage application to the electrode was stopped, and the voltage application to the electrode was repeatedly applied and stopped, so that it was possible to prevent the generation of bubbles at all times. Retention can be prevented. Thereby, the washing | cleaning apparatus which can prevent the reduction | decrease in the production | generation efficiency of electrolyzed water by preventing reduction of the electrode usage area by a bubble is obtained.Moreover, the electrolysis of water can be started in a state in which the bubbles generated in the electrolytic cell are substantially discharged from the electrolytic cell, and the retention of the bubbles in the electrolytic cell can be prevented. Thereby, reduction of the use area of the electrode by air bubbles can be prevented to prevent a decrease in generation efficiency of the electrolyzed water, and a cleaning device capable of preventing a decrease in cleaning efficiency by obtaining a predetermined amount of electrolyzed water can be obtained. .
[0044]
  The cleaning apparatus according to the present invention includes an electrolyzer that electrolyzes water to generate electrolyzed water, a water supply channel that supplies water to the electrolyzer, and rapidly evaporates the electrolyzed water to vaporize the electrolyzed water with water droplets A vapor generating and injecting device for injecting the object to be cleaned;It is generated by the movement speed of water until water enters and exits the electrolytic cell of the electrolysis device and the movement speed of bubbles until the bubbles generated in the electrolytic cell at the time of electrolysis exit the electrolytic cell. Time corresponding to the time difference or slightly shorter than this timeDuring the electrolysis of the water in the electrolyzer of the electrolyzer by applying a voltage to the electrode of the electrolyzer,The time corresponding to the time required for bubbles generated in the electrolytic cell of the electrolysis apparatus during the electrolysis to exit the electrolytic cell, or a time slightly shorter than this timeIn the meantime, the application of voltage to the electrode is stopped, and the application and stop of the voltage to the electrode are repeatedly performed. Therefore, the same effect as described above can be obtained.
[0046]
  The cleaning apparatus according to the present inventionA time for applying a voltage to the electrode of the electrolyzer;Since the time required until the amount of electricity required for the electrolyzed water generated in the electrolyzer of the electrolyzer to reach a desired pH is obtained, the reduction of the amount of electricity due to bubbles generated in the electrolyzer is prevented. Electrolyzed water having a desired pH can be obtained. Thereby, the washing | cleaning apparatus which can prevent the fall of the washing | cleaning efficiency by electrolyzed water is obtained.
[0048]
The cleaning apparatus according to the present invention is a cleaning apparatus that cleans an object to be cleaned using electrolyzed water generated by an electrolysis apparatus, wherein the upper part of the inner wall of the electrolysis tank of the electrolysis apparatus is arcuate or toward the peripheral wall of the electrolysis tank. Since it is formed in a slanted shape so as to be lowered, bubbles generated in the electrolytic cell can be easily discharged, and retention of the bubbles can be prevented, and a decrease in the generation efficiency of the electrolyzed water can be prevented. Thereby, the washing | cleaning apparatus which can prevent the fall of the washing | cleaning efficiency by electrolyzed water is obtained.
[0049]
Since the electrical device according to the present invention includes the cleaning device, it is possible to obtain an electrical device that can prevent a decrease in generation efficiency of electrolyzed water and a decrease in cleaning efficiency due to the electrolyzed water.
[Brief description of the drawings]
FIG. 1 is a configuration diagram schematically showing a first embodiment of the present invention.
FIG. 2 is a cross-sectional view of the boiler according to Embodiment 1 of the present invention.
FIG. 3 is a cross-sectional view of the electrolyzer according to Embodiment 1 of the present invention.
FIG. 4 is a perspective view of one electrolyzed water generation chamber of the electrolyzer according to Embodiment 1 of the present invention.
FIG. 5 is a diagram showing voltage ON / OFF, current, and quantity of electricity with respect to the electrode of the electrolysis apparatus according to Embodiment 1 of the present invention.
FIG. 6 is an operation explanatory diagram of one electrolyzed water generation chamber of the electrolyzer according to Embodiment 1 of the present invention.
FIG. 7 is a cross-sectional view of an electrolyzer according to Embodiment 2 of the present invention.
FIG. 8 is a sectional view showing a modification of the electrolyzer according to Embodiment 2 of the present invention.
FIG. 9 is an explanatory diagram of a main part of a conventional dishwasher.
FIG. 10 is a diagram showing voltage, current, and amount of electricity with respect to a conventional water generator of a dishwasher.
FIG. 11 is an operation explanatory view of a conventional dishwasher water generator.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Cleaning apparatus, 2 boilers, 4a spout, 5 electrolysis apparatus, 6 1st electrolyzed water discharge path, 7 2nd electrolyzed water discharge path, 8 water supply path, 14 electrolytic cell, 14a upper corner | angular part, 16, 17 Electrolyzed water generation chamber, 18, 19 electrodes, K bubbles, W water.

Claims (5)

電気分解装置によって生成された電解水を用いて被洗浄物を洗浄する洗浄装置において、水が前記電気分解装置の電解槽に入って出るまでの間の水の移動速度と、電気分解時に前記電解槽で発生した気泡が前記電解槽を出るまでの間の気泡の移動速度とによって生じる時間差に相当する時間の間、前記電気分解装置の電極に電圧を印加して前記電気分解装置の前記電解槽内の水を電気分解させるとともに、電気分解時に前記電気分解装置の前記電解槽で発生した気泡が前記電解槽を出るまでの間に相当する時間の間、前記電極への電圧の印加を停止させ、前記電極への電圧の印加および停止を繰り返し行うようにしたことを特徴とする洗浄装置。In a cleaning apparatus for cleaning an object to be cleaned using electrolyzed water generated by an electrolyzer, the water moving speed until water enters and exits the electrolyzer of the electrolyzer and the electrolysis during electrolysis during the time that bubbles generated in the bath corresponds to the time difference caused by the moving speed of the bubbles until leaving the electrolytic cell, said electrolytic cell of the electrolyzer voltage is applied to the electrodes of the electrolyzer Water is electrolyzed, and the application of voltage to the electrode is stopped for a period of time until the bubbles generated in the electrolyzer of the electrolyzer at the time of electrolysis exit the electrolyzer. A cleaning apparatus characterized by repeatedly applying and stopping voltage to the electrodes. 水を電気分解して電解水を生成する電気分解装置と、該電気分解装置に水を供給する給水路と、前記電解水を急加熱して蒸気化し電解水の水滴とともに被洗浄物に噴射する蒸気発生噴射装置とを備え、水が前記電気分解装置の電解槽に入って出るまでの間の水の移動速度と、電気分解時に前記電解槽で発生した気泡が前記電解槽を出るまでの間の気泡の移動速度とによって生じる時間差に相当する時間の間、前記電気分解装置の電極に電圧を印加して電気分解装置の電解槽内の水を電気分解させるとともに、電気分解時に前記電気分解装置の前記電解槽で発生した気泡が前記電解槽を出るまでの間に相当する時間の間、前記電極への電圧の印加を停止させ、前記電極への電圧の印加および停止を繰り返し行うようにしたことを特徴とする洗浄装置。An electrolyzer that electrolyzes water to produce electrolyzed water, a water supply channel that supplies water to the electrolyzer, and rapidly heats the electrolyzed water to vaporize it and spray it onto the object to be cleaned together with water droplets of electrolyzed water A steam generation and injection device, and the movement speed of water until water enters and exits the electrolytic cell of the electrolysis device, and until the bubbles generated in the electrolytic cell at the time of electrolysis exit the electrolytic cell during the time corresponding to the time difference caused by the moving speed of the bubble, causes electrolyzed water of the electrolytic bath of the electrode electrolyzer by applying a voltage to the electrolyzer, said electrolyzer when electrolysis during the time corresponding to between until the bubbles generated in the electrolytic cell exits the electrolyzer, the application of a voltage to the electrodes is stopped, and to perform repeated application and stop of voltage to the electrode Washing characterized by Location. 前記電気分解装置の電極に電圧を印加する時間の間に、前記電気分解装置の前記電解槽で生成された電解水が所望のpHとなるための電気量が得られるようにしたことを特徴とする請求項1又は2に記載の洗浄装置。And characterized in that during the time when a voltage is applied to the electrodes of the electrolyzer, said electrolyzed water produced in the electrolytic cell of the electrolysis device as the quantity of electricity for the desired pH is obtained The cleaning apparatus according to claim 1 or 2. 前記電気分解装置の前記電解槽の内壁上部を円弧状または前記電解槽の周壁に向かって低くなるような傾斜状に形成したことを特徴とする請求項1乃至3のいずれかに記載の洗浄装置。  The cleaning apparatus according to any one of claims 1 to 3, wherein an inner wall upper portion of the electrolytic cell of the electrolyzer is formed in an arc shape or an inclined shape that becomes lower toward a peripheral wall of the electrolytic cell. . 請求項1乃至4のいずれかに記載の洗浄装置を備えたことを特徴とする電気機器。  An electrical apparatus comprising the cleaning device according to claim 1.
JP2002145877A 2002-05-21 2002-05-21 Washing apparatus and electrical equipment equipped with the washing apparatus Expired - Fee Related JP4182394B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002145877A JP4182394B2 (en) 2002-05-21 2002-05-21 Washing apparatus and electrical equipment equipped with the washing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002145877A JP4182394B2 (en) 2002-05-21 2002-05-21 Washing apparatus and electrical equipment equipped with the washing apparatus

Publications (2)

Publication Number Publication Date
JP2003334153A JP2003334153A (en) 2003-11-25
JP4182394B2 true JP4182394B2 (en) 2008-11-19

Family

ID=29705023

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002145877A Expired - Fee Related JP4182394B2 (en) 2002-05-21 2002-05-21 Washing apparatus and electrical equipment equipped with the washing apparatus

Country Status (1)

Country Link
JP (1) JP4182394B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110151093A (en) * 2019-07-09 2019-08-23 珠海格力电器股份有限公司 Chlorination equipment and dish-washing machine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110151093A (en) * 2019-07-09 2019-08-23 珠海格力电器股份有限公司 Chlorination equipment and dish-washing machine

Also Published As

Publication number Publication date
JP2003334153A (en) 2003-11-25

Similar Documents

Publication Publication Date Title
JP5601570B2 (en) Sanitary washing device
TWI473927B (en) Sanitary cleaning device
JP5741857B2 (en) Sanitary washing device
JP4756404B1 (en) Sanitary washing device
US20130164705A1 (en) Cleaning device for oral cavity
KR20170130154A (en) Toilet with pump having electrolysis function
JP2009017907A (en) Washing machine
JP2008138378A (en) Chemical solution-mixed water ejector and water closet equipment
CN109663515B (en) Microbubble generating circulation system and clothes treatment device
JP2015034457A (en) Toilet device
JP4182394B2 (en) Washing apparatus and electrical equipment equipped with the washing apparatus
JP2012013360A (en) Water heater with water reduction function
JP6621150B2 (en) Electrolyzed water generator and endoscope cleaning device
JP2005155097A (en) Private part cleaning device
JPH1033571A (en) Oral cavity washing device
JP6057173B2 (en) Toilet equipment
KR20190143065A (en) Bubble generator
JP3543365B2 (en) Ionized water generator and pH sensor cleaning method
JP5515632B2 (en) Cleaning device
JP6819864B2 (en) Acid water generator and toilet device
JP2001212060A (en) Dish washing unit
JP2019154724A (en) Bathroom system
JP2011038250A (en) Sanitary washing device
JPH09243588A (en) Ph sensor and ionic water forming device
JP6819866B2 (en) Acid water generator and toilet device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070601

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080205

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080311

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080512

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080812

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080820

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110912

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees