JP4182111B2 - Method for predicting acoustic properties of fiber assemblies - Google Patents

Method for predicting acoustic properties of fiber assemblies Download PDF

Info

Publication number
JP4182111B2
JP4182111B2 JP2006016395A JP2006016395A JP4182111B2 JP 4182111 B2 JP4182111 B2 JP 4182111B2 JP 2006016395 A JP2006016395 A JP 2006016395A JP 2006016395 A JP2006016395 A JP 2006016395A JP 4182111 B2 JP4182111 B2 JP 4182111B2
Authority
JP
Japan
Prior art keywords
equation
fiber
air
density
calculated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006016395A
Other languages
Japanese (ja)
Other versions
JP2007199270A (en
Inventor
大輔 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Howa Co Ltd
Original Assignee
Howa Textile Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Howa Textile Industry Co Ltd filed Critical Howa Textile Industry Co Ltd
Priority to JP2006016395A priority Critical patent/JP4182111B2/en
Publication of JP2007199270A publication Critical patent/JP2007199270A/en
Application granted granted Critical
Publication of JP4182111B2 publication Critical patent/JP4182111B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Soundproofing, Sound Blocking, And Sound Damping (AREA)

Description

本発明は、フェルト,グラスウールなどの繊維集合体における吸音特性等の音響特性を計算により予測する方法に関するものである。   The present invention relates to a method for predicting acoustic characteristics such as sound absorption characteristics in a fiber assembly such as felt and glass wool by calculation.

繊維集合体または多孔質合成樹脂層(以下、多孔質材料という。)の吸音特性等の音響特性は、多孔質材料中を流れる空気の流れ抵抗を実測すると共に、ポロシティ(多孔度)と呼ばれる多孔質材料内の空気割合と、粘性,熱的特性長と呼ばれるエネルギー変換値、トーチュオジティ(迷路度)と呼ばれる多孔質材料内の空気の通り道長さと、多孔質材料の硬さ指標である弾性率を実測し、さらに多孔質材料の見掛け嵩密度、材料厚みを計算に加えることで予測が可能である。   The acoustic characteristics such as the sound absorption characteristics of the fiber assembly or the porous synthetic resin layer (hereinafter referred to as porous material) are measured by measuring the flow resistance of air flowing through the porous material and the porosity called porosity. The ratio of air in the porous material, energy conversion value called viscosity and thermal characteristic length, air passage length in porous material called tortoise (maze degree), and elastic modulus that is the hardness index of porous material Prediction is possible by actually measuring and adding the apparent bulk density and material thickness of the porous material to the calculation.

なお、下記文献1には、多孔質材料の音響特性理論(Johnsonモデル)が開示されている。
Allard,J.F,“Propagation of Sound in Porous Media”,Elsevier Applied Science,1993
Reference 1 below discloses the theory of acoustic characteristics of a porous material (Johnson model).
Allard, J .; F, “Propagation of Sound in Porous Media”, Elsevier Applied Science, 1993.

ところで、上記流れ抵抗は、多孔質材料に風速0.05cm/sの微風を流し、その材料前後の差圧を測定することにより求められるが、その測定値は、大気状態に大きく左右され、測定装置の環境にも充分に配慮する必要があるなど、測定誤差が生じ易いという問題がある。
また、上記多孔度は、一定容積の容器に多孔質材料を入れて密封し体積を僅かに変化させ、そのときの体積変化と圧力変化を測定することにより求められるものであり、上記粘性,熱的特性長は、超音波パルス送受信機を使用し、雰囲気をヘリウムガスに置換した試験室に多孔質材料を置いて測定する必要があるなど、測定のための設備および工数を要すると共に、熟練者でないと測定誤差が生じ易いため、音響特性を高精度に予測することは容易でないものであった。
そこで本発明は、フェルト,グラスウールなどの繊維集合体について、垂直入射吸音率、音響インピーダンス、伝搬定数、特性インピーダンス等の音響特性を高精度に予測することを可能にする方法を提供しようとするものである。
By the way, the above-mentioned flow resistance is obtained by flowing a slight wind at a wind speed of 0.05 cm / s through a porous material and measuring the differential pressure before and after the material. There is a problem that measurement errors are likely to occur, for example, it is necessary to pay sufficient attention to the environment of the apparatus.
The porosity is obtained by placing a porous material in a fixed volume container and sealing it, changing the volume slightly, and measuring the volume change and pressure change at that time. The characteristic characteristic length requires measurement equipment and man-hours, such as using an ultrasonic pulse transmitter / receiver and placing a porous material in a test room where the atmosphere is replaced with helium gas. Otherwise, measurement errors are likely to occur, and it is not easy to predict acoustic characteristics with high accuracy.
Therefore, the present invention intends to provide a method that makes it possible to predict acoustic characteristics such as normal incidence sound absorption coefficient, acoustic impedance, propagation constant, and characteristic impedance with high accuracy for fiber assemblies such as felt and glass wool. It is.

上記課題を解決するため請求項1に記載した繊維集合体の音響特性予測方法の発明は、実効密度ρeffを次式(数26)により算出し、体積弾性率Kfを次式(数27)により算出し、繊維径により定まる定数Cを次式(数30)により算出し、該実効密度ρeff、体積弾性率Kfおよび定数Cを用いてフェルト,グラスウールなどの繊維集合体の特性インピーダンスZcを次式(数31)により算出することを特徴とした繊維集合体の音響特性予測方法。

Figure 0004182111
上式中、ρ0は空気の密度で18℃の場合ρ0=1.2[kg/m3]、μは空気の粘性係数で常温の空気ではμ≒1.84×10-5[N・s/m2]、ωはω=2πfで表される角速度(fは周波数)、Λは繊維材料の粘性特性長、Λ’は繊維材料の熱的特性長である。
Figure 0004182111
上式中、ρ0は空気の密度、c0は空気中の音速、γは空気の比熱比である。また、ρ0c0 2は空気の体積弾性率で、大気圧P0[Pa]を用いてρ0c0 2=γP0の関係式があり、18℃の空気の場合ρ0=1.2[kg/m3]、c0=342[m/s]、γ=1.4である。標準気圧P0は1013×102[Pa]である。また、iは虚数単位(i=−1)である。
Figure 0004182111
上式中、μは空気の粘性係数で常温の空気ではμ≒1.84×10-5[N・s/m2]、Dは実効繊維径である。
Figure 0004182111
In order to solve the above problems, the invention of the acoustic property prediction method for a fiber assembly described in claim 1 calculates the effective density ρ eff by the following equation (Equation 26), and the bulk modulus K f by the following equation (Equation 27). The constant C determined by the fiber diameter is calculated by the following equation (Equation 30), and the characteristic impedance of the fiber aggregate such as felt and glass wool is calculated using the effective density ρ eff , the bulk modulus K f and the constant C. A method for predicting acoustic characteristics of a fiber assembly, characterized in that Zc is calculated by the following equation (Equation 31).
Figure 0004182111
In the above equation, ρ 0 is the density of air at 18 ° C, ρ 0 = 1.2 [kg / m 3 ], μ is the viscosity coefficient of air, and μ≈1.84 × 10 -5 [N · s / m for normal temperature air 2 ], ω is an angular velocity (f is a frequency) represented by ω = 2πf, Λ is a viscous characteristic length of the fiber material, and Λ ′ is a thermal characteristic length of the fiber material.
Figure 0004182111
In the above equation, ρ 0 is the density of air, c 0 is the speed of sound in the air, and γ is the specific heat ratio of air. Ρ 0 c 0 2 is the bulk modulus of air, and there is a relational expression of ρ 0 c 0 2 = γP 0 using the atmospheric pressure P 0 [P a ]. In the case of air at 18 ° C., ρ 0 = 1.2 [kg / m 3 ], c 0 = 342 [m / s], and γ = 1.4. The standard atmospheric pressure P 0 is 1013 × 10 2 [Pa]. Further, i is an imaginary unit (i 2 = −1).
Figure 0004182111
In the above equation, μ is the viscosity coefficient of air, μ≈1.84 × 10 −5 [N · s / m 2 ] in normal temperature air, and D is the effective fiber diameter.
Figure 0004182111

また、請求項2に記載の発明は、フェルト,グラスウールなどの繊維集合体の伝搬定数Γを請求項1に記載した実効密度ρeffおよび体積弾性率Kfを用い次式(数32)により算出することを特徴とした繊維集合体の音響特性予測方法。

Figure 0004182111
上式中、iは虚数単位(i=−1)、ωはω=2πfで表される角速度(fは周波数)である。 In the invention described in claim 2, the propagation constant Γ of a fiber aggregate such as felt or glass wool is calculated by the following equation (Equation 32) using the effective density ρ eff and the bulk modulus K f described in claim 1. A method for predicting acoustic characteristics of a fiber assembly, characterized in that:
Figure 0004182111
In the above formula, i is an imaginary unit (i 2 = −1), ω is an angular velocity (f is a frequency) represented by ω = 2πf.

また、請求項3に記載の発明は、フェルト,グラスウールなどの繊維集合体の背面剛壁を条件とする音響インピーダンスZ0を請求項1に記載した特性インピーダンスZcおよび請求項2に記載した伝搬定数Γを用い次式(数33)により算出することを特徴とした繊維集合体の音響特性予測方法。

Figure 0004182111
上式中、dは繊維集合体の厚みである。 The invention described in claim 3 is characterized in that the acoustic impedance Z 0 on the condition of the back rigid wall of the fiber assembly such as felt or glass wool is the characteristic impedance Zc described in claim 1 and the propagation constant described in claim 2. A method for predicting acoustic characteristics of a fiber assembly, wherein Γ is calculated by the following equation (Expression 33).
Figure 0004182111
In the above formula, d is the thickness of the fiber assembly.

また、請求項4に記載の発明は、フェルト,グラスウールなどの繊維集合体の垂直入射吸音率α0を請求項3に記載した音響インピーダンスZ0を用い次式(数34)により算出することを特徴とした繊維集合体の音響特性予測方法。

Figure 0004182111
上式中、ρ0c0は空気の固有音響抵抗で気温18℃の場合はρ0c0=415Ns/m3である。 In the invention described in claim 4, the normal incident sound absorption coefficient α 0 of the fiber assembly such as felt or glass wool is calculated using the acoustic impedance Z 0 described in claim 3 by the following equation (Equation 34). A method for predicting acoustic characteristics of a featured fiber assembly.
Figure 0004182111
In the above equation, ρ 0 c 0 is the specific acoustic resistance of air, and ρ 0 c 0 = 415 Ns / m 3 when the temperature is 18 ° C.

本発明によれば、フェルト,グラスウールなどの繊維集合体について、その音響特性を比較的容易に正確に予測し得るので、新規な吸音体等の音響部品の設計、開発を容易にし、そのコストを軽減させるなどの利便性をもたらす。   According to the present invention, the acoustic characteristics of fiber aggregates such as felt and glass wool can be predicted relatively easily and accurately, so that the design and development of a new acoustic component such as a sound absorber can be facilitated and its cost can be reduced. It brings convenience such as mitigation.

次に本発明の実施形態を説明する。先ず、上記非特許文献1等により現在公表されている多孔質材料の音響特性理論(以下、Johnson-Allardモデルという。)の概要を説明する。
Johnson-Allardモデルは、円筒管の内半径を多孔質材料の物理特性により置き換えた円筒管モデルをベースとする。この物理特性値に、流れ抵抗、ポロシティ、トーチュオジティ、粘性特性長、熱的特性長を用いる。円筒管内部の空気の実効密度ρeffと体積弾性率Kfは、Kirchhoffの理論を基にBessel関数を用い次式で定義される。

Figure 0004182111
Figure 0004182111
上式中、ρ0は空気の密度、c0は空気中の音速、γは空気の比熱比である。また、ρ0c0 2は空気の体積弾性率で、大気圧P0[Pa]を用いてρ0c0 2=γP0の関係式から置き換えることも可能である。18℃の空気の場合ρ0=1.2[kg/m3]、c0=342[m/s]、γ=1.4である。標準気圧はP0=1013×102[Pa]である。また、iは虚数単位(i=−1)である。また、sおよびs'はせん断力波数で次式で定義される。
Figure 0004182111
Figure 0004182111
上式中、Rは円筒管の内半径、B2はプラントル数で常温空気の場合B2=0.71で扱われる。 Next, an embodiment of the present invention will be described. First, the outline of the acoustic characteristic theory (hereinafter referred to as the Johnson-Allard model) of the porous material currently published by Non-Patent Document 1 and the like will be described.
The Johnson-Allard model is based on a cylindrical tube model in which the inner radius of the cylindrical tube is replaced by the physical properties of the porous material. Flow resistance, porosity, tortoise, viscosity characteristic length, and thermal characteristic length are used as the physical characteristic values. The effective density ρ eff and bulk modulus K f of air inside the cylindrical tube are defined by the following equations using the Bessel function based on Kirchhoff's theory.
Figure 0004182111
Figure 0004182111
In the above equation, ρ 0 is the density of air, c 0 is the speed of sound in the air, and γ is the specific heat ratio of air. Ρ 0 c 0 2 is the bulk modulus of air, and can be replaced from the relational expression of ρ 0 c 0 2 = γP 0 using the atmospheric pressure P 0 [P a ]. In the case of air at 18 ° C., ρ 0 = 1.2 [kg / m 3], c 0 = 342 [m / s], and γ = 1.4. The standard atmospheric pressure is P 0 = 1013 × 10 2 [Pa]. Further, i is an imaginary unit (i 2 = −1). Further, s and s ′ are shear force wave numbers and are defined by the following equations.
Figure 0004182111
Figure 0004182111
In the above equation, R is the inner radius of the cylindrical tube, B 2 is the Prandtl number, and B 2 = 0.71 for room temperature air.

また、Johnson-Allardモデルでは上記Bessel関数部を次式に置き換えている。

Figure 0004182111
Figure 0004182111
また、円筒管の内半径Rと流れ抵抗σの関係はHagen−Poiseuilleの法則を基に次式が成り立つ。
Figure 0004182111
上式中、μは空気の粘性係数で、常温の空気ではμ≒1.84×10-5[N・s/m2]となる。αはトーチュオジティ、φはポロシティである。
Johnson-Allardモデルでは上記式(数5)のR1を上記式(数7)のRに置き換えた式となる。 In the Johnson-Allard model, the Bessel function part is replaced by the following equation.
Figure 0004182111
Figure 0004182111
The relationship between the inner radius R of the cylindrical tube and the flow resistance σ is based on the Hagen-Poiseuille law.
Figure 0004182111
In the above equation, μ is the viscosity coefficient of air, and μ≈1.84 × 10 −5 [N · s / m 2 ] for air at normal temperature. α is tortoise, and φ is porosity.
In the Johnson-Allard model, R 1 in the above equation (Equation 5) is replaced with R in the above equation (Equation 7).

また、粘性特性長Λ、熱的特性長Λ'および内半径Rの間に次式が成り立つと仮定する。

Figure 0004182111
式(数7)に式(数8)を代入し、Λ'について書き換えると、
Figure 0004182111
Johnson-Allardモデルでは式(数5)のR2を式(数9)のΛ'に置き換えた式となる。
このため、実効密度式(数1)にトーチュオジティαを考慮(αを積算)し、式(数6)のR3、R4を熱的特性長Λ'に置き換えることで、以下のようにJohnson-Allardモデルの実効密度ρeffと体積弾性率Kfの式が完成する。
Figure 0004182111
Figure 0004182111
Further, it is assumed that the following equation holds between the viscous characteristic length Λ, the thermal characteristic length Λ ′, and the inner radius R.
Figure 0004182111
Substituting Equation (Equation 8) into Equation (Equation 7) and rewriting for Λ ′,
Figure 0004182111
In the Johnson-Allard model, R 2 in the equation (Equation 5) is replaced with Λ ′ in the equation (Equation 9).
For this reason, by considering the tortility α in the effective density equation (Equation 1) (accumulating α ) and replacing R 3 and R 4 in the equation (Equation 6) with the thermal characteristic length Λ ′, the following is obtained. The formulas for the effective density ρ eff and bulk modulus K f of the Johnson-Allard model are completed.
Figure 0004182111
Figure 0004182111

次にこのJohnson-Allardモデルの問題点を説明する。
上記熱的特性長Λ'は多孔質材料の内部空気の体積Vと固体と空気が接する表面積Aにより次式で定義される。

Figure 0004182111
多孔質材料がフェルト,グラスウールなどの繊維集合体である場合、その実効材料密度ρsと実効繊維径Dを用い、熱的特性長Λ'は次式に書き変えられる。
Figure 0004182111
上式中、ρは多孔質材料の嵩密度を示す。
なお、粘性特性長Λは、繊維材料が円柱状で、その繊維の長手方向に対して垂直に音波が入る場合、Allardは次式が成り立つとしている。
Figure 0004182111
粘性特性長Λは、繊維の向きにより変化し、その繊維の長手方向に対して平行に音波が入る場合、2つの特性長は理論上一致する。インピーダンス管(定在波管)を用いる場合、一般的な繊維材料はその繊維の長手方向に対して垂直に音波が入ると仮定でき、上式(数14)が成り立つと考えられる。ただし、上式(数13)、上式(数14)は繊維間の接触面積の減少分が考慮されていないことから嵩密度が高くなるにつれて、この計算値は実際より低めの値になることに注意する必要がある。 Next, the problem of this Johnson-Allard model is explained.
The thermal characteristic length Λ ′ is defined by the following equation by the volume V of the internal air of the porous material and the surface area A where the solid and the air contact.
Figure 0004182111
When the porous material is a fiber aggregate such as felt or glass wool, the thermal characteristic length Λ ′ can be rewritten as follows using the effective material density ρ s and the effective fiber diameter D.
Figure 0004182111
In the above formula, ρ represents the bulk density of the porous material.
Note that the viscosity characteristic length Λ is such that when the fiber material is cylindrical and a sound wave enters perpendicularly to the longitudinal direction of the fiber, Allard satisfies the following equation.
Figure 0004182111
The viscosity characteristic length Λ varies depending on the direction of the fiber, and when a sound wave enters parallel to the longitudinal direction of the fiber, the two characteristic lengths theoretically match. When an impedance tube (standing wave tube) is used, it can be assumed that a general fiber material enters a sound wave perpendicular to the longitudinal direction of the fiber, and the above equation (Equation 14) is considered to hold. However, since the above equation (Equation 13) and the above equation (Equation 14) do not take into account the decrease in the contact area between the fibers, the calculated value becomes a lower value as the bulk density increases. It is necessary to pay attention to.

図1および図2に、熱的特性長Λ'の理論式(数13)、および粘性特性長Λの理論式(数14)と、Johnsonモデルによるフィット値をグラフに示す。ここで実効繊維径Dは31.48[μm]、実効材料密度ρsは1380[kg/m3]のポリエステル不織布を用いた。なお、2つの特性長のフィット値(Johonson-Allardモデル)はポリエステル不織布を加熱盤で潰し嵩密度を変化させ、25個のデータから回帰分析により求めた。
このように低嵩密度では理論値とフィット値(Johnson-Allardモデル)の間に大きな差が見られる。そしてフィット値(Johnson-Allardモデル)は、嵩密度が低くなるにつれて2つの特性長の値は接近し、嵩密度が20kg/m3より低い時に、熱的特性長より粘性特性長の方が大きな値となる。この状態は物理的に矛盾する。この現象は、円筒管にのみで成り立つ流れ抵抗と管の内半径の関係式(数7)を多孔質材料にも適用したことが原因と推測できる。その修正項として2つの特性長は物理的な定義を無視した係数として扱われている。
2つの特性長を計測する技術は存在するが、ここで説明したことが原因で計測値を用いることができず、現状では2つの特性長を吸音率の結果にフィッティングさせて得る手法が一般化している。
このようにして得られた2つの特性長により吸音率を合わせることは可能なため、この問題が見逃されていたか、或いはJohnson-Allardモデルに変わる最良モデルが存在しないため、従来ではこのJohnson-Allardモデルが使用されてきた。
FIG. 1 and FIG. 2 are graphs showing the theoretical formula (Formula 13) of the thermal characteristic length Λ ′, the theoretical formula (Formula 14) of the viscous characteristic length Λ, and the fitting value according to the Johnson model. Here, a polyester nonwoven fabric having an effective fiber diameter D of 31.48 [μm] and an effective material density ρ s of 1380 [kg / m 3 ] was used. In addition, the fit value (Johonson-Allard model) of two characteristic lengths was calculated | required by regression analysis from 25 data by crushing a polyester nonwoven fabric with a heating board and changing bulk density.
Thus, there is a large difference between the theoretical value and the fit value (Johnson-Allard model) at low bulk density. And the fit value (Johnson-Allard model) shows that the two characteristic length values approach each other as the bulk density decreases, and when the bulk density is lower than 20 kg / m 3 , the viscous characteristic length is larger than the thermal characteristic length. Value. This state is physically contradictory. It can be inferred that this phenomenon is caused by applying the relational expression (Equation 7) between the flow resistance and the inner radius of the pipe, which is formed only in the cylindrical pipe, to the porous material. As the correction terms, the two characteristic lengths are treated as coefficients that ignore the physical definition.
Although there are technologies for measuring two characteristic lengths, the measurement values cannot be used because of the explanations given here, and at present, a method of obtaining two characteristic lengths by fitting them to the result of the sound absorption rate has become common. ing.
Since it is possible to match the sound absorption rate with the two characteristic lengths obtained in this way, this problem has been overlooked, or there is no best model to replace the Johnson-Allard model, so this Johnson-Allard has traditionally been A model has been used.

しかして本発明に係るモデル(以下、修正モデルという。)では、Johnson-Allardモデルと同様に円筒管モデル式(数1)、(数2)を基に実効密度ρeffと体積弾性率Kfを求める。ここで、式(数3)のせん断力波数sに用いられている管内半径Rを粘性抵抗に関連する特性として粘性特性長Λに置き換える。式(数4)のせん断力波数s'に用いられている管内半径Rを熱伝導に関する特性として熱的特性長Λ'に置き換える。これは実効密度に粘性摩擦を考慮し、体積弾性率に熱伝導を考慮することを意味する。

Figure 0004182111
Figure 0004182111
円筒管の場合、上記sとs'に用いられる特性長は内半径Rそのものであり理論的にもΛとΛ'はRと同一値となることが知られている。
また、Johnson-AllardモデルではBessel関数部を式(数5)、(数6)に置き換えている。しかし、この近似式は管内半径Rが1mm以上で一致するが、一般的な多孔質材料では管内半径に換算すると0.4mm以下[式(数7)から換算すると流れ抵抗が1000Ns/m4以上]に相当し、この近似式は妥当とは言えない。
そこで、管内半径Rが0.4mm以下(これを毛細管と定義する)で良く一致する近似式を上式(数15)、(数16)を使って次に示す。
Figure 0004182111
Figure 0004182111
Johnson-Allardモデルにおける近似式(数5)、(数6)との違いは、同式中にある数値16を12に変更しただけである。この変更により、管内半径Rが0に近づくと近似式(数17)、(数18)とBessel関数部は限りなく近づくことが確認された。 Therefore, in the model according to the present invention (hereinafter referred to as the modified model), the effective density ρ eff and the bulk modulus K f are calculated based on the cylindrical tube model formulas (Equation 1) and (Equation 2) as in the Johnson-Allard model. Ask for. Here, the in-pipe radius R used for the shear force wave number s in Equation (3) is replaced with a viscous characteristic length Λ as a characteristic related to the viscous resistance. The radius R in the tube used for the shear force wave number s ′ in the equation (Equation 4) is replaced with a thermal characteristic length Λ ′ as a characteristic related to heat conduction. This means that viscous friction is considered in effective density and heat conduction is considered in bulk modulus.
Figure 0004182111
Figure 0004182111
In the case of a cylindrical tube, the characteristic length used for the above s and s ′ is the inner radius R itself, and it is theoretically known that Λ and Λ ′ have the same value as R.
In the Johnson-Allard model, the Bessel function part is replaced by equations (5) and (6). However, this approximate expression agrees when the pipe inner radius R is 1 mm or more, but in the case of general porous materials, 0.4 mm or less when converted to the pipe inner radius [flow resistance is 1000 Ns / m 4 or more when converted from the formula (Equation 7)] This approximation is not valid.
Therefore, an approximate expression that agrees well when the tube inner radius R is 0.4 mm or less (this is defined as a capillary tube) is shown below using the above expressions (Expression 15) and (Expression 16).
Figure 0004182111
Figure 0004182111
The only difference between the approximate equations (Equation 5) and (Equation 6) in the Johnson-Allard model is that the numerical value 16 in the equation is changed to 12. As a result of this change, it was confirmed that the approximate expressions (Equation 17) and (Equation 18) and the Bessel function part approach as much as possible when the pipe radius R approaches 0.

さらに上記式(数17)、(数18)を(数1)、(数2)の式へ代入し、実効密度ρeffと体積弾性率Kfを書き換えると次のようになる。

Figure 0004182111
Figure 0004182111
この式(数19)、(数20)が毛細管における内部流体の実効密度と体積弾性率を求めるモデル式となる。即ち、毛細管の場合、粘性特性長Λと熱的特性長Λ'が同一値(管内半径R)となるのに対し、繊維材料では上式(数14)に示すように異なる値となる。これが毛細管と繊維材料との違いである。そこで繊維材料では特性長の理論式(数13)、(数14)が成り立つと仮定し、毛細管と繊維材料ではどの様な形で違いが現れるか、毛細管のモデル式(数19)、(数20)を用い試験をした。この試験には繊維径5種類(15〜37μm)、嵩密度(15〜200kg/m3)のポリエステル不織布を用い、120個のデータを元に特性インピーダンスと伝搬定数を計測し、実効密度、体積弾性率、垂直入射吸音率の計測値と解析値を比較した。なお、計測における実効密度は特性インピーダンスZcと伝搬定数Γから次式で定義される。
Figure 0004182111
Further, substituting the above equations (Equation 17) and (Equation 18) into the equations of (Equation 1) and (Equation 2) and rewriting the effective density ρ eff and the bulk modulus K f yields the following.
Figure 0004182111
Figure 0004182111
These equations (Equation 19) and (Equation 20) are model equations for obtaining the effective density and bulk modulus of the internal fluid in the capillary tube. That is, in the case of a capillary tube, the viscosity characteristic length Λ and the thermal characteristic length Λ ′ have the same value (inner tube radius R), but the fiber material has different values as shown in the above equation (Equation 14). This is the difference between capillaries and fiber materials. Therefore, it is assumed that the theoretical formulas (Equation 13) and (Equation 14) of the characteristic length hold in the fiber material, and how the difference appears between the capillary and the fiber material. The model equation (Equation 19), (Equation 20). For this test, polyester nonwoven fabrics with five fiber diameters (15 to 37 μm) and bulk density (15 to 200 kg / m 3 ) were used. The characteristic impedance and propagation constant were measured based on 120 pieces of data, and the effective density and volume were measured. The measured values and analytical values of elastic modulus and normal incidence sound absorption coefficient were compared. The effective density in measurement is defined by the following equation from the characteristic impedance Zc and the propagation constant Γ.
Figure 0004182111

図3に実効密度の計測値と毛細管モデルによる解析値の比較をグラフに示す。この解析例は実効材料密度ρs=1380[kg/m3]、実効繊維径D=37.1[μm]、嵩密度ρ=50.0[kg/m3]の場合である。同図に示されるように、実効密度の負数(虚数部)に差が現れる。この現象は他の繊維径、嵩密度でも確認された。この差を詳細に調査した結果、Bessel関数の虚数部に次に示す差が現れていることを導きだした。即ち、繊維径15〜37μmの間での限定された条件ではあるが、その差をs''とすると次の関係となった。

Figure 0004182111
繊維径が太い場合は1/ωΛ'に近づき、細い場合は1/ωΛに近づくことを確認した。この関係式を一般化するためs''を次式のようにモデル化する。
Figure 0004182111
2つの特性長が同一値(毛細管の状態)の時、このs''の項が消えることを意図してモデル化を行なっている。ここで、Cは繊維径により定まる定数で、検証データ(繊維径15〜37μm)では1〜2の値となる。太い繊維は1、細い繊維は2に近づく。上式(数23)は体積弾性率の式(数22)にも適用する。 FIG. 3 is a graph showing a comparison between measured values of effective density and analysis values obtained by a capillary model. In this analysis example, the effective material density ρ s = 1380 [kg / m 3 ], the effective fiber diameter D = 37.1 [μm], and the bulk density ρ = 50.0 [kg / m 3 ]. As shown in the figure, a difference appears in the negative number (imaginary part) of the effective density. This phenomenon was also confirmed for other fiber diameters and bulk densities. As a result of investigating this difference in detail, we found that the following difference appears in the imaginary part of the Bessel function. That is, although the conditions are limited within a fiber diameter of 15 to 37 μm, when the difference is s ″, the following relationship is obtained.
Figure 0004182111
It was confirmed that when the fiber diameter was thick, it approached 1 / ωΛ ', and when it was thin, it approached 1 / ωΛ. In order to generalize this relational expression, s '' is modeled as follows.
Figure 0004182111
When the two characteristic lengths have the same value (capillary state), modeling is performed with the intention of eliminating this s ″ term. Here, C is a constant determined by the fiber diameter, and is 1 to 2 in the verification data (fiber diameter 15 to 37 μm). Thick fibers approach 1 and thin fibers approach 2. The above equation (Equation 23) is also applied to the equation (Equation 22) of the bulk modulus.

次に、実効密度の計測値と修正モデルによる解析値とを比較する。
毛細管と多孔質材料の実効密度ρeffと体積弾性率Kfは、式(数23)の関係を用いて上式(数1)、(数2)を書き換え次式で表すことができる。

Figure 0004182111
Figure 0004182111
Bessel関数の近似式(数19)、(数20)を用い、上記式(数23)を使って書き換えると、
Figure 0004182111
Figure 0004182111
この式(数26)、(数27)が本発明に係る繊維集合体における実効密度と体積弾性率の修正モデルである。 Next, the measured value of the effective density is compared with the analysis value by the modified model.
The effective density ρ eff and the bulk modulus K f of the capillary tube and the porous material can be expressed by the following equations by rewriting the above equations (Equation 1) and (Equation 2) using the relationship of Equation (Equation 23).
Figure 0004182111
Figure 0004182111
Using approximate equations (Equation 19) and (Equation 20) of the Bessel function and rewriting using the above equation (Equation 23),
Figure 0004182111
Figure 0004182111
These formulas (Equation 26) and (Equation 27) are modified models of the effective density and bulk modulus in the fiber assembly according to the present invention.

図4、図5に前記と同じ仕様のポリエステル不織布を用い、修正モデルにより定数Cを1で計算した解析値と計測値の比較を示す。なお、計測における体積弾性率Kfは特性インピーダンスZcと伝搬定数Γから次式で定義される。

Figure 0004182111
ここでφはポロシティで、実効材料密度ρsと嵩密度ρから次式で定義される。
Figure 0004182111
この式(数28)、(数29)から体積弾性率の計測値が得られる。 FIG. 4 and FIG. 5 show a comparison between an analysis value and a measurement value obtained by using a polyester nonwoven fabric having the same specifications as described above and calculating a constant C by 1 using a correction model. The bulk modulus K f in the measurement is defined by the following equation from the characteristic impedance Z c and the propagation constant Γ.
Figure 0004182111
Here, φ is porosity and is defined by the following equation from the effective material density ρ s and the bulk density ρ.
Figure 0004182111
A measured value of the bulk modulus can be obtained from the equations (Equation 28) and (Equation 29).

なお、繊維径により定まる定数Cについては、検証に用いたポリエステル不織布から実験式を求めた。そして検証に用いた材料で確認した結果、次式を導き出した。

Figure 0004182111
In addition, about the constant C decided by a fiber diameter, the empirical formula was calculated | required from the polyester nonwoven fabric used for verification. And as a result of confirming with the material used for verification, the following formula was derived.
Figure 0004182111

次に修正モデルについて検証する。ここでは修正モデル式(数26)、(数27)から特性長の理論式(数13)、(数14)、および繊維径により定まる定数の式(数30)を用いて実効密度ρeffと体積弾性率Kfをそれぞれ算出し、得られた実効密度と体積弾性率から特性インピーダンスZcを次式(数31)により算出する。

Figure 0004182111
また、伝搬定数Γをこの実効密度ρeffおよび体積弾性率Kfを用い次式(数32)により算出する。
Figure 0004182111
上式中、iは虚数単位(i=−1)、ωはω=2πfで表される角速度(fは周波数)である。
また、背面剛壁を条件とする音響インピーダンスZ0をこの特性インピーダンスZcおよび伝搬定数Γを用い次式(数33)により算出する。
Figure 0004182111
上式中、dは繊維集合体の厚みである。
さらに垂直入射吸音率α0をこの音響インピーダンスZ0を用い次式(数34)により算出する。
Figure 0004182111
上式中、ρ0c0は空気の固有音響抵抗で気温18℃の場合、ρ0c0=415Ns/m3である。 Next, the modified model is verified. Here, the effective density ρ eff is calculated using the modified model formulas (Equation 26) and (Equation 27) from the theoretical formulas (Equation 13) and (Equation 14) of the characteristic length and the constant equation (Equation 30) determined by the fiber diameter. The bulk modulus Kf is calculated, and the characteristic impedance Zc is calculated from the obtained effective density and bulk modulus according to the following equation (Equation 31).
Figure 0004182111
Further, the propagation constant Γ is calculated by the following equation (Equation 32) using the effective density ρ eff and the bulk modulus K f .
Figure 0004182111
In the above formula, i is an imaginary unit (i 2 = −1), ω is an angular velocity (f is a frequency) represented by ω = 2πf.
Further, the acoustic impedance Z 0 subject to the back rigid wall is calculated by the following equation (Equation 33) using the characteristic impedance Zc and the propagation constant Γ.
Figure 0004182111
In the above formula, d is the thickness of the fiber assembly.
Further, the normal incident sound absorption coefficient α 0 is calculated by the following equation (Equation 34) using the acoustic impedance Z 0 .
Figure 0004182111
In the above equation, ρ 0 c 0 is the specific acoustic resistance of air, and when the temperature is 18 ° C., ρ 0 c 0 = 415 Ns / m 3 .

図6〜図10はこのように繊維集合体の音響特性を垂直入射吸音率α0に換算した結果を5種類の繊維径別について羅列したグラフである。即ち、図6は実効繊維径D=37.1μmにおける垂直入射吸音率、図7は実効繊維径D=31.5μmにおける垂直入射吸音率、図8は実効繊維径D=28.6μmにおける垂直入射吸音率、図9は実効繊維径D=23.3μmにおける垂直入射吸音率、図10は実効繊維径D=15.7μmにおける垂直入射吸音率を示す。検証に用いた材料は全て100%ポリエステル不織布であり実効材料密度ρsを1380kg/m3とした。同グラフ中に繊維集合体の嵩密度ρ、繊維径により定まる定数C、材料厚みdを夫々記した。 6 to 10 are graphs in which the acoustic characteristics of the fiber assembly are converted to the normal incident sound absorption coefficient α 0 and the results are listed for five different fiber diameters. That is, FIG. 6 shows a normal incidence sound absorption coefficient at an effective fiber diameter D = 37.1 μm, FIG. 7 shows a normal incidence sound absorption coefficient at an effective fiber diameter D = 31.5 μm, and FIG. 8 shows a normal incidence at an effective fiber diameter D = 28.6 μm. FIG. 9 shows the normal incident sound absorption coefficient at an effective fiber diameter D = 23.3 μm, and FIG. 10 shows the normal incident sound absorption coefficient at an effective fiber diameter D = 15.7 μm. The materials used for the verification were all 100% polyester nonwoven fabric, and the effective material density ρ s was 1380 kg / m 3 . In the graph, the bulk density ρ of the fiber assembly, the constant C determined by the fiber diameter, and the material thickness d are shown.

なお、音響インピーダンス、垂直入射吸音率を測定するには、図11に示したように背面が剛壁となる有底状の音響インピーダンス測定管1の内低部にサンプルとなる繊維集合体2を配置し、該測定管1の開口部に設けられたスピーカ3の音を該繊維集合体2の前部に所定の間隔を離して設けた2本のマイクロフォン4、5により取り込んで解析する周知の測定システムが使用される。   In order to measure the acoustic impedance and the normal incidence sound absorption coefficient, as shown in FIG. 11, the fiber assembly 2 as a sample is formed in the inner low part of the bottomed acoustic impedance measuring tube 1 whose back is a rigid wall. The sound of the speaker 3 provided at the opening of the measurement tube 1 is taken in and analyzed by two microphones 4 and 5 provided at a predetermined interval at the front of the fiber assembly 2. A measurement system is used.

図6〜図10に示した検証結果から本発明に係る修正モデルの有効性が明らかとなった。なお、図10の右下に示したグラフは繊維間の接触面積を考慮し、その左側のグラフ(特性長の理論値を使用)に対し2つの特性長の値を理論値より20%大きく設定した結果を示している。このように、繊維間の接触面積を考慮することにより、細繊維の高嵩密度の材料まで一致させることのできるモデルとなる。   The effectiveness of the modified model according to the present invention has been clarified from the verification results shown in FIGS. The graph shown in the lower right of FIG. 10 considers the contact area between the fibers, and sets the two characteristic length values 20% larger than the theoretical values for the graph on the left side (using the theoretical value of the characteristic length). Shows the results. Thus, by considering the contact area between the fibers, it becomes a model that can match even a material with a high bulk density of fine fibers.

次に繊維材料の実効材料密度と実効繊維径について補足説明をする。
繊維材料を用いた不織布を製造するにあたり、一般的に一つの材料密度、繊維径で作成されることはなく、骨格を形成するための太い繊維と音響性能を確保するための細い繊維、およびこれらを結ぶためのバインダー繊維を複合し作成される。一方、その音響特性は修正モデル式(数26)、(数27)にあるように特性長により定まる。そこで特性長の定義からポロシティ、表面積、嵩密度を変化させることなく、複数の材料を一つの材料に置き換える手法を説明する。
実効材料密度ρsについては、一般的に繊維材料を配合する場合、個々の材料の重量比により配合が管理される。そこで、各材料の重量比をYxとする。

Figure 0004182111
個々の材料密度をρsxとすると実効材料密度ρsは次式で定義される。
Figure 0004182111
また、実効繊維径Dについては、個々の繊維径をDxとすると次式で定義される。
Figure 0004182111
この式(数37)中のρsは、上式(数36)における実効材料密度である。
この式(数36)および式(数37)を用いることにより、音響的に等価な(特性長を変化させない)1本の繊維材料に置き換えることができる。この検証に用いたポリエステル不織布は、主原料70%にバインダー材30%を配合して製造されたもので、式(数36)と式(数37)に示した実効材料密度ρsと実効繊維径Dを用いている。 Next, supplementary explanation will be given on the effective material density and the effective fiber diameter of the fiber material.
When manufacturing non-woven fabrics using fiber materials, they are generally not created with a single material density and fiber diameter, but are thick fibers for forming a skeleton and thin fibers for ensuring acoustic performance, and these It is made by combining binder fibers for tying. On the other hand, the acoustic characteristic is determined by the characteristic length as shown in the modified model equations (Equation 26) and (Equation 27). Therefore, a method of replacing a plurality of materials with one material without changing the porosity, surface area, and bulk density from the definition of the characteristic length will be described.
Regarding the effective material density ρ s , generally, when a fiber material is blended, the blending is controlled by the weight ratio of each material. Therefore, the weight ratio of the materials to Y x.
Figure 0004182111
If each material density is ρ sx , the effective material density ρ s is defined by the following equation.
Figure 0004182111
Also, the effective fiber diameter D, is defined an individual fiber diameter by the following equation when the D x.
Figure 0004182111
Ρ s in this equation (Equation 37) is the effective material density in the above equation (Equation 36).
By using this formula (formula 36) and formula (formula 37), it can be replaced with one acoustically equivalent (not changing the characteristic length) fiber material. The polyester nonwoven fabric used for the verification was manufactured by blending 70% of the main raw material with 30% of the binder material. The effective material density ρ s and the effective fiber shown in the equations (36) and (37) were used. The diameter D is used.

このように上記式(数26)および式(数27)は、特性長の物理的な定義を崩すことなく、実効密度と体積弾性率を求め得る本発明に係る修正モデルである。この修正モデルによりJohnson-Allardモデルで必要であった流れ抵抗を必要とせず、特性長の物理的な定義を使用できるため、繊維集合体の場合は繊維径と繊維密度をデータベースとして解析することができる。これにより、繊維材料を一定の厚さに潰して音響部品を製造するに際し、特性長の定義式(数13)、(数14)から嵩密度の変化のみで熱的特性長Λ'および粘性特性長Λを定義できるため、音響特性を容易に求めることが可能となる。なお、嵩密度を上げると繊維間の接触面積の減少分を特性長に反映させる必要性が示唆されるが、嵩密度が100kg/m3未満の材料であれば、式(数13)、(数14)は問題のない誤差範囲で用いることが可能なことを確認した。ちなみに、この修正モデルにはトーチュオジティαを考慮していないが、Johnson-Allardモデルと同様の概念を用いトーチュオジティαを考慮すると実効密度ρeffは次式となる。

Figure 0004182111
この式(数38)と面積減少を考慮した特性長を用いることにより、高嵩密度の材料まで精度の高い解析が可能なことを確認している。 Thus, the above formulas (Equation 26) and (Equation 27) are modified models according to the present invention that can determine the effective density and bulk modulus without breaking the physical definition of the characteristic length. This modified model does not require the flow resistance required by the Johnson-Allard model, and the physical definition of characteristic length can be used, so in the case of fiber assemblies, the fiber diameter and fiber density can be analyzed as a database. it can. As a result, when the acoustic material is produced by crushing the fiber material to a certain thickness, the thermal characteristic length Λ ′ and the viscosity characteristic can be obtained only by changing the bulk density from the characteristic length definition formulas (Formula 13) and (Formula 14). Since the length Λ can be defined, the acoustic characteristics can be easily obtained. In addition, when the bulk density is increased, it is suggested that the decrease in the contact area between the fibers needs to be reflected in the characteristic length. However, if the bulk density is less than 100 kg / m 3 , the formula (Equation 13), ( It was confirmed that the equation (14) can be used within an error range without any problem. Incidentally, although the tortueity α is not considered in this modified model, the effective density ρ eff is expressed by the following equation when the tortuousity α is considered using the same concept as the Johnson-Allard model.
Figure 0004182111
By using this equation (Equation 38) and the characteristic length in consideration of area reduction, it has been confirmed that high-accuracy analysis can be performed even for materials with a high bulk density.

この修正モデルにより期待できるさらなる効果として次のものが挙げられる。
(1)流れ抵抗は媒体の粘性が影響するため気温により変化する特性であるが、修正モデルでは流れ抵抗を用いないことから流れ抵抗の計測ができない気温まで精度良く解析できる。
(2)繊維材料の場合、繊維の向きにより粘性特性長の値が変化する。この値を定量化することにより斜め入射やランダム入射を異方性材料として精度良く解析できるようになる。
Further effects that can be expected from this modified model include the following.
(1) Although the flow resistance is a characteristic that varies depending on the temperature due to the influence of the viscosity of the medium, the corrected model does not use the flow resistance, and therefore can accurately analyze even the temperature at which the flow resistance cannot be measured.
(2) In the case of a fiber material, the value of the viscosity characteristic length varies depending on the direction of the fiber. By quantifying this value, oblique incidence and random incidence can be analyzed with high accuracy as an anisotropic material.

熱的特性長と嵩密度の関係を示すグラフ。The graph which shows the relationship between thermal characteristic length and bulk density. 粘性特性長と嵩密度の関係を示すグラフ。The graph which shows the relationship between viscosity characteristic length and bulk density. 実効密度の計測値と毛細管モデルによる解析値の比較を示すグラフ。The graph which shows the comparison of the measured value of an effective density, and the analysis value by a capillary model. 実効密度の計測値と修正モデルによる解析値の比較を示すグラフ。The graph which shows the comparison of the measured value of an effective density, and the analysis value by a correction model. 体積弾性率の計測値と修正モデルによる解析値の比較を示すグラフ。The graph which shows the comparison of the measured value of a bulk modulus, and the analysis value by a correction model. 実効繊維径37.1μmにおける垂直入射吸音率を示すグラフ。The graph which shows normal incidence sound absorption coefficient in the effective fiber diameter of 37.1 micrometers. 実効繊維径31.5μmにおける垂直入射吸音率を示すグラフ。The graph which shows normal incidence sound absorption coefficient in the effective fiber diameter of 31.5 micrometers. 実効繊維径28.6μmにおける垂直入射吸音率を示すグラフ。The graph which shows the normal incidence sound absorption coefficient in the effective fiber diameter of 28.6 micrometers. 実効繊維径23.3μmにおける垂直入射吸音率を示すグラフ。The graph which shows the normal incidence sound absorption coefficient in the effective fiber diameter of 23.3 micrometers. 実効繊維径15.7μmにおける垂直入射吸音率を示すグラフ。The graph which shows the normal incidence sound absorption coefficient in effective fiber diameter 15.7 micrometers. 音響インピーダンス測定管の縦断面図。The longitudinal cross-sectional view of an acoustic impedance measuring tube.

符号の説明Explanation of symbols

ρeff 繊維材料内部の実効密度
Kf 繊維材料内部の体積弾性率
C 定数
Zc 特性インピーダンス
Γ 伝搬定数
Z0 音響インピーダンス
α0 垂直入射吸音率
D 実効繊維径
ρ0 空気の密度
μ 空気の粘性係数
ω 角速度(ω=2πf)
c0 空気中の音速
γ 空気の比熱比
ρ0c0 2 空気の体積弾性率
P0 大気圧
Λ 繊維材料の粘性特性長
Λ’ 繊維材料の熱的特性長
ρ 繊維集合体の嵩密度
ρs 実効材料密度
D 実効繊維径
i 虚数単位(i=−1)
d 繊維集合体の厚み
ρ0c0 空気の固有音響抵抗
ρ eff Effective density inside fiber material
Bulk modulus of elasticity inside Kf fiber material C constant
Zc Characteristic impedance Γ Propagation constant
Z 0 Acoustic impedance α 0 Normal incident sound absorption coefficient D Effective fiber diameter ρ 0 Air density μ Air viscosity coefficient ω Angular velocity (ω = 2πf)
c 0 Sound velocity in air γ Specific heat ratio of air ρ 0 c 0 2 Volume modulus of air
P 0 Atmospheric pressure Λ Viscosity characteristic length of fiber material Λ ′ Thermal characteristic length of fiber material ρ Bulk density of fiber assembly ρ s Effective material density D Effective fiber diameter i Imaginary unit (i 2 = −1)
d Thickness of fiber assembly ρ 0 c 0 Specific acoustic resistance of air

Claims (4)

実効密度ρeffを次式(数26)により算出し、体積弾性率Kfを次式(数27)により算出し、繊維径により定まる定数Cを次式(数30)により算出し、該実効密度ρeff、体積弾性率Kfおよび定数Cを用いてフェルト,グラスウールなどの繊維集合体の特性インピーダンスZcを次式(数31)により算出することを特徴とした繊維集合体の音響特性予測方法。
Figure 0004182111
上式中、ρ0は空気の密度、μは空気の粘性係数、ωはω=2πfで表される角速度(fは周波数)、Λは繊維材料の粘性特性長、Λ’は繊維材料の熱的特性長である。
Figure 0004182111
上式中、ρ0は空気の密度、c0は空気中の音速、γは空気の比熱比である。また、ρ0c0 2は空気の体積弾性率で、大気圧P0[Pa]を用いてρ0c0 2=γP0の関係式がある。また、iは虚数単位(i=−1)である。
Figure 0004182111
上式中、μは空気の粘性係数、Dは実効繊維径である。
Figure 0004182111
The effective density ρ eff is calculated by the following equation (Equation 26), the bulk modulus K f is calculated by the following equation (Equation 27), and the constant C determined by the fiber diameter is calculated by the following equation (Equation 30). A method for predicting acoustic characteristics of a fiber assembly, wherein the characteristic impedance Zc of the fiber assembly such as felt or glass wool is calculated by the following equation (Equation 31) using the density ρ eff , the bulk modulus K f and the constant C: .
Figure 0004182111
In the above equation, ρ 0 is the density of air, μ is the viscosity coefficient of air, ω is the angular velocity (f is the frequency) expressed by ω = 2πf, Λ is the viscosity characteristic length of the fiber material, and Λ ′ is the heat of the fiber material Characteristic length.
Figure 0004182111
In the above equation, ρ 0 is the density of air, c 0 is the speed of sound in the air, and γ is the specific heat ratio of air. Ρ 0 c 0 2 is the bulk modulus of air, and there is a relational expression of ρ 0 c 0 2 = γP 0 using the atmospheric pressure P 0 [P a ]. Further, i is an imaginary unit (i 2 = −1).
Figure 0004182111
In the above equation, μ is the viscosity coefficient of air, and D is the effective fiber diameter.
Figure 0004182111
フェルト,グラスウールなどの繊維集合体の伝搬定数Γを請求項1に記載した実効密度ρeffおよび体積弾性率Kfを用い次式(数32)により算出することを特徴とした繊維集合体の音響特性予測方法。
Figure 0004182111
上式中、iは虚数単位(i=−1)、ωはω=2πfで表される角速度(fは周波数)である。
The propagation constant Γ of a fiber assembly such as felt or glass wool is calculated by the following equation (Equation 32) using the effective density ρ eff and the bulk modulus K f described in claim 1, and the acoustic property of the fiber assembly: Characteristic prediction method.
Figure 0004182111
In the above formula, i is an imaginary unit (i 2 = −1), ω is an angular velocity (f is a frequency) represented by ω = 2πf.
フェルト,グラスウールなどの繊維集合体の背面剛壁を条件とする音響インピーダンスZ0を請求項1に記載した特性インピーダンスZcおよび請求項2に記載した伝搬定数Γを用い次式(数33)により算出することを特徴とした繊維集合体の音響特性予測方法。
Figure 0004182111
上式中、dは繊維集合体の厚みである。
The acoustic impedance Z 0 subject to the back rigid wall of a fiber aggregate such as felt or glass wool is calculated by the following equation (Equation 33) using the characteristic impedance Zc described in claim 1 and the propagation constant Γ described in claim 2. A method for predicting acoustic characteristics of a fiber assembly, characterized in that:
Figure 0004182111
In the above formula, d is the thickness of the fiber assembly.
フェルト,グラスウールなどの繊維集合体の垂直入射吸音率α0を請求項3に記載した音響インピーダンスZ0を用い次式(数34)により算出することを特徴とした繊維集合体の音響特性予測方法。
Figure 0004182111
上式中、ρ0c0は空気の固有音響抵抗である。
A method for predicting acoustic characteristics of a fiber assembly, wherein the normal incident sound absorption coefficient α 0 of a fiber assembly such as felt or glass wool is calculated by the following equation (Equation 34) using the acoustic impedance Z 0 according to claim 3. .
Figure 0004182111
In the above equation, ρ 0 c 0 is the specific acoustic resistance of air.
JP2006016395A 2006-01-25 2006-01-25 Method for predicting acoustic properties of fiber assemblies Active JP4182111B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006016395A JP4182111B2 (en) 2006-01-25 2006-01-25 Method for predicting acoustic properties of fiber assemblies

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006016395A JP4182111B2 (en) 2006-01-25 2006-01-25 Method for predicting acoustic properties of fiber assemblies

Publications (2)

Publication Number Publication Date
JP2007199270A JP2007199270A (en) 2007-08-09
JP4182111B2 true JP4182111B2 (en) 2008-11-19

Family

ID=38453956

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006016395A Active JP4182111B2 (en) 2006-01-25 2006-01-25 Method for predicting acoustic properties of fiber assemblies

Country Status (1)

Country Link
JP (1) JP4182111B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010210363A (en) * 2009-03-10 2010-09-24 Howa Textile Industry Co Ltd Method for predicting acoustic characteristic of porous material
JP2017125746A (en) * 2016-01-13 2017-07-20 日本音響エンジニアリング株式会社 Material parameter estimation device, material parameter estimation method and material parameter estimation program
JP2020170000A (en) * 2020-06-08 2020-10-15 日本音響エンジニアリング株式会社 Material parameter estimation device, material parameter estimation method and material parameter estimation program

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7473315B2 (en) * 2019-10-03 2024-04-23 ニチアス株式会社 Soundproofing materials

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010210363A (en) * 2009-03-10 2010-09-24 Howa Textile Industry Co Ltd Method for predicting acoustic characteristic of porous material
JP2017125746A (en) * 2016-01-13 2017-07-20 日本音響エンジニアリング株式会社 Material parameter estimation device, material parameter estimation method and material parameter estimation program
JP2020170000A (en) * 2020-06-08 2020-10-15 日本音響エンジニアリング株式会社 Material parameter estimation device, material parameter estimation method and material parameter estimation program

Also Published As

Publication number Publication date
JP2007199270A (en) 2007-08-09

Similar Documents

Publication Publication Date Title
JP4182111B2 (en) Method for predicting acoustic properties of fiber assemblies
Temiz et al. The influence of edge geometry on end-correction coefficients in micro perforated plates
JP5222185B2 (en) Prediction method for acoustic properties of porous materials
Kino A comparison of two acoustical methods for estimating parameters of glass fibre and melamine foam materials
JP5973102B1 (en) Propagation constant acquisition method, sound absorption coefficient calculation method, sound absorption coefficient evaluation device
Han et al. Modeling of wave propagation in drill strings using vibration transfer matrix methods
Tang et al. Prediction of sound absorption based on specific airflow resistance and air permeability of textiles
Slinker et al. CNT‐based artificial hair sensors for predictable boundary layer air flow sensing
Xianghai et al. Investigation of straightforward impedance eduction method on single-degree-of-freedom acoustic liners
Tang et al. Airflow resistance of acoustical fibrous materials: Measurements, calculations and applications
Dupont et al. Acoustic methods for measuring the porosities of porous materials incorporating dead-end pores
Joshi et al. A comparative study on flow resistivity for different polyurethane foam samples
Braccesi et al. Least squares estimation of main properties of sound absorbing materials through acoustical measurements
Verdiere et al. Inverse poroelastic characterization of open-cell porous materials using an impedance tube
Napolitano et al. Low frequency acoustic method to measure the complex bulk modulus of porous materials
Kim et al. Modified two-thickness method for measurement of the acoustic properties of porous materials
Peerlings Methods and techniques for precise and accurate in-duct aero-acoustic measurements: Application to the area expansion
Deaconu et al. Comparative study of sound absorption coefficient determination using FEM method and experimental tests on Kundt’s tube
Fackler et al. Porous material parameter estimation: A Bayesian approach
Egab et al. Development of empirical models of polyfelt fibrous materials for acoustical applications
Temiz Passive noise control by means of micro-perforated plates: developing tools for an optimal design
Payri et al. Acoustic response of fibrous absorbent materials to impulsive transient excitations
US20130306400A1 (en) Method of Designing and Making an Acoustic Liner for Jet Aircraft Engines
English A measurement based study of the acoustics of pipe systems with flow
Zhou et al. Numerical analysis and test of vibration and interference characteristics of dual U-tube Coriolis flowmeter

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080718

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080805

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080901

R150 Certificate of patent or registration of utility model

Ref document number: 4182111

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110905

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110905

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110905

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110905

Year of fee payment: 3

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110905

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110905

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140905

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250