JP4181281B2 - Oxygen sensor - Google Patents

Oxygen sensor Download PDF

Info

Publication number
JP4181281B2
JP4181281B2 JP25474299A JP25474299A JP4181281B2 JP 4181281 B2 JP4181281 B2 JP 4181281B2 JP 25474299 A JP25474299 A JP 25474299A JP 25474299 A JP25474299 A JP 25474299A JP 4181281 B2 JP4181281 B2 JP 4181281B2
Authority
JP
Japan
Prior art keywords
heater
oxygen
main body
heat generating
heat generation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP25474299A
Other languages
Japanese (ja)
Other versions
JP2001074687A (en
Inventor
康司 松尾
聡 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Spark Plug Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP25474299A priority Critical patent/JP4181281B2/en
Publication of JP2001074687A publication Critical patent/JP2001074687A/en
Application granted granted Critical
Publication of JP4181281B2 publication Critical patent/JP4181281B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Measuring Oxygen Concentration In Cells (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、例えば内燃機関の排気ガスなど、被測定ガス中の酸素を検出するための酸素センサに関する。
【0002】
【従来の技術】
このような酸素センサの一形態として、先端部が閉じた中空軸状をなし、内外面にそれぞれ電極層を有する酸素検出素子を備えたものが知られている。このようなタイプの酸素センサでは、基準ガスとしての大気を酸素検出素子の内面(内部電極層)に導入する一方、酸素検出素子の外面(外部電極層)には排気ガスが接触し、その結果酸素検出素子には、その内外面の酸素濃度差に応じて酸素濃淡電池起電力が生じる。そして、この酸素濃淡電池起電力を、排気ガス中の酸素濃度の検出信号として内外電極層からリード線等を介して取り出すことにより、排気ガス中の酸素濃度を検出できる。
【0003】
【発明が解決しようとする課題】
かかるタイプの酸素センサは、エンジン始動直後など排気ガス温度が低いときに、固体電解質部材で構成された酸素検出素子の活性が充分でなく、測定可能な起電力を取り出せるまでにかなりの時間を要する。そこで、発熱部を有する軸状のヒータを酸素検出素子の中空部に挿入し、エンジン始動時に酸素検出素子を加熱して活性化させることにより、有害成分の発生が比較的多い始動時に素早く測定出力(起電力)を立ち上げるようにしている。その際場合によっては互いに矛盾する以下の諸課題に総合的に配慮する必要がある。
▲1▼昇温特性の向上:加熱ロスを抑え如何に効率的に加熱し、酸素検出素子の低温活性を向上させるかが重要である。
▲2▼熱衝撃による割れの防止:酸素検出素子の低温活性向上のため、急激に局部的な加熱を行うと、熱衝撃により酸素検出素子又はヒータに割れ(クラック)を生ずる恐れがある。急激な温度変化(経時変化)及び極端な温度勾配(温度分布)を発生しないような工夫が必要である。
▲3▼マイグレーションの防止:円筒状あるいはその他の形状に形成されたセラミック基体中に、W(タングステン)等の高融点金属からなる抵抗発熱体を埋設した構造のセラミックヒータにおいて、高温使用を長時間継続すると抵抗発熱体が劣化して電気抵抗値が増大することがあり、ヒータの寿命の低下につながる問題がある。このような抵抗発熱体の劣化の原因としては、抵抗発熱体あるいはセラミック基体の構成成分が高温下の通電により電気化学的な拡散現象、いわゆるエレクトロマイグレーション(以下、単にマイグレーションという)を起こすことが挙げられている(例えば特開平4−329291号公報参照)。例えば、抵抗発熱体の構成成分がマイグレーションによりセラミック基体中に拡散流出すると、その流出部分で抵抗発熱体が消耗し、過昇・断線に至ることもある。また、焼結助剤成分として添加されるMgOあるいはCaO等の金属酸化物成分は、セラミック基体中ではガラス相の形で存在するが、これに含有される金属イオンないし酸素イオンもマイグレーションを起こしやすい。例えば抵抗発熱体の主要構成成分がWである場合には、マイグレーションにより移動してくる酸素イオンにより酸化され、同様に抵抗値増大や断線等の問題を引き起こすことがある。そこで高温使用を長時間継続しても抵抗発熱体の劣化が生じにくく、長寿命のヒータが望まれる。
【0004】
【課題を解決するための手段及び作用・効果】
上記課題を解決するために、本発明の酸素センサは、
先端部が閉じた中空軸状をなし、その中空部の内外面にそれぞれ電極層を有する酸素検出素子と、
前記酸素検出素子の中空部に挿入され、少なくともその先端部に発熱部を有する軸状のヒータとを備え、
前記ヒータの発熱部近傍において、該ヒータの中心軸線が前記酸素検出素子の中空部の中心軸線に対して片側に寄るように偏心して配置されるとともに、寄っている側の前記酸素検出素子の中空部内壁面に対応する前記発熱部の周方向の一部区域において、他の区域よりも高温となる高温発熱域を設け
前記ヒータの発熱部は、軸線方向に沿って設ける複数の本体部と、それら本体部をその両端部において互いに接続する接続部とを有する一本の連続形態に形成されている抵抗発熱体を、セラミック基体の周方向に沿って配置するとともに、
前記高温発熱域においては、前記本体部の単位長さ当たりの電気抵抗値が他の区域におけるそれよりも大であり、及び/又は前記本体部の配置間隔が他の区域におけるそれよりも小であることを特徴とする。
【0005】
上記本発明によれば、ヒータの中心軸線が中空部の中心軸線に対して偏心して配置されるとともに、寄っている側の中空部内壁面に対応する発熱部の周方向の一部区域に高温発熱域を設けたことにより、発熱部が酸素検出素子の必要部位に対して効率的に加熱を行い、酸素検出素子の低温活性を向上させる。したがって有害成分の発生が比較的多い始動時に素早く測定出力(起電力)を立ち上げることが可能となる。なお、ここで「偏心」の文言には、▲1▼ヒータの中心軸線と中空部の中心軸線が交わる状態、及び▲2▼ヒータの中心軸線が片側に寄るように中空部の中心軸線に対して概ね平行となっている状態を含めて考えることができる。
【0006】
なお、上記酸素センサには、内側に酸素検出素子を収容する筒状のケーシングと、酸素検出素子の後方側でケーシングとほぼ同軸的に配置され、酸素検出素子及び発熱体からの各リード線がそれぞれ挿通される複数のリード線挿通孔が軸方向に貫通して形成されたセラミックセパレータと、ケーシングとほぼ同軸的に配置され、セラミックセパレータを外側から覆った状態でケーシングに対し後方側から連結されるカバー部材とを設けることができる。
【0007】
さらに本発明は、ヒータの発熱部表面が酸素検出素子の中空部内壁面に接触する位置に、高温発熱域を配設することを特徴とする。ヒータと酸素検出素子の接触位置に高温発熱域を配したことで、酸素検出素子の局部的な昇温がさらに効率よく短時間でなし得る。なお、ここで「接触」の文言には、ヒータの発熱部表面を酸素検出素子の中空部内壁面に側方から押し付けられる、いわゆる横当て接触方式において、▲1▼発熱部表面の前端部のみが中空部内壁面に接触する状態(いわゆる点接触、又はそれに近い状態)、及び▲2▼前者表面が後者壁面に沿うように長い距離で接触する状態(いわゆる線接触、又はそれに近い状態)を含めて考えることができる。
【0008】
また本発明は、ヒータの発熱部は、軸線方向に沿って設ける複数の本体部と、それら本体部をその両端部において互いに接続する接続部とを有する一本の連続形態に形成されている抵抗発熱体を、セラミック基体の周方向に沿って埋設配置するとともに、高温発熱域においては、本体部の単位長さ当たりの電気抵抗値が他の区域におけるそれよりも大であり、及び/又は本体部の配置間隔が他の区域におけるそれよりも小であることを特徴とする。ヒータの発熱部表面が酸素検出素子の中空部内壁面に接触しない場合(近接状態)には、発熱部近傍位置での発生熱が熱輻射により中空部内壁面を加熱し、一方前者が後者に接触する場合(横当て接触状態)には、この熱輻射に加えて接触位置を介した熱伝導により中空部内壁面を加熱し、これらの熱伝達により発熱部の接触位置や近傍位置からは熱が奪われやすい。しかし、発熱部の接触位置又はその近傍位置を高温発熱域として充分な熱供給を可能とするとともに、抵抗発熱体のシンプルな構成と合理的な配置によって極端な温度勾配がなくヒータや酸素検出素子に割れを生じにくい酸素センサが提供できる。
【0009】
なお、抵抗発熱体の断面積の大・小関係は、単位長さ当たりの電気抵抗値の小・大関係に比例するので、本体部の断面積が他の区域におけるそれよりも小とするか、及び/又は本体部の配置間隔が他の区域におけるそれよりも小とすることで高温発熱域を容易に形成できる。これによれば、抵抗発熱体の配置パターンの工夫(断面積の大・小関係)のみで実施が容易である。ただし、高温発熱域において抵抗発熱体を他の部分よりも高電気抵抗率の材質により構成する形としてもよい。
【0010】
本発明は、高温発熱域付近における本体部の軸線方向長さが他の区域におけるそれよりも小であることを特徴とする。高温発熱域付近以外の区域で本体部の軸線方向長さ(振幅)を大とすることでこの区域での発熱量を増し、発熱部の温度勾配(温度分布)がその周方向に広がりをもつようになり、前述の点接触タイプに適した温度分布が得られる。
【0011】
本発明は、抵抗発熱体には、複数のヒータ端子部にそれぞれ電気的に接続される複数の導線部が形成されるとともに、高温発熱域が、発熱部の周方向において互いの導線部間の中央付近に配設されていることを特徴とする。導線部を相対的に高温発熱域から遠ざけることにより、高温下での通電使用を長時間継続しても、前記したマイグレーションによる抵抗発熱体の劣化が生じにくく、長寿命のヒータが得られる。
【0012】
【発明の実施の形態】
以下、本発明の実施の形態を図面に示す実施例に基づき説明する。
図1は本発明の酸素センサの内部構造を示し、図2は要部の拡大図である。酸素センサ1は、先端が閉じた中空軸状の固体電解質部材である酸素検出素子2と、酸素検出素子2の中空部2aに挿入されたヒータ3とを備える。酸素検出素子2は、ジルコニア等を主体とする酸素イオン伝導性固体電解質により中空に形成されている。また、この酸素検出素子2の中間部外側には、絶縁性セラミックから形成されたインシュレータ6、7及びタルクから形成されたセラミック粉末8を介して金属製のケーシング10が設けられている。なお、以下の説明において、酸素検出素子2の軸方向先端部に向かう側(閉じている側)を「前方側」、これと反対方向に向かう側を「後方側」と称する。
【0013】
ケーシング10は、酸素センサ1を排気管等の取付部に取り付けるためのねじ部9bを有する主体金具9、その主体金具9の後方側開口部に内側が連通するように結合された主筒14、主体金具9の前方側開口部を覆うように取り付けられたプロテクタ11等を備える。本発明の酸素センサ1はねじ部9bより前方(図1の下方)が排気管等のエンジン内に位置し、それより後方(図1の上方)は外部の大気中に位置して使用される。図2に示すように、酸素検出素子2の外面及び中空部2aの内面には、そのほぼ全面を覆うように、例えばPtあるいはPt合金により多孔質に形成された外部電極層2bと内部電極層2cとが設けられている。
【0014】
主体金具9の後方側の開口部には、前述の主筒14が絶縁体6との間にリング15を介して加締められ、この主筒14に筒状のフィルタアセンブリ16が外側から嵌合・固定されている。このフィルタアセンブリ16の後端側開口部はゴム等で構成されたグロメット17で封止され、またこれに続いてさらに内方にセラミックセパレータ18が設けられている。そして、それらセラミックセパレータ18及びグロメット17を貫通するように、酸素検出素子2用のリード線20,21及びヒータ3用のリード線(図示せず)が配置されている。他方、主体金具9の前方側開口部には酸素検出素子2の先端側(検出部)を覆うプロテクタ11が装着されている。
【0015】
フィルタアセンブリ16は、主筒14(ケーシング10)に対し後方外側からほぼ同軸的に連結される筒状形態をなすとともに、壁部に複数の気体導入孔52が形成された第一フィルタ保持部51を備える。そして、その第一フィルタ保持部51の外側には、上記気体導入孔52を塞ぐ筒状のフィルタ53(例えばポリ四フッ化エチレンの多孔質対等で構成された撥水性樹脂フィルタ)が配置され、さらに、そのフィルタ53の外側には、壁部に1ないし複数の気体導入孔55が形成されるとともに、フィルタ53を第一フィルタ保持部51との間で挟み付けて保持する第二フィルタ保持部54が配置される。グロメット17は、第一フィルタ保持部51の後方側開口部に対しその内側に弾性的にはめ込まれ、各リード線20,21等を挿通するためのシール側リード線挿通孔91を有するとともに、それらリード線20,21等の外面と第一フィルタ保持部51の内面との間をシールする。
【0016】
次に、酸素検出素子2用の一方のリード線20は、互いに一体に形成されたコネクタ23a、引出し線部23b、金具本体部23c及びヒータ把持部23dからなる内部電極接続金具23を経て前述の酸素検出素子2の内部電極層2c(図2)と電気的に接続されている。一方、他方のリード線21は、互いに一体に形成されたコネクタ33a、引出し線部33b及び金具本体部33cとを有する外部電極接続金具33を経て、酸素検出素子2の外部電極層2b(図2)と電気的に接続されている。酸素検出素子2は、その内側に配置されたヒータ3で加熱することで活性化される。ヒータ3は棒状のセラミックヒータであり、抵抗発熱体41(図5,図6参照)を有する発熱部42が、+極側及び−極側のヒータ端子部40,40に接続されるリード線(図示せず)を経て通電されることにより、酸素検出素子2の先端部(検出部)を加熱する。
【0017】
図3に示すように、内部電極接続金具23は、先端側に形成されたヒータ把持部23dの内面でヒータ3の外面を把持するとともに、金具本体部23cの外面と酸素検出素子2の内面との接触により内部電極接続金具23及びヒータ3を軸方向に位置固定する役割を果たす。また引出し線部23bの一端が金具本体部23cの周方向の1ケ所に接続する形で一体化され、さらにその他端にコネクタ23aが一体化されている。
【0018】
ヒータ把持部23dは、ヒータ3の周囲を包囲するC字状の横断面形状を有している。そして、ヒータ3を未挿入の状態ではヒータ3の外径よりは少し小さい内径を有し、ヒータ3の挿入にともない弾性的に拡径してその摩擦力によりヒータ3を把持する。
【0019】
また、金具本体部23cは、左右両側の縁に鋸刃状の接触部23eがそれぞれ複数形成された板状部分を円筒状に曲げ加工することにより、ヒータ3を包囲する形態で形成されている(すなわち、ヒータ3が挿通される)。そして、金具本体部23cの外周面及び接触部23eと酸素検出素子2の中空部2aの内壁面(内部電極層2c内面)との間の摩擦力によって内部電極接続金具23及びヒータ3を中空部2aに対し軸線方向に位置決めする役割を果たすとともに、複数の接触部23eの各先端部において内部電極層2c内面と接触・導通するようになっている。
【0020】
一方、外部電極接続金具33は、円筒状の金具本体部33cを有するとともに、引出し線部33bの一端が金具本体部33cの周方向の1ケ所に接続する形で一体化され、さらにその他端にコネクタ33aが一体化されている。他方、その中心軸線を挟んで引出し線部33bの接続点と反対側には、軸線方向のスリット33eが形成されている。このような金具本体部33cの内側に、酸素検出素子2の後端部がこれを弾性的に押し広げる形で内側から挿入されている。具体的には、酸素検出素子2の外周面後端部には外部側出力取出部としての導電層2fが、周方向に沿って帯状に形成されている。外部電極層2bは、例えば無電解メッキ等により、酸素検出素子2の係合フランジ部2sよりも前端側の要部全面を覆うものとされている。他方、導電層2fは、例えば金属ペーストを用いたパターン形成・焼き付けにより形成されるもので、同様に形成される軸線方向の接続パターン層2dを介して外部電極層2bと電気的に接続されている。
【0021】
なお、金具本体部33cの酸素検出素子2挿入側の開口部には、例えばその周方向に沿って外向きに開く挿入ガイド部33fを形成しておけば、挿入時の引っ掛かり等が生じにくく、一層スムーズな組付けが可能となる。また、同様の目的で、酸素検出素子2の開口部外縁に面取部2gを形成することもできる。
【0022】
上記酸素センサ1において、基準ガスとしての大気は外部連通口68→溝部69→気体滞留空間65→気体導入孔55→フィルタ53→気体導入孔52→隙間92→隙間98→隙間K→中空部2aを経て酸素検出素子2の内面(内部電極層2c)に導入される。一方、酸素検出素子2の外面(外部電極層2b)にはプロテクタ11のガス透過口12を介して導入された排気ガスが接触し、酸素検出素子2には、その内外面の酸素濃度差に応じて酸素濃淡電池起電力が生じる。そして、この酸素濃淡電池起電力を、排気ガス中の酸素濃度の検出信号として内外電極層2c,2b(図2)から接続金具23,33及びリード線20,21を介して取り出すことにより、排気ガス中の酸素濃度を検出できる。
【0023】
次に、図4は酸素検出素子とヒータの位置関係を説明する概念図、図5は発熱部の拡大図を示す。ヒータ3の中心軸線O1と酸素検出素子2の中空部2aの中心軸線O2との位置関係、及びヒータ3の発熱部42表面と酸素検出素子2の中空部2a内壁面との位置関係について次のように表せる。
▲1▼ヒータ3の中心軸線O1と酸素検出素子2の中空部2aの中心軸線O2が交わる状態であり、これによりヒータ3の発熱部42近傍において、ヒータ3の中心軸線O1が酸素検出素子2の中空部2aの中心軸線O2に対して片側に寄るように偏心(オフセット)して配置されている。また、ヒータ3の発熱部42表面を酸素検出素子2の中空部2a内壁面に側方から押し付けられる、いわゆる横当て接触方式において、発熱部42表面の前端部のみが中空部2a内壁面に接触する状態(点接触状態)となっている(図4(a)参照)。
▲2▼ヒータ3の中心軸線O1と酸素検出素子2の中空部2aの中心軸線O2が平行移動している状態であり、これによりヒータ3の発熱部42近傍において、ヒータ3の中心軸線O1が酸素検出素子2の中空部2aの中心軸線O2に対して片側に寄るように偏心(オフセット)して配置されている。また、ヒータ3の発熱部42表面を酸素検出素子2の中空部2a内壁面に側方から押し付けられる、いわゆる横当て接触方式において、ヒータ3の発熱部42表面が酸素検出素子2の中空部2a内壁面に沿うように長い距離で接触する状態(線接触状態)となっている(図4(b)参照)。
▲3▼ヒータ3の中心軸線O1と酸素検出素子2の中空部2aの中心軸線O2が平行移動している状態であり、これによりヒータ3の発熱部42近傍において、ヒータ3の中心軸線O1が酸素検出素子2の中空部2aの中心軸線O2に対して片側に寄るように偏心(オフセット)して配置されている(図4(b)と同じ)。また、ヒータ3の発熱部42表面と酸素検出素子2の中空部2a内壁面とが離間している、いわゆる近接方式である(図4(c)参照)。
【0024】
なお、前述の点接触又は線接触について、実際上は内部電極接続金具23のヒータ把持部23dの押し付け力等によってヒータ3の発熱部42表面は酸素検出素子2の中空部2a内壁面に対していずれも面接触状態である(図8参照)が、便宜上上記の呼称を用いる。また、酸素検出素子2の中空部2a内壁面には、固体電解質粉末の成形・焼成により製造する際に、成形時の離型性を高める等の目的で、底部側が縮径する僅かなテーパが付与されている(ただし、離型性等に問題を生じない場合には、このテーパは必ずしも付与されていなくてもよい)。
【0025】
図5は、点接触タイプの図4(a)の発熱部42の拡大図である。ヒータ3の発熱部42近傍において、ヒータ3の中心軸線O1が酸素検出素子2の中空部2aの中心軸線O2に対して片側に寄るように偏心して配置されるとともに、ヒータ3の発熱部42表面が酸素検出素子2の中空部2a内壁面に接触する位置に配設されている。ヒータ3の発熱部42表面が酸素検出素子2の中空部2a内壁面に接触する横当て接触方式であるので、接触位置を介した熱伝導により、また発熱部42近傍位置での熱輻射により、発熱部42の接触位置や近傍位置からは大量の熱が中空部2a内壁面へ熱伝達される。
【0026】
図6は、ヒータの一実施例を示している。セラミックヒータ(ヒータ)3は、円筒状のセラミック基体43と、その半径方向中間部において周方向面内に埋設された抵抗発熱体41とを有する。抵抗発熱体41(発熱部42)はヒータ3の先端部にのみ設けられている(ただし、筒状成形体432が露出する最先端には設けていない)。
【0027】
抵抗発熱体41は、図6(a)に示すように、セラミック基体43の軸線方向に沿って延びる複数の本体部411が、それと交差する周方向に配置されるとともに、それらの互いに隣接するもの同士が、両端部において接続部412により順次連結された、つづら折れ状(図6は特に屈曲状)の連続形態に形成されている。そして、その抵抗発熱体41の後端側の両端には、セラミック基体43の軸線方向に延びる電源接続用の2つの導線部413が一体化されて形成されている。
【0028】
抵抗発熱体41は高融点金属を主体に構成されており、使用可能な高融点金属としては、Wが代表的であるがMoも使用可能であり、両者は単独で用いても複合させて用いてもいずれでもよい。また、セラミック基体43は、熱伝導性と高温強度及び高温耐食性に優れていることからAlを主体に構成できるが、このほかにもムライト、コージェライト、スピネル等のAl成分を含有したセラミックを使用することができる。なお、セラミック基体中には、SiO、MgO、CaO、B等の1種又は2種以上からなる焼結助剤成分が、合計で15重量%以下の範囲で含有されていてもよい。抵抗発熱体41がWを主体に構成され、セラミック基体43がAlを主体に構成される場合が最も一般的である。
【0029】
上記ヒータ3は、例えば次のようにして製造することができる。すなわち、図7(a)に示すように、セラミックス粉末をバインダとともに板状に成形した粉末成形体431の板面に、抵抗発熱体41の原料粉末を含有するペーストを用いて、抵抗発熱体41のパターン(本体部411となるべき部分、接続部412となるべき部分、導線部413となるべき部分を含む)を印刷し、導線部413の末端にヒータ端子部40を配置する。次に、図7(b)に示すように、別途形成された円筒状の筒状成形体432の外周面に対し粉末成形体431を、抵抗発熱体41のパターンが形成された面が内側となるように巻き付けて、同図(c)に示すような筒状の成形体を作製する。そして、これを焼成することにより、図6に示すヒータ3を得る。なお、44は粉末成形体431を筒状成形体432の外周面に巻き付けたときにできる継ぎ目で、本体部411が粗となる(発熱量小)ので酸素検出素子2の中空部2a内壁面に接触する位置からは遠ざけたほうがよく(図5(b)参照)、溝状の継ぎ目は無くすのがより好ましい。
【0030】
図8は、抵抗発熱体41の印刷パターンを展開して示す模式図である。酸素検出素子2の中空部2a内壁面と接触する位置(素子接触部)Tが図8(a)のほぼ中央にあり、抵抗発熱体41は、粉末成形体431(セラミック基体43)の軸線方向に沿って延びる複数の本体部411が、それと交差する周方向に配置されるとともに、それらの互いに隣接するもの同士が、両端部において接続部412により順次連結された、つづら折れ状(図8は特に屈曲状)の一本の連続形態に形成されている。
【0031】
そして、各本体部411は、図8(b)に示すように、素子接触部Tに近い中央のものほどその断面積S(図では線幅W)が段階的に小さくなるものとされ、周方向における配置間隔P(ピッチ)も素子接触部Tに近い中央のものほど段階的に小さくされて、素子接触部Tの周囲を取り囲むように高温発熱域H1(例えば800℃の等温線)が形成される。また、高温発熱域H1付近における本体部411の軸線方向長さが他の区域におけるそれよりも小に形成し、高温発熱域H1から遠ざかるにつれて段階的に本体部411の軸線方向長さL(振幅)を大としている。振幅Lは軸線方向の両側で拡大しているので、抵抗発熱体41の印刷パターンには中央の素子接触部T近傍を頂点及び底とする山線及び谷線Mが形成される。このことで高温発熱域H1から遠い区域での発熱量を増し、発熱部42の温度勾配(温度分布)がその周方向に広がりをもつようになって、高温発熱域H1を広く取り囲む高温維持域H2(例えば700℃の等温線)が形成される。前述の点接触タイプに適した温度分布が得られる。
【0032】
このように、発熱部42近傍位置での発生熱が熱輻射により中空部2a内壁面を加熱し、一方接触位置を介した熱伝導により中空部2a内壁面を加熱し、これらの熱伝達により発熱部42の接触位置や近傍位置からは大量の熱が奪われる。しかし、発熱部42の接触位置又はその近傍位置を高温発熱域H1として充分な熱供給を可能とするとともに、抵抗発熱体41のシンプルな構成と合理的な配置によって極端な温度勾配がなくヒータや酸素検出素子に割れを生じにくい酸素センサが提供できる。さらに、抵抗発熱体41の印刷パターンの両端には、周方向で約180°(半周)の間隔を保ちつつヒータ3の軸線方向後端側に向かって延び、2つのヒータ端子部40とそれぞれ電気的に接続される2つの導線部413が一体的に形成され、両導線部413間の周方向中央付近に高温発熱域H1を配置している。この結果、導線部413は相対的に高温発熱域H1から遠ざけられ、高温発熱下で通電使用を長時間継続してもマイグレーションによる抵抗発熱体41の劣化が生じにくく、長寿命のヒータ3が得られる。
【0033】
なお、抵抗発熱体41の断面積Sの大・小関係は、単位長さ当たりの電気抵抗値の小・大関係に比例する。したがって、抵抗発熱体41の成分変更等を行うこと無くその配置パターンの工夫(断面積Sの大・小関係)で実施が可能である。また、接続部412についても、素子接触部Tに近い中央のものほどその断面積(図では線幅)が段階的に小さくなるものとされている。
【0034】
図9は、図8の第一変更例で、本体部411の軸線方向長さ(振幅)を周方向に対して略一定長さとした点のみ異なっている。このことで高温発熱域H1から遠い区域での発熱量が減少し、高温発熱域H1は周方向に少し狭くなり、それを取り囲む高温維持域H2はやや軸線方向に偏平状となる。
【0035】
図10は、図8の第二変更例で、抵抗発熱体41の印刷幅が、粉末成形体431の幅W0の1/2(半周分)とされている。軸方向前端側は振幅を揃え、後端側で高温発熱域H1から遠ざかるにつれて段階的に本体部411の軸線方向長さL(振幅)を大としている(谷線Mのみ)。高温発熱域H1、高温維持域H2ともに軸線方向前端側にやや尖った形状になると考えられる。全体的に高温発熱域H1と、高温維持域H2を狭い範囲に納めることができ、マイグレーション防止に有効と考えられる。なお、接続部412が曲線状に形成され、抵抗発熱体41のつづら折れ状パターンは図10で湾曲状(蛇行状)を呈している。
【0036】
図11は、図8の第三及び第四変更例で、ともに軸方向後端側は振幅を揃え、前端側で高温発熱域H1から遠ざかるにつれて段階的に本体部411の軸線方向長さL(振幅)を大としており(山線Mのみ)、本体部411の本数を減らしている。全体の発熱量をやや抑えることにより、熱衝撃による割れの防止を図っている。
【0037】
なお、上述の各実施例においては、抵抗発熱体41はセラミック基体43内に埋設されているが、セラミック基体43の外周面に抵抗発熱体41を形成するようにしてもよい。また、抵抗発熱体41を形成するために、抵抗発熱材料粉末のペーストを用いてセラミック粉末の成形体431上に所望のパターンを印刷した後焼成する方法が使用されているが、予め焼成されたセラミック基板43の外周面上に、蒸着、スパッタリング等により抵抗発熱材料の膜を各種パターンに形成する方法を採用することも可能である。
【図面の簡単な説明】
【図1】本発明の酸素センサの縦断面図。
【図2】図1の酸素センサの要部を示す縦断面図。
【図3】セラミックセパレータへの組み付け状態を示す分解斜視図。
【図4】酸素検出素子とヒータの位置関係を説明する概念図。
【図5】発熱部の拡大図。
【図6】ヒータの一実施例を示す部分切欠き斜視図及びその断面図。
【図7】図8のヒータの製造方法の一例を示す説明図。
【図8】抵抗発熱体の印刷パターンを展開して示す模式図。
【図9】抵抗発熱体の印刷パターンの第一変更例を展開して示す模式図。
【図10】抵抗発熱体の印刷パターンの第二変更例を展開して示す模式図。
【図11】抵抗発熱体の印刷パターンの第三及び第四変更例を展開して示す模式図。
【符号の説明】
1 酸素センサ
2 酸素検出素子
2a 中空部
2b 外部電極層
2c 内部電極層
3 ヒータ
10 ケーシング
18 セラミックセパレータ
20,21 リード線
40 ヒータ端子部
41 抵抗発熱体
411 本体部
412 接続部
413 導線部
42 発熱部
43 セラミック基体
431 粉末成形体
432 筒状成形体
44 継ぎ目
72 リード線挿通孔
H1 高温発熱域
H2 高温維持域
P 本体部の配置間隔(ピッチ)
S 本体部の断面積
W 本体部の線幅
L 本体部の軸線方向長さ(振幅)
O1 ヒータの中心軸線
O2 酸素検出素子の中空部の中心軸線
T 素子接触部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an oxygen sensor for detecting oxygen in a gas to be measured such as an exhaust gas of an internal combustion engine.
[0002]
[Prior art]
As one form of such an oxygen sensor, a sensor having an oxygen detecting element having a hollow shaft shape with a closed tip and electrode layers on the inner and outer surfaces is known. In this type of oxygen sensor, the atmosphere as a reference gas is introduced into the inner surface (internal electrode layer) of the oxygen detection element, while the exhaust gas contacts the outer surface (external electrode layer) of the oxygen detection element. An oxygen concentration cell electromotive force is generated in the oxygen detection element in accordance with the difference in oxygen concentration between the inner and outer surfaces. The oxygen concentration cell electromotive force is taken out from the inner and outer electrode layers as a detection signal of the oxygen concentration in the exhaust gas through a lead wire or the like, whereby the oxygen concentration in the exhaust gas can be detected.
[0003]
[Problems to be solved by the invention]
In this type of oxygen sensor, when the exhaust gas temperature is low, such as immediately after the engine is started, the activity of the oxygen detection element constituted by the solid electrolyte member is not sufficient, and it takes a considerable time to obtain a measurable electromotive force. . Therefore, a shaft-like heater with a heat generating part is inserted into the hollow part of the oxygen detection element, and the oxygen detection element is heated and activated when the engine is started. (Electromotive force) is started up. In this case, it is necessary to consider comprehensively the following issues that contradict each other.
(1) Improvement of temperature rise characteristics: It is important how to efficiently heat and suppress the low temperature activity of the oxygen detecting element while suppressing heating loss.
{Circle around (2)} Prevention of cracking due to thermal shock: If local heating is suddenly performed to improve the low temperature activity of the oxygen detecting element, there is a risk that the oxygen detecting element or the heater may crack due to thermal shock. It is necessary to devise a technique that does not generate a rapid temperature change (change over time) and an extreme temperature gradient (temperature distribution).
(3) Prevention of migration: A ceramic heater having a structure in which a resistance heating element made of a refractory metal such as W (tungsten) is embedded in a cylindrical or other ceramic base is used for a long time. If continued, the resistance heating element may deteriorate and the electrical resistance value may increase, leading to a problem that the life of the heater is reduced. The cause of such deterioration of the resistance heating element is that the components of the resistance heating element or the ceramic substrate cause an electrochemical diffusion phenomenon, so-called electromigration (hereinafter simply referred to as migration), when energized at a high temperature. (See, for example, JP-A-4-329291). For example, if the components of the resistance heating element diffuse and flow out into the ceramic substrate due to migration, the resistance heating element may be consumed at the outflow portion, leading to overheating and disconnection. Further, the metal oxide component such as MgO or CaO added as a sintering aid component exists in the form of a glass phase in the ceramic substrate, but the metal ions or oxygen ions contained therein are also likely to cause migration. . For example, when the main component of the resistance heating element is W, it may be oxidized by oxygen ions that move due to migration, and similarly cause problems such as an increase in resistance value and disconnection. Therefore, even if high temperature use is continued for a long time, the resistance heating element hardly deteriorates, and a long-life heater is desired.
[0004]
[Means for solving the problems and actions / effects]
In order to solve the above problems, the oxygen sensor of the present invention is
A hollow shaft with a closed tip is formed, and oxygen detecting elements each having an electrode layer on the inner and outer surfaces of the hollow part,
It is inserted into the hollow part of the oxygen detection element, and comprises a shaft-shaped heater having a heat generating part at least at its tip part,
In the vicinity of the heat generating portion of the heater, the central axis of the heater is eccentrically arranged so as to approach one side with respect to the central axis of the hollow portion of the oxygen detecting element, and the hollow of the oxygen detecting element on the approaching side is arranged. In a partial area in the circumferential direction of the heat generating part corresponding to the inner wall surface, a high temperature heat generating area that is higher in temperature than other areas is provided ,
The heating part of the heater includes a resistance heating element formed in one continuous form having a plurality of main body parts provided along the axial direction and connecting parts that connect the main body parts to each other at both ends thereof. While arranging along the circumferential direction of the ceramic substrate,
In the high-temperature heat generation region, the electric resistance value per unit length of the main body is larger than that in other areas, and / or the arrangement interval of the main body portions is smaller than that in other areas. characterized in that there.
[0005]
According to the present invention, the central axis of the heater is arranged eccentrically with respect to the central axis of the hollow portion, and high-temperature heat is generated in a partial area in the circumferential direction of the heat generating portion corresponding to the inner wall surface of the hollow portion on the approaching side. By providing the region, the heat generating portion efficiently heats the necessary portion of the oxygen detection element, and improves the low temperature activity of the oxygen detection element. Therefore, it is possible to quickly start up the measurement output (electromotive force) at the start-up when the generation of harmful components is relatively large. Here, the term “eccentric” includes (1) the state in which the central axis of the heater and the central axis of the hollow portion intersect, and (2) the central axis of the hollow portion so that the central axis of the heater is on one side. Can be considered including the state of being almost parallel.
[0006]
The oxygen sensor has a cylindrical casing that accommodates an oxygen detection element on the inside thereof, and is arranged substantially coaxially with the casing on the rear side of the oxygen detection element, and each lead wire from the oxygen detection element and the heating element is provided. A ceramic separator formed by penetrating a plurality of lead wire insertion holes inserted in the axial direction, respectively, is disposed substantially coaxially with the casing, and is connected to the casing from the rear side while covering the ceramic separator from the outside. A cover member can be provided.
[0007]
Furthermore, the present invention is characterized in that a high temperature heat generating region is disposed at a position where the surface of the heat generating portion of the heater contacts the inner wall surface of the hollow portion of the oxygen detecting element. By arranging the high-temperature heat generation region at the contact position between the heater and the oxygen detection element, the local temperature increase of the oxygen detection element can be more efficiently and quickly performed. Here, in the term “contact”, in the so-called side-contact contact method in which the surface of the heat generating portion of the heater is pressed from the side against the inner wall surface of the oxygen detecting element, only (1) the front end portion of the surface of the heat generating portion is included. Including the state of contact with the inner wall surface of the hollow part (so-called point contact or a state close thereto) and the state of contact of the former surface at a long distance along the latter wall surface (so-called line contact or state close thereto) Can think.
[0008]
Further, according to the present invention, the heat generating portion of the heater is a resistor formed in one continuous form having a plurality of main body portions provided along the axial direction and connecting portions that connect the main body portions to each other at both ends thereof. The heating element is embedded and arranged along the circumferential direction of the ceramic substrate, and in the high temperature heating area, the electric resistance value per unit length of the main body is larger than that in other areas and / or the main body. The arrangement interval of the parts is smaller than that in other areas. When the surface of the heat generating part of the heater does not contact the inner wall surface of the oxygen detecting element (close state), the heat generated near the heat generating part heats the inner wall surface of the hollow part by heat radiation, while the former contacts the latter. In this case (lateral contact state), in addition to this heat radiation, the inner wall surface of the hollow part is heated by heat conduction through the contact position, and heat is taken away from the contact position of the heat generating part and nearby positions by these heat transfer. Cheap. However, it is possible to supply heat sufficiently with the contact position of the heat generating part or the vicinity thereof as a high temperature heat generation area, and there is no extreme temperature gradient due to the simple configuration and rational arrangement of the resistance heating element, and the heater and oxygen detection element It is possible to provide an oxygen sensor that does not easily crack.
[0009]
Note that the cross-sectional area of the resistance heating element is proportional to the small / large relationship of the electrical resistance value per unit length, so whether the cross-sectional area of the main body is smaller than that in other areas. And / or a high-temperature heat generation area can be easily formed by making the arrangement interval of the main body portions smaller than that in other areas. According to this, implementation is easy only with the arrangement pattern of the resistance heating elements (large / small relation of cross-sectional area). However, the resistance heating element may be made of a material having a higher electrical resistivity than the other parts in the high temperature heating region.
[0010]
The present invention is characterized in that the axial length of the main body portion in the vicinity of the high-temperature heat generation region is smaller than that in other regions. Increasing the axial length (amplitude) of the main body in an area other than the vicinity of the high-temperature heat generation area increases the amount of heat generated in this area, and the temperature gradient (temperature distribution) of the heat generation area spreads in the circumferential direction. Thus, a temperature distribution suitable for the aforementioned point contact type can be obtained.
[0011]
According to the present invention, the resistance heating element is formed with a plurality of conductor portions that are electrically connected to the plurality of heater terminal portions, respectively, and a high temperature heat generation region is formed between the conductor portions in the circumferential direction of the heating portion. It is arranged near the center. By keeping the conductive wire portion relatively away from the high temperature heat generation region, the resistance heating element is not easily deteriorated due to the migration even when energization at a high temperature is continued for a long time, and a long-life heater can be obtained.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described based on examples shown in the drawings.
FIG. 1 shows the internal structure of the oxygen sensor of the present invention, and FIG. 2 is an enlarged view of the main part. The oxygen sensor 1 includes an oxygen detection element 2 that is a hollow shaft-shaped solid electrolyte member with a closed tip, and a heater 3 inserted into the hollow portion 2 a of the oxygen detection element 2. The oxygen detection element 2 is formed hollow with an oxygen ion conductive solid electrolyte mainly composed of zirconia or the like. Further, a metal casing 10 is provided outside the intermediate portion of the oxygen detecting element 2 via insulators 6 and 7 made of insulating ceramic and ceramic powder 8 made of talc. In the following description, the side (closed side) toward the tip end in the axial direction of the oxygen detection element 2 is referred to as “front side”, and the side toward the opposite direction is referred to as “rear side”.
[0013]
The casing 10 includes a metal shell 9 having a threaded portion 9b for attaching the oxygen sensor 1 to an attachment portion such as an exhaust pipe, and a main cylinder 14 coupled so that the inside communicates with a rear side opening of the metal shell 9. The protector 11 etc. which were attached so that the front side opening part of the metal shell 9 may be covered are provided. The oxygen sensor 1 of the present invention is used in such a manner that the front side (lower side in FIG. 1) of the screw portion 9b is located in the engine such as an exhaust pipe, and the rear side (upper side in FIG. 1) is located in the outside atmosphere. . As shown in FIG. 2, an outer electrode layer 2b and an inner electrode layer formed on the outer surface of the oxygen detecting element 2 and the inner surface of the hollow portion 2a so as to cover almost the entire surface, for example, porous with Pt or a Pt alloy. 2c.
[0014]
In the opening on the rear side of the metal shell 9, the aforementioned main cylinder 14 is crimped via a ring 15 between the insulator 6 and a cylindrical filter assembly 16 is fitted to the main cylinder 14 from the outside.・ It is fixed. The opening on the rear end side of the filter assembly 16 is sealed with a grommet 17 made of rubber or the like, and a ceramic separator 18 is further provided inward. Then, lead wires 20 and 21 for the oxygen detection element 2 and lead wires (not shown) for the heater 3 are disposed so as to penetrate the ceramic separator 18 and the grommet 17. On the other hand, a protector 11 that covers the front end side (detection unit) of the oxygen detection element 2 is attached to the front opening of the metal shell 9.
[0015]
The filter assembly 16 has a cylindrical shape that is substantially coaxially connected to the main cylinder 14 (casing 10) from the rear outer side, and a first filter holding part 51 in which a plurality of gas introduction holes 52 are formed in the wall part. Is provided. And on the outside of the first filter holding part 51, a cylindrical filter 53 (for example, a water repellent resin filter composed of a porous pair of polytetrafluoroethylene, for example) that closes the gas introduction hole 52 is disposed, Further, one or a plurality of gas introduction holes 55 are formed in the wall portion outside the filter 53, and a second filter holding portion that holds the filter 53 with being sandwiched between the first filter holding portion 51. 54 is arranged. The grommet 17 is elastically fitted to the inner side of the rear opening of the first filter holding part 51 and has seal-side lead wire insertion holes 91 for inserting the lead wires 20, 21 and the like. The space between the outer surfaces of the lead wires 20 and 21 and the inner surface of the first filter holding portion 51 is sealed.
[0016]
Next, the one lead wire 20 for the oxygen detection element 2 passes through the internal electrode connection fitting 23 including the connector 23a, the lead wire portion 23b, the fitting main body portion 23c, and the heater gripping portion 23d, which are integrally formed with each other. The oxygen detection element 2 is electrically connected to the internal electrode layer 2c (FIG. 2). On the other hand, the other lead wire 21 passes through an external electrode connection fitting 33 having a connector 33a, a lead wire portion 33b, and a fitting main body portion 33c, which are integrally formed with each other, and then the external electrode layer 2b (FIG. ) And are electrically connected. The oxygen detection element 2 is activated by heating with the heater 3 disposed inside thereof. The heater 3 is a rod-shaped ceramic heater, and a heating wire 42 having a resistance heating element 41 (see FIGS. 5 and 6) is connected to a lead terminal (40, 40) on the positive electrode side and the negative electrode side (40). By energizing through (not shown), the tip (detection unit) of the oxygen detection element 2 is heated.
[0017]
As shown in FIG. 3, the internal electrode connection fitting 23 grips the outer surface of the heater 3 with the inner surface of the heater gripping portion 23 d formed on the tip side, and the outer surface of the fitting main body portion 23 c and the inner surface of the oxygen detection element 2. The internal electrode connection fitting 23 and the heater 3 serve to fix the position in the axial direction by the contact. Further, one end of the lead wire portion 23b is integrated so as to be connected to one place in the circumferential direction of the metal fitting main body portion 23c, and the connector 23a is further integrated at the other end.
[0018]
The heater gripping portion 23 d has a C-shaped cross-sectional shape that surrounds the periphery of the heater 3. When the heater 3 is not inserted, the inner diameter is slightly smaller than the outer diameter of the heater 3, and the diameter of the heater 3 is elastically increased as the heater 3 is inserted, and the heater 3 is gripped by the frictional force.
[0019]
The metal fitting body 23c is formed in a form surrounding the heater 3 by bending a plate-like portion in which a plurality of saw blade-like contact portions 23e are formed on both left and right edges into a cylindrical shape. (In other words, the heater 3 is inserted). Then, the internal electrode connection fitting 23 and the heater 3 are hollowed out by the frictional force between the outer peripheral surface of the fitting main body 23c and the contact portion 23e and the inner wall surface (inner surface of the internal electrode layer 2c) of the hollow portion 2a of the oxygen detecting element 2. In addition to the role of positioning in the axial direction with respect to 2a, the tip of each of the plurality of contact portions 23e is in contact with and conductive with the inner surface of the internal electrode layer 2c.
[0020]
On the other hand, the external electrode connection fitting 33 has a cylindrical fitting main body portion 33c and is integrated in such a manner that one end of the lead wire portion 33b is connected to one place in the circumferential direction of the fitting main body portion 33c, and further to the other end. The connector 33a is integrated. On the other hand, an axial slit 33e is formed on the side opposite to the connection point of the lead line portion 33b across the central axis. The rear end portion of the oxygen detection element 2 is inserted into the metal fitting main body portion 33c from the inside in such a manner as to elastically push it. Specifically, a conductive layer 2 f as an external output extraction portion is formed in a strip shape along the circumferential direction at the rear end portion of the outer peripheral surface of the oxygen detection element 2. The external electrode layer 2b covers the entire surface of the main part on the front end side of the engagement flange portion 2s of the oxygen detection element 2 by, for example, electroless plating. On the other hand, the conductive layer 2f is formed, for example, by pattern formation / baking using a metal paste, and is electrically connected to the external electrode layer 2b via the axially formed connection pattern layer 2d. Yes.
[0021]
In addition, if an insertion guide portion 33f that opens outward along the circumferential direction is formed in the opening portion of the metal fitting main body portion 33c on the oxygen detection element 2 insertion side, for example, a hook at the time of insertion hardly occurs, Smoother assembly becomes possible. For the same purpose, the chamfered portion 2g can be formed on the outer edge of the opening of the oxygen detecting element 2.
[0022]
In the oxygen sensor 1, the atmosphere as the reference gas is the external communication port 68 → the groove 69 → the gas retention space 65 → the gas introduction hole 55 → the filter 53 → the gas introduction hole 52 → the gap 92 → the gap 98 → the gap K → the hollow portion 2a. Then, it is introduced into the inner surface (internal electrode layer 2c) of the oxygen detecting element 2. On the other hand, the exhaust gas introduced through the gas permeation port 12 of the protector 11 is in contact with the outer surface (external electrode layer 2b) of the oxygen detection element 2, and the oxygen detection element 2 has an oxygen concentration difference between its inner and outer surfaces. Accordingly, an oxygen concentration cell electromotive force is generated. Then, the oxygen concentration cell electromotive force is taken out from the inner and outer electrode layers 2c and 2b (FIG. 2) via the connection fittings 23 and 33 and the lead wires 20 and 21 as a detection signal of the oxygen concentration in the exhaust gas. The oxygen concentration in the gas can be detected.
[0023]
Next, FIG. 4 is a conceptual diagram for explaining the positional relationship between the oxygen detecting element and the heater, and FIG. 5 is an enlarged view of the heat generating portion. The positional relationship between the central axis O1 of the heater 3 and the central axis O2 of the hollow portion 2a of the oxygen detecting element 2 and the positional relationship between the surface of the heat generating portion 42 of the heater 3 and the inner wall surface of the hollow portion 2a of the oxygen detecting element 2 are as follows. It can be expressed as follows.
(1) The central axis O1 of the heater 3 and the central axis O2 of the hollow portion 2a of the oxygen detecting element 2 intersect each other. As a result, the central axis O1 of the heater 3 near the heat generating part 42 of the heater 3 The hollow portion 2a is arranged eccentrically (offset) so as to be closer to one side with respect to the central axis O2. Further, in a so-called lateral contact method in which the surface of the heat generating portion 42 of the heater 3 is pressed from the side against the inner wall surface of the hollow portion 2a of the oxygen detecting element 2, only the front end portion of the surface of the heat generating portion 42 contacts the inner wall surface of the hollow portion 2a. (Refer to FIG. 4A).
(2) The central axis O1 of the heater 3 and the central axis O2 of the hollow portion 2a of the oxygen detecting element 2 are moving in parallel, whereby the central axis O1 of the heater 3 is in the vicinity of the heat generating portion 42 of the heater 3. The oxygen detecting element 2 is arranged eccentrically (offset) so as to be closer to one side with respect to the central axis O2 of the hollow portion 2a. Further, in the so-called lateral contact method in which the surface of the heat generating portion 42 of the heater 3 is pressed from the side against the inner wall surface of the hollow portion 2 a of the oxygen detecting element 2, the surface of the heat generating portion 42 of the heater 3 is the hollow portion 2 a of the oxygen detecting element 2. It is in the state (line contact state) which contacts at a long distance along the inner wall surface (see FIG. 4B).
(3) The central axis O1 of the heater 3 and the central axis O2 of the hollow portion 2a of the oxygen detecting element 2 are moving in parallel, whereby the central axis O1 of the heater 3 is in the vicinity of the heat generating portion 42 of the heater 3. The oxygen detecting element 2 is arranged eccentrically (offset) so as to be closer to one side with respect to the central axis O2 of the hollow portion 2a (same as FIG. 4B). Further, this is a so-called proximity system in which the surface of the heat generating portion 42 of the heater 3 and the inner wall surface of the hollow portion 2a of the oxygen detecting element 2 are separated (see FIG. 4C).
[0024]
In addition, with respect to the aforementioned point contact or line contact, the surface of the heat generating portion 42 of the heater 3 is actually against the inner wall surface of the hollow portion 2a of the oxygen detecting element 2 by the pressing force of the heater gripping portion 23d of the internal electrode connection fitting 23. All are in surface contact (see FIG. 8), but the above names are used for convenience. In addition, the inner wall surface of the hollow portion 2a of the oxygen detecting element 2 has a slight taper that the diameter of the bottom portion is reduced for the purpose of improving the releasability at the time of molding when the solid electrolyte powder is molded and fired. (However, this taper does not necessarily have to be provided if there is no problem in releasability or the like).
[0025]
FIG. 5 is an enlarged view of the heat generating portion 42 of FIG. 4A of the point contact type. In the vicinity of the heat generating portion 42 of the heater 3, the central axis O 1 of the heater 3 is eccentrically arranged so as to be closer to one side with respect to the central axis O 2 of the hollow portion 2 a of the oxygen detecting element 2, and the surface of the heat generating portion 42 of the heater 3 is arranged. Is disposed at a position in contact with the inner wall surface of the hollow portion 2a of the oxygen detecting element 2. Since the heat generating part 42 surface of the heater 3 is in a lateral contact contact system in contact with the inner wall surface of the hollow part 2a of the oxygen detecting element 2, heat conduction through the contact position and heat radiation in the vicinity of the heat generating part 42 A large amount of heat is transferred to the inner wall surface of the hollow portion 2a from the contact position of the heat generating portion 42 or the vicinity thereof.
[0026]
FIG. 6 shows an embodiment of the heater. The ceramic heater (heater) 3 includes a cylindrical ceramic base body 43 and a resistance heating element 41 embedded in a circumferential surface at a radially intermediate portion thereof. The resistance heating element 41 (heating part 42) is provided only at the tip of the heater 3 (however, it is not provided at the forefront where the tubular molded body 432 is exposed).
[0027]
As shown in FIG. 6A, the resistance heating element 41 includes a plurality of main body portions 411 extending along the axial direction of the ceramic base body 43 and arranged adjacent to each other in the circumferential direction, and adjacent to each other. They are formed in a continuous form of a zigzag shape (particularly a bent shape in FIG. 6) that is sequentially connected by connecting portions 412 at both ends. Then, at both ends on the rear end side of the resistance heating element 41, two power connection portions 413 extending in the axial direction of the ceramic base 43 are integrally formed.
[0028]
The resistance heating element 41 is mainly composed of a refractory metal. As a refractory metal that can be used, W is typical, but Mo can also be used. Both of them can be used alone or in combination. Or either. The ceramic substrate 43 can be mainly composed of Al 2 O 3 because of its excellent thermal conductivity, high temperature strength, and high temperature corrosion resistance. In addition, Al 2 O 3 components such as mullite, cordierite, and spinel can be used. Ceramics containing can be used. Note that in the ceramic substrate, SiO 2, MgO, CaO, 1 kind or sintering aid component of two or more of such B 2 O 5 is, be contained in a range of 15 wt% or less in total Good. Most commonly, the resistance heating element 41 is mainly composed of W and the ceramic base body 43 is mainly composed of Al 2 O 3 .
[0029]
The heater 3 can be manufactured as follows, for example. That is, as shown in FIG. 7A, the resistance heating element 41 is formed by using a paste containing the raw material powder of the resistance heating element 41 on the plate surface of the powder molded body 431 in which the ceramic powder is formed into a plate shape together with the binder. The pattern (including a portion to be the main body portion 411, a portion to be the connection portion 412 and a portion to be the conductive wire portion 413) is printed, and the heater terminal portion 40 is disposed at the end of the conductive wire portion 413. Next, as shown in FIG. 7B, the powder molded body 431 is disposed on the outer peripheral surface of a separately formed cylindrical tubular molded body 432, and the surface on which the pattern of the resistance heating element 41 is formed is the inner side. It winds so that it may become, and the cylindrical molded object as shown in the figure (c) is produced. And the heater 3 shown in FIG. 6 is obtained by baking this. Reference numeral 44 denotes a joint formed when the powder molded body 431 is wound around the outer peripheral surface of the cylindrical molded body 432, and the main body portion 411 becomes rough (small calorific value), so that it is formed on the inner wall surface of the hollow portion 2 a of the oxygen detecting element 2. It is better to keep away from the contact position (see FIG. 5B), and it is more preferable to eliminate the groove-like seam.
[0030]
FIG. 8 is a schematic diagram showing a developed print pattern of the resistance heating element 41. A position (element contact portion) T in contact with the inner wall surface of the hollow portion 2a of the oxygen detecting element 2 is substantially in the center of FIG. 8A, and the resistance heating element 41 is in the axial direction of the powder compact 431 (ceramic base body 43). A plurality of main body portions 411 extending along the circumferential direction are arranged in a circumferential direction intersecting with each other, and those adjacent to each other are sequentially connected by connecting portions 412 at both end portions (see FIG. 8). In particular, it is formed in a single continuous form.
[0031]
As shown in FIG. 8B, each main body portion 411 has a cross-sectional area S (line width W in the drawing) that is gradually reduced toward the center closer to the element contact portion T. The arrangement interval P (pitch) in the direction is also gradually reduced toward the center closer to the element contact portion T, and a high temperature heat generation area H1 (for example, an 800 ° C. isotherm) is formed so as to surround the element contact portion T. Is done. Further, the axial length of the main body 411 near the high temperature heat generation area H1 is formed to be smaller than that in other areas, and the axial length L (amplitude) of the main body 411 gradually increases as the distance from the high temperature heat generation area H1 increases. ). Since the amplitude L increases on both sides in the axial direction, a mountain line and a valley line M having apexes and bottoms in the vicinity of the central element contact portion T are formed in the print pattern of the resistance heating element 41. This increases the amount of heat generation in the area far from the high temperature heat generation area H1, and the temperature gradient (temperature distribution) of the heat generating portion 42 spreads in the circumferential direction so that the high temperature maintenance area widely surrounds the high temperature heat generation area H1. H2 (eg, 700 ° C. isotherm) is formed. A temperature distribution suitable for the aforementioned point contact type is obtained.
[0032]
Thus, the heat generated in the vicinity of the heat generating portion 42 heats the inner wall surface of the hollow portion 2a by heat radiation, while the inner wall surface of the hollow portion 2a is heated by heat conduction through the contact position. A large amount of heat is taken away from the contact position of the portion 42 and the vicinity thereof. However, the contact position of the heat generating part 42 or a position in the vicinity thereof can be used as a high temperature heat generation area H1 to enable sufficient heat supply, and the simple structure and rational arrangement of the resistance heat generating element 41 eliminates an extreme temperature gradient, It is possible to provide an oxygen sensor that does not easily crack the oxygen detection element. Furthermore, both ends of the printing pattern of the resistance heating element 41 extend toward the rear end side in the axial direction of the heater 3 while maintaining an interval of about 180 ° (half circumference) in the circumferential direction. The two conductive wire portions 413 that are connected to each other are integrally formed, and the high-temperature heat generation region H1 is disposed near the center in the circumferential direction between the two conductive wire portions 413. As a result, the conductive wire portion 413 is relatively far away from the high temperature heat generation region H1, and even if the energization is continued for a long time under high temperature heat generation, the resistance heating element 41 is hardly deteriorated due to migration, and the long life heater 3 is obtained. It is done.
[0033]
In addition, the large / small relationship of the cross-sectional area S of the resistance heating element 41 is proportional to the small / large relationship of the electrical resistance value per unit length. Therefore, the arrangement of the resistance heating element 41 can be performed without changing the components, etc., with the arrangement pattern (large or small relationship of the cross-sectional area S). In addition, as for the connection portion 412, the cross-sectional area (the line width in the drawing) is gradually reduced in the middle near the element contact portion T.
[0034]
FIG. 9 is a first modification of FIG. 8 and differs only in that the length (amplitude) of the main body 411 in the axial direction is substantially constant with respect to the circumferential direction. As a result, the amount of heat generation in the area far from the high temperature heat generation area H1 is reduced, the high temperature heat generation area H1 is slightly narrowed in the circumferential direction, and the high temperature maintenance area H2 surrounding it is slightly flat in the axial direction.
[0035]
FIG. 10 is a second modification of FIG. 8, and the printing width of the resistance heating element 41 is ½ (half the circumference) of the width W 0 of the powder compact 431. The front end side in the axial direction has the same amplitude, and the length L (amplitude) in the axial direction of the main body portion 411 is gradually increased as the distance from the high temperature heat generation region H1 is increased on the rear end side (only the valley line M). It is considered that both the high temperature heat generation area H1 and the high temperature maintenance area H2 have a slightly sharp shape on the front end side in the axial direction. As a whole, the high-temperature heat generation area H1 and the high-temperature maintenance area H2 can be contained within a narrow range, which is considered effective for preventing migration. Note that the connecting portion 412 is formed in a curved shape, and the spelled pattern of the resistance heating element 41 has a curved shape (meandering shape) in FIG.
[0036]
FIG. 11 shows the third and fourth modified examples of FIG. 8, in which both the axial rear end side has the same amplitude, and the axial length L () of the main body 411 gradually increases as the distance from the high temperature heat generation region H1 increases. Amplitude) is increased (only the mountain line M), and the number of main body portions 411 is reduced. By suppressing the amount of heat generated, the cracks caused by thermal shock are prevented.
[0037]
In each of the embodiments described above, the resistance heating element 41 is embedded in the ceramic base 43, but the resistance heating element 41 may be formed on the outer peripheral surface of the ceramic base 43. Further, in order to form the resistance heating element 41, a method of printing a desired pattern on a ceramic powder molded body 431 using a paste of resistance heating material powder and firing is used. It is also possible to employ a method of forming a film of a resistance heating material in various patterns on the outer peripheral surface of the ceramic substrate 43 by vapor deposition, sputtering, or the like.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view of an oxygen sensor of the present invention.
FIG. 2 is a longitudinal sectional view showing a main part of the oxygen sensor of FIG.
FIG. 3 is an exploded perspective view showing an assembled state of the ceramic separator.
FIG. 4 is a conceptual diagram illustrating the positional relationship between an oxygen detection element and a heater.
FIG. 5 is an enlarged view of a heat generating portion.
FIG. 6 is a partially cutaway perspective view and a cross-sectional view showing one embodiment of a heater.
7 is an explanatory view showing an example of a manufacturing method of the heater of FIG. 8. FIG.
FIG. 8 is a schematic diagram showing a developed print pattern of a resistance heating element.
FIG. 9 is a schematic diagram illustrating a first modified example of a printing pattern of a resistance heating element.
FIG. 10 is a schematic diagram illustrating a second modified example of the printing pattern of the resistance heating element.
FIG. 11 is a schematic diagram showing a third and fourth modification of the printing pattern of the resistance heating element in an expanded manner.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Oxygen sensor 2 Oxygen detection element 2a Hollow part 2b External electrode layer 2c Internal electrode layer 3 Heater 10 Casing 18 Ceramic separator 20, 21 Lead wire 40 Heater terminal part 41 Resistance heating element 411 Main body part 412 Connection part 413 Conducting part 42 Heating part 43 Ceramic body 431 Powder molded body 432 Cylindrical molded body 44 Seam 72 Lead wire insertion hole H1 High temperature heat generation area H2 High temperature maintenance area P Position of main body (pitch)
S Cross-sectional area of main body W Line width of main body L Length of main body in the axial direction (amplitude)
O1 Heater central axis O2 Oxygen sensing element hollow central axis T Element contact area

Claims (5)

先端部が閉じた中空軸状をなし、その中空部の内外面にそれぞれ電極層を有する酸素検出素子と、
前記酸素検出素子の中空部に挿入され、少なくともその先端部に発熱部を有する軸状のヒータとを備え、
前記ヒータの発熱部近傍において、該ヒータの中心軸線が前記酸素検出素子の中空部の中心軸線に対して片側に寄るように偏心して配置されるとともに、寄っている側の前記酸素検出素子の中空部内壁面に対応する前記発熱部の周方向の一部区域において、他の区域よりも高温となる高温発熱域を設け
前記ヒータの発熱部は、軸線方向に沿って設ける複数の本体部と、それら本体部をその両端部において互いに接続する接続部とを有する一本の連続形態に形成されている抵抗発熱体を、セラミック基体の周方向に沿って配置するとともに、
前記高温発熱域においては、前記本体部の単位長さ当たりの電気抵抗値が他の区域におけるそれよりも大であり、及び/又は前記本体部の配置間隔が他の区域におけるそれよりも小であることを特徴とする、酸素センサ。
A hollow shaft with a closed tip is formed, and oxygen detecting elements each having an electrode layer on the inner and outer surfaces of the hollow part,
It is inserted into the hollow part of the oxygen detection element, and comprises a shaft-shaped heater having a heat generating part at least at its tip part,
In the vicinity of the heat generating portion of the heater, the central axis of the heater is eccentrically arranged so as to approach one side with respect to the central axis of the hollow portion of the oxygen detecting element, and the hollow of the oxygen detecting element on the approaching side is arranged. In a partial area in the circumferential direction of the heat generating part corresponding to the inner wall surface, a high temperature heat generating area that is higher in temperature than other areas is provided ,
The heating part of the heater includes a resistance heating element formed in one continuous form having a plurality of main body parts provided along the axial direction and connecting parts that connect the main body parts to each other at both ends thereof. While arranging along the circumferential direction of the ceramic substrate,
In the high-temperature heat generation region, the electric resistance value per unit length of the main body is larger than that in other areas, and / or the arrangement interval of the main body portions is smaller than that in other areas. An oxygen sensor, characterized by being.
前記高温発熱域は、前記ヒータの発熱部表面が前記酸素検出素子の中空部内壁面に接触する位置に配設されていることを特徴とする、請求項1記載の酸素センサ。  2. The oxygen sensor according to claim 1, wherein the high-temperature heat generation region is disposed at a position where the surface of the heat generating portion of the heater contacts the inner wall surface of the hollow portion of the oxygen detecting element. 前記高温発熱域においては、前記本体部の断面積が他の区域におけるそれよりも小であり、及び/又は前記本体部の配置間隔が他の区域におけるそれよりも小であることを特徴とする、請求項1又は2記載の酸素センサ。In the high-temperature heat generation area, the cross-sectional area of the main body is smaller than that in other areas, and / or the arrangement interval of the main body is smaller than that in other areas. The oxygen sensor according to claim 1 or 2 . 前記高温発熱域付近における前記本体部の軸線方向長さが他の区域におけるそれよりも小であることを特徴とする、請求項1ないし3のいずれか1項に記載の酸素センサ。The oxygen sensor according to any one of claims 1 to 3, wherein an axial length of the main body portion in the vicinity of the high-temperature heat generation region is smaller than that in other regions. 前記抵抗発熱体には、複数のヒータ端子部にそれぞれ電気的に接続される複数の導線部が形成されるとともに、
前記高温発熱域は、前記発熱部の周方向において互いの導線部間の中央付近に配設されていることを特徴とする、請求項1ないし4のいずれか1項に記載の酸素センサ。
The resistance heating element is formed with a plurality of conductor portions electrically connected to the plurality of heater terminal portions, respectively.
5. The oxygen sensor according to claim 1, wherein the high-temperature heat generation area is disposed in the vicinity of the center between the conductor portions in the circumferential direction of the heat generation portion. 6.
JP25474299A 1999-09-08 1999-09-08 Oxygen sensor Expired - Fee Related JP4181281B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25474299A JP4181281B2 (en) 1999-09-08 1999-09-08 Oxygen sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25474299A JP4181281B2 (en) 1999-09-08 1999-09-08 Oxygen sensor

Publications (2)

Publication Number Publication Date
JP2001074687A JP2001074687A (en) 2001-03-23
JP4181281B2 true JP4181281B2 (en) 2008-11-12

Family

ID=17269248

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25474299A Expired - Fee Related JP4181281B2 (en) 1999-09-08 1999-09-08 Oxygen sensor

Country Status (1)

Country Link
JP (1) JP4181281B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004319459A (en) * 2003-03-27 2004-11-11 Kyocera Corp Ceramic heating resistor and heater for oxygen probe using the same
JP4762539B2 (en) * 2004-12-28 2011-08-31 日本特殊陶業株式会社 Gas sensor
WO2013024775A1 (en) * 2011-08-17 2013-02-21 日本特殊陶業株式会社 Gas sensor
JP6811177B2 (en) * 2016-03-16 2021-01-13 日本特殊陶業株式会社 Ceramic heater
JP7363736B2 (en) 2020-10-13 2023-10-18 株式会社デンソー gas sensor

Also Published As

Publication number Publication date
JP2001074687A (en) 2001-03-23

Similar Documents

Publication Publication Date Title
US8118985B2 (en) Gas sensor
US4578174A (en) Oxygen sensor with heater
US4169778A (en) Heated solid electrolyte oxygen sensor
US20110309068A1 (en) Heating element for a hot air device
US8377273B2 (en) Gas sensor
US6432289B1 (en) Oxygen concentration detector
US4528086A (en) Oxygen sensor with heater
JP2792225B2 (en) Oxygen sensor
JP4181281B2 (en) Oxygen sensor
JP2000266718A (en) Oxygen sensor
EP0989368A3 (en) Glow sensor - ceramic flat plate
US6497808B1 (en) Gas sensor
JPH08122297A (en) Oxygen concentration detector
JP2010032496A (en) Gas sensor
JP2014163867A (en) Gas sensor and heater element
JP5139955B2 (en) Ceramic heater, gas sensor element and gas sensor
US4657660A (en) Apparatus for sensing oxygen concentration
JP6917207B2 (en) Gas sensor
JP7206123B2 (en) Sensor element and gas sensor
JP4762539B2 (en) Gas sensor
JPH0416218Y2 (en)
JP2580624Y2 (en) Oxygen sensor
JP7161437B2 (en) heater
JPS628134B2 (en)
US20190353611A1 (en) Sensor element and gas sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060801

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080515

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080709

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080805

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080829

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110905

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110905

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110905

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110905

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120905

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120905

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130905

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees