JP4179601B2 - Arbor and rotating tools - Google Patents

Arbor and rotating tools Download PDF

Info

Publication number
JP4179601B2
JP4179601B2 JP2003029798A JP2003029798A JP4179601B2 JP 4179601 B2 JP4179601 B2 JP 4179601B2 JP 2003029798 A JP2003029798 A JP 2003029798A JP 2003029798 A JP2003029798 A JP 2003029798A JP 4179601 B2 JP4179601 B2 JP 4179601B2
Authority
JP
Japan
Prior art keywords
arbor
fixing member
hole
rotary tool
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003029798A
Other languages
Japanese (ja)
Other versions
JP2004237401A (en
Inventor
史郎 吉岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tungaloy Corp
Original Assignee
Tungaloy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tungaloy Corp filed Critical Tungaloy Corp
Priority to JP2003029798A priority Critical patent/JP4179601B2/en
Publication of JP2004237401A publication Critical patent/JP2004237401A/en
Application granted granted Critical
Publication of JP4179601B2 publication Critical patent/JP4179601B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Auxiliary Devices For Machine Tools (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、例えば正面フライス、シェルエンドミル、ボーリングカッタ、サイドカッタ等の回転工具を取付けるためのアーバ、および、それら回転工具に関するもので、特に圧縮空気や切削油(以下、流体という)の内部供給が可能なものに関するものである。
【0002】
【従来の技術】
従来、正面フライス、シェルエンドミル、ボーリングカッタ、サイドカッタ等(以下、「回転工具」という)において、切りくずを除去するための流体の供給方法として、以下のようなものが挙げられる。
(1)流体の供給が正面フライス等の回転工具の外部から行われる方法であり、具体的には図11に示すように、工作機械に備えられたノズルから切削部に向けて流体が供給される方法である。
(2)流体の供給が正面フライス等の回転工具30の内部から行われる方法であり、具体的には図12(a)、(b)および図13に示すように、アーバ本体10には軸中心付近に軸線方向に貫通した流体供給穴19が穿設される。回転工具30を固定する固定部材20にも軸中心付近に軸線方向に中央穴241が穿設される。そして、アーバに回転工具30が装着された状態において、前記流体供給穴19と前記中央穴241とが連通し、工作機械の主軸111から供給された流体は、該アーバ内部を通り前記固定部材20のフランジ部22の先端中央部から該アーバの軸線方向に向かって噴射される。(例えば、非特許文献1)
(3)流体の供給が正面フライス等の回転工具30の内部から行われる方法である。具体的には図14乃至図17に示すように、アーバ本体10は、テーパシャンク部11の小径側端面に開口するプルスタッド取付穴13と、他端面側に回転工具30の中央取付穴35に嵌合する取付嵌合部15と、前記取付嵌合部15の端面に開口する固定部材取付穴17とを有し、前記プルスタッド取付穴13と前記固定部材取付穴17とに連通する流体供給穴19が穿設される。前記固定部材取付穴17に係合する固定部材20は、軸部21の軸中心付近に中央穴241が穿設され、その中央穴241から軸部21外周面に連通する分岐穴242が中心軸に対して略対称に2本形成される。そして、回転工具30においては、中央取付穴35の内壁に開口する吸入口37と、前記吸入口37に連通し該回転工具30の先端外周部に設けられた切りくずポケット31の起立壁38に開口する噴射口39とが設けられる。以上の構成により、工作機械の主軸111から供給される流体は、該アーバ本体10と固定部材20と回転工具30の内部を通って、前記噴射口39から切れ刃に向かって供給される。(例えば、非特許文献2)
【0003】
【非特許文献1】
日立ツール株式会社発行 CUTTING TOOLS 商品カタログ(2002年9月発行)71頁 痾高送りラジアスミルASR形用アーバの仕様図
【非特許文献2】
三菱マテリアル株式会社発行 ダイヤチタニットニュースLJ410「高送り用ラジアスカッタAJX形」(2002年10月発行)2頁 アーバ形の仕様図、3頁の専用アーバ規格の仕様図
【0004】
【発明が解決しようとする課題】
しかしながら、従来技術の(1)項に述べた流体の供給方法は、外径の大きい回転工具では、切削部全体に流体を噴射させるのは困難である。また、回転工具30の送り方向が変化したり、外径や全長の異なる回転工具30に交換した場合には、切れ刃に流体が噴射されなくなるため、その都度ノズル60を切れ刃に向くように調整する必要があった。あるいは、無人加工においてはノズル60の位置をその都度切れ刃に合わせることができないので、切りくずは除去されなくなり回転工具30の切れ刃と被削材との間に噛み込まれ、加工面70、71に傷をつけたり、切れ刃を欠損させてしまうという問題があった。
従来技術の(2)項に述べた流体の供給方法においても、流体は回転工具30の軸中心付近から軸線方向に噴射されるのみで、切れ刃に向かって直接噴射されないので、切れ刃近傍の切りくずは、充分に除去されず加工面70、71に傷をつけたり切れ刃を欠損させてしまうことがあった。
従来技術の(3)項に述べた流体の供給方法は、全ての切れ刃に向けて正確に流体を供給することができる。しかしながら、固定部材20の軸中心付近に設けられる中央穴241または分岐穴242の断面積は、該固定部材20の軸部21外径の制約を受け充分な断面積を確保することができない。したがって、中央穴241または分岐穴242の断面積は、該回転工具30に設けられる噴射口39の総面積よりも小さくなり、切れ刃へ供給される流体の圧力が低下してしまう。そのため、切りくずは確実に除去されず、回転工具30の切れ刃と被削材との間に噛み込まれ、加工面70、71に傷をつけたり、切れ刃を欠損させてしまうという問題があった。仮に切れ刃に噴射する流体の圧力を高めるため、前記固定部材20の内部に設けた中央穴241または分岐穴242の断面積を増加すると、前記固定部材20の軸部21の強度低下をきたし、回転工具30の保持力が不足したり、軸部21の破損といったトラブルが生じてしまうおそれがある。
【0005】
本発明は、前記の問題点を解決して、工作機械から供給される流体がアーバおよび回転工具の内部に設けられた供給通路内を通り、回転工具の切れ刃に正確に、且つ、高い圧力で噴射することができ、さらにアーバの固定部材の強度低下を抑えることを目的としている。
【0006】
【課題を解決するための手段】
前記の問題点を解決するために、本発明のアーバは、工作機械の主軸に挿入して保持されるシャンク部を有し、他端部に回転工具と嵌合する取付嵌合部とを有するアーバ本体と、前記取付嵌合部の内径部に係合する固定部材とを備えたアーバにおいて、該アーバ本体は、前記シャンク部の端面から前記嵌合部の端面又は外周面に貫通又は連通する穴を有し、前記固定部材は、その一端部に前記取付嵌合部の内径部に係合する係合部を外周面に設けた軸部と、他端部にフランジ部とを有し、前記軸部の外周には少なくとも1溝が前記係合部を切り欠くとともに前記軸部の端面に開口するように前記軸部の長手方向に延設されることを特徴とする。
好ましくは前記固定部材の軸部に延設される溝の横断面形状が角溝状、又は、円弧状、又は、U字形、又は、V字形のいずれかの形状とされ、前記固定部材の軸部に延設される溝が1本以上6本以下であることを特徴とする。
また、本発明の回転工具は、前記アーバに装着される回転工具において、前記取付嵌合部に嵌合する中央取付穴と、前記固定部材の前記フランジ部に対応するザグリ穴と、前記中央取付穴および前記ザグリ穴に連通する貫通穴とを有し、前記中央取付穴の内壁、又は、端面、又は前記貫通穴の内周面のいずれかに開口する吸入口を有し、前記吸入口に連通し該回転工具の外周方向に向かって開口する噴射口を有することを特徴とする。そして、好ましくは前記回転工具において前記固定部材の軸部に延設される溝の総断面積が前記噴射口の総断面積以上であることを特徴とする。
【0007】
本発明によれば、工作機械の主軸から供給された流体は、アーバ本体においては内部に設けられた穴を通り取付嵌合部まで供給され、前記取付嵌合部に係合する固定部材においては軸部の外周に延設された溝を通り、該アーバ本体の取付嵌合部と回転工具の中央取付穴との間の隙間に供給される。そして、前記流体は、該回転工具の中央取付穴に開口する吸入口から供給され、該回転工具の内部を通り、前記吸入口に連通し該回転工具の外周方向に向かって開口する噴射口から噴射される。このような構成によれば、流体は上述の経路以外にほとんど供給されないので、供給された量をほとんど損失することなく前記噴射口から所望の位置に向けて噴射することができる。特に、前記固定部材における流体通路である溝は、軸部の外周に延設されるので、断面積の低下が少なく前記軸部の強度低下が抑えられる。そのため、該アーバに装着される回転工具を高い締付力で固定することができる。さらに、溝の総断面積は前記噴射口の総断面積以上であるから、前記噴射口から噴射される流体の圧力がほとんど低下せず、切りくず除去効果が高まり、確実に切りくずを除去できる。回転工具においては、切れ刃に近接する位置に前記噴射口を設けることができ、且つ、所望する方向に向けて噴射することができるので、切れ刃に向けて正確に、且つ、高い圧力で流体を噴射することができる。
【0008】
【発明の実施の形態】
以下に本発明の一実施の形態につき、図1乃至図7を参照して説明する。
図1はアーバに回転工具を装着した状態の一部断面図を含む正面図である。図2(a)乃至(c)はそれぞれアーバの固定部材の正面図および側面図である。図3はアーバ先端部と回転工具にかけての流体通路を示す図である。図4は回転工具の斜視図である。図5(a)乃至(c)および図6(a)乃至(c)は固定部材の変形例の正面図および側面図である。図7(a)乃至(i)は固定部材の側面図であり、溝形状および溝数の変形例を示す図である。
【0009】
図1に示すように、アーバ本体10は、図示省略した工作機械の主軸111に挿入して保持されるテーパシャンク部11と、このテーパシャンク部11の大径側端部にフランジ部12と、前記テーパシャンク部11の小径側端面に開口するプルスタッド取付穴13と、前記プルスタッド取付穴13の内径に係合部14とを有する。前記係合部14にはプルスタッドボルト40が係合固定される。また、前記テーパシャンク部11の反対側には取付嵌合部15および取付基準面16と、前記取付嵌合部15の端面に開口する固定部材取付穴17と、前記固定部材取付穴17の内径に係合部18とを有する。前記係合部18には固定部材30が係合固定される。該アーバ本体10の軸中心付近には、前記プルスタッド取付穴13と前記固定部材取付穴17とに連通する流体供給穴19が穿設される。前記テーパシャンク部11の小径側端部に係合固定されるプルスタッド40の軸中心付近にも貫通穴41が穿設され、前記プルスタッド40からアーバ本体10の前記固定部材取付穴17にかけて流体通路が連通するように形成される。
【0010】
固定部材20は、図2に示すように、軸部21とフランジ部22とを有し、前記軸部21の外周面に係合部23が形成され、さらに、前記外周面に中心軸を基準にして略対称に2本の溝24が軸線方向に延設される。前記溝24は前記軸部21端面に開口し、横断面形状は角溝状をなす。該固定部材20は、アーバ本体10の固定部材取付穴17に係合した状態において、前記2本の溝24が前記固定部材取付穴17と連通している。
【0011】
該アーバ本体10に装着される回転工具30は、その先端外周部に外周面に沿って切りくずポケット31およびチップ座32が少なくとも1つ設けられ、前記チップ座32内に超硬合金などの公知材料からなるチップ50が着脱自在に装着される。前記チップ50は、図1には図示していないが、くさびによって前記チップ座32に楔着される。該回転工具30の軸中心付近には、前記固定部材20の挿通する挿通穴33が設けられ、前記挿通穴33は、基部端面34に開口する中央取付穴35と、他端面側に開口する固定部材係合穴36とに連通する。該回転工具30は、前記中央取付穴35を前記アーバ本体10の取付嵌合部15に嵌着される。そして、固定部材20は、該アーバの固定部材取付穴17に係合するとともに、該回転工具30の前記固定部材係合穴36と係合することによって、該回転工具30は、その基部端面34を該アーバ本体10の取付基準面16に押圧固定される。そして、該回転工具30は、前記中央取付穴35の底部端面に開口する流体の吸入口37が形成され、図4(チップ形状およびチップ固定手段が異なる)に示すように、前記吸入口37に連通し切りくずポケット31の起立壁38から外側に向いて開口する噴射口39が設けられる。
【0012】
次に、上述のアーバ本体10および回転工具30において、流体経路について図を参照しながら説明する。図示しない工作機械の主軸111から供給される流体は、アーバ本体10のテーパシャンク部11端面に装着されたプルスタッド40の軸中心付近の貫通穴41を通って、アーバ本体10の軸中心付近に穿設された流体供給穴19を通過し、固定部材取付穴17に供給される。そして、流体は、図3の斜線部で示すように、前記固定部材取付穴17に係合する固定部材20の軸部21の外周に延設された溝24に供給される。前記溝24は、回転工具30を装着した状態において、アーバ本体10の取付嵌合部15の端面より突出するように形成されており、前記溝24内を通過した流体は、回転工具30の中央取付穴35に生じる隙間に供給される。そして、流体は、該回転工具30の前記中央取付穴35端面に開口する吸入口37から供給され、該回転工具30の内部を通過し、切りくずポケット31の起立壁38に開口する噴射口39から切れ刃に向かって噴射される。
【0013】
なお、前記噴射口39は、切りくず除去の効果を高めるために回転工具30に装着された全てのチップ50に対して設けられることが好ましい。また、流体の圧力を損なわないために、アーバ本体10に設けられた流体通路各部の断面積は、前記噴射口39の総断面積以上、前記総断面積の5倍以下であることが好ましい。そうすれば、前記噴射口39から噴射される流体の圧力が低下することがない。特に固定部材20の軸部21においては、外周に延設される溝24の総断面積が大きくなると軸部21の強度低下を招いてしまうので、さらに好ましくは、前記軸部21の外周に延設される溝24の総断面積は、前記噴射口39の総断面積以上、前記総断面積の3倍以下とするのがよい。
【0014】
以上のように、工作機械から供給された流体は、プルスタッド40、アーバ本体10、固定部材20、回転工具30の内部を通って最終的に切れ刃に近接する位置から噴射されるので、流体の量を損なうことがなく、さらに、切れ刃に向かって正確に且つ高い圧力で噴射されるので、切りくずを確実に除去することができる。
【0015】
上述した実施形態に限らず、例えば、固定部材20の形状は図5および図6に示すような変形例が実施可能である。図5に示す固定部材20は、フランジ部22の回転工具30の固定部材係合穴36に当接する部分がテーパ状をなすものである。そうすれば、前記固定部材係合穴36および固定部材20のフランジ部22の外径を小さくすることができ、且つ、該回転工具30は強固にアーバ本体10に固定されるので、小径の回転工具のように、固定部材係合穴36の外径の制約がある場合に好ましい。図6に示す固定部材20は、軸部21に対してフランジ部22の外径が比較的大きいものである。このような固定部材20は、回転工具30に対し広い当接面が確保できるので、前記回転工具30をアーバ本体10にきわめて強力に固定することができる。特に大径の回転工具を装着するアーバの固定部材20として好ましい変形例である。一方、回転工具30についても、チップ50の装着手段は楔に限定されるものではなく、また、チップが着脱自在に装着されるものに限らず、例えばろう付け工具のように切れ刃部材を回転工具本体に一体的に設けたものであってもよく、本発明の要旨を逸脱しない範囲で種々に変更可能である。
【0016】
また、固定部材20の軸部21に形成する溝24の変形例を図7に示す。図7の(a)乃至(f)に示すように、前記溝24の横断面形状は、角溝状、円弧状、U字状、V字状などの形状から選ばれてよい。また、角溝状の形状においては、角部が面取りされたもの又は円弧状に丸められたものが軸部21の強度を高めるうえで好ましい。さらに、固定部材20の溝24は、1本形成されれば、流体の通路が確保される。また、前述したように該回転工具30の噴射口39は、全てのチップ50に対して設けられることが望ましく、そのような場合には中央取付穴35に同心円上に複数設けられる吸入口37に対して均等な圧力で流体を供給するために前記溝24は図7の(g)乃至(i)に示すように複数設けるのが好ましい。ただし、6本より多くなると前記軸部21の係合部23が不足してしまい、アーバ本体10との係合が不充分になるので6本以下が好ましい。さらに、一般的に前記係合部23のほとんどはM24以下のねじで形成されるものであり、そのような固定部材20においては、前記溝24の本数は1本以上4本以下が好ましい。
【0017】
次に、アーバの固定部材20の軸部21の強度を比較するために、前記軸部21の断面積をこの実施形態のものと従来技術のものとで比較した。従来のアーバは非特許文献2に相当し、このアーバの正面図、側面図および断面図を図8(a)乃至(c)に示す。この実施形態におけるアーバの固定部材の正面図、側面図および断面図は図9(a)乃至(c)に示す。また、両アーバに装着される回転工具30は、外径が63mm、装着するチップ50が8枚、前記チップ50全てに対して切りくずポケット31の起立壁38に噴射口39が設けられ、その直径は1.5mmである。そして、前記回転工具30における噴射口39の総断面積は14.1mm2となる。図8に示す従来アーバの固定部材20は、軸中心付近に中央穴241が穿設され、前記中央穴241に連通し該軸部21の外周面に開口するように直径方向に延びる分岐穴242が設けられる。前記中央穴241の直径は4.3mmであり、前記分岐穴242の直径は3mmである。このときの前記中央穴241の総断面積は14.5mm2と、ほぼ前記回転工具30に設けられた噴射口39の総断面積と同じであり、供給される流体の圧力は低下することはない。このとき、斜線で示す軸部21の断面積は34.4mm2である。一方、本発明の第1の実施形態における固定部材20は、図9に示すように、軸部21外周に2本の角溝状の溝24を軸部21端面から延設したものである。前記溝24の寸法は、幅が4mm、深さが2mmであり、これら寸法は、前記溝24の総断面積が上述した従来アーバの固定部材20に設けられた中央穴241の断面積と等しくなるように設定されている。このとき、この実施例の軸部21は48.8mm2の断面積を確保することができ、従来技術の固定部材20に対し断面積が42%増加しており、同一の流体の供給量を確保しながら軸部21の断面強度を大幅に高めることができる。言い換えれば、従来技術の固定部材20と同じ断面強度を確保しつつ流体の供給量を大幅に増加することが可能である。以上のように、この実施例のアーバでは、固定部材20における流体通路の総断面積が回転工具の噴射口39の総断面積より大きく、且つ、固定部材20の強度の低下が抑えられる。したがって、供給する流体の圧力を低下させることがないうえ、回転工具30を強固に固定することができる。
【0018】
次に、第2の実施形態について図10を参照しながら説明する。この実施形態では、図10に示すように、アーバ本体10の取付嵌合部15の外周面と固定部材取付穴17内壁とに貫通する分岐穴151が少なくとも1本設けられたものである。そして、回転工具30の中央取付穴35の内壁には前記分岐穴151の開口部を囲むように溝371が形成され、前記溝371に開口する吸入口37が設けられ、前記吸入口37に連通し該回転工具30の切りくずポケット31の起立壁38に開口する噴射口39が設けられる。なお、前述した以外の構成は、前述の第1の実施形態と同一部分には同一符号を付して、その説明は省略する。
【0019】
以上の構成によれば、流体は、アーバ本体10の流体供給穴19を通過し、固定部材20の外周に延設される溝24を通過し、前記分岐穴151から外周面の開口部に供給される。そして、回転工具30の中央取付穴35内壁の溝371を介して、吸入口37に供給される。最終的には、第1の実施形態と同様に、前記噴射口39から切れ刃に向かって流体が噴射される。前記噴射口39は、切りくず除去の効果を高めるために回転工具30に装着された全てのチップ50に対して設けられることが好ましい。また、流体の圧力を損なわないために、アーバに設けられた流体通路各部の断面積は、前記噴射口39の総断面積以上であることが好ましい。そうすれば、前記噴射口39から噴射される流体の圧力が低下することがない。さらに、この実施の形態によれば、固定部材20の軸部21の外周に設けられる溝24は、その軸線方向の長さを第1の実施の形態より短くすることができ、該軸部21の強度がさらに高められる。
【0020】
【発明の効果】
以上説明したように、本発明のアーバおよび回転工具によれば、工作機械の主軸111から供給される流体は、前記アーバおよび回転工具の内部を通り、切れ刃に近接する位置から切れ刃に向かって正確に且つ高い圧力で噴射することができる。そのため、切れ刃近傍の切りくずを確実に除去することができ、切れ刃と被削材との間に切りくずをかみ込むことがなく、加工面を傷つけることがなく、切れ刃の欠損を防止する。
【図面の簡単な説明】
【図1】本発明のアーバおよび回転工具における第1の実施形態の正面図と一部断面図である。
【図2】(a)第1の実施形態のアーバにおける固定部材の正面図である。
(b)第1の実施形態のアーバにおける固定部材の側面図である。
(c)第1の実施形態のアーバにおける固定部材の側面図である。
【図3】第1の実施形態のアーバ先端部と回転工具とにおける流体通路を示す断面図である。
【図4】第1の実施形態の回転工具の斜視図である。
【図5】(a)第1の実施形態のアーバにおける固定部材の変形例の正面図である。
(b)第1の実施形態のアーバにおける固定部材の変形例の側面図である。
(c)第1の実施形態のアーバにおける固定部材の変形例の側面図である。
【図6】(a)第1の実施形態のアーバにおける固定部材の別の変形例の正面図である。
(b)第1の実施形態のアーバにおける固定部材の別の変形例の側面図である。
(c)第1の実施形態のアーバにおける固定部材の別の変形例の側面図である。
【図7】(a)乃至(b)第1の実施形態のアーバにおける固定部材の側面図であり、溝の横断面形状および溝数の変形例を示す図である。
【図8】(a)乃至(c)従来のアーバにおける固定部材の正面図、側面図、および、A−A断面図である。
【図9】(a)乃至(c)本発明の第1の実施形態のアーバにおける固定部材の正面図、側面図、および、B−B断面図である。
【図10】本発明の第2の実施形態のアーバ先端部と回転工具とにおける流体通路を示す断面図である。
【図11】従来の流体供給方法を示す図であり、外部から流体供給する方式を示す図である。
【図12】内部に流体通路を有するアーバおよび回転工具の従来技術を示す図である。
【図13】非特許文献1の図である。
【図14】内部に流体通路を有するアーバおよび回転工具の別の従来技術を示す図である。
【図15】(a)乃至(c)図14に示す従来技術のアーバにおける固定部材の正面図、側面図、および、下面図である。
【図16】図14に示す従来技術のアーバ先端部と回転工具とにおける流体通路を示す断面図である。
【図17】非特許文献2の図である。
【符号の説明】
10 アーバ本体
11 テーパシャンク部
111 工作機械の主軸
12 フランジ部
13 プルスタッド取付穴
14 係合部
15 取付嵌合部
151 分岐穴
16 取付基準面
17 固定部材取付穴
18 係合部
19 流体供給穴
20 固定部材
21 軸部
22 フランジ部
23 係合部
24
241 中央穴
242 分岐穴
30 回転工具
31 切りくずポケット
32 チップ座
33 挿通穴
34 基部端面
35 中央取付穴
36 固定部材係合穴
37 吸入口
371 溝
38 起立壁
39 噴射口
40 プルスタッドボルト
41 貫通穴
50 チップ
51 チップ取付ねじ
60 ノズル
70 被削材の加工底面
71 被削材の加工壁面
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an arbor for mounting rotating tools such as a face mill, a shell end mill, a boring cutter, a side cutter, and the like, and particularly to the internal supply of compressed air and cutting oil (hereinafter referred to as fluid). Is about what is possible.
[0002]
[Prior art]
Conventionally, in a face mill, a shell end mill, a boring cutter, a side cutter, etc. (hereinafter referred to as “rotary tool”), a fluid supply method for removing chips includes the following.
(1) This is a method in which the fluid is supplied from the outside of a rotary tool such as a face mill. Specifically, as shown in FIG. 11, the fluid is supplied from a nozzle provided in the machine tool toward the cutting portion. It is a method.
(2) The fluid is supplied from the inside of the rotary tool 30 such as a face mill. Specifically, as shown in FIGS. 12 (a), (b) and FIG. 13, the arbor body 10 has a shaft. A fluid supply hole 19 penetrating in the axial direction is formed near the center. A central hole 241 is also formed in the axial direction in the vicinity of the axial center of the fixing member 20 that fixes the rotary tool 30. When the rotary tool 30 is attached to the arbor, the fluid supply hole 19 and the central hole 241 communicate with each other, and the fluid supplied from the main spindle 111 of the machine tool passes through the arbor and the fixing member 20. Injected from the center of the front end of the flange portion 22 toward the axial direction of the arbor. (For example, Non-Patent Document 1)
(3) The fluid is supplied from the inside of the rotary tool 30 such as a face mill. Specifically, as shown in FIGS. 14 to 17, the arbor body 10 has a pull stud mounting hole 13 that opens on the small diameter side end surface of the taper shank portion 11 and a central mounting hole 35 of the rotary tool 30 on the other end surface side. A fluid supply having a fitting fitting portion 15 to be fitted and a fixing member attaching hole 17 opened in an end face of the fitting fitting portion 15 and communicating with the pull stud attaching hole 13 and the fixing member attaching hole 17. A hole 19 is drilled. The fixing member 20 that engages with the fixing member mounting hole 17 has a central hole 241 formed in the vicinity of the axial center of the shaft portion 21, and a branch hole 242 that communicates from the central hole 241 to the outer peripheral surface of the shaft portion 21. Are formed almost symmetrically. In the rotary tool 30, a suction port 37 that opens in the inner wall of the central mounting hole 35, and a standing wall 38 of the chip pocket 31 that communicates with the suction port 37 and that is provided on the outer periphery of the tip of the rotary tool 30. An opening 39 is provided. With the above configuration, the fluid supplied from the main spindle 111 of the machine tool passes through the arbor body 10, the fixing member 20, and the rotary tool 30, and is supplied from the injection port 39 toward the cutting edge. (For example, Non-Patent Document 2)
[0003]
[Non-Patent Document 1]
CUTING TOOLS catalog issued by Hitachi Tool Co., Ltd. (issued in September 2002) page 71 仕 様 Specifications of arbor for high feed radius mill ASR type [Non-patent document 2]
Published by Mitsubishi Materials Corporation Diatita Knit News LJ410 “Radius cutter AJX type for high feed” (issued in October 2002) Page 2 Specification of arbor type Specification drawing of special arbor standard on page 3 [0004]
[Problems to be solved by the invention]
However, in the fluid supply method described in the section (1) of the prior art, it is difficult for the rotary tool having a large outer diameter to eject the fluid to the entire cutting portion. In addition, when the feed direction of the rotary tool 30 is changed or when the rotary tool 30 is replaced with a rotary tool 30 having a different outer diameter or overall length, the fluid is not sprayed to the cutting edge, so that the nozzle 60 faces the cutting edge each time. There was a need to adjust. Alternatively, since the position of the nozzle 60 cannot be adjusted to the cutting edge each time in unmanned machining, the chips are not removed and are caught between the cutting edge of the rotary tool 30 and the work material, and the machining surfaces 70 and 71 are processed. There was a problem of scratching the blade and causing the cutting edge to be lost.
Also in the fluid supply method described in the section (2) of the prior art, the fluid is only sprayed in the axial direction from the vicinity of the axial center of the rotary tool 30 and is not directly sprayed toward the cutting edge. Chips may not be removed sufficiently, and the processed surfaces 70 and 71 may be damaged or the cutting edges may be lost.
The fluid supply method described in the section (3) of the prior art can accurately supply the fluid toward all the cutting edges. However, the cross-sectional area of the central hole 241 or the branch hole 242 provided in the vicinity of the axial center of the fixing member 20 cannot be secured due to the restriction of the outer diameter of the shaft portion 21 of the fixing member 20. Therefore, the cross-sectional area of the central hole 241 or the branch hole 242 is smaller than the total area of the injection port 39 provided in the rotary tool 30, and the pressure of the fluid supplied to the cutting edge is reduced. Therefore, there is a problem that the chips are not reliably removed and are caught between the cutting edge of the rotary tool 30 and the work material, and the processing surfaces 70 and 71 are scratched or the cutting edge is lost. . If the cross-sectional area of the central hole 241 or the branch hole 242 provided inside the fixing member 20 is increased in order to increase the pressure of the fluid sprayed to the cutting edge, the strength of the shaft portion 21 of the fixing member 20 is reduced. There is a possibility that troubles such as insufficient holding force of the rotary tool 30 or breakage of the shaft portion 21 may occur.
[0005]
The present invention solves the above-mentioned problems, and the fluid supplied from the machine tool passes through the supply passages provided in the arbor and the rotary tool, and accurately and high pressure is applied to the cutting edge of the rotary tool. Further, it is possible to inject the air and to suppress the strength reduction of the fixing member of the arbor.
[0006]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the arbor of the present invention has a shank portion that is inserted and held in the spindle of the machine tool, and has an attachment fitting portion that fits the rotary tool at the other end portion. An arbor including an arbor body and a fixing member that engages with an inner diameter portion of the attachment fitting portion, and the arbor body penetrates or communicates from an end surface of the shank portion to an end surface or an outer peripheral surface of the fitting portion. The fixing member has a shaft portion provided on the outer peripheral surface with an engaging portion that engages with the inner diameter portion of the mounting fitting portion at one end portion thereof , and a flange portion at the other end portion; the outer peripheral surface of the shank characterized in that it is extended in the longitudinal direction of the shaft portion so as to open to the end face of the shaft portion with the concave groove of at least one strip is cut out the engaging portion.
Preferably the concave groove that extends in the axial portion of the fixing member cross-sectional shape is square groove shape, or arc shape, or U-shaped, or, is either in the form of V-shaped, the fixing member concave grooves extending in the axial portion is equal to or less than 6 or more one.
Further, the rotary tool of the present invention is a rotary tool mounted on the arbor, wherein a central mounting hole that fits into the mounting fitting portion, a counterbored hole that corresponds to the flange portion of the fixing member, and the central mounting A through hole communicating with the hole and the counterbore hole, and has an inlet opening on either the inner wall or the end surface of the central mounting hole or the inner peripheral surface of the through hole. It has an injection port which opens toward the outer peripheral direction of the rotating tool. And, preferably characterized in that the total cross-sectional area of the concave groove that extends in the shaft portion of the fixing member in the rotary tool is more than the total cross-sectional area of the injection port.
[0007]
According to the present invention, the fluid supplied from the spindle of the machine tool is supplied to the attachment fitting portion through the hole provided in the arbor body, and in the fixing member engaged with the attachment fitting portion. through the extended been recessed groove on the outer peripheral surface of the shaft portion, it is supplied to the gap between the central mounting hole of the rotary tool and the fitting part of the arbor body. The fluid is supplied from a suction port that opens to the central mounting hole of the rotary tool, passes through the rotary tool, communicates with the suction port, and opens from an injection port that opens toward the outer peripheral direction of the rotary tool. Be injected. According to such a configuration, since the fluid is hardly supplied except for the above-described path, the fluid can be ejected from the ejection port toward a desired position with almost no loss. In particular, the concave groove is fluid passages in said stationary member so as to extend to the outer periphery of the shaft portion, the strength reduction of the shank decreases less of the cross-sectional area is suppressed. Therefore, the rotary tool attached to the arbor can be fixed with a high tightening force. Furthermore, since the total cross-sectional area of the concave groove is not less than the total cross-sectional area of the injection port, the hardly reduced pressure of the fluid ejected from the ejection nozzle, increased chip removal effect, reliably chip removal it can. In the rotary tool, the injection port can be provided at a position close to the cutting edge and can be injected in a desired direction, so that the fluid can be accurately and highly pressurized toward the cutting edge. Can be injected.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of the present invention will be described with reference to FIGS.
FIG. 1 is a front view including a partial cross-sectional view of a state where a rotating tool is mounted on an arbor. 2A to 2C are a front view and a side view of a fixing member of the arbor, respectively. FIG. 3 is a view showing a fluid passage between the arbor tip and the rotary tool. FIG. 4 is a perspective view of the rotary tool. FIGS. 5A to 5C and FIGS. 6A to 6C are a front view and a side view of a modified example of the fixing member. FIGS. 7A to 7I are side views of the fixing member, showing a modification of the groove shape and the number of grooves.
[0009]
As shown in FIG. 1, the arbor body 10 includes a tapered shank portion 11 that is inserted and held in a main shaft 111 of a machine tool (not shown), a flange portion 12 at the large-diameter end of the tapered shank portion 11, A pull stud mounting hole 13 that opens to the end surface on the small diameter side of the tapered shank portion 11 and an engaging portion 14 on the inner diameter of the pull stud mounting hole 13 are provided. A pull stud bolt 40 is engaged and fixed to the engaging portion 14. Further, on the opposite side of the taper shank portion 11, there are an attachment fitting portion 15 and an attachment reference surface 16, a fixing member attachment hole 17 that opens to an end surface of the attachment fitting portion 15, and an inner diameter of the fixing member attachment hole 17. And the engaging portion 18. A fixing member 30 is engaged and fixed to the engaging portion 18. A fluid supply hole 19 communicating with the pull stud mounting hole 13 and the fixing member mounting hole 17 is formed in the vicinity of the axial center of the arbor body 10. A through hole 41 is also formed in the vicinity of the axial center of the pull stud 40 that is engaged with and fixed to the small-diameter end of the tapered shank portion 11, and the fluid extends from the pull stud 40 to the fixing member mounting hole 17 of the arbor body 10. The passage is formed to communicate.
[0010]
Fixing member 20, as shown in FIG. 2, and a shaft portion 21 and the flange portion 22, the engaging portion 23 is formed on an outer peripheral surface of the shaft portion 21, further, with respect to the center axis to the outer peripheral surface two concave grooves 24 are extended in the axial direction approximately symmetrically in the. The concave groove 24 is open to the shaft portion 21 end surfaces, cross-sectional shape angled groove. The fixing member 20, in a state where the fixing member is engaged with the mounting hole 17 of the arbor body 10, the two concave grooves 24 is in communication with the fixed member mounting holes 17.
[0011]
The rotary tool 30 attached to the arbor body 10 is provided with at least one chip pocket 31 and a tip seat 32 along the outer peripheral surface at the outer peripheral portion of the tip, and a known material such as a cemented carbide is provided in the tip seat 32. A chip 50 made of a material is detachably mounted. Although not shown in FIG. 1, the tip 50 is wedged to the tip seat 32 by a wedge. An insertion hole 33 through which the fixing member 20 is inserted is provided in the vicinity of the axial center of the rotary tool 30, and the insertion hole 33 is fixed to a central attachment hole 35 that opens to the base end face 34 and to the other end face side. It communicates with the member engagement hole 36. In the rotary tool 30, the central mounting hole 35 is fitted into the mounting fitting portion 15 of the arbor body 10. The fixing member 20 engages with the fixing member mounting hole 17 of the arbor and also engages with the fixing member engaging hole 36 of the rotating tool 30, whereby the rotating tool 30 has its base end surface 34. Is fixed to the reference mounting surface 16 of the arbor body 10. The rotary tool 30 is formed with a fluid suction port 37 that opens at the bottom end face of the central mounting hole 35, and as shown in FIG. 4 (chip shape and tip fixing means are different), An injection port 39 that opens outward from the standing wall 38 of the communication chip pocket 31 is provided.
[0012]
Next, the fluid path in the arbor body 10 and the rotary tool 30 described above will be described with reference to the drawings. A fluid supplied from a main shaft 111 of a machine tool (not shown) passes through a through hole 41 in the vicinity of the axial center of the pull stud 40 attached to the end face of the tapered shank portion 11 of the arbor main body 10 and near the axial center of the arbor main body 10. The fluid passes through the perforated fluid supply hole 19 and is supplied to the fixing member mounting hole 17. Then, the fluid, as shown by the shaded portion of FIG. 3, it is supplied to the concave groove 24 which is extended to the outer periphery of the shaft portion 21 of the fixing member 20 for engaging the fixing member mounting holes 17. The concave groove 24, in a state of mounting a rotary tool 30 is formed so as to protrude from the end surface of the fitting part 15 of the arbor body 10, the fluid having passed through the concave groove 24, the rotary tool 30 Is supplied to the gap generated in the central mounting hole 35. Then, the fluid is supplied from the suction port 37 that opens to the end face of the central mounting hole 35 of the rotary tool 30, passes through the rotary tool 30, and the injection port 39 that opens to the standing wall 38 of the chip pocket 31. Is sprayed toward the cutting edge.
[0013]
In addition, it is preferable that the said injection port 39 is provided with respect to all the chips | tips 50 with which the rotary tool 30 was mounted | worn in order to heighten the effect of chip removal. Moreover, in order not to impair the pressure of the fluid, the cross-sectional area of each part of the fluid passage provided in the arbor body 10 is preferably not less than the total cross-sectional area of the injection port 39 and not more than 5 times the total cross-sectional area. By doing so, the pressure of the fluid ejected from the ejection port 39 does not decrease. Particularly in the axial portion 21 of the fixing member 20, since the total cross-sectional area of the concave groove 24 which extends to the outer periphery becomes larger which leads to decrease in strength of the shaft portion 21, more preferably, on the outer periphery of the shaft portion 21 the total cross-sectional area of the concave groove 24 that extends the over the total cross-sectional area of the injection port 39 may not more than 3 times the total cross-sectional area.
[0014]
As described above, the fluid supplied from the machine tool is ejected from a position that finally passes through the inside of the pull stud 40, the arbor body 10, the fixing member 20, and the rotary tool 30. In addition, since chips are ejected accurately and with high pressure toward the cutting edge, chips can be reliably removed.
[0015]
For example, the shape of the fixing member 20 can be modified as shown in FIGS. 5 and 6 without being limited to the above-described embodiment. In the fixing member 20 shown in FIG. 5, the portion of the flange portion 22 that contacts the fixing member engagement hole 36 of the rotary tool 30 is tapered. Then, the outer diameters of the fixing member engaging hole 36 and the flange portion 22 of the fixing member 20 can be reduced, and the rotary tool 30 is firmly fixed to the arbor body 10, so that the rotation with a small diameter is possible. It is preferable when there is a restriction on the outer diameter of the fixing member engagement hole 36 as in a tool. The fixing member 20 shown in FIG. 6 has a relatively large outer diameter of the flange portion 22 with respect to the shaft portion 21. Since such a fixing member 20 can ensure a wide contact surface with respect to the rotary tool 30, the rotary tool 30 can be fixed to the arbor body 10 very strongly. In particular, this is a preferred modification as an arbor fixing member 20 on which a large-diameter rotary tool is mounted. On the other hand, with respect to the rotary tool 30, the means for attaching the tip 50 is not limited to the wedge, and is not limited to the one to which the tip is detachably attached. For example, the cutting blade member is rotated like a brazing tool. It may be provided integrally with the tool body, and can be variously modified without departing from the gist of the present invention.
[0016]
Also, showing a modification of the concave groove 24 formed on the shaft portion 21 of the fixing member 20 in FIG 7. As shown in (a) to (f) of FIG. 7, the cross-sectional shape of the concave groove 24 is square groove shape, an arc shape, U-shape, it may be selected from shapes such as V-shape. In addition, in the shape of a square groove, one with a chamfered corner or one rounded into an arc is preferable for increasing the strength of the shaft 21. Furthermore, the concave groove 24 of the fixing member 20 be made of one, the fluid path can be ensured. Further, as described above, the injection ports 39 of the rotary tool 30 are preferably provided for all the chips 50. In such a case, a plurality of suction ports 37 concentrically provided in the central mounting hole 35 are provided. the concave grooves 24 are preferably more provided as shown in (g) through (i) in FIG. 7 for supplying fluid at a uniform pressure against. However, if the number is greater than 6, the engagement portion 23 of the shaft portion 21 is insufficient, and the engagement with the arbor body 10 is insufficient. In addition, most generally the engaging portion 23 is intended to be formed by the M24 following screw, in such a fixing member 20, the number of the concave groove 24 is preferably less than or more one 4.
[0017]
Next, in order to compare the strength of the shaft portion 21 of the fixing member 20 of the arbor, the cross-sectional area of the shaft portion 21 was compared between this embodiment and the prior art. A conventional arbor corresponds to Non-Patent Document 2, and a front view, a side view, and a cross-sectional view of the arbor are shown in FIGS. 9A to 9C are a front view, a side view, and a cross-sectional view of the fixing member of the arbor in this embodiment. Further, the rotary tool 30 mounted on both arbors has an outer diameter of 63 mm, eight chips 50 to be mounted, and an injection port 39 provided on the standing wall 38 of the chip pocket 31 for all the chips 50. The diameter is 1.5 mm. The total cross-sectional area of the injection port 39 in the rotary tool 30 is 14.1 mm 2 . The fixing member 20 of the conventional arbor shown in FIG. 8 has a central hole 241 formed in the vicinity of the center of the shaft, communicates with the central hole 241 and extends in the diametrical direction so as to open on the outer peripheral surface of the shaft portion 21. Is provided. The diameter of the central hole 241 is 4.3 mm, and the diameter of the branch hole 242 is 3 mm. The total cross-sectional area of the central hole 241 at this time is 14.5 mm 2 , which is substantially the same as the total cross-sectional area of the injection port 39 provided in the rotary tool 30, and the pressure of the supplied fluid is reduced. Absent. At this time, the cross-sectional area of the shaft portion 21 indicated by oblique lines is 34.4 mm 2 . On the other hand, the fixed member 20 in the first embodiment of the present invention, as shown in FIG. 9, is obtained by extending the two square groove-shaped concave groove 24 in the shaft portion 21 the outer periphery from the shaft portion 21 end face . Wherein the dimensions of the concave grooves 24, 4 mm in width, a is 2mm depth, these dimensions, the cross-sectional area of the central bore 241 of the total cross-sectional area of the concave groove 24 is provided on the above-described conventional arbor of the fixing member 20 Is set to be equal to At this time, the shaft portion 21 of this embodiment can secure a cross-sectional area of 48.8 mm 2 , and the cross-sectional area is increased by 42% with respect to the fixing member 20 of the prior art. The cross-sectional strength of the shaft portion 21 can be significantly increased while ensuring. In other words, it is possible to greatly increase the amount of fluid supplied while ensuring the same cross-sectional strength as the fixing member 20 of the prior art. As described above, in the arbor of this embodiment, the total cross-sectional area of the fluid passage in the fixing member 20 is larger than the total cross-sectional area of the injection port 39 of the rotary tool, and the strength reduction of the fixing member 20 is suppressed. Therefore, the pressure of the fluid to be supplied is not reduced, and the rotary tool 30 can be firmly fixed.
[0018]
Next, a second embodiment will be described with reference to FIG. In this embodiment, as shown in FIG. 10, at least one branch hole 151 penetrating the outer peripheral surface of the attachment fitting portion 15 of the arbor body 10 and the inner wall of the fixing member attachment hole 17 is provided. A groove 371 is formed on the inner wall of the central mounting hole 35 of the rotary tool 30 so as to surround the opening of the branch hole 151, and a suction port 37 that opens to the groove 371 is provided, and communicates with the suction port 37. An injection port 39 is provided in the upright wall 38 of the chip pocket 31 of the rotary tool 30. In the configuration other than that described above, the same parts as those in the first embodiment described above are denoted by the same reference numerals, and the description thereof is omitted.
[0019]
According to the above configuration, the fluid passes through the fluid supply hole 19 of the arbor body 10, passes through the concave groove 24 which extends to the outer periphery of the stationary member 20, the opening of the outer peripheral surface from the branch hole 151 Supplied. Then, the air is supplied to the suction port 37 through the groove 371 on the inner wall of the central mounting hole 35 of the rotary tool 30. Finally, as in the first embodiment, fluid is ejected from the ejection port 39 toward the cutting edge. The injection port 39 is preferably provided for all the chips 50 attached to the rotary tool 30 in order to enhance the chip removal effect. In order not to impair the pressure of the fluid, the cross-sectional area of each part of the fluid passage provided in the arbor is preferably equal to or larger than the total cross-sectional area of the injection port 39. By doing so, the pressure of the fluid ejected from the ejection port 39 does not decrease. Furthermore, according to this embodiment, the concave groove 24 provided on the outer periphery of the shaft portion 21 of the fixing member 20 may be the length of the axial direction shorter than the first embodiment, the shaft portion The strength of 21 is further increased.
[0020]
【The invention's effect】
As described above, according to the arbor and rotary tool of the present invention, the fluid supplied from the spindle 111 of the machine tool passes through the arbor and the rotary tool and travels toward the cutting edge from a position close to the cutting edge. And accurately and at a high pressure. Therefore, chips near the cutting edge can be reliably removed, chips are not bitten between the cutting edge and the work material, the work surface is not damaged, and chipping of the cutting edge is prevented. To do.
[Brief description of the drawings]
FIG. 1 is a front view and a partial cross-sectional view of a first embodiment of an arbor and a rotary tool of the present invention.
FIG. 2A is a front view of a fixing member in the arbor of the first embodiment.
(B) It is a side view of the fixing member in the arbor of 1st Embodiment.
(C) It is a side view of the fixing member in the arbor of 1st Embodiment.
FIG. 3 is a cross-sectional view showing a fluid passage in the arbor tip and the rotary tool of the first embodiment.
FIG. 4 is a perspective view of the rotary tool according to the first embodiment.
FIG. 5A is a front view of a modified example of a fixing member in the arbor of the first embodiment.
(B) It is a side view of the modification of the fixing member in the arbor of 1st Embodiment.
(C) It is a side view of the modification of the fixing member in the arbor of 1st Embodiment.
FIG. 6A is a front view of another modification of the fixing member in the arbor of the first embodiment.
(B) It is a side view of another modification of the fixing member in the arbor of 1st Embodiment.
(C) It is a side view of another modification of the fixing member in the arbor of 1st Embodiment.
7 (a) to (b) is a side view of the fixing member in the arbor in the first embodiment and showing a modification of the cross-sectional shape and number of slots recessed groove.
FIGS. 8A to 8C are a front view, a side view, and a cross-sectional view taken along line AA of a fixing member in a conventional arbor.
FIGS. 9A to 9C are a front view, a side view, and a B-B cross-sectional view of a fixing member in the arbor of the first embodiment of the present invention.
FIG. 10 is a cross-sectional view showing a fluid passage in an arbor tip and a rotary tool according to a second embodiment of the present invention.
FIG. 11 is a diagram illustrating a conventional fluid supply method, and is a diagram illustrating a system for supplying fluid from the outside.
FIG. 12 is a diagram showing a prior art of an arbor and a rotary tool having a fluid passage inside.
13 is a diagram of Non-Patent Document 1. FIG.
FIG. 14 is a view showing another prior art of an arbor and a rotary tool having a fluid passage therein.
FIGS. 15A to 15C are a front view, a side view, and a bottom view of a fixing member in the prior art arbor shown in FIG. 14;
16 is a cross-sectional view showing a fluid passage in the prior art arbor tip shown in FIG. 14 and a rotary tool.
17 is a diagram of Non-Patent Document 2. FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Arbor body 11 Tapered shank part 111 Machine tool spindle 12 Flange part 13 Pull stud mounting hole 14 Engaging part 15 Mounting fitting part 151 Branching hole 16 Reference mounting surface 17 Fixing member mounting hole 18 Engaging part 19 Fluid supply hole 20 fixing member 21 shaft section 22 flange portion 23 engaging portion 24 recessed grooves 241 center hole 242 branch hole 30 the rotary tool 31 chip pocket 32 tip seat 33 through hole 34 proximal end face 35 central mounting hole 36 fixing member engagement hole 37 inlet 371 Groove 38 Standing wall 39 Injection port 40 Pull stud bolt 41 Through hole 50 Tip 51 Tip mounting screw 60 Nozzle 70 Workpiece bottom surface 71 Workpiece machining wall surface

Claims (5)

工作機械の主軸に挿入して保持されるシャンク部を有し、他端部に回転工具と嵌合する取付嵌合部とを有するアーバ本体と、前記取付嵌合部の内径部に係合する固定部材とを備えたアーバにおいて、
該アーバ本体は、前記シャンク部の端面から前記嵌合部の端面又は外周面に貫通又は連通する穴を有し、
前記固定部材は、その一端部に前記取付嵌合部の内径部に係合する係合部を外周面に設けた軸部と、他端部にフランジ部とを有し、
前記軸部の外周には少なくとも1溝が前記係合部を切り欠くとともに前記軸部の端面に開口するように前記軸部の長手方向に延設される
ことを特徴とするアーバ。
An arbor body having a shank portion that is inserted into and held by the spindle of the machine tool and having an attachment fitting portion that is fitted to the rotary tool at the other end portion, and engages with an inner diameter portion of the attachment fitting portion. In an arbor provided with a fixing member,
The arbor body has a hole that penetrates or communicates with an end surface or an outer peripheral surface of the fitting portion from an end surface of the shank portion,
The fixing member has a shaft portion provided on the outer peripheral surface with an engaging portion that engages with an inner diameter portion of the attachment fitting portion at one end portion thereof , and a flange portion at the other end portion,
Arbor, wherein a concave groove of at least one strip on the outer circumferential surface of the shaft portion is extended in the longitudinal direction of the shaft portion so as to open to the end face of the shaft portion with cutting out the engagement portion .
前記固定部材の軸部に延設される溝の横断面形状が角溝状、又は、円弧状、又は、U字形、又は、V字形のいずれかの形状とされている
ことを特徴とする請求項1に記載のアーバ。
Wherein the concave groove that extends in the axial portion of the fixing member cross-sectional shape is square groove shape, or arc shape, or, characterized in that there is a U-shape, or any shape of V-shaped The arbor of claim 1.
前記固定部材の軸部に延設される溝が1本以上6本以下である
ことを特徴とする請求項1又は請求項2に記載のアーバ。
Arbor according to claim 1 or claim 2, wherein the concave groove that extends in the axial portion of the fixing member is six or less than one.
請求項1から請求項3のいずれか1項に記載のアーバに装着される回転工具において、
前記取付嵌合部に嵌合する中央取付穴と、前記固定部材の前記フランジ部に対応するザグリ穴と、前記中央取付穴および前記ザグリ穴に連通する貫通穴とを
有し、
前記中央取付穴の内壁又は端面又は前記貫通穴の内壁のいずれかに開口する吸入口を有し、
前記吸入口に連通し該回転工具の外周方向に向かって開口する噴射口を有する
ことを特徴とする回転工具。
In the rotary tool to be mounted on arbor according to any one of claims 1 to 3,
A central mounting hole that fits into the mounting fitting portion, a counterbored hole corresponding to the flange portion of the fixing member, and a through hole that communicates with the central mounting hole and the counterbored hole;
A suction port that opens on either the inner wall or end face of the central mounting hole or the inner wall of the through hole;
A rotary tool having an injection port that communicates with the suction port and opens toward an outer peripheral direction of the rotary tool.
前記固定部材の軸部に延設される溝の総断面積が前記噴射口の総断面積以上である
ことを特徴とする請求項4に記載の回転工具。
Rotation tool according to claim 4, wherein the total cross-sectional area of the concave groove that extends in the shaft portion of the fixing member is not less than the total cross-sectional area of the injection port.
JP2003029798A 2003-02-06 2003-02-06 Arbor and rotating tools Expired - Fee Related JP4179601B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003029798A JP4179601B2 (en) 2003-02-06 2003-02-06 Arbor and rotating tools

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003029798A JP4179601B2 (en) 2003-02-06 2003-02-06 Arbor and rotating tools

Publications (2)

Publication Number Publication Date
JP2004237401A JP2004237401A (en) 2004-08-26
JP4179601B2 true JP4179601B2 (en) 2008-11-12

Family

ID=32956874

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003029798A Expired - Fee Related JP4179601B2 (en) 2003-02-06 2003-02-06 Arbor and rotating tools

Country Status (1)

Country Link
JP (1) JP4179601B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200924879A (en) * 2005-11-06 2009-06-16 Iscar Ltd Rotary cutting tool
JP2008012600A (en) * 2006-07-03 2008-01-24 Bc Tekku:Kk Arbor for milling cutter
JP2010188451A (en) * 2009-02-16 2010-09-02 Mitsubishi Materials Corp End mill
EP2298483B1 (en) * 2009-09-22 2015-09-16 Gühring OHG Reamer and system for the precise working of holes including such a reamer and an insert
SE537368C2 (en) * 2011-04-29 2015-04-14 Sandvik Intellectual Property Milling tools with a sealing cap
JP2013233629A (en) * 2012-05-10 2013-11-21 Disco Corp Cutting device with cutting tool
DE102013105206A1 (en) * 2013-05-22 2014-11-27 Franz Haimer Maschinenbau Kg tool holder
DE102012216655A1 (en) * 2012-09-18 2014-03-20 Gühring KG ROTATABLE CUTTING TOOL
CN103801528B (en) * 2012-11-07 2015-12-16 上汽通用五菱汽车股份有限公司 A kind of cutter shower nozzle and manufacture method thereof
KR102448181B1 (en) * 2020-11-17 2022-09-29 주식회사 다인정공 Cutting tool enable to replace cutting head
JP7483218B1 (en) 2023-12-07 2024-05-15 株式会社タンガロイ Fastening parts

Also Published As

Publication number Publication date
JP2004237401A (en) 2004-08-26

Similar Documents

Publication Publication Date Title
US6582164B1 (en) Roller twist drill
JP4802095B2 (en) Drill
KR100656265B1 (en) indexable type cutting tool
JP4908900B2 (en) Deep hole cutting equipment
EP1722973B1 (en) Cutting tool and associated tool head
JP3299264B2 (en) Drilling tool
JP4179601B2 (en) Arbor and rotating tools
WO2015056406A1 (en) Cutting tool holder and cutting tool
CZ297949B6 (en) Tool for drilling and milling grooves
JPH0839387A (en) Throw-away chip and milling cutter using it
US20190176244A1 (en) Insert adaptor for parting off
WO2009128183A1 (en) Deep-hole boring drill head
JP2010142889A (en) Tool holder, cutting fluid supply plate for holding tool and cutting method
JP4108828B2 (en) Cutting oil supply type tool holder
JP2005022063A (en) Arbor and rotating tool
WO2010062850A1 (en) Coolant delivery system in rotating cutting tool
JP2000135620A (en) Throwaway type ball end mill and throwaway tip
JP2004148429A (en) Collet for collet chuck
JP2005022003A (en) Rotary cutting tool
JP2009291858A (en) Boring tool
JPH10175114A (en) Rotating tool for cutting
JP2021098242A (en) Cutter with coolant hole and main body of the cutter
JPH06134647A (en) Method and device for supplying coolant
JPH08276310A (en) Face milling cutter
JP2001287110A (en) Drill

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080527

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080728

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080825

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080825

R150 Certificate of patent or registration of utility model

Ref document number: 4179601

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110905

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110905

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110905

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110905

Year of fee payment: 3

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110905

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110905

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110905

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110905

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120905

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120905

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120905

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130905

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130905

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees