JP4179100B2 - X-ray tomographic imaging apparatus and method - Google Patents

X-ray tomographic imaging apparatus and method Download PDF

Info

Publication number
JP4179100B2
JP4179100B2 JP2003293899A JP2003293899A JP4179100B2 JP 4179100 B2 JP4179100 B2 JP 4179100B2 JP 2003293899 A JP2003293899 A JP 2003293899A JP 2003293899 A JP2003293899 A JP 2003293899A JP 4179100 B2 JP4179100 B2 JP 4179100B2
Authority
JP
Japan
Prior art keywords
reel
winding
take
long material
ray
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003293899A
Other languages
Japanese (ja)
Other versions
JP2005062042A (en
Inventor
康雄 篠原
稔 田中
賢一 片貝
達雄 宮澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2003293899A priority Critical patent/JP4179100B2/en
Publication of JP2005062042A publication Critical patent/JP2005062042A/en
Application granted granted Critical
Publication of JP4179100B2 publication Critical patent/JP4179100B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Description

本発明は、長尺物の断面形状、異物或いは混合物等の分布状態を検査するX線断層撮像装置及び方法に関する。   The present invention relates to an X-ray tomographic imaging apparatus and method for inspecting a cross-sectional shape of a long object, a distribution state of foreign matter, a mixture, and the like.

従来、例えば医療分野においては、血管や腸等の長尺物の観察対象をその観察対象に沿った曲面で縦切りにした断面像や、観察対象の内部が観察できるように切り開いた画像を表示することができるようにした画像表示装置が提案されている(例えば、特許文献1参照。)。   Conventionally, in the medical field, for example, a cross-sectional image obtained by longitudinally cutting an observation target of a long object such as a blood vessel or an intestine with a curved surface along the observation target, or an image opened so that the inside of the observation target can be observed is displayed. There has been proposed an image display device that can be used (see, for example, Patent Document 1).

また、他の例として、図11にX線断層撮像装置(X線CT装置)における長尺素材投影データ取得法の一例を示す。被検査体回転軸101b近傍に中心を持つ中央にスリット101aの入った円筒を被検査体把持ジグ101とし、中央のスリット101aに被検査体としてシート状の切断された長尺素材(以下、素材とも称する。)100断片を把持し、マイクロフォーカスX線管102から照射される円錐状(コーンビーム)X線のX線焦点103の近傍で素材100が載置された被検査体把持ジグ101を小刻みに旋回させ、二次元検出器104に切断された素材100の拡大投影像を撮像して投影データを取得後再構成計算を行う手法である。   As another example, FIG. 11 shows an example of a method for acquiring long projection data in an X-ray tomographic imaging apparatus (X-ray CT apparatus). A cylinder with a slit 101a at the center in the vicinity of the rotating shaft 101b of the inspection object is used as the inspection object gripping jig 101, and a long material (hereinafter referred to as a material) cut into a sheet shape as the inspection object in the central slit 101a. Also referred to as an object gripping jig 101 on which the material 100 is placed in the vicinity of the X-ray focal point 103 of the conical (cone beam) X-ray irradiated from the microfocus X-ray tube 102. This is a technique for performing reconstruction calculation after acquiring projection data by capturing an enlarged projection image of the material 100 that is rotated in small increments and cut by the two-dimensional detector 104.

さらに、図12に連続的に素材を切断せず長尺素材の投影像を再構成計算の為に取得する一例を示す。図中、図11と対応する部分には同一符号を付す。X線管102から照射されるX線のX線焦点103の前に円筒度の極めて良い円筒部材114を固定し、その円筒部材114を案内として長尺素材111を巻きつけ、サプライ(供給側)リール112から単位時間あたり小刻みに一定量素材を引き出してテークアップ(巻取り側)リール113に巻き取る途中の経路においてX線焦点103の前で小刻みに長尺素材111のみが円弧を描くように移動させ、二次元検出器104に投影像を得る方法である。
特開平11−318884号公報
Further, FIG. 12 shows an example in which a projection image of a long material is acquired for reconstruction calculation without continuously cutting the material. In the figure, parts corresponding to those in FIG. A cylindrical member 114 having a very good cylindricity is fixed in front of the X-ray focal point 103 of the X-rays irradiated from the X-ray tube 102, and the long material 111 is wound using the cylindrical member 114 as a guide to supply (supply side) A certain amount of material is drawn from the reel 112 in small increments per unit time so that only the long material 111 draws an arc in small increments in front of the X-ray focal point 103 in the course of winding on the take-up (winding side) reel 113. This is a method for obtaining a projection image on the two-dimensional detector 104 by moving it.
Japanese Patent Laid-Open No. 11-318884

しかしながら、特許文献1に記載のものは、取得したデータを基に血管や腸内部の断面像や切り開いた画像を表示することができるが、観察範囲が長尺物の一部に限られ小間切れでしか再構成できないとともに、観察対象が人体に限られ、例えばシート状長尺素材やケーブル等の長尺素材の観察には適用することができない。   However, although the thing of patent document 1 can display the cross-sectional image of the blood vessel or the intestine based on the acquired data, and the image cut open, the observation range is limited to a part of long thing, and it is a short cut. However, the object to be observed is limited to a human body and cannot be applied to observation of a long material such as a sheet-like long material or a cable.

また、X線断層撮像装置に用いられる2次元検出器の大きさは通常はA4用紙サイズ程度である。一方、長尺素材リールは直径が400mm前後と上述2次元検出器より2倍以上大きいことが通例である。素材リールのままでは実体が大きすぎて、素材リール全貌を拡大した投影像に映し出し、再構成計算を施すことによって素材内部を3次元的に微視的に探査することなどは極めて困難である。図11に記載のもののように、長尺素材を切断して極めて微量の素材内部の拡大投影データを撮像して再構成計算したとしても、一度に再構成計算が行える長尺素材のボリュームが極めて微量で、長尺素材の全体像を把握したとは言い難く、しかも長尺素材を切断する等の手間もかかるし、そもそも切断履歴自体が長尺素材にとって好ましいとは言えない。   In addition, the size of the two-dimensional detector used in the X-ray tomographic imaging apparatus is usually about A4 paper size. On the other hand, a long material reel is generally about 400 mm in diameter, which is more than twice as large as the above-described two-dimensional detector. If the material reel is used as it is, the substance is too large, and it is extremely difficult to project the entire image of the material reel on an enlarged projection image and to perform a three-dimensional microscopic exploration of the inside of the material by performing reconstruction calculation. As shown in FIG. 11, even if a long material is cut and a magnified projection data inside a very small amount of material is imaged and reconstructed and calculated, the volume of the long material that can be reconstructed at once is extremely large. It is difficult to say that the entire image of the long material is grasped with a small amount, and it takes time and effort to cut the long material, and the cutting history itself is not preferable for the long material.

また、図12に記載の方法は、図11のものと同じく一度に再構成計算されるボリュームが十分とはいえないこと、及び上述固定被検査体ガイド用の円筒部材114の両側に走行規制する為の別の固定ガイド115S,115T等が必要であって、精度の高い再構成計算を得る為には上述円筒部材114の案内された状態で素材111が360度真円形に小刻みに微動することが好ましいが、図から理解されるように、360度巻きつけることが出来ないばかりでなく、X線焦点103の前でせいぜい270度前後回転したことに相当する投影データしか取得できないという問題があった。また、別の問題点として、素材111を上述固定円筒部材114に沿って滑らしつつ小刻みに投影データを取得するのであるが、素材111の剛性によっては円筒部材114に密着して走行しないなどの問題を生じる懸念があった。   In addition, the method shown in FIG. 12 restricts traveling to both sides of the cylindrical member 114 for guiding the fixed object to be inspected, as in the case of FIG. In order to obtain highly accurate reconstruction calculation, the material 111 needs to be finely moved into a 360-degree circular shape while the cylindrical member 114 is guided. However, as can be understood from the figure, there is a problem that not only the rotation of 360 degrees can be performed but also projection data corresponding to the rotation of about 270 degrees at most in front of the X-ray focal point 103 can be acquired. It was. Another problem is that the projection data is acquired in small increments while sliding the material 111 along the fixed cylindrical member 114. However, depending on the rigidity of the material 111, the material 111 does not run in close contact with the cylindrical member 114. There was a concern that caused.

斯かる点に鑑み、本発明は、長尺物を切断することなく効率よく再構成画像を取得できるX線断層撮像装置及びその方法を提案するものである。   In view of such a point, the present invention proposes an X-ray tomographic imaging apparatus and method that can efficiently acquire a reconstructed image without cutting a long object.

上記課題を解決し、目的を達成するため、本発明のX線断層撮像装置は、
X線源と、
前記X線源から出射されて被検査体を透過したX線を検出し前記被検査体の投影像を撮像する二次元検出器と、
前記被検査体としての長尺素材を巻き取る2つのリール(例えば、供給リールと巻取りリール)と、
一方のリールから他方のリールへ送られた前記長尺素材が挿入される隙間からなる長尺素材挿入部を有する略円筒であって、前記略円筒の中心軸が前記被検査体の回転軸と略平行並びに前記X線源のX線焦点から前記二次元検出器へ降ろした垂線と略直交する巻取り部材と、
前記長尺素材挿入部に一方のリールから他方のリールに巻き取られる途中の前記長尺素材の任意部位を挟んだ状態で、前記中心軸を回転中心として前記巻取り部材と一体に回転して、前記巻取り部材に一方のリール及び他方のリールの長尺素材を所定量巻き取らせる、並びに前記巻取り部材に巻き取られた前記長尺素材を一方のリール及び他方のリールに所定量戻す回転手段とを有し、
一方のリールから送られる前記長尺素材を他方のリールで巻き取る過程において、前記回転手段により、前記巻取り部材の長尺素材挿入部に前記長尺素材の任意部位を挟んだ状態で前記巻取り部材に前記長尺素材を一定量巻き取り、前記巻取り部材に巻き取られた前記長尺素材の巻き数を増加又は減少させる方向に前記巻取り部材を所定角度ずつ回転させ、前記巻取り部材に巻き取られている部分の前記長尺素材の各角度毎の投影像を撮像する
ことを特徴とする。
In order to solve the above problems and achieve the object, an X-ray tomographic imaging apparatus of the present invention includes:
An X-ray source;
A two-dimensional detector that detects X-rays emitted from the X-ray source and transmitted through the object to be examined, and picks up a projected image of the object ;
Two reels (for example, a supply reel and a take-up reel) for winding a long material as the object to be inspected;
A substantially cylindrical for have a elongated material insertion portion comprising a gap in which the elongated material sent from one reel to the other reel is inserted, the rotation axis of the central axis the inspection of the substantially cylindrical And a winding member that is substantially parallel to and perpendicular to the perpendicular drawn from the X-ray focal point of the X-ray source to the two-dimensional detector ;
While sandwiching the arbitrary part of the long material of the course to be wound on the other reel from one reel to the elongated component inserting portion, to rotate the take-up member integrally as a rotation about the central axis , it assumes a predetermined amount winding the elongated material of one reel and the other reel to said take-up member, and returns a predetermined amount of the wound the elongated material to the winding member in one reel and the other reel It has a rotating means,
In the process of winding the long material fed from one reel with the other reel, the rotating means winds the winding in a state where an arbitrary part of the long material is sandwiched between the long material insertion portions of the winding member. A predetermined amount of the long material is wound around the winding member, the winding member is rotated by a predetermined angle in a direction to increase or decrease the number of windings of the long material wound around the winding member, and the winding is performed. A projected image for each angle of the long material of the portion wound around the member is captured .

斯かる本発明によれば、長尺素材挿入部を有する巻取り部材に長尺素材を挟んだ状態で、回転手段がこの巻取り部材と一体に回転するので、長尺素材を切断することなく長尺素材の任意部位について透過X線投影像を撮像して投影データを取得できる。   According to the present invention, the rotating means rotates integrally with the winding member in a state where the long material is sandwiched between the winding members having the long material insertion portion, so that the long material is not cut. Projection data can be acquired by capturing a transmission X-ray projection image of an arbitrary part of a long material.

また、巻取り部材に長尺素材を一定量巻き取らせ、巻き取られた長尺素材の巻き数を増加又は減少させる方向に巻取り部材を所定角度ずつ回転させ、巻取り部材に巻き取られている長尺素材の各角度毎の投影像を撮像することができる。 In addition, the winding material is wound around the winding material by a certain amount, and the winding member is rotated by a predetermined angle in a direction to increase or decrease the number of windings of the wound long material. It is possible to take a projected image for each angle of the long material.

また本発明は、各角度毎の投影像の撮像後、回転手段により長尺素材が巻き取られている巻取り部材を巻き取り方向と逆に回転させ、一方のリールに戻った長さ以上を巻取り部材が静止した状態で他方のリールへ供給することを特徴とする。 In addition, the present invention, after taking a projection image for each angle, rotates the winding member on which the long material is wound by the rotating means in the direction opposite to the winding direction, and returns the length more than the length returned to one reel. The winding member is supplied to the other reel in a stationary state.

斯かる本発明によれば、回転手段により巻取り部材を逆回転させて供給リールに戻った長さ以上を巻取り部材が静止した状態で巻取りリールへ供給することで、一度投影データ取得を完了した部位について、重複して同じ部位の投影データを複数回取得することがない。   According to the present invention, the projection member is obtained once by supplying the take-up reel to the take-up reel in a state where the take-up member is stationary by rotating the take-up member reversely by the rotating means and returning to the supply reel. For the completed part, the projection data of the same part is not acquired multiple times.

また本発明は、一方のリール及び他方のリールをX線焦点から二次元検出器へ降ろした垂線を略直角に跨ぐように配置するとともに双方のリール回転軸を略同軸上とし、且つ前記巻取り部材の回転軸に垂直に配置することを特徴とする。 In the present invention, one reel and the other reel are arranged so as to straddle a perpendicular line dropped from the X-ray focal point to the two-dimensional detector at a substantially right angle, both reel rotation axes are substantially coaxial, and the winding is performed. It arrange | positions perpendicularly | vertically to the rotating shaft of a member, It is characterized by the above-mentioned.

斯かる本発明によれば、上述構成により、供給リール、巻取りリール、巻き取り部材、X線源、二次元検出器等がコンパクトに配置される。   According to the present invention, the supply reel, the take-up reel, the take-up member, the X-ray source, the two-dimensional detector and the like are arranged in a compact manner by the above-described configuration.

また本発明は、巻取り部材の長尺素材挿入部に挿入された長尺素材の一方のリール側及び他方のリール側の両端に掛かる張力を計測する張力計測手段と、一方のリール及び他方のリールの回転を制御する張力発生手段と、この張力計測手段の計測情報に基づいて一方のリール及び他方のリールの各張力発生手段に与えるべき制御情報を計算する張力制御演算手段とを備え、この張力制御演算手段の制御情報に基づいて、この長尺素材の一方のリール側及び他方のリール側の両端に掛かる張力が等しく一定となるように各張力発生手段を制御することを特徴とする。 The present invention includes a tension measuring means for measuring the tension applied to both ends of one of the reel side and the other reel side of the elongated material which is inserted into the elongated material insertion portion of the winding member, the one reel and the other A tension generating means for controlling the rotation of the reel, and a tension control calculating means for calculating control information to be given to each tension generating means of one reel and the other reel based on the measurement information of the tension measuring means. Based on the control information of the tension control calculating means, each tension generating means is controlled so that the tension applied to both ends of the long material on one reel side and the other reel side becomes equal and constant.

斯かる本発明によれば、巻取りコア両端の長尺素材張力を常に等しく一定に制御することによって、投影データ取得中に長尺素材が長さ方向に伸び縮みすることがない。   According to the present invention, the long material tension at both ends of the winding core is always controlled to be equal and constant, so that the long material does not expand or contract in the length direction during the acquisition of projection data.

本発明のX線断層撮像方法は、X線源と、
前記X線源から出射されて被検査体を透過したX線を検出し前記被検査体の投影像を撮像する二次元検出器と、
前記被検査体としての長尺素材を巻き取る2つのリールと、
一方のリールから他方のリールへ送られた前記長尺素材が挿入される隙間からなる長尺素材挿入部を有する略円筒であって、前記略円筒の中心軸が前記被検査体の回転軸と略平行並びに前記X線源のX線焦点から前記二次元検出器へ降ろした垂線と略直交する巻取り部材と、
前記長尺素材挿入部に一方のリールから他方のリールに巻き取られる途中の前記長尺素材の任意部位を挟んだ状態で、前記中心軸を回転中心として前記巻取り部材と一体に回転して、前記巻取り部材に一方のリール及び他方のリールの長尺素材を所定量巻き取らせる、並びに前記巻取り部材に巻き取られた前記長尺素材を一方のリール及び他方のリールに所定量戻す回転手段と
を有するX線断層撮像装置によるX線断層撮像方法であって、
一方のリールから送られる長尺素材を他方のリールで巻き取る過程において、回転手段により、外径が略円筒かつ中心軸が被検査体の回転の軸と平行で長尺素材が挿入される隙間からなる長尺素材挿入部を有する巻取り部材の当該長尺素材挿入部に長尺素材の任意部位を挟んだ状態で巻取り部材に長尺素材を一定量巻き取り、
この巻取り部材に巻取られた長尺素材の巻き数を増加又は減少させる方向に巻取り部材を所定角度ずつ回転させ、
前記巻取り部材に巻き取られている部分の前記長尺素材の各角度毎の投影像を撮像して投影データを取得するものである。
An X-ray tomographic imaging method of the present invention includes an X-ray source,
A two-dimensional detector that detects X-rays emitted from the X-ray source and transmitted through the object to be examined, and picks up a projected image of the object;
Two reels for winding the long material as the object to be inspected;
It is a substantially cylinder having a long material insertion portion comprising a gap into which the long material fed from one reel to the other reel is inserted, and the central axis of the substantially cylinder is the rotation axis of the object to be inspected A winding member that is substantially parallel and perpendicular to the perpendicular drawn from the X-ray focal point of the X-ray source to the two-dimensional detector;
In a state where an arbitrary portion of the long material being wound from one reel to the other reel is sandwiched in the long material insertion portion, the long material is rotated integrally with the winding member around the central axis. , Causing the take-up member to take up a predetermined amount of the long material of one reel and the other reel, and returning the long material taken up by the take-up member to the one reel and the other reel by a predetermined amount With rotating means
An X-ray tomographic imaging method using an X-ray tomographic imaging apparatus comprising :
In the process of winding the long material fed from one reel with the other reel, the rotation means inserts the long material with the outer diameter being approximately cylindrical and the central axis being parallel to the axis of rotation of the object to be inspected. A long material is wound on the winding member in a state where an arbitrary portion of the long material is sandwiched between the long material insertion portion of the winding member having a long material insertion portion made of
Rotate the winding member by a predetermined angle in a direction to increase or decrease the number of windings of the long material wound on the winding member,
And acquires the projection data by imaging a projection image for each angle of the long material of the part being wound on the take-up member.

斯かる本発明によれば、長尺素材挿入部を有する巻取り部材に長尺素材を挟んだ状態で、回転手段がこの巻取り部材と一体に回転し、巻取り部材に長尺素材を一定量巻き取り、巻き取られた長尺素材の巻き数を増加又は減少させる方向に巻取り部材を所定角度ずつ回転させ、巻取り部材に巻き取られている長尺素材の各角度毎の投影像を撮像することができ、長尺素材を切断することなく長尺素材の任意部位について投影データを取得できる。   According to the present invention, in a state where the long material is sandwiched between the winding member having the long material insertion portion, the rotating means rotates integrally with the winding member, and the long material is fixed to the winding member. A projected image of each length of the long material wound around the winding member by rotating the winding member by a predetermined angle in the direction of increasing or decreasing the number of windings of the long material wound up. The projection data can be acquired for an arbitrary part of the long material without cutting the long material.

斯かる本発明によれば、長尺素材挿入部を有する巻取り部材に長尺素材を挟んだ状態で、回転手段がこの巻取り部材と一体に回転し、巻取り部材に長尺素材を一定量巻き取らせ、巻き取られた長尺素材の巻き数を増加又は減少させる方向に巻取り部材を所定角度ずつ回転させ、巻取り部材に巻き取られている長尺素材の各角度毎の投影像を撮像して、長尺素材を切断することなく長尺素材の任意部位について投影データを取得するので、素材にダメージを与えること無く効率的に再構成画像が得られ、素材内部の異物等検出することや、長尺素材全域に渡る素材を構成する微粒子などの分布状態を把握することが実現可能となる効果がある。   According to the present invention, in a state where the long material is sandwiched between the winding member having the long material insertion portion, the rotating means rotates integrally with the winding member, and the long material is fixed to the winding member. The winding member is rotated by a predetermined angle in the direction of increasing or decreasing the number of windings of the wound long material, and the projection of the long material wound around the winding member at each angle. Since the image is captured and projection data is acquired for any part of the long material without cutting the long material, a reconstructed image can be obtained efficiently without damaging the material. There is an effect that it is possible to realize the detection and the distribution state of the fine particles constituting the material over the entire length of the long material.

また、X線焦点から二次元検出器へ降ろした垂線を略直角に跨ぐように配置された供給リール及び巻取りリールの回転軸を略同軸上で回転可能で、且つ被検査体回転機構の回転軸に垂直に配置すると、供給リール、巻取りリール及び巻き取り部材、X線源、二次元検出器等をコンパクトにまとめることができ、装置全体の設置面積を減少することができる効果がある。   Further, the rotation axis of the supply reel and the take-up reel arranged so as to straddle the perpendicular line dropped from the X-ray focal point to the two-dimensional detector can be rotated substantially on the same axis, and the rotation of the rotation mechanism of the inspection object When arranged perpendicular to the axis, the supply reel, the take-up reel and the take-up member, the X-ray source, the two-dimensional detector, and the like can be compactly assembled, and the installation area of the entire apparatus can be reduced.

また、巻取り部材の長尺素材挿入部に挿入された長尺素材の供給リール側と巻取りリール側の両端に掛かる素材張力を常に等しく一定に制御することによって、投影データ取得中に素材が長さ方向に延び縮みすることは無く信頼性の高い再構成画像が得られる効果がある。また、供給リール最外径を演算で常に把握しておくことで、一度投影データ取得を完了した部位の長尺素材全体中の絶対座標を知ることが出来るので、重複して同じ部位の投影データを複数回取得するが如き効率の悪い作業から開放される効果がある。   In addition, the material tension applied to both ends of the supply reel side and the take-up reel side of the long material inserted into the long material insertion portion of the winding member is always controlled to be equal and constant, so that the material can be obtained during the acquisition of projection data. There is an effect that a highly reliable reconstructed image can be obtained without extending or shrinking in the length direction. In addition, by always knowing the outermost diameter of the supply reel by calculation, it is possible to know the absolute coordinates in the entire long material of the part for which projection data acquisition has been completed once, so duplicate projection data for the same part Is obtained from multiple inefficient work.

以下、図1〜図9を参照して、本発明のX線断層撮像装置の一実施の形態について、長尺物被検査体として例えばバッテリー負極や正極シート素材などの長尺シート素材(以下、単にシート素材とも称する。)を例に説明する。   Hereinafter, with reference to FIGS. 1-9, about one embodiment of the X-ray tomography apparatus of this invention, as a long thing to-be-inspected object, for example, long sheet materials, such as a battery negative electrode and a positive electrode sheet material (henceforth, This will be described as an example.

図1は、本例の長尺シート素材を切断せずに検査する方法の概念を示すものである。フィルム状の長尺シート素材が巻かれたサプライ(供給側)リール2とこのサプライリール2から供給される長尺シート素材1を巻き取るテークアップ(巻取り側)リール3間で、長尺シート素材1を切断せずに巻取り部材である、外形が略円筒の巻取りコア(以下、単にコアとも称する。)4により、図2に示すような二重螺旋状に巻き取る。本例では撮像される拡大投影像の大きさ等を考慮してコア4外径は素材リール径の10分の1未満であるとするが、これに限るものではない。   FIG. 1 shows a concept of a method for inspecting a long sheet material of this example without cutting. A long sheet is wound between a supply (supply side) reel 2 on which a film-like long sheet material is wound and a take-up (winding side) reel 3 for winding the long sheet material 1 supplied from the supply reel 2. The material 1 is wound into a double spiral shape as shown in FIG. 2 by a winding core (hereinafter, also simply referred to as a core) 4 which is a winding member and is a winding member without being cut. In this example, the outer diameter of the core 4 is assumed to be less than one-tenth of the material reel diameter in consideration of the size of the enlarged projection image to be picked up, but the present invention is not limited to this.

サプライリール2とテークアップリール3及び後述する図3に示す被検査体旋回機構11と一体に回転するシート素材巻き取りコア4の3種は同じ高さの平面内にあり、特に二重螺旋状に素材を巻き取る高さはこれら2種のリールの高さと等しく、リール2種と回転中心軸とは互いに平行であり、且つ図示しないX線焦点から二次元検出器へ降ろした垂線(紙面下から上への方向)と互いに略直角である。また、二重螺旋コア4と2種のリールの間には、それぞれ図示しない上下フランジを持ったシート素材の走行高さ(素材幅方向)規制が可能な一個以上の固定ガイドが存在し、且つシート素材1が後述する二重螺旋部へ侵入する角度を常に一定に保つようにして、シート素材の走行を安定させる。   Three types of the supply reel 2, the take-up reel 3 and the sheet material take-up core 4 that rotate integrally with the inspection object turning mechanism 11 shown in FIG. The height at which the material is wound is equal to the height of these two types of reels, the two types of reels and the rotation center axis are parallel to each other, and a perpendicular line (under the plane of the drawing) drawn from an X-ray focal point (not shown) to the two-dimensional detector. Direction from top to bottom) and substantially perpendicular to each other. Further, between the double spiral core 4 and the two types of reels, there are one or more fixed guides each capable of regulating the running height (material width direction) of the sheet material having upper and lower flanges (not shown), and The angle at which the sheet material 1 enters the double helix part to be described later is always kept constant to stabilize the traveling of the sheet material.

図2に、図1の要部である巻取りコア4にシート素材を二重螺旋状に複数回転巻いた状態の拡大図を示す。略円筒に素材厚さ分以上の幅のすり割り(長尺素材挿入部)5を巻取り部材の上下方向に垂直に回転軸に平行に入れ、さらにその結果生じた2個の略半円筒をシート素材厚さ分だけ互いに上下にずらせて向き合ったような巻取りコア4を想定すれば、巻き取り長さなどの計算は容易になる。巻取りコア4のすり割り5にシート素材1をはさんだ状態で巻取りコア4を回転させると、サプライリール2及びテークアップリール3からのシート素材が交互に重なるようにして二重螺旋状に巻きとられる。以降の説明において、シート素材の巻取りコア4に二重螺旋状に巻かれている部分1aを二重螺旋部と称する。そして、巻取りコア4を回転させながらこの巻取りコア4に巻き取られたシート素材の二重螺旋部にX線を照射してシート素材の投影データを得る。   FIG. 2 shows an enlarged view of a state in which a sheet material is wound around the winding core 4 which is a main part of FIG. A slit (long material insertion portion) 5 having a width equal to or greater than the thickness of the material is placed in a substantially cylindrical shape, placed perpendicularly to the vertical direction of the winding member in parallel with the rotation axis, and the resulting two substantially half-cylinders. Assuming the winding cores 4 that are shifted from each other by the thickness of the sheet material and face each other, calculation of the winding length and the like becomes easy. When the winding core 4 is rotated with the sheet material 1 sandwiched between the slits 5 of the winding core 4, the sheet materials from the supply reel 2 and the take-up reel 3 are alternately overlapped to form a double spiral. Winded up. In the following description, the portion 1a wound in a double spiral shape on the winding core 4 of the sheet material is referred to as a double spiral portion. Then, while rotating the winding core 4, the double spiral portion of the sheet material wound around the winding core 4 is irradiated with X-rays to obtain projection data of the sheet material.

長尺シート素材1を二重螺旋状に巻き取る上述コア4が裸の状態から、シート素材厚さに応じて上述コア4が一定の角速度で巻き取る素材長さを連続的に演算で求め、これに合わせてサプライリール2及びテークアップリール3の回転速度を調節する。尚、コア4による巻き取り回数は、1回転でも複数回転でもよく、複数回転分巻き取った場合は、長尺シート素材の広範囲を一度に観察することができ、効率がよい。   From the state in which the core 4 that winds the long sheet material 1 in a double spiral shape is bare, the material length that the core 4 winds at a constant angular velocity according to the thickness of the sheet material is continuously obtained by calculation, In accordance with this, the rotational speeds of the supply reel 2 and the take-up reel 3 are adjusted. Note that the number of windings by the core 4 may be one rotation or a plurality of rotations. When a plurality of rotations are wound, a wide range of the long sheet material can be observed at a time, which is efficient.

また、図2の例では、巻取りコア4のシート素材巻き取り(左回転)時に半円筒部分とシート素材とが接触し張力が発生する部位にそれぞれ丸み(曲面)4aを設けてシート素材の損傷を防ぐようにしている。尚、図1及び図2では固定ガイドやリール直結モータ等の記載は省略している。   Further, in the example of FIG. 2, roundness (curved surface) 4 a is provided at each of the portions where the semi-cylindrical portion and the sheet material come into contact with each other and the tension is generated when the sheet material of the winding core 4 is wound (left rotation). I try to prevent damage. In FIG. 1 and FIG. 2, the description of a fixed guide, a reel direct connection motor, and the like is omitted.

図3は、X線断層撮像装置を構成する各部の概略形状及び位置関係を示す全体図である。11の被検査体回転機構は巻取りコア4を載置して巻取りコア4と一体に回転する回転手段として機能する。この回転機構そのものは従来周知の技術により構成する。12はマイクロフォーカスX線源でありX線を照射するX線管、14はX線によるシート素材の投影像を撮像する二次元検出器であり、照射されるX線のX線焦点13、シート素材1の探索部位との距離関係に応じた拡大率の投影像を得る。15は各装置、部材を載置し、投影データにぶれが生じないように振動を除去する除振台、16はX線が外部に漏れないようにするために装置全体を覆う電離放射線遮蔽構造である。サプライリール2及びテークアップリール3のリール駆動モータは図示していないが、リール同軸上の直結モータであってもよい。   FIG. 3 is an overall view showing a schematic shape and positional relationship of each part constituting the X-ray tomographic imaging apparatus. The inspection object rotating mechanism 11 functions as a rotating means for mounting the winding core 4 and rotating integrally with the winding core 4. The rotating mechanism itself is configured by a conventionally known technique. Reference numeral 12 denotes a microfocus X-ray source, an X-ray tube that emits X-rays, and reference numeral 14 denotes a two-dimensional detector that captures a projection image of a sheet material by X-rays. A projection image having an enlargement ratio corresponding to the distance relationship with the search portion of the material 1 is obtained. Reference numeral 15 denotes an anti-vibration table on which each device and member is placed and removes vibrations so that the projection data is not shaken. Reference numeral 16 denotes an ionizing radiation shielding structure that covers the entire device so that X-rays do not leak outside. It is. Although the reel drive motors of the supply reel 2 and the take-up reel 3 are not shown, they may be directly connected motors on the same axis of the reel.

図4に、図3のX線焦点13とシート素材1を二重螺旋状に巻いたコア4及びサプライリール2からテークアップリール3までのシート素材のパス系(走行系)を示す。   4 shows a core 4 in which the X-ray focal point 13 and the sheet material 1 shown in FIG. 3 are wound in a double spiral shape, and a sheet material path system (running system) from the supply reel 2 to the take-up reel 3.

シート素材1を巻いたサプライリール2とテークアップリール3が略同軸上で回転可能であり、X線焦点13から二次元検出器14へ降ろした垂線と略直交し、サプライリール2とテークアップリール3は上述垂線を跨いだ形で、シンメトリック(左右対称)な配置としてある。このときX線焦点13に近接する中心軸が被検査体回転軸近傍で、且つその回転軸と平行な二重螺旋円筒状(二重螺旋部)にシート素材1を巻き取るが、サプライリール2から上述二重螺旋部へのシート素材パス経路途中に少なくとも一個の傾斜ガイド7Sを有し、シート素材1の走行方向を略90度補正し、シート素材1が二重螺旋部へ進入する角度かもしくは傾斜ガイド7Sへ進入する角度を決める一個以上の固定ガイド6Sを有して、素材にひねれなどの不要な応力を発生させること無くシート素材走行規制が正しく無理なく行われるようにする。また二重螺旋部からテークアップリール側へのシート素材パス系は上述サプライリール側パス系とシンメトリックであることとする。   The supply reel 2 and the take-up reel 3 around which the sheet material 1 is wound are rotatable about the same axis, and are substantially orthogonal to the perpendicular line dropped from the X-ray focal point 13 to the two-dimensional detector 14, and the supply reel 2 and the take-up reel 3 is a shape straddling the above-mentioned perpendicular line, and is arranged symmetrically. At this time, the sheet material 1 is wound up in a double spiral cylindrical shape (double spiral portion) in which the central axis close to the X-ray focal point 13 is near the rotation axis of the inspection object and parallel to the rotation axis. Or at least one inclined guide 7S in the middle of the path of the sheet material from the double spiral to the angle of the sheet material 1 entering the double spiral by correcting the traveling direction of the sheet material approximately 90 degrees. Alternatively, one or more fixed guides 6S that determine the angle of entry into the inclined guide 7S are provided so that the sheet material travel regulation is performed correctly and without causing unnecessary stresses such as twisting on the material. The sheet material path system from the double spiral portion to the take-up reel side is assumed to be symmetric with the above-described supply reel side path system.

固定ガイドや回転ガイドの構造は一般的にVTR(Videotape Recorder)などのテープ走行系に見られる構造と同じである。   The structure of the fixed guide or the rotating guide is generally the same as that found in a tape running system such as a VTR (Videotape Recorder).

この例では、X線焦点13と二次元検出器14との中間で、X線焦点13から二次元検出器14へ降ろした垂線を略直角に跨ぐようにそれぞれ配置されたシート素材1を供給するサプライリール2及びこのシート素材を巻き取るテークアップリール3とを通るシート素材1に、X線管1を極近接して被検査体回転機構11と一体に巻取りコア4を所定角度ずつ回転させながら、二重螺旋部に円錐状(コーンビーム)のX線を照射して透過X線を二次元検出器14に投影し、例えば10倍以上の拡大率の拡大投影データを得るようにしている。   In this example, the sheet materials 1 respectively disposed so as to straddle a perpendicular line dropped from the X-ray focal point 13 to the two-dimensional detector 14 between the X-ray focal point 13 and the two-dimensional detector 14 are supplied. The X-ray tube 1 is brought close to the sheet material 1 passing through the supply reel 2 and the take-up reel 3 for winding the sheet material, and the winding core 4 is rotated by a predetermined angle integrally with the inspection object rotating mechanism 11. However, the double spiral portion is irradiated with conical (cone beam) X-rays, and the transmitted X-rays are projected onto the two-dimensional detector 14 to obtain enlarged projection data having an enlargement ratio of, for example, 10 times or more. .

そして、所定枚数の投影データ取得後、再構成したシート素材探査部位の再構成画像を見て、断面形状、異物或いは混合物等の分布状態などを検査する。本例では、巻取りコア4を回転させる過程で、巻取りコア4の回転によって二重螺旋部の最外周は増えたり又は減ったりして巻き数に増減が生じるので、最外周部の投影データは再構成処理の際に使用しないようにしてもよい。   Then, after acquiring a predetermined number of projection data, the reconstructed image of the reconstructed sheet material search site is viewed to inspect the cross-sectional shape, the distribution state of the foreign matter or the mixture, and the like. In this example, in the process of rotating the winding core 4, the outermost circumference of the double helix part increases or decreases due to the rotation of the winding core 4, so that the number of turns increases or decreases. May not be used during the reconstruction process.

図5は本例の巻取りコア及び被検査体回転機構の一例の外観図を示すもので、Aは被検査体回転機構上に載置された巻取りコアの概略上面図を表し、Bは被検査体回転機構及び一体に回転する巻取りコアの概略側面図を表す。   FIG. 5 shows an external view of an example of the winding core and the inspected object rotating mechanism of this example. A represents a schematic top view of the winding core placed on the inspected object rotating mechanism, and B represents The schematic side view of the to-be-inspected object rotation mechanism and the winding core which rotates integrally is represented.

外形が略円筒の中央が割れた二重螺旋部中心のシート素材巻き取りコア断面形状は、シート素材にダメージを与えることの無い巻き取りの回転方向に応じた、「右二つ巴」或いは「左二つ巴」家紋の如き断面形状とすることが考えられ、この例では、左二つ巴の断面形状とし、巻取り方向を矢印で示している。二つの巴の上下方向に伸びた隙間25へシート素材を通し、巻取りコア24を回転させシート素材を巻き取る時、巴の両端の大きい方のアール形状側にサプライリール側とテークアップリール側の張力が発生する回転方向を選択することで、隙間25にシート素材を挟んで巻き取る際のシート素材に掛かる張力によるシート素材の損傷を防ぐことができる。   The cross-sectional shape of the sheet material winding core at the center of the double helix part whose outer shape is substantially broken at the center of the cylinder is “right double” or “depending on the rotation direction of winding without damaging the sheet material” It is conceivable to have a cross-sectional shape such as a “left two-eyed” family crest, and in this example, the cross-sectional shape is the left two-sided and the winding direction is indicated by arrows. When the sheet material is passed through the gap 25 extending in the vertical direction of the two reeds and the take-up core 24 is rotated to take up the sheet material, the supply reel side and the take-up reel side By selecting the rotation direction in which the tension is generated, the sheet material can be prevented from being damaged by the tension applied to the sheet material when the sheet material is wound around the gap 25 and wound.

24U及び24Lは巻取りコア24に設けられたシート素材幅方向規制用のそれぞれ上フランジ及び下フランジである。二重螺旋巻き取り部にも、図1の説明中に述べたような上下フランジを持つ固定ガイドと同じようにシート素材幅方向規制用上下フランジを設けるとシート素材1の走行がより安定する。   Reference numerals 24U and 24L denote an upper flange and a lower flange provided in the winding core 24 for regulating the sheet material width direction, respectively. If the upper and lower flanges for regulating the width of the sheet material are provided in the double spiral winding portion in the same manner as the fixed guide having the upper and lower flanges as described in FIG. 1, the traveling of the sheet material 1 becomes more stable.

図6に、シート素材パス系(走行系)及び素材張力測定器の一例の模式図を示す。この図6の例は、リール回転軸方向が図1又は図3のいずれの場合にも応用できる。図中右のX線管12から被検査体回転機構11上の巻取りコア4に向けて照射されるX線のX線焦点13から紙面左の図示しない二次元検出器への垂線に対し、コア4を挟むように配置されたサプライリール及びサプライシート間を走行するシート素材が略直角(図中上下方向)に走行している様子を表し、コア4とサプライリール及びテークアップリールとの間には、それぞれ固定ガイド26S及び26T、回転ガイド28S及び28Tが配置され、各固定ガイドと回転ガイドとの間に張力検出器27S及び27Tを設けている。   FIG. 6 shows a schematic diagram of an example of a sheet material path system (travel system) and a material tension measuring device. The example of FIG. 6 can be applied to the case where the reel rotation axis direction is either FIG. 1 or FIG. With respect to the perpendicular line from the X-ray focal point 13 of the X-ray irradiated from the X-ray tube 12 on the right side to the winding core 4 on the inspection object rotating mechanism 11 to the two-dimensional detector (not shown) on the left side of the drawing, The sheet material traveling between the supply reel and the supply sheet arranged so as to sandwich the core 4 is traveling substantially at right angles (vertical direction in the figure), and between the core 4 and the supply reel and take-up reel. Are respectively provided with fixed guides 26S and 26T and rotation guides 28S and 28T, and tension detectors 27S and 27T are provided between the respective fixed guides and the rotation guides.

コア4を挟んだ両端のサプライリール側素材に発生する張力と、テークアップリール側素材に発生する張力を、投影データ取得前あらかじめ二重螺旋状に巻き取る時に、個別の張力計測手段である張力検出器27S及び27Tによって計測しこれら2種のリールに発生する張力を常時一定値に、且つ互いに等しくすべく張力発生手段である各リールの駆動モータの所用トルクに与える情報を算出し制御する。投影データ取得中もあらかじめ巻き取る時の張力と同じ張力にコア4の両端すなわちサプライリール側とテークアップリール側張力を個別に計測制御を行う。   When the tension generated on the supply reel side material at both ends of the core 4 and the tension generated on the take-up reel side material are wound in a double spiral shape before acquisition of projection data, the tension is an individual tension measuring means. Information which is measured by the detectors 27S and 27T and applied to the required torque of the drive motor of each reel, which is the tension generating means, is calculated and controlled so that the tension generated in these two types of reels is always a constant value and equal to each other. During the acquisition of projection data, both ends of the core 4, that is, supply reel side and take-up reel side tensions are individually measured and controlled to the same tension as that used when winding.

張力検出器の張力測定機構の一例として、例えばテークアップ側張力検出器27Tを張力によって曲げモーメント29Tを受ける板状部材30T表裏に歪ゲージ31Tを貼り付けブリッジを形成して、この板状部材30Tの曲げ応力を計測しつつ張力へ変換する計測原理であってよい。張力制御機構の一例であるテークアップリール直結モータ(駆動モータ)は省略している。サプライ側にも、テークアップ側と同等の張力測定機構及び張力制御機構を備えるものとする。   As an example of the tension measuring mechanism of the tension detector, for example, a take-up side tension detector 27T is bonded to a plate member 30T that receives a bending moment 29T by tension, and a strain gauge 31T is attached to the front and back to form a bridge. It may be a measurement principle that converts the bending stress into tension while measuring the bending stress. A take-up reel direct drive motor (drive motor) which is an example of a tension control mechanism is omitted. The supply side is also provided with a tension measurement mechanism and a tension control mechanism equivalent to those on the take-up side.

また、別の張力制御機構としては、図示しないリール回転機構の一部に接触するパッドの押し付け圧力を制御するものでもよいし、又はリール回転機構の一部に締結され回転する磁性円板(ヨーク)に対し非接触で微小な距離(ギャップ)を保つ着磁された円板の回転数か又は当該ギャップを制御する電磁クラッチの如き機構でもよい。後者の機構であれば投影データ取得中に巻取りコアが素材を巻き取る方向か又は巻き戻す方向のいずれを選択しても着磁された円板の回転方向を変更することで素材張力を一定に制御することが可能である。   Further, as another tension control mechanism, it is possible to control a pressing pressure of a pad that contacts a part of a reel rotation mechanism (not shown), or a magnetic disk (yoke) that is fastened to a part of the reel rotation mechanism and rotates. The rotation speed of a magnetized disk that maintains a small distance (gap) in a non-contact manner or a mechanism such as an electromagnetic clutch that controls the gap may be used. With the latter mechanism, the material tension is kept constant by changing the direction of rotation of the magnetized disk, regardless of whether the winding core takes up or unwinds the material during projection data acquisition. It is possible to control.

図7に、図6の例の素材張力制御回路のブロック図を示す。サプライ側張力検出器27S及びテークアップ側張力検出器27Tで検出した張力に関する情報が、それぞれ電圧検出回路31S及び31Tに供給され電圧値として張力制御演算回路32に入力され、サプライ側リール及びテークアップ側リールの張力制御手段に与える情報を算出し、算出した情報をそれぞれ電圧制御回路33S及び33Tに供給し、サプライ側モータ34S及びテークアップ側モータ34Tの回転を制御する。本例のX線断層撮像装置は、図示しないCPU(Central Processing Unit)などの演算処理装置、CPUが実行すべきプログラムを格納するROM(Read Only Memory)、CPUのワークエリアとして使用されるRAM(Random Access Memory)を備えており、上述の張力制御演算回路における演算・制御処理はこのCPUにて行う。   FIG. 7 shows a block diagram of the material tension control circuit of the example of FIG. Information on the tension detected by the supply-side tension detector 27S and the take-up-side tension detector 27T is supplied to the voltage detection circuits 31S and 31T, respectively, and is input to the tension control calculation circuit 32 as a voltage value. Information to be supplied to the tension control means of the side reel is calculated, and the calculated information is supplied to the voltage control circuits 33S and 33T, respectively, to control the rotation of the supply side motor 34S and the take-up side motor 34T. The X-ray tomographic imaging apparatus of this example includes an arithmetic processing unit such as a CPU (Central Processing Unit) (not shown), a ROM (Read Only Memory) for storing a program to be executed by the CPU, and a RAM (RAM) used as a work area of the CPU. Random Access Memory), and the CPU performs calculation and control processing in the tension control calculation circuit described above.

サプライリールとテークアップリールに巻かれた素材の最外径はコア4に巻き取られることに応じて徐々に変化し単位時間あたりのリール回転数も徐々に変化するが、コア4の巻き始めよりリール回転数を常時計測しその単位時間あたりの回転数とコア4巻き取り長さから徐々に変化するリール上の「素材最外径」を連続的に演算で求めることによってコア4両端のサプライリール側素材に与える張力とテークアップリール側素材に与える張力を投影データ取得前にあらかじめ二重螺旋状にコア4へ巻き取る間、常に等しく一定に制御する目的でサプライリール及びテークアップリールの両方へ個別に連結された二個のリール直結の駆動手段(モータ)34S及び34Tの所用トルクを算出し、コア4に巻き取られながらリールが回転させられる方向と逆向きに回転する起電力(回転力)を個別の演算結果に応じ徐々に変化する形で個別に与える。   The outermost diameter of the material wound on the supply reel and take-up reel changes gradually as it is wound on the core 4 and the reel rotation speed per unit time also changes gradually. Supply reels at both ends of the core 4 by continuously measuring the reel rotation speed and continuously calculating the “material outermost diameter” on the reel that gradually changes from the rotation speed per unit time and the winding length of the core 4 Both the supply reel and the take-up reel are controlled so that the tension applied to the side material and the tension applied to the take-up reel side material are always controlled to be equal and constant while being wound around the core 4 in a double spiral shape before acquiring projection data. The required torque of the two directly connected drive means (motors) 34S and 34T connected to the reel is calculated, and the reel is rotated while being wound around the core 4. Providing separately that the electromotive force to rotate in a direction opposite to the direction (the rotational force) is gradually changing shape according to each individual arithmetic result.

さらに、投影データ取得中も同じ原理であらかじめ巻き取る時の上述素材張力と同じ張力にコア4の両端すなわちサプライ側とテークアップ側素材張力をコア4が素材を徐々に巻き取るか徐々に巻き戻すかに応じて各リール直結モータ34S及び34Tへ回転力の方向を変更しつつ等しく制御する。及び素材巻取りコア4が投影データ取得中に新たな部位を巻き取るときに上述張力発生機構へ情報を送りリール回転機構に負荷を与えコア4両端の素材張力を常に等しく一定に制御する。   Furthermore, during the acquisition of projection data, the core 4 gradually takes up or gradually unwinds the material at both ends of the core 4, that is, the supply side and take-up side material tensions, to the same tension as the above-described material tension when winding in advance on the same principle. Accordingly, the reel direct coupling motors 34S and 34T are equally controlled while changing the direction of the rotational force. When the material take-up core 4 takes up a new part during the acquisition of projection data, information is sent to the tension generating mechanism to apply a load to the reel rotating mechanism so that the material tension at both ends of the core 4 is always controlled to be equal and constant.

図8を参照して、巻取りコア4が巻き取る素材全長や各リールとサプライ側とテークアップ側に発生する張力を一定に制御するために各リール直結モータに発生すべきトルク等の算出方法について説明する。図8では、サプライ側のみを表し、定速度で回転する上述の如く素材厚さ分だけ互いに上下にずれて向き合った二個の略半円筒で構成された巻取りコア4が巻き取る極薄長尺素材全長を求める近似式や巻取りコア4の回転数(1,2,3,・・・)に応じた段階的な近似式より求めた素材走行スピードとサプライ側リール回転角速度計測値ωよりサプライリール2上の素材最外径Rを求めその結果より張力制御機構の一例であるリール直結モータが巻き取り張力Tを一定に制御するために発生すべきトルク算出の道筋を示している。   Referring to FIG. 8, a method for calculating the torque and the like to be generated in each reel direct-coupled motor in order to uniformly control the total length of the material taken up by winding core 4 and the tension generated on each reel, supply side, and take-up side. Will be described. In FIG. 8, only the supply side is shown, and the winding core 4 composed of two substantially semi-cylinders that are opposed to each other up and down by the thickness of the material rotating at a constant speed as described above takes up an extremely thin length. From the approximate expression for determining the overall length of the length material and the material traveling speed determined from the stepwise approximate expression corresponding to the rotation speed (1, 2, 3,. The material outermost diameter R on the supply reel 2 is obtained, and the result shows a route for calculating the torque that should be generated for the reel direct connection motor, which is an example of a tension control mechanism, to control the winding tension T to be constant.

図8及び以下の計算式中の記号を次のように定義する。
L :サプライリール巻取り長さ
:巻取り半径
:巻取りコア半径
n :巻取りコア回転数
t :シート素材厚さ
T :サプライリール側の張力
:巻取りコア直前の張力
X :サプライリールモータ所用トルク
R :サプライリール素材外径
:回転ガイド軸による負荷
:固定ガイド軸による負荷
ω :サプライリールの角速度
ω:巻取りコアの角速度
Symbols in FIG. 8 and the following calculation formula are defined as follows.
L: Supply reel winding length r n: winding radius r 0: winding core radius n: winding core rotational speed t: sheet material thickness T: tension T 0 of the supply reel side: winding core just prior to the tension X: supply reel motor Shoyo torque R: supply reel material OD k 1: load by rotating the guide shaft k 2: load by fixed guide shaft omega: supply reel angular velocity omega 0: the winding core angular velocity

図8より、巻取りコア4がn回まわったときの巻取り半径rは、

Figure 0004179100
From FIG. 8, the winding radius r n when winding core 4 is around n times,
Figure 0004179100

巻取りコア4の回転する角速度ωを一定とすると、サプライリール2上の素材半径Rは、

Figure 0004179100
If the angular velocity ω 0 at which the winding core 4 rotates is constant, the material radius R on the supply reel 2 is
Figure 0004179100

シート素材1にかけるべきサプライリール2側の張力Tは、

Figure 0004179100
The tension T on the supply reel 2 side to be applied to the sheet material 1 is
Figure 0004179100

サプライリール2側に張力Tを得るためにサプライリール直結モータに発生させるべきトルクXは、

Figure 0004179100
The torque X to be generated in the supply reel direct-coupled motor in order to obtain the tension T on the supply reel 2 side is:
Figure 0004179100

巻取りコア4が巻き取るサプライ側素材全長Lは、

Figure 0004179100
The supply side material total length L taken up by the winding core 4 is:
Figure 0004179100

テークアップリール巻き取りハブが裸の状態から起動し長尺素材を巻き取る巻き始めの瞬間のサプライリール単位時間あたり回転数を計測し、長尺素材の厚さから当初のサプライリール2の最外径と長尺素材全長を演算で求めるようにする。   The take-up reel take-up hub starts up in a bare state and measures the number of revolutions per supply reel unit time at the beginning of winding to take up the long material. The outermost thickness of the original supply reel 2 is measured from the thickness of the long material. The diameter and the total length of the long material are calculated.

また、サプライリールに巻かれた状態の素材全体長さのどの部位を二重螺旋状にコア4が巻き取っているかを、その瞬間のサプライリール回転数計測結果とコア4の徐々に変化する巻き取り長さとを演算することによってサプライリールに巻かれたその瞬間の素材最外径を認識し、一度投影データ取得し再構成計算まで済んだ素材の絶対位置を継続的に知るようにすることで、重複して同じ部位の投影データを取得することがないようにする。   In addition, which part of the entire length of the material wound around the supply reel is wound in a double spiral manner on the core 4, the supply reel rotational speed measurement result at that moment and the gradually changing winding of the core 4. By calculating the cutting length, the outermost diameter of the material wound around the supply reel is recognized, and the absolute position of the material that has undergone the projection calculation and reconstruction calculation is acquired continuously. The projection data of the same part is not repeatedly acquired.

本例の素材を2重螺旋状に2個のリール中間でコア4が巻き取る構想ではテークアップ側にもサプライ側と同等の張力制御機構が必要である。 In the concept in which the core 4 is wound between two reels in the middle of two reels in a double spiral shape, a tension control mechanism equivalent to that on the supply side is required on the take-up side.

図9のフローチャート、図3及び図4を参照し、本発明のX線断層撮像方法について説明する。このフローチャートを実行させるためのプログラムは上述のROMに格納されている。   The X-ray tomographic imaging method of the present invention will be described with reference to the flowchart of FIG. 9 and FIGS. 3 and 4. A program for executing this flowchart is stored in the ROM.

まず、図3、図4の例のX線断層撮像装置のサプライ側シート素材リーダーシードを静止した巻取りコア4の中割れ部の隙間(すり割り5)を通してテークアップ側へ巻きつける(ステップS1)。   First, the supply-side sheet material leader seed of the X-ray tomographic imaging apparatus shown in FIGS. 3 and 4 is wound around the take-up side through a gap (slot 5) in the middle crack portion of the stationary winding core 4 (step S1). ).

センターポイントが巻取りコア4の中割れ部隙間にはさまれる位置へテークアップリール3を回転させ、シート素材1に発生する張力を所定の値に保ちながら、シート素材1をテークアップ側に巻き取る(ステップS2)。   The take-up reel 3 is rotated to a position where the center point is sandwiched between the gaps in the middle crack portion of the take-up core 4, and the sheet material 1 is wound on the take-up side while maintaining the tension generated in the sheet material 1 at a predetermined value. (Step S2).

上述センターポイントは、拡大投影データ取得の際のシート素材の位置の基準となるものであり、シート素材1をテークアップリールに巻き取る際、裸のテークアップリールが起動しモータの台形駆動低速域に達した状態で180°未満回転する。テークアップリールが加速域から低速域に入った瞬間それにつれて回転するサプライリールの単位時間の回転数を計測し、サプライリールの最外径を演算で求める。求められたサプライリール最外径より長尺物シート素材の全長を求める。求めた全長のどの部位を初回拡大投影データ取得のセンターポイントとするか決定しておく。センターポイントは巻取りコアの中割れ部(長尺素材挿入部)の略真ん中であることが望ましい。   The center point serves as a reference for the position of the sheet material when acquiring the enlarged projection data. When the sheet material 1 is wound around the take-up reel, the naked take-up reel is activated and the trapezoidal driving low speed region of the motor is activated. Rotate less than 180 ° in the state reached. At the moment when the take-up reel enters the low speed range from the acceleration range, the number of rotations of the supply reel that rotates with the take-up reel is measured, and the outermost diameter of the supply reel is calculated. The total length of the long sheet material is determined from the determined outer diameter of the supply reel. It is determined which part of the obtained total length is the center point for acquiring the first enlarged projection data. It is desirable that the center point is substantially in the middle of the middle crack portion (long material insertion portion) of the winding core.

ステップS2の後、テークアップリールとサプライリールを静止させ(ステップS3)、被検査体回転機構11により巻取りコア4を旋回させ所要量シート素材を巻き取り(ステップS4)、X線管1をオンにする(ステップS5)。   After step S2, the take-up reel and the supply reel are stopped (step S3), the take-up core 4 is turned by the inspected object rotation mechanism 11 to take up the required amount of sheet material (step S4), and the X-ray tube 1 is moved. Turn on (step S5).

二重螺旋状に巻き取ったコアの巻き数が増加する方向か又は減少する方向のいずれか一方のみにコア4が所定角度小刻みに旋回し静止し(ステップS6)、X線管1よりX線を巻取りコア4のシート素材二重螺旋部に照射して投影データを取得する(ステップS7)。   The core 4 turns in small increments by a predetermined angle only in either the direction in which the number of turns of the core wound up in a double helix increases or decreases (step S6), and X-rays are emitted from the X-ray tube 1. Is projected onto the sheet material double spiral portion of the winding core 4 to acquire projection data (step S7).

所定枚数投影データを取得したか否かを判断し(ステップS8)、所定枚数に達していない場合にはステップS6の処理に戻り、シート素材1を二重螺旋状に巻き取ったコア4をさらに所定角度変位回転させ、新たな投影データを取得し、再度ステップ8において所定枚数投影データ取得完了したか否かを判断する。   It is determined whether or not a predetermined number of pieces of projection data has been acquired (step S8). If the predetermined number of sheets has not been reached, the process returns to step S6, and the core 4 having the sheet material 1 wound in a double spiral shape is further returned. A predetermined angular displacement is rotated, new projection data is acquired, and it is determined again in step 8 whether the acquisition of the predetermined number of projection data has been completed.

ステップ8にて、所定枚数投影データの取得が完了した場合、X線管1をオフにする(ステップS9)。   If the acquisition of the predetermined number of projection data is completed in step 8, the X-ray tube 1 is turned off (step S9).

コア4の巻き取られたシート素材1をコアが巻き取った方向と逆に旋回し、サプライリール2とテークアップリール3へシート素材1を戻し、コアはすり割り(長尺素材通し部)に通されているだけの裸の状態となる(ステップS10)。   The sheet material 1 wound around the core 4 is turned in the direction opposite to the direction in which the core is wound, the sheet material 1 is returned to the supply reel 2 and the take-up reel 3, and the core is split (long material passage portion). It will be in the naked state only passed (step S10).

そして、テークアップリール2でシート素材1を巻き取って次のシート素材探査部位へ移動する(ステップS11)。そして、シート素材1の新たな探査部位を検査する場合には、ステップS3からの一連の処理を繰り返す。   Then, the sheet material 1 is taken up by the take-up reel 2 and moved to the next sheet material search site (step S11). And when inspecting a new exploration site | part of the sheet | seat raw material 1, a series of processes from step S3 are repeated.

以上述べたような構成の本例によれば、X線断層撮像装置において本例の如く大型のサプライリール2とテークアップリール3の中間で長尺素材を切断することなく、シート素材の場合は二重螺旋状にその一定量を検出器の大きさに見合った拡大投影像の得られる小径コアに巻き取り、断面円形の素材の場合は密着したコイル状に小径コアに巻き取って、そのコアに巻き取られた部位にマイクロフォーカスX線源によってX線を照射しつつ小刻みにコア回転させながら所定枚数の拡大投影データ取得を行えば、長尺素材の任意部位について素材にダメージを与えること無く効率的に再構成画像が得られ、素材内部の異物等検出することや、長尺素材全域に渡る素材を構成する微粒子などの分布状態を把握することが可能となる。   According to the present example configured as described above, in the case of a sheet material without cutting a long material between the large supply reel 2 and the take-up reel 3 as in this example in the X-ray tomographic imaging apparatus, A certain amount of a double helix is wound around a small-diameter core that provides an enlarged projection image commensurate with the size of the detector. If a predetermined number of pieces of enlarged projection data are acquired while rotating the core in small increments while irradiating the X-ray source with the microfocus X-ray source to the part wound up in a long distance without damaging the material at any part of the long material It is possible to efficiently obtain a reconstructed image, to detect foreign matters inside the material, and to grasp the distribution state of fine particles constituting the material over the entire length of the material.

また、図3及び図4のような構造を採用すれば、即ちX線焦点13から二次元検出器14へ降ろした垂線を略直角に跨ぐように配置されたサプライリール2及びテークアップリール3の回転軸を略同軸上で回転可能で、且つ被検査体回転機構11の回転軸に垂直に配置すると、装置がコンパクトにまとまって設置面積が減少する。   If the structure as shown in FIGS. 3 and 4 is adopted, that is, the supply reel 2 and the take-up reel 3 arranged so as to straddle a perpendicular line dropped from the X-ray focal point 13 to the two-dimensional detector 14 at a substantially right angle. If the rotating shaft can be rotated substantially on the same axis and is arranged perpendicular to the rotating shaft of the inspected object rotating mechanism 11, the apparatus is compact and the installation area is reduced.

また、図示しないリール駆動直結モータなどによって巻取りコアの長尺素材挿入部に挿入した長尺素材のサプライリール側とテークアップリール側の両端に掛かる素材張力を常に等しく一定に制御することによって、投影データ取得中に素材が長さ方向に延び縮みすることは無く信頼性の高い再構成画像が得られる。   In addition, by controlling the material tension applied to both ends of the supply reel side and the take-up reel side of the long material inserted into the long material insertion portion of the take-up core by a reel drive direct connection motor (not shown) at all times, During the acquisition of projection data, the material does not expand and contract in the length direction, and a highly reliable reconstructed image is obtained.

また、サプライリールの最外径を演算で常に把握していることによっては一度投影データ取得を完了した部位の長尺素材全体中の絶対座標を知ることが出来るので、重複して同じ部位の投影データを複数回取得するが如き効率の悪い作業からは解放される。   In addition, by always knowing the outermost diameter of the supply reel by calculation, it is possible to know the absolute coordinates of the entire long material of the part once the projection data acquisition has been completed, so the projection of the same part overlaps. It is freed from inefficient work such as acquiring data multiple times.

次に、図10を参照して、本発明のX線断層撮像装置の他の一実施の形態を、長尺物被検査体として例えば断面が略円形の光ファイバーケーブルのような長尺素材の場合について説明する。本例は、例えば光ファイバーケーブルのような断面が略円形の長尺素材を切断することなくサプライリールからテークアップリールへの走行経路中間で一重にコイル状に巻き取る巻取りコア44を図示しており、図7Aはフランジ付き巻取りコアの上フランジを外して見た上面図であり、図7Bは巻取りコアの下半分を図7AのI−I線断面表示した側面図である。その他の構成については、図3〜図5の被検査体が長尺シート素材の場合と同様である。   Next, referring to FIG. 10, in another embodiment of the X-ray tomographic imaging apparatus of the present invention, a long material such as an optical fiber cable having a substantially circular cross section is used as a long object to be inspected. Will be described. This example shows a winding core 44 that is wound in a single coil in the middle of a traveling path from a supply reel to a take-up reel without cutting a long material having a substantially circular cross section such as an optical fiber cable. FIG. 7A is a top view of the winding core with a flange as viewed from the top flange, and FIG. 7B is a side view of the lower half of the winding core in a cross-sectional view taken along the line II of FIG. 7A. About another structure, it is the same as that of the case where the to-be-inspected object of FIGS. 3-5 is a elongate sheet material.

断面が略円形の光ファイバーケーブルのような長尺素材を取り扱う場合は、例えば右二つ巴断面形状の巻取りコア44を用いて上下フランジ24U及び24L間が密になるよう螺旋状に一重もしくは複数回折り返して多重に巻き取る。中央が割れた巻取りコア44に円形断面の素材を挟み込むまではシート素材の場合と同じであって、コア44の巻き取り時の回転にあわせ、サプライリール側とテークアップリール側の巻き取りコア近傍の素材案内ガイドが徐々に互いに上下離反し、巻取りコア44の上下フランジ24U及び24L間を密着した電磁コイル巻線の如き形態になるように断面円形の素材を螺旋状に巻き取る。言い換えれば巻取りコア44上下の幅方向の中間点43より片方の半分はサプライリールから供給され、もう片方の半分はテークアップリールから供給されるコア巻き取り手段を取る。上述の「折り返し」とは、中間点43を境にしてサプライリール側とテークアップリール側からそれぞれ繰り出されるコア44の回転に伴い巻き取られる各素材が、上下フランジ24U及び24Lと中間点43の間をそれぞれ往復することを指す。   When handling a long material such as an optical fiber cable having a substantially circular cross section, for example, a winding core 44 having a right double cross section is used, and a single or a plurality of spirals are spirally formed so that the space between the upper and lower flanges 24U and 24L is close. Turn it back up and wind it up multiple times. The process is the same as in the case of the sheet material until the material having a circular cross section is sandwiched between the winding core 44 whose center is cracked, and the winding cores on the supply reel side and the take-up reel side according to the rotation of the core 44 during winding. The material guides in the vicinity are gradually separated from each other up and down, and the material having a circular cross section is wound up spirally so as to form an electromagnetic coil winding in which the upper and lower flanges 24U and 24L of the winding core 44 are in close contact with each other. In other words, one half is supplied from the supply reel from the intermediate point 43 in the width direction above and below the winding core 44, and the other half takes the core winding means supplied from the take-up reel. The above-mentioned “turning back” means that each material wound along with the rotation of the core 44 fed out from the supply reel side and the take-up reel side with the intermediate point 43 as a boundary is formed between the upper and lower flanges 24U and 24L and the intermediate point 43. It means to reciprocate between each.

一重コイル状にコア中央から上半分をサプライリール側から供給し、下半分をテークアップリール側から供給するように描いたがその逆でも何等差し支えはない。コイル状の巻き方は一重でなく多重でもよいが、多重巻取りの時もコア44に対する前記上下分担は一定不変でなければならない。密着したコイル状に図8の如く素材を巻き取るには巻取りコアの両端44に素材を上下に首を振りながら案内するガイドが有ってもよい。   The upper half from the center of the core is supplied from the supply reel side and the lower half is supplied from the take-up reel side in a single coil shape, but the reverse is not a problem. The coiled winding method may be multiple and not single, but the vertical division with respect to the core 44 must be constant even during multiple winding. In order to wind up the material in a close coil shape as shown in FIG. 8, there may be guides for guiding the material while swinging the head up and down at both ends 44 of the winding core.

また、この断面略円形の長尺素材の例においても、長尺物シート素材の場合の素材厚さを素材直径に置き換えることで、長尺シート素材の例と同様、図6〜図8の長尺物のパス系及び張力制御回路ブロック、計算式を適用することができる。   In the example of the long material having a substantially circular cross section, the material thickness in the case of the long sheet material is replaced with the material diameter, so that the length of FIGS. 6 to 8 is the same as that of the long sheet material. The path system of the scale, the tension control circuit block, and the calculation formula can be applied.

斯かる本例によれば、図1〜図9の例の被検査体が長尺シート素材である場合と同様、サプライリールとテークアップリールの中間で断面略円形の長尺素材41を切断することなく、長尺素材を密着したコイル状にその一定量を二次元検出器の大きさに見合った拡大投影像の得られる小径コア44に巻き取り、そのコア44に巻き取られた部位にマイクロフォーカスX線源によってX線を照射しつつ小刻みにコア44を回転させながら所定枚数の拡大投影データ取得を行えば、長尺素材41の任意部位について素材にダメージを与えること無く効率的に再構成画像が得られ、素材内部の異物等検出することや、長尺素材全域に渡る素材を構成する微粒子などの分布状態を把握することが可能となる。   According to this example, the long material 41 having a substantially circular cross section is cut between the supply reel and the take-up reel as in the case where the object to be inspected in the examples of FIGS. 1 to 9 is a long sheet material. Without wrapping the long material into a coiled shape, a fixed amount is wound around a small-diameter core 44 where an enlarged projection image corresponding to the size of the two-dimensional detector is obtained. If a predetermined number of enlarged projection data are acquired while rotating the core 44 in small increments while irradiating the focused X-ray source with X-rays, an arbitrary part of the long material 41 is efficiently reconstructed without damaging the material. An image is obtained, and it is possible to detect a foreign substance or the like inside the material and to grasp the distribution state of the fine particles constituting the material over the entire long material.

また、断面略円形素材41をコイル状にコア44に巻くことで、二重螺旋状に巻くよりも巻き取りに要するスペースを小さくすることができる。   Moreover, by winding the material 41 having a substantially circular cross section around the core 44 in a coil shape, the space required for winding can be made smaller than when wound in a double spiral shape.

尚、本発明は、コア両端のサプライリール側素材に与える張力とテークアップリール側素材に与える張力を投影データ取得前にあらかじめ二重螺旋状またはコイル状にコアへ巻き取る間、常に等しく一定に制御する目的でサプライリール及びテークアップリールのリール回転機構の両方へ個別に連結されたリール回転に対する機械的負荷によって素材張力を制御する張力発生能動素子に与える情報を算出し、コアに巻き取られながら各リールが回転させられる方向と逆向きに回転するよう作用する張力を発生する張力発生機構への情報を個別の演算結果に応じ徐々に変化する形で個別に与えるようにしてもよい。   In the present invention, the tension applied to the material on the supply reel side at both ends of the core and the tension applied to the material on the take-up reel side are always equalized and constant while being wound around the core in a double spiral shape or a coil shape before acquiring projection data. For the purpose of control, the information given to the tension generating active element that controls the material tension by the mechanical load against the reel rotation individually connected to both the reel rotation mechanism of the supply reel and the take-up reel is calculated and wound on the core. However, information to the tension generating mechanism that generates tension that acts to rotate in the direction opposite to the direction in which each reel is rotated may be individually given in a form that gradually changes in accordance with individual calculation results.

また、本発明は上述した実施の形態の例に限られるものではなく、本発明の要旨を逸脱することなくその他種々の構成を取り得ることは勿論である。   Further, the present invention is not limited to the above-described embodiments, and various other configurations can be taken without departing from the gist of the present invention.

本発明の一実施の形態の例の概念を示す説明図である。It is explanatory drawing which shows the concept of the example of one embodiment of this invention. 図1の要部の拡大図である。It is an enlarged view of the principal part of FIG. 一実施の形態の例の装置全体図である。1 is an overall apparatus diagram of an example of an embodiment; 一実施の形態の例の長尺シート素材のパス系の説明図である。It is explanatory drawing of the path | pass system of the elongate sheet material of the example of one Embodiment. 一実施の形態の例の巻取りコア及び被検査体回転機構の外観図である。It is an external view of the winding core and the to-be-inspected object rotation mechanism of the example of one embodiment. 一実施の形態の例のシート素材パス系及び張力測定の説明図である。It is explanatory drawing of the sheet material path | pass system and tension | tensile_strength measurement of the example of one Embodiment. 一実施の形態の例の張力制御回路の構成を示すブロック図である。It is a block diagram which shows the structure of the tension control circuit of the example of one Embodiment. 一実施の形態の例のサプライリール側の張力測定の説明図である。It is explanatory drawing of the tension measurement by the side of a supply reel of the example of one Embodiment. 本発明のX線断層撮像方法を説明するフローチャートである。It is a flowchart explaining the X-ray tomographic imaging method of this invention. 本発明の他の実施の形態の例の説明図である。It is explanatory drawing of the example of other embodiment of this invention. 従来例の説明図である。It is explanatory drawing of a prior art example. 他の従来例の説明図である。It is explanatory drawing of another prior art example.

符号の説明Explanation of symbols

1…長尺シート素材、2…サプライ(供給)リール、3…テークアップ(巻取り)リール、4,24,44…巻取りコア(巻取り部材)、5…すり割り(長尺素材挿入部)、6S,6T…固定ガイド、7S,7T…傾斜ガイド、11…被検査体回転機構、12…X線管、13…X線焦点、14…二次元検出器、24U,24L…フランジ、25…隙間(長尺素材挿入部)、26S,26T…固定ガイド、27S,27T…張力検出器、28S,28T…回転ガイド、41…断面略円形長尺素材、42S,42T…案内ガイド   DESCRIPTION OF SYMBOLS 1 ... Long sheet material, 2 ... Supply (supply) reel, 3 ... Take-up (winding) reel, 4, 24, 44 ... Winding core (winding member), 5 ... Slotting (long material insertion part) ), 6S, 6T: Fixed guide, 7S, 7T: Inclined guide, 11: Inspected object rotating mechanism, 12: X-ray tube, 13: X-ray focal point, 14: Two-dimensional detector, 24U, 24L ... Flange, 25 ... Gap (long material insertion part), 26S, 26T ... Fixed guide, 27S, 27T ... Tension detector, 28S, 28T ... Rotation guide, 41 ... Substantially circular long material, 42S, 42T ... Guide guide

Claims (7)

X線源と、
前記X線源から出射されて被検査体を透過したX線を検出し前記被検査体の投影像を撮像する二次元検出器と、
前記被検査体としての長尺素材を巻き取る2つのリールと、
一方のリールから他方のリールへ送られた前記長尺素材が挿入される隙間からなる長尺素材挿入部を有する略円筒であって、前記略円筒の中心軸が前記被検査体の回転軸と略平行並びに前記X線源のX線焦点から前記二次元検出器へ降ろした垂線と略直交する巻取り部材と、
前記長尺素材挿入部に一方のリールから他方のリールに巻き取られる途中の前記長尺素材の任意部位を挟んだ状態で、前記中心軸を回転中心として前記巻取り部材と一体に回転して、前記巻取り部材に一方のリール及び他方のリールの長尺素材を所定量巻き取らせる、並びに前記巻取り部材に巻き取られた前記長尺素材を一方のリール及び他方のリールに所定量戻す回転手段とを有し、
一方のリールから送られる前記長尺素材を他方のリールで巻き取る過程において、前記回転手段により、前記巻取り部材の長尺素材挿入部に前記長尺素材の任意部位を挟んだ状態で前記巻取り部材に前記長尺素材を一定量巻き取り、前記巻取り部材に巻き取られた前記長尺素材の巻き数を増加又は減少させる方向に前記巻取り部材を所定角度ずつ回転させ、前記巻取り部材に巻き取られている部分の前記長尺素材の各角度毎の投影像を撮像する
X線断層撮像装置。
An X-ray source;
A two-dimensional detector for capturing the projected image of emitted detects X-rays transmitted through the object to be tested the test subject from the X-ray source,
Two reels for winding the long material as the object to be inspected;
A substantially cylindrical for have a elongated material insertion portion comprising a gap in which the elongated material sent from one reel to the other reel is inserted, the rotation axis of the central axis the inspection of the substantially cylindrical And a winding member that is substantially parallel to and perpendicular to the perpendicular drawn from the X-ray focal point of the X-ray source to the two-dimensional detector ;
While sandwiching the arbitrary part of the long material of the course to be wound on the other reel from one reel to the elongated component inserting portion, to rotate the take-up member integrally as a rotation about the central axis , it assumes a predetermined amount winding the elongated material of one reel and the other reel to said take-up member, and returns a predetermined amount of the wound the elongated material to the winding member in one reel and the other reel It has a rotating means,
In the process of winding the long material fed from one reel with the other reel, the rotating means winds the winding in a state where an arbitrary part of the long material is sandwiched between the long material insertion portions of the winding member. A predetermined amount of the long material is wound around the winding member, the winding member is rotated by a predetermined angle in a direction to increase or decrease the number of windings of the long material wound around the winding member, and the winding is performed. An X-ray tomographic imaging apparatus that captures a projected image of each portion of the long material wound around a member at each angle .
請求項1記載のX線断層撮像装置において、
各角度毎の投影像の撮像後、前記回転手段により前記長尺素材が巻き取られている前記巻取り部材を巻き取り方向と逆に回転させ、一方のリールに戻った長さ以上を前記巻取り部材が静止した状態で他方のリールへ供給する
X線断層撮像装置。
The X-ray tomographic imaging apparatus according to claim 1,
After capturing the projected image for each angle, the winding member around which the long material is wound is rotated by the rotating means in the direction opposite to the winding direction, and the length more than the length returned to one of the reels is wound. An X-ray tomographic imaging apparatus that supplies the other reel with the take-up member stationary.
請求項1記載のX線断層撮像装置において、
前記長尺素材がシート素材の場合には前記巻取り部材は前記長尺素材を二重螺旋状に巻き取
X線断層撮像装置。
The X-ray tomographic imaging apparatus according to claim 1,
Said elongate material X-ray tomographic imaging apparatus wherein the take-up member is that the winding of the elongated material in a double helix shape in the case of the sheet material.
請求項1記載のX線断層撮像装置において、The X-ray tomographic imaging apparatus according to claim 1,
前記長尺素材が断面略円形である場合には前記巻取り部材は前記長尺素材をコイル状に巻き取るWhen the long material has a substantially circular cross section, the winding member winds the long material into a coil shape.
X線断層撮像装置。X-ray tomographic imaging apparatus.
請求項1記載のX線断層撮像装置において、
一方のリール及び他方のリールを前記X線源のX線焦点から前記二次元検出器へ降ろした垂線を略直角に跨ぐように配置するとともに双方のリール回転軸を略同軸上とし、かつ前記巻取り部材の回転軸に垂直に配置する
X線断層撮像装置。
The X-ray tomographic imaging apparatus according to claim 1,
One reel and the other reel are arranged so as to straddle a perpendicular line dropped from the X-ray focal point of the X-ray source to the two-dimensional detector, and both reel rotation axes are substantially coaxial, and the winding An X-ray tomographic imaging apparatus arranged perpendicular to the rotation axis of the take-up member.
請求項1記載のX線断層撮像装置において、
前記巻取り部材の長尺素材挿入部に挿入された前記長尺素材の一方のリール側及び他方のリール側の両端に掛かる張力を計測する張力計測手段と、
一方のリール及び他方のリールの回転を制御する張力発生手段と、
前記張力計測手段の計測情報に基づいて一方のリール及び他方のリールの各張力発生手段に与えるべき制御情報を計算する張力制御演算手段とを備え、
前記張力制御演算手段の制御情報に基づいて、前記長尺素材の一方のリール側及び他方のリール側の両端に掛かる張力が等しく一定となるように前記各張力発生手段を制御する
X線断層撮像装置。
The X-ray tomographic imaging apparatus according to claim 1,
And tension measurement means for measuring the tension applied to both ends of one of the reel side and the other reel side of the elongated material which is inserted into the elongated material insertion portion of the winding member,
A tension generating means for controlling the rotation of the one reel and the other reel,
And a tension control operation means for calculating the control information to be given to each tension generating means of the one reel and the other reel on the basis of the measurement information of the tension measuring means,
Based on the control information of the tension control operation unit, X-rays tomography tension applied to both ends of one of the reel side and the other reel side of the elongated material to control the respective tension generating means so that the same constant apparatus.
X線源と、
前記X線源から出射されて被検査体を透過したX線を検出し前記被検査体の投影像を撮像する二次元検出器と、
前記被検査体としての長尺素材を巻き取る2つのリールと、
一方のリールから他方のリールへ送られた前記長尺素材が挿入される隙間からなる長尺素材挿入部を有する略円筒であって、前記略円筒の中心軸が前記被検査体の回転軸と略平行並びに前記X線源のX線焦点から前記二次元検出器へ降ろした垂線と略直交する巻取り部材と、
前記長尺素材挿入部に一方のリールから他方のリールに巻き取られる途中の前記長尺素材の任意部位を挟んだ状態で、前記中心軸を回転中心として前記巻取り部材と一体に回転して、前記巻取り部材に一方のリール及び他方のリールの長尺素材を所定量巻き取らせる、並びに前記巻取り部材に巻き取られた前記長尺素材を一方のリール及び他方のリールに所定量戻す回転手段と
を有するX線断層撮像装置によるX線断層撮像方法であって、
一方のリールから送られる前記長尺素材を他方のリールで巻き取る過程において、前記回転手段により、前記巻取り部材の長尺素材挿入部に前記長尺素材の任意部位を挟んだ状態で前記巻取り部材に前記長尺素材を一定量巻き取り、
前記巻取り部材に巻取られた前記長尺素材の巻き数を増加又は減少させる方向に前記巻取り部材を所定角度ずつ回転させ、
前記巻取り部材に巻き取られている部分の前記長尺素材の各角度毎の投影像を撮像して投影データを取得する
X線断層撮像方法。
An X-ray source;
A two-dimensional detector that detects X-rays emitted from the X-ray source and transmitted through the object to be examined, and picks up a projected image of the object;
Two reels for winding the long material as the object to be inspected;
It is a substantially cylinder having a long material insertion portion comprising a gap into which the long material fed from one reel to the other reel is inserted, and the central axis of the substantially cylinder is the rotation axis of the object to be inspected A winding member that is substantially parallel and perpendicular to the perpendicular drawn from the X-ray focal point of the X-ray source to the two-dimensional detector;
In a state where an arbitrary portion of the long material being wound from one reel to the other reel is sandwiched in the long material insertion portion, the long material is rotated integrally with the winding member around the central axis. , Causing the take-up member to take up a predetermined amount of the long material of one reel and the other reel, and returning the long material taken up by the take-up member to the one reel and the other reel by a predetermined amount With rotating means
An X-ray tomographic imaging method using an X-ray tomographic imaging apparatus comprising :
Said elongated material is fed from one reel in the process of winding the other reel, said by rotating means, said winding in a state of sandwiching the arbitrary part of the elongated material to the elongated material insertion portion of the take-up member the elongated material to take member takes a certain amount winding,
It said winding member in the direction of increasing or decreasing the number of windings of the elongated material is wound on the take-up member is rotated by a predetermined angle,
An X-ray tomographic imaging method of acquiring projection data by capturing a projection image of each angle of the long material of a portion wound around the winding member .
JP2003293899A 2003-08-15 2003-08-15 X-ray tomographic imaging apparatus and method Expired - Fee Related JP4179100B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003293899A JP4179100B2 (en) 2003-08-15 2003-08-15 X-ray tomographic imaging apparatus and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003293899A JP4179100B2 (en) 2003-08-15 2003-08-15 X-ray tomographic imaging apparatus and method

Publications (2)

Publication Number Publication Date
JP2005062042A JP2005062042A (en) 2005-03-10
JP4179100B2 true JP4179100B2 (en) 2008-11-12

Family

ID=34370646

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003293899A Expired - Fee Related JP4179100B2 (en) 2003-08-15 2003-08-15 X-ray tomographic imaging apparatus and method

Country Status (1)

Country Link
JP (1) JP4179100B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102087229A (en) * 2010-12-21 2011-06-08 丹东华日理学电气有限公司 Power assistance-free small-diameter pipe fitting rotation device used in X-ray real-time imaging

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6036321B2 (en) * 2012-03-23 2016-11-30 株式会社リガク X-ray composite device
KR20200131215A (en) * 2018-03-15 2020-11-23 도레이 카부시키가이샤 Foreign matter inspection method, inspection device, film roll, and manufacturing method of film roll

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102087229A (en) * 2010-12-21 2011-06-08 丹东华日理学电气有限公司 Power assistance-free small-diameter pipe fitting rotation device used in X-ray real-time imaging
CN102087229B (en) * 2010-12-21 2012-05-02 丹东华日理学电气有限公司 Power assistance-free small-diameter pipe fitting rotation device used in X-ray real-time imaging

Also Published As

Publication number Publication date
JP2005062042A (en) 2005-03-10

Similar Documents

Publication Publication Date Title
US11918340B2 (en) Electromagnetic sensor with probe and guide sensing elements
US5068608A (en) Multiple coil eddy current probe system and method for determining the length of a discontinuity
US20070282197A1 (en) Instrument, imaging position fixing system and position fixing method
US20130303945A1 (en) Electromagnetic tip sensor
US3906358A (en) Probe train including a flaw detector and a radiation responsive recording means with alignment means having a natural curved cast
RU2293980C2 (en) Method and system for detecting flaws of cores
RU2507507C1 (en) Scanning device using radiation beam for backscattering imaging and method thereof
JP5360132B2 (en) Superconducting wire inspection device and inspection method
JP3572460B2 (en) Eddy current probe
US20080258717A1 (en) Magnetic Induction Tomography System and Method
CN104122277A (en) Computed tomography (CT) detector of cables
JP4179100B2 (en) X-ray tomographic imaging apparatus and method
JPH01123143A (en) Method and apparatus for detection of flaw by eddy current
JPS6225979B2 (en)
KR20200131215A (en) Foreign matter inspection method, inspection device, film roll, and manufacturing method of film roll
JP2009075101A (en) Method and apparatus for detecting defect in tooth of generator rotor
JP2000235007A (en) X-ray ct scanner device and x-ray freight inspecting method
JPS5988140A (en) Nmr endoscope diagnostic apparatus
US3958120A (en) Radiographic inspection of steam generator tubes
SE464596B (en) SELF-PROJECT PROJECT BEFORE PUTTING INTO THE INTERNAL OF A CROWN PIPE
JP2953637B2 (en) Flexible delivery device for rotatable probe
JPH1172482A (en) Inspection system of fine tube using eddy current flaw detection method
US9651357B1 (en) Systems and methods for determining strand position in a post-tensioned tendon
EP2423583A1 (en) Cable for inspecting heat tubes and method of analyzing insertion force of cable
KR20210050336A (en) Inspection apparatus for pressure vessel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060531

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080422

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080623

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080805

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080818

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110905

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120905

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees