JP4177515B2 - Binocular visual function testing device - Google Patents

Binocular visual function testing device Download PDF

Info

Publication number
JP4177515B2
JP4177515B2 JP13771999A JP13771999A JP4177515B2 JP 4177515 B2 JP4177515 B2 JP 4177515B2 JP 13771999 A JP13771999 A JP 13771999A JP 13771999 A JP13771999 A JP 13771999A JP 4177515 B2 JP4177515 B2 JP 4177515B2
Authority
JP
Japan
Prior art keywords
filter
visual function
target
polarizing filter
binocular visual
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP13771999A
Other languages
Japanese (ja)
Other versions
JP2000325310A (en
Inventor
悌司 矢ケ崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIHON TENGANYAKU KENKYUSYO CO., LTD
Original Assignee
NIHON TENGANYAKU KENKYUSYO CO., LTD
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIHON TENGANYAKU KENKYUSYO CO., LTD filed Critical NIHON TENGANYAKU KENKYUSYO CO., LTD
Priority to JP13771999A priority Critical patent/JP4177515B2/en
Publication of JP2000325310A publication Critical patent/JP2000325310A/en
Application granted granted Critical
Publication of JP4177515B2 publication Critical patent/JP4177515B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Eye Examination Apparatus (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、両眼視機能を自然視に近い状態で検査する両眼視機能検査装置に関する。
【0002】
【従来の技術】
両眼視機能の検査は、弱視或は斜視の治療のために重要な検査であり、従来より各種の検査装置が提案され使用されているが、このような両眼視機能を定性的に検査する両眼視機能検査装置として、従来、ウォース4灯式検査装置が知られている。
【0003】
このウォース4灯式検査装置は、方形の箱の前面に、所定の大きさで視標となる4個の孔を上下、左右位置に各々設け、箱内に1個の電球を配設し、その上孔には赤色ガラスを、下孔には白色ガラスを、左孔及び右孔には緑色ガラスを、夫々取り付けて構成され、被検者には、一方に赤色ガラス(フィルタ)を嵌め他方に緑色ガラス(フィルタ)を嵌め込んだ赤緑メガネを装用させて、それらの視標の見え方を観察して、被検者の両眼視機能を検査するものである。
【0004】
【発明が解決しようとする課題】
このウォース4灯式検査装置を使用して両眼視機能の検査を行なう場合、赤緑メガネを装用した被検者は、装置の灯視標を見て、その数とその位置関係を答えるが、メガネの赤色フィルタと緑色灯、緑色フィルタと赤色灯は補色により打ち消されるため、赤色フィルタの眼からは、上方の赤色灯と下方の無色灯が赤色に見え、緑色フィルタの眼からは、左右の2個の緑色灯と下方の無色灯が緑色に見え、左右の眼は、相互に他眼で見える視標を見ることができないしくみである。従って、被検者に斜位や斜視があって片眼に抑制がある場合、概略的には、赤色2灯のみが見えれば、緑色フィルタ側の眼に抑制があり、緑色3灯のみが見えるときには、赤色フィルタ側の眼に抑制があることになる。
【0005】
しかしながら、従来のこのウォース4灯式検査装置は、被検者が赤緑メガネを装用してつまり色フィルタを通した眼で検査されるため、自然視の状態から離れて特殊な視覚状態で検査が行なわれるから、被検者の融像力を弱めて、正確な両眼視機能検査ができにくい問題があった。
【0006】
ところで、両眼視機能が正常であり、両眼の網膜対応点に同一像が投影された場合には融像が行なわれる。しかし、被検者に斜視・弱視がある場合、両眼の網膜対応点に大きく相違した像が投影されるため、融像が行なわれず、両眼から得られた像の情報が相互に抑制し合って視野闘争が行なわれ、何れかの像の情報を消して視認しないようにしている。このような視野中の網膜対応領域における限局性の感度低下部分が抑制暗点と呼ばれるものである。
【0007】
この抑制暗点を定量的に測定することは、斜視・弱視の治療に重要な検査となるが、上記ウォース4灯式検査装置では、赤色ガラス、緑色ガラス、及び白色ガラスを嵌めた視標位置が固定されているため、この抑制暗点を定量的に測定することは容易ではないという問題があった。
【0008】
本発明は、上記の点に鑑みてなされたもので、自然視に近い状態で両眼視機能の検査を良好に実施できる共に、抑制暗点の定量的な測定を容易に行なうことができる両眼視機能検査装置を提供することを目的とする。
【0009】
【課題を解決するための手段】
上記目的を達成するために、本発明の両眼視機能検査装置は、両眼視機能を検査する両眼視機能検査装置において、透過軸を垂直方向とする第一の偏光フィルタと、透過軸を水平方向とし第一の偏光フィルタとは個数を相違した第二の偏光フィルタとが、板面上の中心点の周囲に所定の角度間隔で配置され、中心点を軸に回転可能に軸支された回転視標板と、回転視標板の背面側に配設され、第一、第二の偏光フィルタに背面側から正面側に光を透過させ、背面照明を行なう光源と、被検者が検査時に装用するメガネであって、一方のレンズ位置に透過軸を垂直方向とする偏光フィルタが設けられ、他方のレンズ位置に透過軸を水平方向とする偏光フィルタが設けられた偏光メガネと、を備えたことを特徴とする。
【0010】
ここで、回転視標板には2個の第一の偏光フィルタと1個の第二の偏光フィルタと1個の白色フィルタを90°の間隔で配置し、回転視標板は各偏光フィルタの透過軸が水平方向又は垂直方向となる位置で停止するように90°間隔で回転・停止するように構成することができる。
【0011】
【作用】
この両眼視機能検査装置を用いて両眼視機能を検査する場合、被検者に偏光メガネを装用させ、回転視標板の前方で所定距離だけ離れた位置に被検者を位置させ、光源を点灯させる。そして、回転視標板上で背後から照明表示される偏光フィルタと白色フィルタの数と位置を被検者に答えさせる。
【0012】
例えば、偏光メガネの右側レンズに垂直方向の透過軸を持つ偏光フィルタが位置し、左側レンズに水平方向の透過軸を持つ偏光フィルタが位置する場合、被検者は右眼では水平方向の透過軸を持つ平面偏光を見ることができず、左眼では垂直方向の透過軸を持つ平面偏光を見ることができない。従って、光源の点灯により、回転視標板の第一の偏光フィルタを通して垂直透過軸の平面偏光が出射され、第二の偏光フィルタを通して水平透過軸の平面偏光が出射される場合、被検者の右眼では第二の偏光フィルタの箇所を見ることができず、左眼では第一の偏光フィルタの箇所を見ることができず、被検者の左右の眼を分離させて、視標を見る状態を作り出す。
【0013】
このため、被検者の両眼視機能が正常な場合には、右眼で白色フィルタと第一の偏光フィルタの箇所を見て、左眼で白色フィルタと第二の偏光フィルタの箇所を見るから、背面照明される第一・第二の偏光フィルタの箇所が所定の配置通りに被検者には見えることになる。一方、被検者が、第一の偏光フィルタの箇所を見ることができるが、第二の偏光フィルタの箇所を見ることができない場合、左眼に抑制があり、第二の偏光フィルタの箇所を見ることができるが、第一の偏光フィルタの箇所を見ることができない場合、右眼に抑制があることになる。
【0014】
上記両眼視機能検査装置を用いて抑制暗点の定量検査を行なうこともできる。一般に、斜視・弱視の抑制暗点は、眼底(網膜)の中央部分にある大きさを持って位置し、被検者が例えば50cm位の比較的近い距離で視標を見た場合、その抑制暗点から外れた周辺網膜で像を捉えるため、両眼の同時視が可能である。そこで、抑制暗点の定量検査を行なう場合、被検者が偏光メガネを装用した状態で、照明表示される回転視標板上の偏光フィルタの箇所を視認可能な位置まで、回転視標板を被検者に近づける。
【0015】
そして、回転視標板の各偏光フィルタの箇所を視認可能な位置から回転視標板を徐々に被検者より離していき、複数の偏光フィルタの箇所のうちの1個の偏光フィルタの箇所が見えなくなった時の被検者から回転視標板までの距離を計測し、その距離と偏光フィルタの水平方向又は垂直方向の間隔とから、被検者の回転視標板を見る際の視角を算出する。このような検査・測定は、回転視標板を90°づつ回転させて行なわれ、各々の角度位置における視角を測定・算出することにより、被検者の抑制暗点の大きさを定量的に求めることができる。
【0016】
【発明の実施の形態】
以下、本発明の実施の形態を図面に基づいて説明する。図1は両眼視機能を検査する両眼視機能検査装置の斜視図を、図2はその背面図を示している。この両眼視機能検査装置は、視標となる両眼視機能検査装置本体1と、被検者が検査時に装用する偏光メガネ20とから構成される。
【0017】
両眼視機能検査装置本体1は、矩形箱形のケース2が支持台4上に水平軸5を介して設けられ、ケース2の正面側に、正面中心の周囲に90°間隔で4個の円形の視標窓、つまり左の視標窓3a、右の視標窓3b、上の視標窓3c、及び下の視標窓3dが所定位置に形成される。左右の視標窓3a,3bは中心点Oを通る水平軸上に位置し、上下の視標窓3c,3dは中心点Oで水平軸と直交する垂直軸上に位置し、中心点Oから各視標窓までの距離は同一である。各視標窓3a〜3dの直径Rは例えば40mmに設定され、左の視標窓3aと右の視標窓3bの間隔Wは例えば160mmに、上の視標窓3cと下の視標窓3dの間隔Wも160mmに設定される。
【0018】
ケース2の少なくとも正面側は、黒色に塗装され、点灯表示される視標窓を見やすくしている。また、ケース2は、支持台4上で水平軸5により前後に傾動可能に支持され、その前後の傾斜角度を調整可能である。ケース2の上部に把手13が設けられる。
【0019】
下の視標窓3dの直下に、被検者に視標を注目させるための固視灯7が設けられ、この固視灯7を点灯させるための固視灯スイッチ8がケース2上に設けられる。また、ケース2内には、やはり被検者に対し音で視標を注目させるために、図4に示すように、オルゴール装置16が配設される。オルゴール装置16には電子楽音発生装置が使用され、予めメモリに楽音信号が記憶され、それを楽曲選曲信号に基づき、読み出して楽音を再生し、その音楽をスピーカ17から再生する。図2において、11はオルゴールを再生するオルゴールスイッチ、12は再生するオルゴールの楽曲を選択するオルゴール選択スイッチである。
【0020】
図4、図5に示すように、ケース2内には、円盤状の回転視標板9が、ケースの背面板に水平に軸支された回転軸14により、回転可能に支持され、回転視標板9上に設けられた偏光フィルタ9a〜9cと白色フィルタ9dが上記ケース正面の各視標窓3a〜3dに対応した位置に配置される。
【0021】
即ち、回転視標板9は、図5に示すように、円盤の中心点の周囲に90°の間隔で3個の偏光フィルタ9a〜9cと1個の白色フィルタ9dを設けて形成される。偏光フィルタ9a〜9cは透過する光の特定成分を選択的に吸収し、水平又は垂直成分の平面光のみを透過させるつまり平面偏光させるフィルタであり、図5に示すように回転視標板9を基準となる0°の位置に位置させた場合、左右位置の偏光フィルタ9a、9bの透過軸は垂直方向(縦方向)となり、上位置の偏光フィルタ9cの透過軸は水平方向(横方向)となるように配置される。白色フィルタ9dは磨りガラス等の白色光を透過させるものである。これらの3個の偏光フィルタ9a〜9cと1個の白色フィルタ9dの位置は、上記ケース正面の各視標窓3a〜3dの位置に対応している。
【0022】
回転視標板9を支持する回転軸14の末端はケース背面側に突出し、そこに回転ハンドル14aが固定される。図4に示すように、回転ハンドル14aの内側には、90°間隔で嵌合孔が設けられると共に、その孔に嵌合する鋼球とそれを付勢するコイルばねとが設けられ、回転ハンドル14aの回動操作により、回転視標板9が0°、90°、180°、及び270°の4位置を正確且つ簡単に設定できるようにしている。回転視標板9が0°、90°、180°、及び270°の4位置にある時、回転視標板9上の3個の偏光フィルタ9a〜9cと1個の白色フィルタ9dの位置は、ケース正面の各視標窓3a〜3dの位置に重ねるように一致する。
【0023】
更に、ケース2内には、上記4個の各視標窓3a〜3dに対応した位置に、蛍光灯ランプ等の光源15が4個配設され、各光源15から出た光が回転視標板9の偏光フィルタ9a〜9cと白色フィルタ9dを通り、各視標窓3a〜3dから出射されるように配置される。ケース2の底部には、これらの光源15を点灯させるための電源スイッチ6が設けられる。
【0024】
被検者が検査時に装用する偏光メガネ20は、図1のように、左右のレンズ位置を反転して装用可能な構造のメガネであり、一方のレンズ位置に透過軸を垂直方向(縦方向)とする偏光フィルタ21が設けられ、他方のレンズ位置に透過軸を水平方向(横方向)とする偏光フィルタ22が設けられる。
【0025】
上記構成の両眼視機能検査装置を使用して両眼視機能の検査を行なう場合、被検者に偏光メガネ20を装用させ、両眼視機能検査装置本体1から例えば5mの距離に被検者を位置させる。そして、両眼視機能検査装置本体1の電源スイッチ6をオンし、光源15を点灯させ、被検者に両眼視機能検査装置本体1の正面の4個の視標窓3a〜3dを見させ、その見えた視標窓の数と位置を答えさせる。4個の光源15により、4個の円形の視標窓3a〜3dは、ケース2の黒色面上で点灯される。
【0026】
被検者が幼児の場合、オルゴール選択スイッチ12、オルゴールスイッチ11を操作して、オルゴール装置16を動作させ、スピーカ10からオルゴールを流したり、固視灯スイッチ8を操作して正面の固視灯7を点灯させることにより、幼児の注意を両眼視機能検査装置本体1の前面に向けるようにする。
【0027】
被検者は偏光メガネ20をかけてはいるものの、従来のように赤色と緑色の色メガネではなく、自然な物体の色を見ることができるメガネであるため、自然視に近い状態で、視標を見ながら検査を行なうことができる。
【0028】
検査時、被検者は偏光メガネ20を通して視標を見ることになるため、例えばメガネの右側レンズに垂直方向(縦方向)の透過軸を持つ偏光フィルタ21が位置し、左側レンズに水平方向(横方向)の透過軸を持つ偏光フィルタ22が位置する場合、被検者は右眼では水平方向(横方向)の透過軸を持つ平面偏光を見ることができず、左眼では垂直方向(縦方向)の透過軸を持つ平面偏光を見ることができない。
【0029】
従って、回転視標板9の位置が0°位置(図5の状態)にある場合、左右の視標窓3a,3bから偏光フィルタ9a、9bを通して垂直透過軸の平面偏光が出射され、上の視標窓3cからは偏光フィルタ9cを通して水平透過軸の平面偏光が出射されるから、被検者の右眼では上の視標窓3cを見ることができず、左眼では左右の視標窓3a,3bを見ることができず、被検者の左右の眼を分離させて、視標窓3a〜3dを見る状態を作り出している。
【0030】
このため、被検者の両眼視機能が正常な場合には、右眼で左右の視標窓3a,3b,3dを見て、左眼で上の視標窓3c,3dを見るから、点灯する4個の視標窓3a〜3dが図1の配置通りに被検者には見えることになる。一方、被検者が、左右の視標窓3a,3bを見ることができるが、上の視標窓3cを見ることができない場合、左眼に抑制があり、上の視標窓3cを見ることができるが、左右の視標窓3a,3bを見ることができない場合、右眼に抑制があることになる。
【0031】
このような両眼視機能の検査は、更に、被検者が装用する偏光メガネ20を、左右のレンズ位置を反転した状態に装用させて同様な検査を実施し、更に、回転ハンドル14aを操作して回転視標板14の位置を90°、180°、270°と90°間隔で回動させ、視標窓3a〜3dに位置する偏光フィルタ9a〜9c及び白色フィルタ9dの位置関係を変えた状態で、上記と同様の検査を行なうことができる。
【0032】
次に、上記両眼視機能検査装置を用いて抑制暗点の定量検査を行なう場合を説明する。一般に、斜視・弱視の抑制暗点は、眼底(網膜)の中央部分にある大きさを持って位置し、被検者が例えば50cm位の比較的近い距離で視標を見た場合、その抑制暗点から外れた周辺網膜で像を捉えるため、両眼の同時視が可能である。そこで、抑制暗点の定量検査を行なう場合、被検者が偏光メガネ20を装用した状態で、4個の視標窓3a〜3dを視認可能な位置(例えば50cm)まで、両眼視機能検査装置本体1を被検者に近づける。
【0033】
そして、4個の視標窓3a〜3dを視認可能な位置から、両眼視機能検査装置本体1を徐々に被検者から離していき、4個の視標窓のうち1個の視標窓が見えなくなり、見える視標窓の数が3個になった時の見え方と、被検者から装置本体1の視標窓までの距離L1 を計測し、その距離L1 と視標窓3a〜3dの水平方向又は垂直方向の間隔Wとから、被検者の視標窓を見る際の視角を算出する。
【0034】
例えば、図6の表の左欄に示すように、回転視標板9の位置が0°位置(図5の状態)にあって、被検者が右側レンズに垂直方向(縦方向)の透過軸を持つ偏光フィルタ21、左側レンズに水平方向(横方向)の透過軸を持つ偏光フィルタ22を有する偏光メガネを装用する場合、被検者と視標間の距離がL1 になった時に、上の視標窓3cが見えなくなり、左右と下の視標窓3a,3b,3dのみが見える場合、被検者が視標窓3a〜3dを見る際の視角θ1 は、
tanθ1 /2=W/2L1 の式から算出される。
【0035】
この視角θ1 は上の視標窓3cが見えなくなった場合であるから、左眼に抑制暗点があり、θ1 /2の抑制暗点の位置は、図6の表の左欄に示すように、網膜対応の位置で、中心から90°の方向に視角θ1 /2だけ離れた位置と判明する。
【0036】
次に、回転ハンドル14aを操作して回転視標板9を180°の位置に回した状態で、上記と同様に、再び、4個の視標窓3a〜3dを視認可能な位置から、両眼視機能検査装置本体1を徐々に被検者から離していき、4個の視標窓のうち1個の視標窓が見えなくなり、見える視標窓の数が3個になった時の見え方と、被検者から装置本体1の視標窓までの距離L2 を計測する。
【0037】
例えば、図6の表の右欄に示すように、回転視標板9の位置は180°位置にあって、被検者が右側レンズに垂直方向(縦方向)の透過軸を持つ偏光フィルタ21、左側レンズに水平方向(横方向)の透過軸を持つ偏光フィルタ22を有する偏光メガネを装用し、被検者と視標間の距離がL2 になった時に、下の視標窓3dが見えなくなり、左右と上の視標窓3a,3b,3cのみが見える場合、被検者が視標窓3a〜3dを見る際の視角θ2 は、
tanθ2 /2=W/2L2 の式から算出される。
【0038】
この視角θ2 は下の視標窓3dが見えなくなった場合であるから、左眼に抑制暗点があり、θ2 /2の抑制暗点の位置は、図6の表の右欄に示すように、網膜対応の位置で、中心から270°の方向に視角θ2 /2だけ離れた位置と判明する。
【0039】
次に、被検者の偏光メガネ20を上記とは反転して装用させ、上記と同様な検査を行なう。つまり左側レンズに垂直方向(縦方向)の透過軸を持つ偏光フィルタ21を、右側レンズに水平方向(横方向)の透過軸を持つ偏光フィルタ22を配置した偏光メガネ20を被検者に装用させる。
【0040】
そして、回転ハンドル14aを操作して回転視標板9を90°の位置に回した状態で、上記と同様に、再び、4個の視標窓3a〜3dを視認可能な位置から、両眼視機能検査装置本体1を徐々に被検者から離していき、4個の視標窓のうち1個の視標窓が見えなくなり、見える視標窓の数が3個になった時の見え方と、被検者から装置本体1の視標窓までの距離L3 を計測する。
【0041】
例えば、図7の表の左欄に示すように、回転視標板9の位置は90°位置にあって、被検者が左側レンズに垂直方向(縦方向)の透過軸を持つ偏光フィルタ21、右側レンズに水平方向(横方向)の透過軸を持つ偏光フィルタ22を有する偏光メガネを装用し、被検者と視標間の距離がL3 になった時に、右の視標窓3bが見えなくなり、上下と左の視標窓3a,3c,3dのみが見える場合、被検者が視標窓3a〜3dを見る際の視角θ3 は、
tanθ3 /2=W/2L3 の式から算出される。
【0042】
この視角θ3 は右の視標窓3bが見えなくなった場合であるから、左眼に抑制暗点があり、θ3 /2の抑制暗点の位置は、図7の表の左欄に示すように、網膜対応の位置で、中心から0°の方向に視角θ3 /2だけ離れた位置と判明する。
【0043】
次に、偏光メガネ20は上記と同様の反転状態で装用させ、回転ハンドルを操作して回転視標板9を270°の位置に回した状態で、再び、4個の視標窓3a〜3dを視認可能な位置から、両眼視機能検査装置本体1を徐々に被検者から離していき、上記と同様に4個の視標窓のうち1個の視標窓が見えなくなり、見える視標窓の数が3個になった時の見え方と、被検者から装置本体1の視標窓までの距離L4 を計測する。
【0044】
例えば、図7の表の右欄に示すように、回転視標板9の位置は270°位置にあって、被検者が左側レンズに垂直方向(縦方向)の透過軸を持つ偏光フィルタ21、右側レンズに水平方向(横方向)の透過軸を持つ偏光フィルタ22を有する偏光メガネを装用し、被検者と視標間の距離がL4 になった時に、左の視標窓3aが見えなくなり、上下と右の視標窓3b,3c,3dのみが見える場合、被検者が視標窓を見る際の視角θ4 は、
tanθ4 /2=W/2L4 の式から算出される。
【0045】
この視角θ4 は左の視標窓3aが見えなくなった場合であるから、左眼に抑制暗点があり、θ4 /2の抑制暗点の位置は、図7の表の右欄に示すように、網膜対応の位置で、中心から180°の方向に視角θ4 /2だけ離れた位置と判明する。
【0046】
このようにして測定・算出された視角θ1 /2〜θ4 /2は、被検者の抑制暗点の各方向における境界を示すことになるから、図8に示すように、それらを各方向のグラフ上で合成し、各視角θ1 /2〜θ4 /2の点を結ぶと、その各視角θ1 /2〜θ4 /2を結んだ領域の内側が抑制暗点の範囲を示すことになり、抑制暗点の大きさをこのグラフから把握することができる。
【0047】
上記検査の例は、左眼に抑制暗点がある場合であったが、右眼に抑制暗点がある場合には、偏光メガネ20を反転する前と後で、上記とは逆の見え方となり、抑制暗点の方向と位置は上記と同様に測定・算出することができる。
【0048】
なお、上記実施例では、ケース2正面に視標窓3a〜3dを固定的に設け、ケース内に偏光フィルタ9a〜9c及び白色フィルタ9dを有する回転視標板9を回転可能に配設したが、視標窓と回転視標板を一体に形成することもでき、この場合には、ケースの正面に回転視標板を露出して配置し、その回転視標板上に円形に穿設した4個の視標窓に偏光フィルタと白色フィルタを覆うように固着し、その背面側に光源を配置すればよい。
【0049】
また、上記実施例では、回転視標板9に偏光フィルタ9a〜9cを設け、偏光メガネを使用したが、上記と同様な回転視標板に赤色フィルタ、緑色フィルタ、及び白色フィルタを嵌め込み、赤緑メガネを使用して、上記と同様な抑制暗点の検査を行なうこともできる。この場合、自然視に近い状態での検査は望めないものの、上記実施例のように、装置本体を被検者から徐々に離しながら、視標の見え方の変化とそのときの装置本体と被検者との距離を測定することにより、抑制暗点の検査を行なうことができる。
【0050】
【発明の効果】
以上説明したように、本発明によれば、色メガネではなく偏光メガネを装用して検査を行なうから、自然視に近い状態で、両眼視機能の検査を良好に行なうことができ、また、回転視標板を回転・停止させながら、視標となる偏光フィルタの角度位置を変えながら、片眼抑制暗点の定量的な測定を容易に行なうことができる。
【図面の簡単な説明】
【図1】本発明の一実施形態を示す両眼視機能検査装置の斜視図である。
【図2】両眼視機能検査装置本体1の背面図である。
【図3】両眼視機能検査装置本体1の左側面図である。
【図4】両眼視機能検査装置本体1の縦断面図である。
【図5】回転視標板9の正面図である。
【図6】抑制暗点を定量的に検査する際の検査状態を表として示す説明図である。
【図7】抑制暗点を定量的に検査する際の検査状態を表として示す説明図である。
【図8】検査結果としての抑制暗点の範囲を示すグラフである。
【符号の説明】
1−両眼視機能検査装置本体
2−ケース
3a〜3d−視標窓
9−回転視標板
9a〜9c−偏光フィルタ
9d−白色フィルタ
15−光源
20−偏光メガネ
21、22−偏光フィルタ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a binocular visual function inspection device that inspects a binocular visual function in a state close to natural vision.
[0002]
[Prior art]
The binocular vision test is an important test for the treatment of amblyopia or strabismus, and various testing devices have been proposed and used in the past. As a binocular visual function inspection apparatus, a Worth 4-lamp inspection apparatus is conventionally known.
[0003]
This Worth 4-lamp inspection device is provided with four holes on the front surface of a rectangular box at a predetermined size at the top and bottom and left and right positions, and one light bulb is placed in the box. Red glass is attached to the upper hole, white glass is attached to the lower hole, and green glass is attached to the left and right holes. The subject is fitted with red glass (filter) on one side, and the other. A pair of red and green glasses fitted with green glass (filter) is worn, and the visual appearance of those targets is observed to examine the binocular vision function of the subject.
[0004]
[Problems to be solved by the invention]
When examining the binocular vision function using this Worth 4-lamp type inspection device, the subject wearing red / green glasses looks at the light target of the device and answers the number and its positional relationship. Since the red filter and green light of the glasses are canceled out by complementary colors, the upper red light and the lower colorless light appear to be red from the eyes of the red filter, and from the eyes of the green filter to the left and right The two green lights and the colorless light below appear green, and the left and right eyes cannot see each other's visual target. Therefore, when the subject has an oblique position or strabismus and one eye is suppressed, roughly speaking, if only two red lights are visible, the eye on the green filter side is suppressed, and only three green lights are visible. Sometimes, there is a suppression in the eye on the red filter side.
[0005]
However, this conventional Worth 4-lamp type inspection device is inspected in a special visual state apart from the natural vision state because the subject is inspected with eyes wearing red-green glasses, that is, through a color filter. Therefore, there is a problem that it is difficult to perform an accurate binocular function test by weakening the fusion power of the subject.
[0006]
By the way, when the binocular vision function is normal and the same image is projected onto the retina corresponding points of both eyes, fusion is performed. However, if the subject has strabismus or amblyopia, a very different image is projected on the retina corresponding points of both eyes, so no fusion is performed, and the image information obtained from both eyes is mutually suppressed. At the same time, a field-of-view struggle is carried out, and information on one of the images is erased so as not to be visually recognized. Such a localized reduced sensitivity portion in the retina corresponding region in the visual field is called a suppression dark spot.
[0007]
Quantitative measurement of this suppression dark spot is an important test for treatment of strabismus and amblyopia. In the Worth 4-lamp type inspection device, the target position in which red glass, green glass, and white glass are fitted Since this is fixed, there is a problem that it is not easy to quantitatively measure the suppression dark spot.
[0008]
The present invention has been made in view of the above points, and both can perform a binocular visual function test well in a state close to natural vision and can easily perform a quantitative measurement of a suppression dark spot. An object of the present invention is to provide a visual function testing device.
[0009]
[Means for Solving the Problems]
In order to achieve the above object, a binocular visual function inspection device according to the present invention is the binocular visual function inspection device for inspecting the binocular visual function, the first polarizing filter having a transmission axis in the vertical direction, and the transmission axis Are arranged in a horizontal direction at a predetermined angular interval around the center point on the plate surface, and are rotatably supported around the center point. A rotation target plate, a light source disposed on the back side of the rotation target plate, transmitting light from the back side to the front side through the first and second polarizing filters, and performing back illumination, and a subject Is a pair of spectacles worn at the time of inspection, wherein a polarizing filter having a transmission axis in the vertical direction is provided at one lens position, and a polarizing filter having a transmission filter in the horizontal direction at the other lens position; It is provided with.
[0010]
Here, two first polarizing filters, one second polarizing filter, and one white filter are arranged on the rotating target plate at intervals of 90 °, and the rotating target plate is provided for each polarizing filter. It can be configured to rotate and stop at 90 ° intervals so as to stop at a position where the transmission axis is horizontal or vertical.
[0011]
[Action]
When inspecting the binocular visual function using this binocular visual function inspection device, the subject wears polarized glasses, and the subject is positioned at a position separated by a predetermined distance in front of the rotating visual target plate, Turn on the light source. Then, the subject is made to answer the number and position of the polarizing filter and the white filter that are illuminated and displayed from behind on the rotary target plate.
[0012]
For example, when a polarizing filter having a vertical transmission axis is positioned on the right lens of the polarizing glasses and a polarizing filter having a horizontal transmission axis is positioned on the left lens, the subject has a horizontal transmission axis for the right eye. The plane-polarized light having a transmission axis in the vertical direction cannot be seen by the left eye. Accordingly, when the light source is turned on, the plane polarized light with the vertical transmission axis is emitted through the first polarizing filter of the rotating target plate, and the plane polarized light with the horizontal transmission axis is emitted through the second polarizing filter. The right eye cannot see the location of the second polarizing filter, the left eye cannot see the location of the first polarizing filter, separate the left and right eyes of the subject, and view the target Create a state.
[0013]
Therefore, when the subject's binocular vision function is normal, the right eye sees the white filter and the first polarizing filter, and the left eye sees the white filter and the second polarizing filter. Therefore, the locations of the first and second polarizing filters that are back-lit are visible to the subject according to the predetermined arrangement. On the other hand, if the subject can see the location of the first polarizing filter, but cannot see the location of the second polarizing filter, there is a suppression in the left eye and the location of the second polarizing filter If you can see, but you can't see the location of the first polarizing filter, your right eye will be suppressed.
[0014]
It is also possible to perform a quantitative inspection of the suppression dark spot using the binocular visual function inspection device. In general, the suppression dark spot of strabismus and amblyopia is located with a size at the center of the fundus (retina), and when the subject looks at the target at a relatively close distance of about 50 cm, for example, the suppression Since the image is captured by the peripheral retina outside the dark spot, both eyes can be viewed simultaneously. Therefore, when performing a quantitative inspection of the suppression dark spot, with the subject wearing polarized glasses, the rotating target plate is moved to a position where the location of the polarizing filter on the rotating target plate that is illuminated can be visually confirmed. Move closer to the subject.
[0015]
Then, the rotating target plate is gradually separated from the subject from a position where each polarizing filter portion of the rotating target plate is visible, and one polarizing filter portion of the plurality of polarizing filter portions is Measure the distance from the subject to the rotating target plate when it is no longer visible, and determine the viewing angle when viewing the subject's rotating target plate from the distance and the horizontal or vertical interval of the polarizing filter. calculate. Such inspection / measurement is performed by rotating the rotary target plate by 90 °, and by measuring / calculating the viewing angle at each angular position, the size of the suppression dark spot of the subject is quantitatively determined. Can be sought.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a perspective view of a binocular visual function testing device for testing a binocular visual function, and FIG. 2 is a rear view thereof. This binocular visual function testing device is composed of a binocular visual function testing device main body 1 serving as a visual target, and polarized glasses 20 worn by a subject at the time of testing.
[0017]
In the binocular vision function testing device main body 1, a rectangular box-shaped case 2 is provided on a support base 4 via a horizontal shaft 5, and on the front side of the case 2, there are four cases at 90 ° intervals around the front center. A circular target window, that is, a left target window 3a, a right target window 3b, an upper target window 3c, and a lower target window 3d are formed at predetermined positions. The left and right visual target windows 3a and 3b are located on the horizontal axis passing through the center point O, and the upper and lower visual target windows 3c and 3d are located on the vertical axis perpendicular to the horizontal axis at the central point O and from the central point O. The distance to each target window is the same. The diameter R of each of the target windows 3a to 3d is set to 40 mm, for example, the interval W between the left target window 3a and the right target window 3b is set to 160 mm, for example, and the upper target window 3c and the lower target window The interval W of 3d is also set to 160 mm.
[0018]
At least the front side of the case 2 is painted black and makes it easy to see the target window that is lit and displayed. The case 2 is supported on the support base 4 so as to be tiltable back and forth by the horizontal shaft 5 and the tilt angle of the front and back can be adjusted. A handle 13 is provided at the top of the case 2.
[0019]
Immediately below the lower target window 3d, a fixation lamp 7 is provided on the case 2 for causing the subject to pay attention to the target, and a fixation lamp switch 8 for lighting the fixation lamp 7 is provided. It is done. In addition, in the case 2, as shown in FIG. 4, a music box device 16 is disposed in order to make the subject pay attention to the target with sound. An electronic musical tone generator is used for the music box device 16, and a musical tone signal is stored in advance in a memory. The musical tone signal is read out based on the music selection signal to reproduce the musical tone, and the music is reproduced from the speaker 17. In FIG. 2, 11 is a music box switch for reproducing a music box, and 12 is a music box selection switch for selecting music of the music box to be reproduced.
[0020]
As shown in FIGS. 4 and 5, a disc-shaped rotary target plate 9 is rotatably supported by a rotary shaft 14 supported horizontally on the back plate of the case in the case 2. Polarizing filters 9a to 9c and a white filter 9d provided on the standard plate 9 are arranged at positions corresponding to the visual target windows 3a to 3d on the front surface of the case.
[0021]
That is, as shown in FIG. 5, the rotary target plate 9 is formed by providing three polarizing filters 9 a to 9 c and one white filter 9 d around the center point of the disk at intervals of 90 °. The polarizing filters 9a to 9c are filters that selectively absorb a specific component of transmitted light and transmit only plane light of a horizontal or vertical component, that is, plane-polarized light. As shown in FIG. When positioned at the reference 0 ° position, the transmission axes of the polarizing filters 9a and 9b at the left and right positions are in the vertical direction (vertical direction), and the transmission axis of the polarizing filter 9c at the upper position is in the horizontal direction (lateral direction). It is arranged to become. The white filter 9d transmits white light such as polished glass. The positions of these three polarizing filters 9a to 9c and one white filter 9d correspond to the positions of the target windows 3a to 3d on the front of the case.
[0022]
The end of the rotary shaft 14 that supports the rotary target plate 9 protrudes toward the back side of the case, and the rotary handle 14a is fixed thereto. As shown in FIG. 4, fitting holes are provided at intervals of 90 ° on the inner side of the rotary handle 14a, and steel balls that fit into the holes and a coil spring that biases the balls are provided. By rotating operation 14a, the rotation target plate 9 can be set accurately and easily at four positions of 0 °, 90 °, 180 °, and 270 °. When the rotary target plate 9 is at four positions of 0 °, 90 °, 180 °, and 270 °, the positions of the three polarizing filters 9a to 9c and the one white filter 9d on the rotary target plate 9 are as follows. , And coincide with each other so as to overlap the positions of the target windows 3a to 3d in front of the case.
[0023]
Further, in the case 2, four light sources 15 such as fluorescent lamps are disposed at positions corresponding to the four target windows 3a to 3d, and the light emitted from the light sources 15 is rotated. It passes through the polarizing filters 9a to 9c and the white filter 9d of the plate 9 and is arranged so as to be emitted from the target windows 3a to 3d. A power switch 6 for turning on these light sources 15 is provided on the bottom of the case 2.
[0024]
The polarized glasses 20 worn by the examinee at the time of examination are glasses having a structure that can be worn by inverting the left and right lens positions as shown in FIG. 1, and the transmission axis is perpendicular to the one lens position in the vertical direction (vertical direction). A polarizing filter 21 having a transmission axis in the horizontal direction (lateral direction) is provided at the other lens position.
[0025]
When the binocular visual function inspection apparatus having the above-described configuration is used to inspect the binocular visual function, the subject wears the polarized glasses 20 and the test is performed at a distance of, for example, 5 m from the binocular visual function inspection apparatus main body 1. Position the person. Then, the power switch 6 of the binocular visual function testing device main body 1 is turned on, the light source 15 is turned on, and the subject sees the four target windows 3a to 3d on the front of the binocular visual function testing device main body 1. And answer the number and position of the visible target windows. The four circular target windows 3 a to 3 d are lit on the black surface of the case 2 by the four light sources 15.
[0026]
When the subject is an infant, the music box selection switch 12 and the music box switch 11 are operated to operate the music box device 16 and the music box is made to flow from the speaker 10 or the fixation light switch 8 is operated to operate the fixation light on the front. 7 is turned on so that the infant's attention is directed to the front surface of the binocular visual function testing apparatus main body 1.
[0027]
Although the subject wears polarized glasses 20, it is not red and green color glasses as in the past, but glasses that can see the color of natural objects. You can inspect while looking at the mark.
[0028]
At the time of examination, since the subject sees the target through the polarizing glasses 20, for example, a polarizing filter 21 having a vertical (longitudinal) transmission axis is positioned on the right lens of the glasses and a horizontal direction ( When the polarizing filter 22 having a transmission axis in the horizontal direction is located, the subject cannot see the plane polarized light having the transmission axis in the horizontal direction (lateral direction) with the right eye, and in the vertical direction (vertical direction with the left eye). Plane polarization with a transmission axis in the direction) cannot be seen.
[0029]
Therefore, when the position of the rotary target plate 9 is at the 0 ° position (the state shown in FIG. 5), the plane polarized light of the vertical transmission axis is emitted from the left and right target target windows 3a and 3b through the polarizing filters 9a and 9b. Since the plane polarization of the horizontal transmission axis is emitted from the target window 3c through the polarizing filter 9c, the upper target window 3c cannot be viewed with the right eye of the subject, and the left and right target windows with the left eye. 3a and 3b cannot be seen, and the left and right eyes of the subject are separated to create a state of viewing the target windows 3a to 3d.
[0030]
Therefore, when the binocular vision function of the subject is normal, the right eye sees the left and right target windows 3a, 3b, 3d, and the left eye sees the upper target windows 3c, 3d. The four target windows 3a to 3d that are turned on are visible to the subject as shown in FIG. On the other hand, when the subject can see the left and right visual target windows 3a and 3b but cannot see the upper visual target window 3c, the left eye is suppressed and the upper visual target window 3c is viewed. However, if the left and right visual target windows 3a and 3b cannot be seen, the right eye is suppressed.
[0031]
In such a binocular vision test, the polarized glasses 20 worn by the subject are further worn with the left and right lens positions reversed, and the rotary handle 14a is operated. Then, the position of the rotating target plate 14 is rotated at 90 °, 180 °, 270 ° and 90 ° intervals, and the positional relationship between the polarizing filters 9a to 9c and the white filter 9d located in the target windows 3a to 3d is changed. In this state, the same inspection as described above can be performed.
[0032]
Next, the case where the quantitative inspection of the suppression dark spot is performed using the binocular visual function inspection device will be described. In general, the suppression dark spot of strabismus and amblyopia is located with a size at the center of the fundus (retina), and when the subject looks at the target at a relatively close distance of about 50 cm, for example, the suppression Since the image is captured by the peripheral retina outside the dark spot, both eyes can be viewed simultaneously. Therefore, when performing a quantitative inspection of the suppression dark spot, the binocular visual function test is performed up to a position where the subject can visually recognize the four target windows 3a to 3d (for example, 50 cm) while wearing the polarizing glasses 20. The apparatus main body 1 is brought close to the subject.
[0033]
Then, the binocular visual function testing device main body 1 is gradually moved away from the subject from a position where the four visual target windows 3a to 3d can be visually recognized, and one visual target among the four visual target windows. When the window becomes invisible and the number of visible target windows becomes three, the distance L 1 from the subject to the target window of the apparatus body 1 is measured, and the distance L 1 and the target are measured. From the horizontal or vertical interval W between the windows 3a to 3d, the viewing angle when viewing the visual target window of the subject is calculated.
[0034]
For example, as shown in the left column of the table of FIG. 6, the position of the rotary target plate 9 is 0 ° (the state of FIG. 5), and the subject passes through the right lens in the vertical direction (longitudinal direction). When wearing polarized glasses having a polarizing filter 21 having an axis and a polarizing filter 22 having a horizontal (transverse) transmission axis on the left lens, when the distance between the subject and the target becomes L 1 , When the upper target window 3c cannot be seen and only the left and right target windows 3a, 3b, and 3d are visible, the viewing angle θ 1 when the subject views the target windows 3a to 3d is
It is calculated from the equation tanθ 1/2 = W / 2L 1.
[0035]
Since this viewing angle θ 1 is when the upper target window 3 c is not visible, the left eye has a suppression dark spot, and the position of the suppression dark spot of θ 1/2 is shown in the left column of the table of FIG. Thus, the position corresponding to the retina is determined to be a position away from the center by a viewing angle θ 1/2 in the direction of 90 °.
[0036]
Next, in the state where the rotary handle 14a is operated to rotate the rotary target plate 9 to the 180 ° position, both the four target windows 3a to 3d are again viewed from the positions where the four target windows 3a to 3d are visible. When the visual function testing device main body 1 is gradually separated from the subject, one of the four target windows becomes invisible and the number of visible target windows becomes three. The appearance and the distance L 2 from the subject to the target window of the apparatus main body 1 are measured.
[0037]
For example, as shown in the right column of the table of FIG. 6, the rotation target plate 9 is positioned at 180 °, and the subject has a polarizing filter 21 having a transmission axis in the vertical direction (longitudinal direction) with respect to the right lens. , wearing polarized glasses having polarizing filter 22 on the left lens having a transmission axis in the horizontal direction (lateral direction), when the distance between the subject and the target becomes L 2, the lower viewing Shimegimado 3d When the left and right and upper target windows 3a, 3b, and 3c are visible, the viewing angle θ 2 when the subject views the target windows 3a to 3d is
It is calculated from the equation of tanθ 2/2 = W / 2L 2.
[0038]
Since this viewing angle theta 2 is a case where the Shimegimado 3d view of the bottom disappeared, there is a point dark suppressed to the left eye, the position of the suppression scotoma theta 2/2 is shown in the right column of the table of FIG. 6 as described above, in the position of the retina corresponding to prove position apart viewing angle theta 2/2 in the direction of 270 ° from the center.
[0039]
Next, the polarized glasses 20 of the subject are worn in reverse from the above, and the same inspection as above is performed. That is, the polarizing glasses 20 having the polarizing filter 21 having the vertical (longitudinal) transmission axis on the left lens and the polarizing filter 22 having the horizontal (transverse) transmission axis on the right lens are worn by the subject. .
[0040]
Then, in a state where the rotary handle 14a is operated and the rotary target plate 9 is turned to the 90 ° position, similarly to the above, the four target windows 3a to 3d are again viewed from the position where both eyes are visible. Visual function inspection device main body 1 is gradually separated from the subject, and one of the four target windows is not visible, and the number of visible target windows becomes three. And the distance L 3 from the subject to the target window of the apparatus main body 1 is measured.
[0041]
For example, as shown in the left column of the table of FIG. 7, the rotation target plate 9 is located at a 90 ° position, and the subject has a polarizing filter 21 having a transmission axis in the vertical direction (vertical direction) with respect to the left lens. When the polarizing glasses having the polarizing filter 22 having the horizontal (lateral) transmission axis are worn on the right lens, and the distance between the subject and the target becomes L 3 , the right target window 3b is When it becomes invisible and only the upper and lower and left target windows 3a, 3c, and 3d are visible, the viewing angle θ 3 when the subject views the target windows 3a to 3d is
It is calculated from the equation tanθ 3/2 = W / 2L 3.
[0042]
Since this viewing angle theta 3 is a case where the right viewing Shimegimado 3b is no longer visible, there is a point dark suppressed to the left eye, the position of theta 3/2 inhibition scotoma is shown in the left column of the table in FIG. 7 as described above, in the position of the retina corresponding to prove position apart viewing angle theta 3/2 in the direction of 0 ° from the center.
[0043]
Next, the polarized glasses 20 are worn in the inverted state similar to the above, and the four optotype windows 3a to 3d are again operated in a state where the rotary handle plate 9 is rotated to the position of 270 ° by operating the rotary handle. The binocular visual function testing device main body 1 is gradually moved away from the subject from a position where the visual target can be visually recognized, and one visual target window out of the four visual target windows disappears in the same manner as described above. The appearance when the number of target windows becomes three and the distance L 4 from the subject to the target window of the apparatus main body 1 are measured.
[0044]
For example, as shown in the right column of the table of FIG. 7, the position of the rotary target plate 9 is 270 °, and the subject has a polarizing filter 21 having a transmission axis perpendicular to the left lens (vertical direction). When the polarizing glasses having the polarizing filter 22 having the horizontal (transverse) transmission axis are worn on the right lens and the distance between the subject and the target becomes L 4 , the left target window 3a is When it is not visible and only the upper and lower and right target windows 3b, 3c, 3d are visible, the viewing angle θ 4 when the subject views the target window is
It is calculated from the equation tanθ 4/2 = W / 2L 4.
[0045]
Since this viewing angle theta 4 shows a case where the left viewing Shimegimado 3a has disappeared, there is a point dark suppressed to the left eye, the position of theta 4/2 inhibition scotoma is shown in the right column of the table in FIG. 7 as described above, in the position of the retina corresponding to prove position apart viewing angle theta 4/2 in the direction of 180 ° from the center.
[0046]
Thus the viewing angle θ 1 / 2~θ 4/2, which is measured and calculated is rather time indicates a boundary in each direction of the suppression scotoma subject, as shown in FIG. 8, they each synthesized on the direction of the graph, the line connecting the points of the visual angle θ 1 / 2~θ 4/2, the range of each visual angle θ 1 / 2~θ 4/2 a connecting it inside the area suppression scotoma As shown, the size of the suppression dark spot can be grasped from this graph.
[0047]
An example of the above inspection was when there was a suppression dark spot in the left eye, but when there was a suppression dark spot in the right eye, before and after inverting the polarizing glasses 20, the opposite appearance to the above Thus, the direction and position of the suppression dark spot can be measured and calculated in the same manner as described above.
[0048]
In the above embodiment, the target windows 3a to 3d are fixedly provided on the front surface of the case 2, and the rotary target plate 9 having the polarizing filters 9a to 9c and the white filter 9d is rotatably disposed in the case. The visual target window and the rotational visual target plate can also be formed integrally. In this case, the rotational visual target plate is exposed and arranged on the front surface of the case, and is formed in a circular shape on the rotational visual target plate. It is only necessary to fix the polarizing filter and the white filter to the four target windows so as to cover the polarizing filter and arrange the light source on the back side.
[0049]
Moreover, in the said Example, although polarizing filter 9a-9c was provided in the rotation target plate 9, and polarized glasses were used, a red filter, a green filter, and a white filter were inserted in the rotation target plate similar to the above, and red Green eyeglasses can also be used to perform the same suppression dark spot inspection. In this case, although inspection in a state close to natural vision cannot be expected, as shown in the above embodiment, while gradually separating the apparatus main body from the subject, the change in the appearance of the target and the apparatus main body and the object at that time By measuring the distance to the examiner, the suppression dark spot can be inspected.
[0050]
【The invention's effect】
As described above, according to the present invention, since polarized glasses are used instead of colored glasses for inspection, binocular vision function can be satisfactorily tested in a state close to natural vision. Quantitative measurement of the one-eye suppression dark spot can be easily performed while changing the angular position of the polarizing filter serving as a target while rotating and stopping the rotating target plate.
[Brief description of the drawings]
FIG. 1 is a perspective view of a binocular visual function testing device showing an embodiment of the present invention.
FIG. 2 is a rear view of the binocular visual function testing device main body 1;
FIG. 3 is a left side view of the binocular visual function testing device main body 1;
4 is a longitudinal sectional view of a binocular visual function testing device main body 1. FIG.
FIG. 5 is a front view of a rotating visual target plate 9;
FIG. 6 is an explanatory diagram showing, as a table, inspection states when quantitatively inspecting suppression dark spots.
FIG. 7 is an explanatory diagram showing, as a table, inspection states when quantitatively inspecting suppression dark spots.
FIG. 8 is a graph showing a range of suppression dark spots as inspection results.
[Explanation of symbols]
1-Binocular visual function testing device main body 2-Cases 3a to 3d-Visual target window 9-Rotating visual target plates 9a to 9c-Polarizing filter 9d-White filter 15-Light source 20-Polarized glasses 21, 22, Polarizing filter

Claims (4)

両眼視機能を検査する両眼視機能検査装置において、
透過軸を垂直方向とする第一の偏光フィルタと、透過軸を水平方向とし該第一の偏光フィルタとは個数を相違した第二の偏光フィルタとが、板面上の中心点の周囲に所定の角度間隔で配置され、該中心点を軸に回転可能に軸支された回転視標板と、
該回転視標板の背面側に配設され、該偏光フィルタに背面側から正面側に光を透過させ、背面照明を行なう光源と、
被検者が検査時に装用するメガネであって、一方のレンズ位置に透過軸を垂直方向とする偏光フィルタが設けられ、他方のレンズ位置に透過軸を水平方向とする偏光フィルタが設けられた偏光メガネと、
を備えたことを特徴とする両眼視機能検査装置。
In the binocular visual function testing device for examining the binocular visual function,
A first polarizing filter having a transmission axis as a vertical direction and a second polarizing filter having a transmission axis as a horizontal direction and a different number from the first polarizing filter are arranged around a center point on the plate surface. A rotation target plate that is arranged at an angular interval of and is rotatably supported around the center point;
A light source that is disposed on the back side of the rotary target plate, transmits light from the back side to the front side of the polarizing filter, and performs backlighting;
A pair of glasses worn by a subject during an examination, wherein a polarizing filter having a transmission axis as a vertical direction is provided at one lens position and a polarizing filter having a transmission axis as a horizontal direction is provided at the other lens position. Glasses,
A binocular visual function testing device comprising:
前記回転視標板には、2個の前記第一の偏光フィルタと1個の前記第二の偏光フィルタと1個の白色フィルタが90°の間隔で配置され、該回転視標板は該各偏光フィルタの透過軸が水平方向又は垂直方向となる位置で停止するように90°間隔で回転・停止することを特徴とする請求項1記載の両眼視機能検査装置。On the rotating target plate, two first polarizing filters, one second polarizing filter, and one white filter are arranged at intervals of 90 °. The binocular visual function inspection device according to claim 1, wherein the binocular visual function inspection device is rotated and stopped at 90 ° intervals so as to stop at a position where the transmission axis of the polarizing filter is in a horizontal direction or a vertical direction. 両眼視機能を検査する両眼視機能検査装置において、
正面に4個の視標窓が、中心点を通る水平軸上と該中心点を通り該水平軸に直交する垂直軸上に該中心点からの距離を同一にして配置されてなる箱形のケースと、
該ケース内に該中心点を通る軸に回転可能に軸支され、透過軸を垂直方向とする2個の偏光フィルタと透過軸を水平方向とする1個の偏光フィルタと1個の白色フィルタが90°の間隔で配置されると共に、該ケース正面の4個の該視標窓と該偏光フィルタ及び白色フィルタとが重なり合う位置に回転・停止可能に配置されてなる回転視標板と、
該ケース内の該回転視標板の背面側に配設され、該偏光フィルタと白色フィルタに背面側から正面側に光を透過させる光源と、
被検者が検査時に装用するメガネであって、一方のレンズ位置に透過軸を垂直方向とする偏光フィルタが設けられ、他方のレンズ位置に透過軸を水平方向とする偏光フィルタが設けられた偏光メガネと、
を備えたことを特徴とする両眼視機能検査装置。
In the binocular visual function testing device for examining the binocular visual function,
A box-shaped window in which four target windows are arranged at the same distance from the center point on a horizontal axis passing through the center point and on a vertical axis passing through the center point and perpendicular to the horizontal axis. Case and
Two polarizing filters that are rotatably supported by an axis passing through the center point in the case and have a transmission axis as a vertical direction, one polarizing filter that has a transmission axis as a horizontal direction, and one white filter. A rotating target plate that is arranged at intervals of 90 °, and that is arranged so that the four target windows in front of the case, the polarizing filter, and the white filter can be rotated and stopped;
A light source disposed on the back side of the rotary target plate in the case and transmitting light from the back side to the front side of the polarizing filter and the white filter;
A pair of glasses worn by a subject during an examination, wherein a polarizing filter having a transmission axis as a vertical direction is provided at one lens position and a polarizing filter having a transmission axis as a horizontal direction is provided at the other lens position. Glasses,
A binocular visual function testing device comprising:
両眼視機能を検査する両眼視機能検査装置において、
正面に4個の視標窓が、中心点を通る水平軸上と該中心点を通り該水平軸に直交する垂直軸上に該中心点からの距離を同一にして配置されてなる箱形のケースと、
該ケース内に該中心点を通る軸に回転可能に軸支され、2個の緑色フィルタと1個の赤色フィルタと1個の白色フィルタ、或は1個の緑色フィルタと2個の赤色フィルタと1個の白色フィルタが90°の間隔で配置されると共に、該ケース正面の4個の該視標窓と該緑色フィルタ、赤色フィルタ及び白色フィルタとが重なり合う位置に回転・停止可能に配置されてなる回転視標板と、
該ケース内の該回転視標板の背面側に配設され、該緑色フィルタ、赤色フィルタ及び白色フィルタに背面側から正面側に光を透過させる光源と、
被検者が検査時に装用するメガネであって、一方のレンズ位置に緑色レンズが設けられ、他方のレンズ位置に赤色レンズが設けられた赤緑メガネと、
を備えたことを特徴とする両眼視機能検査装置。
In the binocular visual function testing device for examining the binocular visual function,
A box-shaped window in which four target windows are arranged at the same distance from the center point on a horizontal axis passing through the center point and on a vertical axis passing through the center point and perpendicular to the horizontal axis. Case and
Two green filters and one red filter and one white filter, or one green filter and two red filters, which are rotatably supported on an axis passing through the center point in the case. One white filter is arranged at intervals of 90 °, and the four target windows in front of the case and the green filter, red filter, and white filter are arranged so as to be able to rotate and stop. A rotating optotype plate,
A light source disposed on the back side of the rotary target plate in the case and transmitting light from the back side to the front side of the green filter, red filter and white filter;
Glasses worn by the subject at the time of examination, red and green glasses provided with a green lens at one lens position and a red lens at the other lens position;
A binocular visual function testing device comprising:
JP13771999A 1999-05-18 1999-05-18 Binocular visual function testing device Expired - Fee Related JP4177515B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13771999A JP4177515B2 (en) 1999-05-18 1999-05-18 Binocular visual function testing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13771999A JP4177515B2 (en) 1999-05-18 1999-05-18 Binocular visual function testing device

Publications (2)

Publication Number Publication Date
JP2000325310A JP2000325310A (en) 2000-11-28
JP4177515B2 true JP4177515B2 (en) 2008-11-05

Family

ID=15205237

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13771999A Expired - Fee Related JP4177515B2 (en) 1999-05-18 1999-05-18 Binocular visual function testing device

Country Status (1)

Country Link
JP (1) JP4177515B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101239838B1 (en) * 2010-03-10 2013-03-06 조형철 Vision accomodation training apparatus
US11957927B1 (en) * 2019-01-09 2024-04-16 Nayson Luis Fernandes Polarized multi-lens apparatus for selective scotoma simulation
JP7369000B2 (en) 2019-10-08 2023-10-25 株式会社トプコン optometry equipment

Also Published As

Publication number Publication date
JP2000325310A (en) 2000-11-28

Similar Documents

Publication Publication Date Title
JP4268753B2 (en) Eye fixation monitor and detection method
KR100679147B1 (en) Ophthalmologic apparatus and ophthalmologic chart
JP3434902B2 (en) Visual function testing device
US6244713B1 (en) Optometric chart presenting apparatus
JP2004057741A (en) Optometer
JP4177515B2 (en) Binocular visual function testing device
JP2022524881A (en) Ophthalmic imaging methods, devices, and systems
JP2002200045A (en) Ophthalmic instrument
JP3501499B2 (en) Optometrist
JP3258982B2 (en) Near vision function test chart
JPH0320244B2 (en)
JPH07194540A (en) Optometric device
JP4628795B2 (en) Optometry equipment
JP2818150B2 (en) Optometry device
JPH07213483A (en) Visual acuity examination device
JP2004229999A (en) Optometry device
JP2001128940A (en) Optometer
JPH1033480A (en) Optometry apparatus
JP3689489B2 (en) Sight table presentation device
JPS5928411Y2 (en) Adjustment device for eyeglass lens attachment
JP2007178742A (en) Method and device for evaluating spectacle lens
JPH05192298A (en) Phorometric device
JP2001275967A (en) Optometric instrument
RU2173079C2 (en) Method and device for examination of functional condition of oculomotor system
JP2000287926A (en) Target presenting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060515

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080716

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080729

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080822

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110829

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140829

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees