JP4176273B2 - Gas turbine steam cooling vane - Google Patents

Gas turbine steam cooling vane Download PDF

Info

Publication number
JP4176273B2
JP4176273B2 JP2000023732A JP2000023732A JP4176273B2 JP 4176273 B2 JP4176273 B2 JP 4176273B2 JP 2000023732 A JP2000023732 A JP 2000023732A JP 2000023732 A JP2000023732 A JP 2000023732A JP 4176273 B2 JP4176273 B2 JP 4176273B2
Authority
JP
Japan
Prior art keywords
steam
passage
blade
gap
gas turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000023732A
Other languages
Japanese (ja)
Other versions
JP2001214706A (en
Inventor
素直 青木
栄司 秋田
康意 富田
チャフチャニジェ・イー・ケイ
ミカイル・エス・ゾロトゴロフ
ヴィタリー・エフ・ナリシュキン
パヴェル・エイ・イェルモラエーフ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2000023732A priority Critical patent/JP4176273B2/en
Publication of JP2001214706A publication Critical patent/JP2001214706A/en
Application granted granted Critical
Publication of JP4176273B2 publication Critical patent/JP4176273B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明はガスタービン蒸気冷却静翼に関し、蒸気冷却方式を採用して静翼を冷却し、蒸気の圧損を低減させ、冷却効果を高めるようにしたものである。
【0002】
【従来の技術】
ガスタービンの静翼は、従来から空気で冷却する方式が一般的であるが、その概要をまず、図5により説明する。図5は、ガスタービンの代表的な一段静翼を示す断面図である。図において、70は一段静翼を示し、60は外側シュラウド、61は内側シュラウドである。70aは静翼の前縁部、70bは後縁部、70c,70d,70eは翼中央部、後縁にそれぞれ設けられた空気冷却穴である。静翼70の内部には前縁側の通路62、中央部の通路63、後縁部の通路68が設けられており、通路62内にはインサート64が挿入され、通路63にはインサート65が挿入されている。これらインサート64,65はそれぞれ通路62,63の内壁に所定の隙間を保って挿入され、多点で支持されている。インサート64,65は中空の筒状体であり、周囲にはそれぞれ多数の空気吹出し穴66,67が明けられている。
【0003】
上記の一段静翼において、冷却用空気80,81,82は図示省略の車室空間より外側シュラウド60を通り、静翼70内へ導かれるが、冷却空気80は前縁側のインサート64に流入し、インサート64周囲の空気吹出し穴66より通路62とインサート64とで形成する隙間に流出し、冷却穴70a及び通路62の周囲をインピンジ冷却した後、翼に穿設されている冷却穴70cより翼表面に流出し、翼表面をシャワーヘッド及びフィルム冷却する。
【0004】
同様に冷却空気81もインサート65内に流入し、インサート65の空気吹出し穴67よりインサート65と通路63とで形成される隙間に流出し、通路63内周囲をインピンジ冷却し、同様に翼に設けられたフィルム冷却穴70dより翼表面に流出し翼表面をフィルム冷却する。又、冷却空気82は後縁の通路68に入り、後翼部を冷却し、後縁のフィルム冷却穴70eより外部へ流出する。
【0005】
上記の一段静翼では空気冷却方式であるが、近年のガスタービンの高温化に伴い、特にコンバインドサイクルの発電プラントでは、蒸気タービンのボトミング系から蒸気を一部抽気して静翼に導き、蒸気により冷却する方式が開発されており、実機に適用され始めている。この蒸気冷却方式においても、空気冷却方式と同じような通路、あるいはサーペンタイン冷却通路を静翼内に設け、蒸気を流入させ、冷却通路に流して冷却後の蒸気を回収し、蒸気供給側に戻すようにしている。
【0006】
【発明が解決しようとする課題】
前述のように、ガスタービンの冷却には、空気に代わって蒸気を導き冷却する方式が採用され始めているが、空気冷却方式と同じように、サーペンタイン方式の通路を設け、静翼を冷却する構造では蒸気圧損が大きく、蒸気冷却方式では冷却後の蒸気を回収し、これを蒸気供給側に戻して有効利用するサイクルを構成しており、圧損を小さくすることが必要となっている。
【0007】
又、静翼の後縁は、その薄い形状より蒸気冷却がされておらず、後縁側は空気冷却としており、冷却系統が2系統となって複雑となり、性能上からも何らかの対策を検討する余地があった。
【0008】
そこで本発明は、静翼内に狭い蒸気通路を前縁のみならず、後縁にも形成し、翼全体を効果的に蒸気で冷却し、かつ蒸気の圧損を小さくし、蒸気を回収することのできるガスタービン蒸気冷却静翼を提供することを課題としてなされたものである。
【0009】
【課題を解決するための手段】
本発明は前述の課題を解決するために、次の(1)〜(7)の手段を提供する。
【0010】
(1)翼前半部、翼後縁前部、翼後縁部からなり、同翼前半部及び翼後縁部には、それぞれ前後をリブで区分し外側シュラウドから内側シュラウドへ貫通する複数の通路を形成し、同翼後縁前部には、それぞれ前後をリブで区分し外側シュラウドから内側シュラウドへ貫通する翼背側と翼腹側に所定の隙間を保った複数の隙間通路を形成し、外側蒸気供給用キャビティを前記翼前半部の通路及び前記翼後縁前部の隙間通路にそれぞれ連通させ、内側蒸気用キャビティを前記翼前半部の通路及び前記翼後縁部の通路にそれぞれ連通させて構成された静翼であって;前記翼前半部の各通路には、同通路内を翼背側と翼腹側に区分すると共に前記通路周囲及び前記リブ壁面との間に所定の隙間を形成するように挿入された一対の筒状インサートと、同一対の筒状インサート間に挿入され、両インサートを支持し、固定するスペーサとを設け、更に、前記各通路を区分する前記翼前半部のリブには複数の貫通穴を配列し、前記各隙間を連通させ、かつ、同隙間は最後部の筒状インサート内と連通させる構成とし;前記外側蒸気供給用キャビティから翼前半部最後尾通路を除いて前記筒状インサートに蒸気を流し、前記内側蒸気用キャビティから前記翼後縁部の通路へ流入させて外側へ流出させると共に、前記翼前半部の前記隙間にも蒸気を流入させ、前記リブの穴を通って最後部の筒状インサート内へ混入させることを特徴とするガスタービン蒸気冷却静翼。
【0011】
(2)前記翼後縁前部の隙間通路は蒸気の一部を後方の隙間通路から外側シュラウドに流出させると共に、残りの蒸気を前記翼後縁部の最前段の通路へ流入させるように構成したことを特徴とする(1)記載のガスタービン蒸気冷却静翼。
【0012】
(3)前記翼前半部の各通路の一対の筒状インサートは、互いに対向する側面が仕切板で構成され、同仕切板と接続して筒状中空部を形成し、同互いに対向する仕切板を前記スペーサで支持することを特徴とする(1)記載のガスタービン蒸気冷却静翼。
【0013】
(4)前記翼前半部の最前方の通路及び最後方の通路の前記対向する仕切板には、それぞれ複数の貫通穴を配列させたことを特徴とする(3)記載のガスタービン蒸気冷却静翼。
【0014】
(5)前記スペーサは、円形断面の棒状であり、各通路にそれぞれ2本が外側シュラウドから内側シュラウドへ向かって挿通され、前記仕切板を支持していることを特徴とする(1)記載のガスタービン蒸気冷却静翼。
【0015】
(6)前記スペーサは、弾性部材からなることを特徴とする(1)記載のガスタービン蒸気冷却静翼。
【0016】
(7)前記翼前半部の前縁側の一対の筒状インサートの前方には、それぞれ蒸気流出用穴が設けられ、前記筒状インサート内と前記隙間とを連通させ、同筒状インサートから流出する蒸気を前記穴から隙間へ流入させるよう構成したことを特徴とする(1)記載のガスタービン蒸気冷却静翼。
【0017】
本発明のガスタービン蒸気冷却静翼は、(1)の発明を基本としている。蒸気は外側の蒸気供給用キャビティから、それぞれ翼前半部の通路の筒状インサート内へ流入し、各筒状インサート内を流れて翼前半部を内部から冷却して内側蒸気用キャビティに流出する。内側蒸気用キャビティ内の蒸気は、一部は翼前半部の最後部の通路の筒状インサートを流れて外側シュラウドより流出し、残りは後縁部へ流入し、後縁部の通路を流れて、外側シュラウドへ流出する。一方、翼前半部の筒状インサートへ流入した蒸気は先端部と筒状インサートとが連通しているので、隙間へ流入し、翼前半部の前縁側から後方に向かって翼背側、翼腹側の隙間を流れ、リブの穴を通って次の通路の両側の隙間へ順次流入し、翼前半部の最後部通路の両側隙間から筒状インサート内の蒸気に混入する。又、外側蒸気供給用キャビティから翼後縁前部の隙間通路にも蒸気が流入し、各両側の隙間通路内を流れ、内側で合流し、翼後縁部最後部の隙間通路を通り、外側シュラウドへ流出する。
【0018】
上記のように、本発明の(1)においては、翼前半部の一対の筒状インサートによる狭い蒸気通路と、各筒状インサートと通路及びリブの壁との隙間、翼後縁前部の両側の狭い隙間通路とで狭い蒸気流路を形成し、少ない蒸気で効果的な冷却が可能となり、又蒸気は外側シュラウドより回収し、蒸気供給源へ戻すので、蒸気の圧損が低減する。又、後縁側も蒸気で冷却するので従来のような空気が不要となり、冷却系統が簡略化される。
【0019】
本発明の(2)では、翼後縁前部を冷却した蒸気の一部は翼後縁部の最前段の通路へ流入するので(1)の翼後縁部の冷却が強化される。又、(3)の発明では、両側の筒状インサートはそれぞれ仕切板を対向させて、仕切板とで中空筒状を形成し、両側の仕切板間をスペーサで支持し、固定するので背側、腹側の各筒状インサートの支持、固定が確実になされる。又、(5)ではスペーサが丸棒、(6)では弾性材であり、同じ効果が得られるので、設計上の選択肢が広まる。
【0020】
又、(4)の発明では、(3)の発明の翼前半部の最前方と最後方との仕切板には複数の穴を上下に配列しており、これら穴により両側の筒状インサートが内側シュラウドから外側シュラウド全体にわたって互いに連通し、最前方においては流入する蒸気が、最後方においては流出する蒸気が、それぞれ攪拌作用により均一化され、均一な冷却を可能とする。
【0021】
本発明の(7)では、翼前半部最前側の筒状インサートからの蒸気は穴を介して隙間に流入するので、最前方の筒状インサート内の蒸気が隙間へ容易に流入し、隙間の蒸気流れがスムーズとなる。
【0022】
【発明の実施の形態】
以下、本発明の実施の形態につき図面に基づいて具体的に説明する。図1は本発明の実施の一形態に係るガスタービン蒸気冷却静翼の縦断面図であり、1段静翼の例で示している。図において、外側シュラウド50と内側シュラウド51、静翼1とで翼全体を構成し、内側シュラウド50から蒸気を供給し、内部を冷却し、冷却後の蒸気を再び外側シュラウド50から回収する。
【0023】
図1において、静翼1内には、前縁側より通路30A,30B,30C,30Dがそれぞれ外側シュラウド50と内側シュラウド51間に設けられ、翼前半部を構成し、又、通路30Dより後縁側には、後述するように、それぞれ蒸気通路となる隙間31E,31F,31Gを有する翼後縁前部を形成し、後縁側の複数の後縁通路30Eが設けられている。又、通路30Aには、後述する仕切板を介し、翼の背側と腹側に区分する筒状インサートを支持するスペーサ20,21が、通路30Bにはスペーサ22,23が、通路30Cにはスペーサ24,25が、更に通路30Dにもスペーサ26,27が、それぞれ上下に配設されている。
【0024】
上記静翼において、2は蒸気入口であり、外側シュラウド50の外側から蒸気を導く。3は蒸気溜り(外側蒸気供給用キャビティ)、4は前縁の通路へ蒸気を均一に流入させるためのインピンジ板、5は前縁の通路30Aを背側と腹側とに区分する仕切板で、仕切板5には背側と腹側とを連通する穴6が内側から外側へ向かって上下に複数設けられている。7はインピンジ板であり、内側シュラウド51から前縁の通路30Aに蒸気を均一に流入させる。8はタービュレータであり、前縁の通路30A内壁に設けられ、流れを攪拌し、冷却効果を向上させるものである。
【0025】
10は通路30Aと30Bとを仕切るリブの上下に配列して設けられた多数の穴であり、蒸気を通路30A周囲の隙間から30Bの隙間へ導く通路を構成している。11も穴であり、通路30Bと30Cを区分するリブに設けられ、蒸気を同時に通路30Bの隙間から30Cの隙間へ導くものである。12も同様な穴であり、通路30Cと通路30Dとを区分するリブに設けられ、通路30Cから30Dの隙間へ蒸気を導くものである。13は通路30Dを背側と腹側に仕切る仕切板に設けられた多数の穴であり、筒状インサートで両側に仕切られた通路を連通させるものである。
【0026】
14は蒸気出口であり、前縁側の通路30A,30B,30Cを流れ、30Dに流入した冷却後の蒸気を外側シュラウドへ流出させて回収する。15も蒸気出口であり、後縁側の隙間31E,31F,31G及び後縁通路30Eを通った冷却後の蒸気を外側シュラウド側へ回収する。16は内側シュラウド51側のキャビティであり、通路30Bより流出した蒸気を他の通路へ分配するための蒸気溜りとなっている。17はインピンジ板であり、内側シュラウド51のキャビティ16から蒸気を多数の後縁通路30Eへ均一に分配して流入させるものである。18もインピンジ板であり、外側シュラウド50の蒸気溜り3から蒸気を隙間31E,31Fに均一に流入させるものである。
【0027】
上記構成の静翼において、冷却用の蒸気40aは蒸気入口2より流入し、蒸気溜り3へ入る。蒸気溜り3からは、インピンジ板4を通って通路30Aへ外側から均一に分配されて流入し、通路30B,30C,及び後縁側の隙間31E,31Fへも流入する。
【0028】
通路30Aに流入した蒸気は、背側と腹側に仕切板5及び筒状インサートで区分された両通路を上下に配列した多数の穴6で両側に連通して流れを攪拌させて、図2で後述するように、通路30Aの周囲に形成された両側の隙間31Aに流れ、前縁部を冷却し、穴10より隣接する後方の通路30Bの隙間31Bへ40bのように流れる。
【0029】
通路30Bでは、通路30Aの隙間31Aから40bのように穴10を通って流入した蒸気により背側と腹側の通路側面の隙間31Bを通り、通路両側を冷却し、冷却後の隙間31Bを通った蒸気は40Cで示すように穴11を通って隣接する後方の通路30Cの隙間31Cに流入し、同様に通路30Cの背側、腹側の両面を冷却し、40dで示すように穴12を通り、隣接する後方の通路30Dの隙間31Dに流入する。
【0030】
通路30Dの両側隙間31Dに流入した蒸気は、図2で後述するように隙間31Dを通って両側面を冷却した後、通路30Dの筒状インサート内に入り、背側と腹側とを仕切る仕切板5D−1に設けられた多数の上下の穴13で両側の通路内を連通して流れ、内側シュラウド51側から流入してくる蒸気と混合し、外側シュラウド50の蒸気出口14から流出して回収される。
【0031】
一方、通路30B内の筒状インサート内に流入した蒸気40eは、通路30Bを冷却しながら、外側から内側シュラウド51内のキャビティ16に流出し、又、通路30C内の筒状インサート内に流入した蒸気40fも、通路30Cを冷却しながら、外側から内側シュラウドへ流れてキャビティ16へ同様に流出する。キャビティ16に流出し、ここで溜まった蒸気のうち、40gはインピンジ板7より前縁の通路30Aに流入し、通路30Aでは、外側シュラウドから流入した蒸気と内側シュラウドから流入した蒸気が混合し、前縁側通路30Aを効果的に冷却し、前述のように両側の隙間30Aへも流入して隣接する通路30Bへ多数の穴10から40bで示すように流入する。
【0032】
キャビティ16内の蒸気のうち40hは通路30Dに流入し、通路30Cから40dのように隙間31Dに流入して通路30Dに入ってきた蒸気と混合し、通路30Dを効果的に冷却して外側シュラウドの蒸気出口14より流出して回収される。又、キャビティ16内の蒸気40iは後縁側に流れて40jで示すように後縁通路30Eの最後部の通路へ、他方インピンジ板17を通して40kのように残りの多数の通路へ均一に分配されて流入する。後縁通路30Eに流入した蒸気40j,40kは後縁通路30Eを流れて、これら複数の通路を冷却し、蒸気出口15から40Mのように流出して回収される。
【0033】
又、外側シュラウド50の蒸気溜り3へ流入した蒸気のうち、40Nは後縁側の隙間31E,31Fへそれぞれ40p,40Qのように流入し、それぞれ背側と腹側の両側隙間31E,31Fを冷却して外側シュラウド51のキャビティ33へ流出し、キャビティ33から、それぞれ後縁通路31Gへ40r,また翼後縁部30Eの最前段通路へ40s,40tのように流れて、これらを冷却し、蒸気出口15へ40Uのように流出して回収される。
【0034】
図2は図1に示す静翼の断面図である。図において、通路30A,30B,30C,30Dは図1でも説明したように、背側と腹側とに区分されている。まず、通路30Aは中心部に2本の円形断面のスペーサ20,21が上下に挿通されており、このスペーサ20,21で仕切板5A−1,5A−2を支持し、中心部に空間を形成している。仕切板5A−1,5A−2には、図1にも示したように穴6がそれぞれ上下に多数配列して設けられている。
【0035】
仕切板の両周囲には筒状インサートを2本挿入して通路30A−1と30A−2を形成し、内壁面との間に所定の隙間31Aを周囲に形成している。背側と腹側に形成された通路30A−1,30A−2のインサートの前縁先端部には、上下方向に穴32を多数配列して設け、通路30A−1,30A−2を流れる蒸気が両側の隙間31Aに流入するように穴32と隙間31Aとを連通させている。又、前縁先端の内壁周囲にはタービュレータ8が設けられ、先端部の蒸気の流れを攪拌することにより、冷却効果を高めるようにしている。
【0036】
又、スペーサ20,21は丸形断面の棒状部材で示したが、このスペーサ20,21は仕切板5A−1,5A−2を両側外方向へ押し付けて固定するものであり、必ずしも丸形断面の棒でなくても良く、図3に示すような形状でも良いものである。図3において、(a)は中空チューブ状のスペーサ20a,21aとしたものであり、(b)は,例えば断面短形状の弾性部材21a,21bで両側に押し付けるスペーサとしている。このような例でもスペーサ20,21と同様の効果を有するものである。
【0037】
通路30Aと隣接する通路30Bとの間にはリブ(仕切壁)で区分され、リブには穴10が設けられている。通路30Bは、30Aと同様に仕切板5B−1,5B−2により背側と腹側に区分され、それぞれ筒状インサートを挿通することにより30B−1,30B−2の通路が形成されている。両仕切板5B−1,5B−2の間には同様に丸形断面の棒状のスペーサ22,23が挿通され、両仕切板を固定し、支持している。又、通路30B−1,30B−2は2本の筒状インサートを挿入し、両側の仕切板とで周囲に隙間31Bを形成するように配設され、この周囲の隙間31Bは穴10を介して通路30A側の隙間31Aと連通している。なお、上記のスペーサ22,23も又、図3に示すスペーサ20a,21a又は20b,21bと同様なスペーサを用いても良い。
【0038】
通路30Bと30Cとの間もリブで区分され、穴11で互いに連通している。通路30Cも同様に仕切板5C−1,5C−2により背側と腹側に区分され、30C−1,30C−2の通路を形成している。両仕切板5C−1,5C−2との間にはスペーサ24,25が挿通され、両仕切板を固定し、支持している。又、通路30C−1と30C−2は2本の筒状インサートを挿入し、両側の仕切板24,25とで周囲に隙間31Cを形成するように配設され、この周囲の隙間31Cは穴11を介して通路30B側の隙間31Bと連通している。なお、この場合もスペーサ24,25は同時に図3(a),(b)に示すスペーサを用いても良い。
【0039】
通路30Cと30Dとの間もリブで区分され、同様に穴12が設けられ互いに連通している。通路30Dも同様に仕切板5D−1,5D−2、スペーサ26,27とにより背側と腹側に区分され、仕切板5D−1,5D−2はそれぞれ穴13が設けられ、両側を互いに連通して通路30D−1,30D−2を形成している。通路30D−1,30D−2も同様に2本の筒状インサートを挿入し、仕切板5D−1,5D−2とで周囲に隙間31Dを形成するように配設され、この周囲の隙間31Dは穴12を介して通路30C側の隙間31Cと連通している。なお、この場合もスペーサ26,27は同様に図3(a),(b)に示すスペーサを用いても良い。又、通路30D−1,30D−2はそれぞれ穴35が上下に複数配列されており、両側の隙間31Dに連通している。
【0040】
後縁側の3本の通路は、内部が塞がれており(中空部を閉塞することでも可)、翼内壁両側にのみ隙間31E,31F,31Gが形成され、この隙間には図1に示すように蒸気が流れる。即ち、隙間31E,31Fには外側から内側シュラウドへ蒸気が流れ、キャビティ33で合流し、隙間31Gへ内側から外側シュラウドへ流れる。
【0041】
上記の断面形状の静翼において、前縁側の通路30A−1,30A−2へ外側シュラウド50の蒸気入口2からの蒸気及び内側シュラウド51のキャビティ16からの蒸気が流入し(図1参照)、30A−1,30A−2の穴32から周囲両側の隙間31Aへそれぞれ流れ、又30A−1,30A−2間には仕切板5A−1,5A−2の穴6で互いに連通し、かつタービュレータ8の作用も加わり、蒸気を攪拌して前縁部を効果的に冷却する。通路30A−1,30A−2を冷却した蒸気は隙間31Aから穴10を通り、隣接する通路30B−1,30B−2周囲の隙間31Bへ流入する(図1の40b参照)。
【0042】
隙間31Bへ流入した蒸気は、通路の周囲を冷却し、穴11より次の通路30C−1,30C−2の周囲の隙間31Cへ流入する(図1の40C参照)。一方、通路30B−1,30B−2においては、図1で説明したように、外側シュラウド50の蒸気溜り3より内側に向かって蒸気が流入しており、この周囲と内部の両蒸気により効果的に冷却がなされる。
【0043】
隙間31Cに流入した蒸気は通路の周囲を冷却し、穴12より次の通路30D−1,30D−2の周囲の隙間31Dへ流入する(図1の40d参照)。一方、通路30C−1,30C−2においては、図1で説明したように、外側シュラウド50の蒸気溜り3より内側に向かって蒸気が流入しており、この周囲隙間への蒸気と内部通路への蒸気の両蒸気により効果的な冷却がなされる。
【0044】
隙間31Dに流入した蒸気は通路の周囲を冷却し、両側の穴35より、それぞれ通路30D−1,30D−2へ流入する。一方、通路30D−1,30D−2へは、図1でも説明したように、内側シュラウド51のキャビティ16から蒸気40hが流入し、外側シュラウドへ流れており、穴35より流入した隙間からの蒸気と混合し、更に通路30D−1,30D−2内は仕切板5D−1,5D−2の穴13で連通しているので、蒸気は充分に攪拌され、通路30D−1,30D−2の内外を効果的に冷却して外側シュラウド50の蒸気出口14から流出して回収される。
【0045】
図4は図1に示す静翼の外側シュラウドを内側から外側を見た内部断面図である。図において外側シュラウド50には、図2に示す構成の翼が接続されており、外側シュラウド50から蒸気が供給され、図1,図2で説明したように蒸気で冷却される。一方、外側シュラウド50は、図示のようにインピンジ板32,33,34,35,36,37が配置され、鋭角の隅部を32,35で小さな径の穴から蒸気を流出させ、中央部を33,34及び36,37で大小の穴を組合せて蒸気を流出させ熱的に特に厳しい部分に均一に蒸気がシュラウド底面に当り、また、回収できるようにして効果的な冷却がなされるようにしている。
【0046】
以上説明の実施の形態によれば、冷却通路を前縁側の通路30A,30B,30C,30Dは、背側と腹側に仕切板で区分し、各通路の周囲には隙間31A,31B,31C,31Dを形成させ、各通路と周囲の隙間に蒸気を流す構成とし、後縁側前部には壁内部の背側と腹側にそれぞれ隙間31E,31F,31Gを設け、この隙間に蒸気を流し、後縁側は通路30Eに蒸気を流して静翼全体を蒸気冷却するように構成したので、通路内部が仕切板やインサートで細く仕切リ、狭い通路構成のため耐圧上強度が向上する。又、各通路30A−1,30A−2,30B−1,30B−2,30C−1,30C−2、隙間31A,31B,31C,31D,31E,31F,31Gと細い通路と狭い隙間に蒸気を通すので、少ない蒸気で効果的な冷却が可能となる。
【0047】
又、後縁側は隙間31E,31F,31Gの狭い隙間で蒸気冷却を可能とし、従来空気冷却をしていた後縁も前縁と共に蒸気で統一して冷却する方式としたので、空気が不要となり、熱を回収し、高温となった蒸気はすべて回収され、蒸気供給源へ戻されて有効利用され、効果的な冷却がなされる。又、シュラウドの面は蒸気でインピンジメント冷却を採用するのでシュラウドの冷却も効果的になされ、結果として蒸気の圧損が著しく低減され、静翼の寿命が延びるものである。
【0048】
なお、上記に説明の実施の形態では、一段静翼の例で説明したが、本発明は一段静翼に限定されず、二段静翼、又はその他の静翼にも当然適用され、同様の効果を奏するものである。
【0049】
【発明の効果】
本発明のガスタービン蒸気冷却静翼は、(1)翼前半部、翼後縁前部、翼後縁部からなり、同翼前半部及び翼後縁部には、それぞれ前後をリブで区分し外側シュラウドから内側シュラウドへ貫通する複数の通路を形成し、同翼後縁前部には、それぞれ前後をリブで区分し外側シュラウドから内側シュラウドへ貫通する背側と腹側に所定の隙間を保った複数の隙間通路を形成し、外側蒸気供給用キャビティを前記翼前半部の通路及び前記翼後縁前部の隙間通路にそれぞれ連通させ、内側蒸気用キャビティを前記翼前半部の通路及び前記翼後縁部の通路にそれぞれ連通させて構成された静翼であって;前記翼前半部の各通路には、同通路内を背側と腹側に区分すると共に前記通路周囲及び前記リブ壁面との間に所定の隙間を形成するように挿入された一対の筒状インサートと、同一対の筒状インサート間に挿入され、両インサートを支持し、固定するスペーサとを設け、更に、前記各通路を区分する前記翼前半部のリブには複数の貫通穴を上下に配列し、前記各隙間を連通させ、かつ同隙間は最後部の筒状インサート内と連通させる構成とし;前記外側蒸気供給用キャビティから翼前半部最後尾通路を除いて前記筒状インサートに蒸気を流し、前記内側蒸気用キャビティから前記翼後縁部の通路へ流入させて外側シュラウドへ流出させると共に、前記翼前半部の前記隙間にも蒸気を流入させ、前記リブの穴を通って最後部の筒状インサート内へ混入させることを特徴としている。
【0050】
上記(1)の発明により、翼前半部の一対の筒状インサートによる狭い蒸気通路と、各筒状インサートと通路及びリブの壁との隙間、翼後縁前部の両側の狭い隙間通路とで狭い蒸気流路を形成し、少ない蒸気で効果的な冷却が可能となり、又蒸気は外側シュラウドより回収し、蒸気供給源へ戻すので、蒸気の圧損が低減する。又、後縁側も蒸気で冷却するので従来のような空気が不要となり、冷却系統が簡略化される。
【0051】
本発明の(2)では、翼後縁前部を冷却した蒸気の一部は翼後縁部の最前段の通路へ流入するので(1)の翼後縁部の冷却が強化される。又、(3)の発明では、両側の筒状インサートはそれぞれ仕切板を対向させて、仕切板とで中空筒状を形成し、両側の仕切板間をスペーサで支持し、固定するので背側、腹側の各筒状インサートの支持、固定が確実になされる。又、(5)ではスペーサが丸棒、(6)では弾性材であり、同じ効果が得られるので、設計上の選択肢が広まる。
【0052】
又、(4)の発明では、(3)の発明の翼前半部の最前方と最後方との仕切板には上下に複数の穴を配列しており、これら穴により両側の筒状インサートの蒸気が内側から外側全体にわたって互いに連通し、最前方においては流入する蒸気が、最後方においては流出する蒸気がそれぞれ攪拌作用により均一化され、均一な冷却を可能とする。
【0053】
本発明の(7)では、翼前半部の筒状インサートからの蒸気は穴を介して隙間に流入するので、最前方の筒状インサート内の蒸気が隙間へ容易に流入し、隙間の蒸気流れがスムーズとなる。
【図面の簡単な説明】
【図1】本発明の実施の一形態に係るガスタービン蒸気冷却静翼の縦断面図である。
【図2】本発明の実施の一形態に係るガスタービン蒸気冷却静翼の断面図である。
【図3】本発明の実施の一形態に係るガスタービン蒸気冷却静翼の冷却通路を区分するスペーサの他の応用例を示し、(a)は中空状のチューブ、(b)は弾性材を使用した部分断面図である。
【図4】本発明の実施の一形態に係るガスタービン蒸気冷却静翼の外側シュラウドの断面図である。
【図5】従来のガスタービンの一段静翼の一例を示す縦断面図である。
【符号の説明】
1 静翼
2 蒸気入口
3 蒸気溜り
4,7,17,18 インピンジ板
5 仕切板
6,10,11,12,13 穴
8 タービュレータ
14,15 蒸気出口
16 キャビティ
21,21,22,23,24,25,26,27 スペーサ
30A,30B,30C,30D 通路
30A−1,30A−2,30B−1,30B−2 通路
30C−1,30C−2,30D−1,30D−2 通路
30E 後縁通路
31A,31B,31C,31D 隙間
31E,31F,31G 隙間
32 穴
33,34,35,36,37 インピンジ板
40a〜40u 蒸気
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a gas turbine steam-cooled stationary blade, which employs a steam cooling method to cool the stationary blade, reduce steam pressure loss, and enhance the cooling effect.
[0002]
[Prior art]
A conventional method of cooling a stationary blade of a gas turbine with air has been generally used, and an outline thereof will be described with reference to FIG. FIG. 5 is a cross-sectional view showing a typical one-stage stationary blade of a gas turbine. In the figure, reference numeral 70 denotes a single stage stationary blade, 60 is an outer shroud, and 61 is an inner shroud. Reference numeral 70a denotes a front edge portion of the stationary blade, 70b denotes a rear edge portion, and 70c, 70d, and 70e denote air cooling holes provided in the blade center portion and the rear edge, respectively. Inside the stationary blade 70, a passage 62 on the front edge side, a passage 63 in the center portion, and a passage 68 on the rear edge portion are provided. An insert 64 is inserted into the passage 62, and an insert 65 is inserted into the passage 63. Has been. These inserts 64 and 65 are inserted into the inner walls of the passages 62 and 63 with a predetermined gap, and are supported at multiple points. The inserts 64 and 65 are hollow cylindrical bodies, and a large number of air blowing holes 66 and 67 are opened around the inserts 64 and 65, respectively.
[0003]
In the single-stage vane described above, the cooling air 80, 81, 82 passes through the outer shroud 60 from the cabin space (not shown) and is guided into the vane 70, but the cooling air 80 flows into the insert 64 on the leading edge side. The air flows from the air blowing hole 66 around the insert 64 into the gap formed by the passage 62 and the insert 64, impinges the periphery of the cooling hole 70a and the passage 62, and then the blade from the cooling hole 70c formed in the blade. It flows out to the surface, and the wing surface is cooled by the shower head and the film.
[0004]
Similarly, the cooling air 81 also flows into the insert 65, flows out from the air blowing hole 67 of the insert 65 into the gap formed by the insert 65 and the passage 63, impinges the periphery of the passage 63, and is similarly provided on the blade. The film flows out of the film cooling hole 70d to the blade surface and cools the blade surface. Further, the cooling air 82 enters the rear edge passage 68, cools the rear wing portion, and flows out from the film cooling hole 70e on the rear edge.
[0005]
The single-stage stationary blades described above are air-cooled, but with the recent increase in gas turbine temperatures, particularly in combined cycle power plants, steam is partially extracted from the steam turbine bottoming system and guided to the stationary blades. A cooling system has been developed and is beginning to be applied to actual machines. Also in this steam cooling method, a passage similar to the air cooling method or a serpentine cooling passage is provided in the stationary blade, steam flows in, flows through the cooling passage, collects the cooled steam, and returns to the steam supply side I am doing so.
[0006]
[Problems to be solved by the invention]
As mentioned above, the cooling system for gas turbines is beginning to adopt a system that guides and cools steam instead of air, but, like the air cooling system, a serpentine system passage is provided to cool the stationary blades. The steam pressure loss is large, and in the steam cooling system, a cycle is formed in which the steam after cooling is collected and returned to the steam supply side for effective use, and it is necessary to reduce the pressure loss.
[0007]
In addition, the trailing edge of the stationary blade is not cooled by steam due to its thin shape, and the trailing edge is air-cooled, making the cooling system complicated by two systems, and there is room to consider some measures in terms of performance. was there.
[0008]
Therefore, the present invention forms a narrow steam passage in the stationary blade not only at the leading edge but also at the trailing edge, effectively cooling the entire blade with steam, reducing steam pressure loss, and recovering steam. An object of the present invention is to provide a gas turbine steam-cooled stationary blade that can be used.
[0009]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present invention provides the following means (1) to (7).
[0010]
(1) A wing front half, a wing trailing edge front, and a wing trailing edge, each of which is divided into ribs at the front half and the blade trailing edge, and each of the passages penetrates from the outer shroud to the inner shroud. In the wing trailing edge front part, a plurality of gap passages are formed by dividing the front and rear by ribs and maintaining a predetermined gap on the blade back side and the blade belly side penetrating from the outer shroud to the inner shroud, The outer steam supply cavity is communicated with the passage at the front half of the blade and the gap passage at the front portion of the blade trailing edge, and the inner steam cavity is communicated with the passage at the front half of the blade and the passage at the rear edge of the blade. Each passage in the front half of the blade is divided into a blade back side and a blade belly side, and a predetermined gap is provided between the periphery of the passage and the rib wall surface. A pair of cylindrical inserts inserted to form; and A spacer inserted between a pair of cylindrical inserts to support and fix the inserts; and a plurality of through holes are arranged in the ribs of the front half of the blade that divides the passages; And the gap communicates with the inside of the cylindrical insert at the rearmost part; excluding the tail passage at the front half of the blade from the outer steam supply cavity, the steam flows through the cylindrical insert, and the inner steam From the cavities into the passage at the trailing edge of the blade and out to the outside, and steam is also flowed into the gap in the front half of the blade and mixed into the cylindrical insert at the rearmost portion through the hole in the rib A gas turbine steam-cooled stationary blade, characterized in that:
[0011]
(2) The clearance passage at the front portion of the blade trailing edge is configured to allow a part of the steam to flow out from the rear clearance passage to the outer shroud and to allow the remaining steam to flow into the foremost passage of the blade trailing edge portion. The gas turbine steam-cooled stationary blade according to (1), wherein
[0012]
(3) The pair of cylindrical inserts in each passage of the first half of the blade is configured such that side surfaces facing each other are constituted by a partition plate, and are connected to the partition plate to form a cylindrical hollow portion. The gas turbine steam-cooled stationary blade according to (1), wherein the spacer is supported by the spacer.
[0013]
(4) The gas turbine steam cooling static air as set forth in (3), wherein a plurality of through holes are arranged in each of the opposing partition plates of the foremost passage and the rearmost passage in the front half of the blade. Wings.
[0014]
(5) The spacer is a rod having a circular cross section, and two spacers are inserted into each passage from the outer shroud toward the inner shroud to support the partition plate. Gas turbine steam cooled stationary blade.
[0015]
(6) The gas turbine steam-cooled stationary blade according to (1), wherein the spacer is made of an elastic member.
[0016]
(7) Steam outflow holes are respectively provided in front of the pair of cylindrical inserts on the leading edge side of the front half of the blade, and the inside of the cylindrical insert communicates with the gap to flow out from the cylindrical insert. The gas turbine steam-cooled stationary blade according to (1), wherein steam is allowed to flow into the gap from the hole.
[0017]
The gas turbine steam-cooled stationary blade of the present invention is based on the invention of (1). Steam flows from the outer steam supply cavities into the cylindrical inserts in the passages of the front half of the blades, flows through the respective cylindrical inserts, cools the front half of the blades from the inside, and flows out into the inner steam cavities. Part of the steam in the inner steam cavity flows through the cylindrical insert in the last passage in the front half of the wing and out of the outer shroud, and the rest flows into the rear edge and flows through the passage in the rear edge. Spill into the outer shroud. On the other hand, the steam that has flowed into the cylindrical insert in the front half of the blade flows into the gap because the tip and the cylindrical insert communicate with each other, and from the front edge side of the front half of the blade toward the rear, It flows through the gap on the side, sequentially flows into the gap on both sides of the next passage through the hole in the rib, and enters the steam in the cylindrical insert from the gap on both sides of the rearmost passage in the front half of the blade. Also, the steam flows from the outer steam supply cavity into the clearance passage at the front part of the blade trailing edge, flows in the clearance passages on both sides, merges inside, passes through the clearance passage at the rearmost part of the blade trailing edge, and goes outside. Spill to shroud.
[0018]
As described above, in (1) of the present invention, the narrow steam passage by the pair of cylindrical inserts in the front half of the blade, the gap between each cylindrical insert and the passage and the rib wall, both sides of the front portion of the blade trailing edge A narrow steam flow path is formed by the narrow gap passage, and effective cooling is possible with a small amount of steam, and steam is recovered from the outer shroud and returned to the steam supply source, so that steam pressure loss is reduced. Further, since the trailing edge side is also cooled with steam, conventional air is not required, and the cooling system is simplified.
[0019]
In (2) of the present invention, a portion of the steam that has cooled the blade trailing edge front part flows into the foremost stage passage of the blade trailing edge part, so that cooling of the blade trailing edge part in (1) is enhanced. Further, in the invention of (3), the cylindrical inserts on both sides face each other and form a hollow cylindrical shape with the partition plates, and the space between the partition plates on both sides is supported by a spacer and fixed. The support and fixing of each cylindrical insert on the ventral side are ensured. Further, in (5), the spacer is a round bar, and in (6), it is an elastic material. Since the same effect can be obtained, design options are widened.
[0020]
Further, in the invention of (4), a plurality of holes are arranged vertically on the front and rear partition plates of the front half of the wing of the invention of (3), and the cylindrical inserts on both sides are arranged by these holes. The steam that flows from the inner shroud to the entire outer shroud communicates with each other, and the inflowing steam at the forefront and the outflowing steam at the end are made uniform by the stirring action, thereby enabling uniform cooling.
[0021]
In (7) of the present invention, the steam from the foremost cylindrical insert in the front half of the blade flows into the gap through the hole, so that the steam in the foremost cylindrical insert easily flows into the gap, Steam flow is smooth.
[0022]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be specifically described with reference to the drawings. FIG. 1 is a longitudinal sectional view of a gas turbine steam-cooled stationary blade according to an embodiment of the present invention, and shows an example of a single-stage stationary blade. In the figure, the outer shroud 50, the inner shroud 51, and the stationary blade 1 constitute the entire blade, steam is supplied from the inner shroud 50, the inside is cooled, and the cooled steam is recovered from the outer shroud 50 again.
[0023]
In FIG. 1, passages 30A, 30B, 30C, and 30D are provided in the stationary blade 1 between the outer shroud 50 and the inner shroud 51, respectively, from the leading edge side to constitute the blade front half, and the trailing edge side from the passage 30D. As will be described later, a blade trailing edge front portion having gaps 31E, 31F, and 31G serving as steam passages is formed, and a plurality of trailing edge passages 30E on the trailing edge side are provided. The passage 30A has spacers 20 and 21 for supporting cylindrical inserts that are divided into a back side and an abdomen side of a wing through a partition plate described later, spacers 22 and 23 are provided in the passage 30B, and spacers 22 and 23 are provided in the passage 30C. 24 and 25, and spacers 26 and 27 are also provided in the passage 30D.
[0024]
In the stationary blade, 2 is a steam inlet and guides steam from the outside of the outer shroud 50. 3 is a steam reservoir (outside steam supply cavity), 4 is an impingement plate for allowing the steam to uniformly flow into the leading edge passage, and 5 is a partition plate that divides the leading edge passage 30A into a back side and a ventral side, The partition plate 5 is provided with a plurality of holes 6 that communicate the back side and the abdomen side vertically from the inside to the outside. Reference numeral 7 denotes an impingement plate that uniformly causes steam to flow from the inner shroud 51 into the passage 30A at the leading edge. Reference numeral 8 denotes a turbulator, which is provided on the inner wall of the front edge passage 30A and stirs the flow to improve the cooling effect.
[0025]
Reference numeral 10 denotes a large number of holes provided on the upper and lower sides of the ribs that partition the passages 30A and 30B, and constitutes a passage that guides the vapor from the gap around the passage 30A to the gap 30B. Reference numeral 11 denotes a hole, which is provided on a rib that separates the passages 30B and 30C, and simultaneously guides steam from the gap of the passage 30B to the gap of 30C. Reference numeral 12 denotes a similar hole, which is provided on a rib that separates the passage 30C and the passage 30D, and guides the steam from the passage 30C to the gap of 30D. Reference numeral 13 denotes a large number of holes provided in a partition plate that partitions the passage 30D into the back side and the abdomen side, and communicates the passages partitioned on both sides with a cylindrical insert.
[0026]
Reference numeral 14 denotes a steam outlet, which flows through the passages 30A, 30B, and 30C on the leading edge side, and recovers the cooled steam that has flowed into 30D to the outer shroud. 15 is also a steam outlet, and collects the cooled steam that has passed through the gaps 31E, 31F, 31G on the trailing edge side and the trailing edge passage 30E to the outer shroud side. Reference numeral 16 denotes a cavity on the inner shroud 51 side, which serves as a steam reservoir for distributing the steam flowing out from the passage 30B to other passages. Reference numeral 17 denotes an impingement plate which uniformly distributes and flows steam from the cavity 16 of the inner shroud 51 into a large number of trailing edge passages 30E. Reference numeral 18 also denotes an impingement plate that uniformly causes steam to flow from the steam reservoir 3 of the outer shroud 50 into the gaps 31E and 31F.
[0027]
In the stationary blade having the above configuration, the cooling steam 40 a flows from the steam inlet 2 and enters the steam reservoir 3. From the steam reservoir 3, it flows through the impingement plate 4 and is uniformly distributed from the outside into the passage 30A, and also flows into the passages 30B and 30C and the gaps 31E and 31F on the trailing edge side.
[0028]
The steam that has flowed into the passage 30A is communicated to both sides through a plurality of holes 6 in which both passages divided by the partition plate 5 and the cylindrical insert are arranged on the back side and the abdomen side, and the flow is stirred. As will be described later, the air flows into the gap 31A on both sides formed around the passage 30A, cools the front edge, and flows to the gap 31B in the rear passage 30B adjacent to the hole 10 like 40b.
[0029]
In the passage 30B, the steam flowing in through the hole 10 like the gaps 31A to 40b of the passage 30A passes through the gaps 31B on the back side and the abdominal side of the passage, cools both sides of the passage, and passes through the gap 31B after cooling. The steam flows through the hole 11 as shown by 40C into the gap 31C of the adjacent rear passage 30C, and similarly cools both the back side and the ventral side of the passage 30C, and passes through the hole 12 as shown by 40d. , Flows into the gap 31D of the adjacent rear passage 30D.
[0030]
The steam that flows into the gaps 31D on both sides of the passage 30D cools both sides through the gaps 31D as will be described later with reference to FIG. 2, and then enters the cylindrical insert of the passage 30D to partition the back side and the stomach side. A large number of upper and lower holes 13 provided in 5D-1 flow through the passages on both sides, mix with the steam flowing in from the inner shroud 51, and flow out from the steam outlet 14 of the outer shroud 50 for recovery. Is done.
[0031]
On the other hand, the steam 40e flowing into the cylindrical insert in the passage 30B flows from the outside into the cavity 16 in the inner shroud 51 while cooling the passage 30B, and also flows into the cylindrical insert in the passage 30C. The steam 40f also flows from the outside to the inside shroud and cools out to the cavity 16 while cooling the passage 30C. Out of the steam that flows out into the cavity 16 and accumulates here, 40 g flows into the passage 30A at the leading edge from the impingement plate 7, and in the passage 30A, the steam that flows from the outer shroud and the steam that flows from the inner shroud mix, The leading edge side passage 30A is effectively cooled, flows into the gaps 30A on both sides as described above, and flows into the adjacent passage 30B as shown by a large number of holes 10 to 40b.
[0032]
40h of the steam in the cavity 16 flows into the passage 30D, mixes with the steam that flows into the gap 31D as in the passages 30C to 40d and enters the passage 30D, and effectively cools the passage 30D, thereby cooling the outer shroud. From the steam outlet 14 and collected. Further, the vapor 40i in the cavity 16 flows to the trailing edge side and is uniformly distributed to the rearmost passage of the trailing edge passage 30E as indicated by 40j and to the remaining many passages such as 40k through the impingement plate 17. Inflow. The steam 40j and 40k flowing into the trailing edge passage 30E flows through the trailing edge passage 30E, cools the plurality of passages, flows out from the steam outlet 15 like 40M, and is collected.
[0033]
Of the steam flowing into the steam reservoir 3 of the outer shroud 50, 40N flows into the gaps 31E and 31F on the rear edge side as 40p and 40Q, respectively, and cools the gaps 31E and 31F on the back side and the stomach side, respectively. Then, the air flows into the cavity 33 of the outer shroud 51 and flows from the cavity 33 to the trailing edge passage 31G and 40s and 40t to the foremost passage of the blade trailing edge portion 30E, respectively, to cool them, and the steam outlet It flows out to 15 like 40U and is collected.
[0034]
2 is a cross-sectional view of the stationary blade shown in FIG. In the figure, the passages 30A, 30B, 30C, and 30D are divided into a back side and a ventral side as described in FIG. First, in the passage 30A, two circular cross-section spacers 20 and 21 are inserted vertically in the center, and the partition plates 5A-1 and 5A-2 are supported by the spacers 20 and 21, and a space is formed in the center. Forming. As shown in FIG. 1, the partition plates 5A-1 and 5A-2 are provided with a large number of holes 6 arranged in the vertical direction.
[0035]
Two cylindrical inserts are inserted on both sides of the partition plate to form passages 30A-1 and 30A-2, and a predetermined gap 31A is formed around the inner wall surface. A large number of holes 32 are arranged in the vertical direction at the front edge of the inserts of the passages 30A-1 and 30A-2 formed on the back side and the ventral side, and steam flowing through the passages 30A-1 and 30A-2 is provided. The hole 32 and the gap 31A are communicated so as to flow into the gap 31A on both sides. Further, a turbulator 8 is provided around the inner wall at the front end of the front edge, and the cooling effect is enhanced by stirring the flow of steam at the front end.
[0036]
Although the spacers 20 and 21 are shown as rod-shaped members having a round cross section, the spacers 20 and 21 are fixed by pressing the partition plates 5A-1 and 5A-2 outwardly on both sides. It does not have to be a bar, and may have a shape as shown in FIG. In FIG. 3, (a) is hollow tube-shaped spacers 20a and 21a, and (b) is a spacer that is pressed against both sides by elastic members 21a and 21b having a short cross section, for example. Such an example also has the same effect as the spacers 20 and 21.
[0037]
The passage 30A and the adjacent passage 30B are separated by ribs (partition walls), and holes 10 are provided in the ribs. The passage 30B is divided into a back side and an abdominal side by partition plates 5B-1 and 5B-2 similarly to 30A, and passages 30B-1 and 30B-2 are formed by inserting cylindrical inserts, respectively. Similarly, rod-shaped spacers 22 and 23 having a round cross section are inserted between the partition plates 5B-1 and 5B-2, and both partition plates are fixed and supported. In addition, the passages 30B-1 and 30B-2 are arranged so that two cylindrical inserts are inserted and a gap 31B is formed around the partition plate on both sides. And communicated with the gap 31A on the passage 30A side. The spacers 22 and 23 may be the same spacers as the spacers 20a and 21a or 20b and 21b shown in FIG.
[0038]
The passages 30 </ b> B and 30 </ b> C are also divided by ribs and communicate with each other through the holes 11. Similarly, the passage 30C is divided into a back side and an abdomen side by the partition plates 5C-1 and 5C-2 to form passages 30C-1 and 30C-2. Spacers 24 and 25 are inserted between the partition plates 5C-1 and 5C-2, and both partition plates are fixed and supported. In addition, the passages 30C-1 and 30C-2 are arranged so that two cylindrical inserts are inserted and a gap 31C is formed around the partition plates 24 and 25 on both sides. 11 is communicated with a gap 31B on the side of the passage 30B. In this case, the spacers 24 and 25 may be the spacers shown in FIGS.
[0039]
The passages 30C and 30D are also divided by ribs, and similarly, holes 12 are provided and communicate with each other. Similarly, the passage 30D is divided into a back side and an abdomen side by the partition plates 5D-1 and 5D-2 and the spacers 26 and 27. The partition plates 5D-1 and 5D-2 are each provided with a hole 13 and communicate with each other on both sides. Thus, passages 30D-1 and 30D-2 are formed. Similarly, two cylindrical inserts are inserted into the passages 30D-1 and 30D-2 so as to form a gap 31D around the partition plates 5D-1 and 5D-2. Is communicated with the gap 31C on the passage 30C side through the hole 12. In this case as well, the spacers 26 and 27 may be the spacers shown in FIGS. The passages 30D-1 and 30D-2 each have a plurality of holes 35 arranged vertically, and communicate with the gaps 31D on both sides.
[0040]
The three passages on the trailing edge side are closed (the hollow portion may be closed), and gaps 31E, 31F, and 31G are formed only on both sides of the blade inner wall, and these gaps are shown in FIG. So that the steam flows. That is, steam flows from the outside to the inner shroud in the gaps 31E and 31F, merges at the cavity 33, and flows from the inner side to the outer shroud to the gap 31G.
[0041]
In the stationary blade having the above cross-sectional shape, steam from the steam inlet 2 of the outer shroud 50 and steam from the cavity 16 of the inner shroud 51 flow into the passages 30A-1 and 30A-2 on the leading edge side (see FIG. 1). It flows from the hole 32 of 30A-1 and 30A-2 to the gap 31A on both sides of the periphery, and communicates with each other through the hole 6 of the partition plates 5A-1 and 5A-2 between the 30A-1 and 30A-2. The action of 8 is also added, and the leading edge is effectively cooled by stirring the steam. The steam that has cooled the passages 30A-1 and 30A-2 passes through the hole 10 from the gap 31A and flows into the gap 31B around the adjacent passages 30B-1 and 30B-2 (see 40b in FIG. 1).
[0042]
The steam that has flowed into the gap 31B cools the periphery of the passage and flows into the gap 31C around the next passages 30C-1 and 30C-2 from the hole 11 (see 40C in FIG. 1). On the other hand, in the passages 30B-1 and 30B-2, as described with reference to FIG. 1, the steam flows inward from the steam reservoir 3 of the outer shroud 50. Cooling is performed.
[0043]
The steam that has flowed into the gap 31C cools the periphery of the passage and flows into the gap 31D around the next passages 30D-1 and 30D-2 from the hole 12 (see 40d in FIG. 1). On the other hand, in the passages 30C-1 and 30C-2, as described with reference to FIG. 1, the steam flows inward from the steam reservoir 3 of the outer shroud 50. Effective cooling is achieved by both steams.
[0044]
The steam flowing into the gap 31D cools the periphery of the passage and flows into the passages 30D-1 and 30D-2 from the holes 35 on both sides. On the other hand, as described in FIG. 1, the steam 40 h flows into the passages 30 </ b> D- 1 and 30 </ b> D- 2 from the cavity 16 of the inner shroud 51 and flows into the outer shroud. Further, the passages 30D-1 and 30D-2 communicate with each other through the holes 13 of the partition plates 5D-1 and 5D-2, so that the steam is sufficiently stirred, and the passages 30D-1 and 30D-2 The inside and outside are cooled effectively and flows out from the steam outlet 14 of the outer shroud 50 and collected.
[0045]
FIG. 4 is an internal cross-sectional view of the outer shroud of the stationary blade shown in FIG. In the figure, the outer shroud 50 is connected to a blade having the configuration shown in FIG. 2, and steam is supplied from the outer shroud 50 and cooled by steam as described in FIGS. 1 and 2. On the other hand, the outer shroud 50 is provided with impingement plates 32, 33, 34, 35, 36, and 37 as shown in the figure. 33, 34 and 36, 37 are combined with large and small holes so that the steam flows out and uniformly hits the bottom surface of the shroud in a particularly severe part of the heat so that it can be recovered and effectively cooled. ing.
[0046]
According to the embodiment described above, the cooling passages 30A, 30B, 30C, and 30D on the leading edge side are divided by the partition plates on the back side and the ventral side, and the gaps 31A, 31B, 31C, 31D is formed, and steam is caused to flow through each passage and the surrounding gap, and the rear edge side front part is provided with gaps 31E, 31F, and 31G on the back side and the abdomen side inside the wall, respectively, and the steam is caused to flow through the gap. Since the edge side is configured such that steam flows through the passage 30E and the entire stationary blade is steam-cooled, the inside of the passage is thinly partitioned by a partition plate or an insert, and the narrow passage structure improves the pressure resistance strength. In addition, each passage 30A-1, 30A-2, 30B-1, 30B-2, 30C-1, 30C-2, gap 31A, 31B, 31C, 31D, 31E, 31F, 31G, steam in a narrow passage and narrow gap Since it passes, effective cooling is possible with less steam.
[0047]
In addition, the rear edge side is capable of steam cooling with narrow gaps 31E, 31F, 31G, and the conventional trailing edge cooling system uses the same cooling system as the front edge with steam, eliminating the need for air. The heat is recovered, and all the steam that has reached a high temperature is recovered and returned to the steam supply source for effective use and effective cooling. In addition, since the impeller cooling is used for the surface of the shroud, the shroud is effectively cooled. As a result, the pressure loss of the steam is remarkably reduced and the life of the stationary blade is extended.
[0048]
In the embodiment described above, an example of a single-stage stator blade has been described. However, the present invention is not limited to a single-stage stator blade, and is naturally applied to a two-stage stator blade or other stator blades. It is what you play.
[0049]
【The invention's effect】
The gas turbine steam-cooled stationary blade of the present invention comprises (1) a blade front half, a blade trailing edge front, and a blade trailing edge, and the blade front half and the blade trailing edge are divided into front and rear ribs, respectively. A plurality of passages penetrating from the outer shroud to the inner shroud are formed, and at the front edge of the trailing edge of the wing, front and rear are divided by ribs, and a predetermined gap is maintained on the back side and the ventral side penetrating from the outer shroud to the inner shroud. A plurality of gap passages are formed, and the outer steam supply cavity is communicated with the passage at the front half of the blade and the gap passage at the front portion of the blade trailing edge, and the inner steam cavity is communicated with the passage at the front half of the blade and the rear of the blade. A stationary vane configured to communicate with an edge passage; each passage in the front half of the blade is divided into a back side and a ventral side of the passage, and between the circumference of the passage and the rib wall surface. Inserted to form a predetermined gap. A pair of cylindrical inserts, spacers inserted between the same pair of cylindrical inserts to support and fix both inserts, and a plurality of ribs on the front half of the blades that divide each passage Through holes are arranged vertically, the gaps communicate with each other, and the gaps communicate with the inside of the cylindrical insert at the rearmost part; the cylinder except for the tail passage at the front half of the blade from the outer steam supply cavity Steam is passed through the insert, and flows from the inner steam cavity into the passage at the trailing edge of the blade and flows out to the outer shroud. It is characterized in that it is mixed into the cylindrical insert at the rearmost part.
[0050]
According to the invention of (1) above, a narrow steam passage by a pair of cylindrical inserts in the front half of the blade, a gap between each cylindrical insert and the passage and the rib wall, and a narrow gap passage on both sides of the front edge of the blade trailing edge. A narrow steam flow path is formed, enabling effective cooling with less steam, and steam is recovered from the outer shroud and returned to the steam supply source, reducing steam pressure loss. Further, since the trailing edge side is also cooled by steam, conventional air is not required, and the cooling system is simplified.
[0051]
In (2) of the present invention, a portion of the steam that has cooled the blade trailing edge front part flows into the foremost stage passage of the blade trailing edge part, so that cooling of the blade trailing edge part in (1) is enhanced. Further, in the invention of (3), the cylindrical inserts on both sides face each other and form a hollow cylindrical shape with the partition plates, and the space between the partition plates on both sides is supported by a spacer and fixed. The support and fixing of each cylindrical insert on the ventral side are ensured. Further, in (5), the spacer is a round bar, and in (6), it is an elastic material. Since the same effect can be obtained, design options are widened.
[0052]
In the invention of (4), a plurality of holes are arranged vertically on the front and rear partition plates of the wing front half of the invention of (3), and the cylindrical inserts on both sides are arranged by these holes. The steams communicate with each other from the inside to the outside, and the inflowing steam at the forefront and the outflowing steam at the end are made uniform by the stirring action, thereby enabling uniform cooling.
[0053]
In (7) of the present invention, the steam from the cylindrical insert in the first half of the blade flows into the gap through the hole, so the steam in the foremost cylindrical insert easily flows into the gap, and the steam flow in the gap Becomes smooth.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view of a gas turbine steam-cooled stationary blade according to an embodiment of the present invention.
FIG. 2 is a cross-sectional view of a gas turbine steam-cooled stationary blade according to an embodiment of the present invention.
FIGS. 3A and 3B show another application example of a spacer for partitioning a cooling passage of a gas turbine steam cooling stationary blade according to an embodiment of the present invention, wherein FIG. 3A shows a hollow tube, and FIG. 3B shows an elastic material. It is the fragmentary sectional view used.
FIG. 4 is a cross-sectional view of an outer shroud of a gas turbine steam-cooled stationary blade according to an embodiment of the present invention.
FIG. 5 is a longitudinal sectional view showing an example of a single stage stationary blade of a conventional gas turbine.
[Explanation of symbols]
1 Static blade
2 Steam inlet
3 Steam pool
4,7,17,18 Impingement plate
5 partition plate
6,10,11,12,13 holes
8 Turbulators
14,15 Steam outlet
16 cavities
21, 21, 22, 23, 24, 25, 26, 27 Spacer
30A, 30B, 30C, 30D passage
30A-1, 30A-2, 30B-1, 30B-2 passage
30C-1, 30C-2, 30D-1, 30D-2 passage
30E Trailing edge passage
31A, 31B, 31C, 31D Clearance
31E, 31F, 31G Gap
32 holes
33, 34, 35, 36, 37 Impingement plate
40a-40u steam

Claims (7)

翼前半部、翼後縁前部、翼後縁部からなり、同翼前半部及び翼後縁部には、それぞれ前後をリブで区分し外側シュラウドから内側シュラウドへ貫通する複数の通路を形成し、同翼後縁前部には、それぞれ前後をリブで区分し外側シュラウドから内側シュラウドへ貫通する翼背側と翼腹側に所定の隙間を保った複数の隙間通路を形成し、外側蒸気供給用キャビティを前記翼前半部の通路及び前記翼後縁前部の隙間通路にそれぞれ連通させ、内側蒸気用キャビティを前記翼前半部の通路及び前記翼後縁部の通路にそれぞれ連通させて構成された静翼であって;前記翼前半部の各通路には、同通路内を翼背側と翼腹側に区分すると共に前記通路周囲及び前記リブ壁面との間に所定の隙間を形成するように挿入された一対の筒状インサートと、同一対の筒状インサート間に挿入され、両インサートを支持し、固定するスペーサとを設け、更に、前記各通路を区分する前記翼前半部のリブには上下に複数の貫通穴を配列し、前記各隙間を連通させ、かつ同隙間は最後部の筒状インサート内と連通させる構成とし;前記外側蒸気供給用キャビティから翼前半部最後尾通路を除いて前記筒状インサートに蒸気を流し、前記内側蒸気用キャビティから前記翼後縁部の通路へ流入させて外側シュラウドへ流出させると共に、前記翼前半部の前記隙間にも蒸気を流入させ、前記リブの穴を通って最後部の筒状インサート内へ混入させることを特徴とするガスタービン蒸気冷却静翼。It consists of the front half of the wing, the front part of the wing trailing edge, and the rear edge of the wing. The front and rear edge of the wing is divided into ribs on the front and rear sides, and a plurality of gap passages are formed on the blade back side and blade abdomen side that penetrate from the outer shroud to the inner shroud. And the inner steam cavity is connected to the passage at the front half of the blade and the passage at the rear edge of the blade, respectively. A stationary vane; in each passage of the first half of the blade, the inside of the passage is divided into a blade back side and a blade belly side, and a predetermined gap is formed between the periphery of the passage and the rib wall surface A pair of cylindrical inserts inserted in the same pair A spacer inserted between the cylindrical inserts to support and fix both inserts is provided, and a plurality of through holes are arranged in the upper and lower ribs of the front half of the wing that divides the passages. And the gap is in communication with the inside of the cylindrical insert at the rearmost part; the steam is allowed to flow to the cylindrical insert from the outer steam supply cavity except for the rearmost passage at the front half of the blade, and for the inner steam. The air flows from the cavity into the passage at the trailing edge of the blade and flows out to the outer shroud, and also flows into the gap in the front half of the blade and enters the cylindrical insert at the rearmost portion through the hole in the rib. A gas turbine steam-cooled stationary blade, characterized in that: 前記翼後縁前部の隙間通路は蒸気の一部を後方の隙間通路から外側シュラウドに流出させると共に、残りの蒸気を前記翼後縁部の最前段の通路へ流入させるように構成したことを特徴とする請求項1記載のガスタービン蒸気冷却静翼。The clearance passage at the front portion of the blade trailing edge is configured to allow a part of the steam to flow out from the rear clearance passage to the outer shroud and to allow the remaining steam to flow into the foremost passage of the blade trailing edge portion. The gas turbine steam-cooled stationary blade according to claim 1, wherein: 前記翼前半部の各通路の一対の筒状インサートは、互いに対向する側面が仕切板で構成され、同仕切板と接続して筒状中空部を形成し、同互いに対向する仕切板を前記スペーサで支持することを特徴とする請求項1記載のガスタービン蒸気冷却静翼。The pair of cylindrical inserts of each passage in the front half of the wing is configured such that side surfaces facing each other are formed by a partition plate, and are connected to the partition plate to form a cylindrical hollow portion. The gas turbine steam-cooled stationary blade according to claim 1, wherein 前記翼前半部の最前方の通路及び最後方の通路の前記対向する仕切板には、それぞれ複数の貫通穴を配列させたことを特徴とする請求項3記載のガスタービン蒸気冷却静翼。4. The gas turbine steam-cooled stationary blade according to claim 3, wherein a plurality of through holes are arranged in each of the opposing partition plates of the foremost passage and the rearmost passage in the front half of the blade. 前記スペーサは、円形断面の棒状であり、各通路にそれぞれ2本が外側から内側へ向かって挿通され、前記仕切板を支持していることを特徴とする請求項1記載のガスタービン蒸気冷却静翼。2. The gas turbine steam-cooling static electricity according to claim 1, wherein the spacer has a rod-like shape with a circular cross section, and two spacers are inserted into each passage from the outside to the inside to support the partition plate. Wings. 前記スペーサは、弾性部材からなることを特徴とする請求項1記載のガスタービン蒸気冷却静翼。The gas turbine steam-cooled stationary blade according to claim 1, wherein the spacer is made of an elastic member. 前記翼前半部の前縁側の一対の筒状インサートの前方には、それぞれ蒸気流出用穴が設けられ、前記筒状インサート内と前記隙間とを連通させ、同筒状インサートから流出する蒸気を前記穴から隙間へ流入させるよう構成したことを特徴とする請求項1記載のガスタービン蒸気冷却静翼。In front of the pair of cylindrical inserts on the front edge side of the front half of the blade, a steam outflow hole is provided, and the inside of the cylindrical insert communicates with the gap so that the steam flowing out from the cylindrical insert is The gas turbine steam-cooled stationary blade according to claim 1, wherein the gas turbine steam-cooled stationary blade is configured to flow into the gap from the hole.
JP2000023732A 2000-02-01 2000-02-01 Gas turbine steam cooling vane Expired - Fee Related JP4176273B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000023732A JP4176273B2 (en) 2000-02-01 2000-02-01 Gas turbine steam cooling vane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000023732A JP4176273B2 (en) 2000-02-01 2000-02-01 Gas turbine steam cooling vane

Publications (2)

Publication Number Publication Date
JP2001214706A JP2001214706A (en) 2001-08-10
JP4176273B2 true JP4176273B2 (en) 2008-11-05

Family

ID=18549852

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000023732A Expired - Fee Related JP4176273B2 (en) 2000-02-01 2000-02-01 Gas turbine steam cooling vane

Country Status (1)

Country Link
JP (1) JP4176273B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7008185B2 (en) * 2003-02-27 2006-03-07 General Electric Company Gas turbine engine turbine nozzle bifurcated impingement baffle
JP5022097B2 (en) * 2007-05-07 2012-09-12 三菱重工業株式会社 Turbine blade
CN104088673B (en) * 2008-11-07 2016-03-09 三菱日立电力系统株式会社 turbine blade
EP2351909B1 (en) * 2008-11-07 2016-10-19 Mitsubishi Hitachi Power Systems, Ltd. Turbine blade
US8182223B2 (en) * 2009-02-27 2012-05-22 General Electric Company Turbine blade cooling
US10472973B2 (en) * 2016-06-06 2019-11-12 General Electric Company Turbine component and methods of making and cooling a turbine component
JP6508499B1 (en) * 2018-10-18 2019-05-08 三菱日立パワーシステムズ株式会社 Gas turbine stator vane, gas turbine provided with the same, and method of manufacturing gas turbine stator vane

Also Published As

Publication number Publication date
JP2001214706A (en) 2001-08-10

Similar Documents

Publication Publication Date Title
JPH10280904A (en) Cooled rotor blade for gas turbine
JP3735201B2 (en) Turbine blades cooled by helical gradients, cascade impact, and clasp mechanism in double skin
JP3495554B2 (en) Gas turbine vane cooling shroud
TWI257447B (en) Microcircuit cooling for a turbine blade tip
EP2256297B1 (en) Gas turbine vane with improved cooling
CN101008323B (en) Gas turbine bucket with cooled platform edge and method of cooling platform leading edge
US6142730A (en) Gas turbine cooling stationary blade
CA2513045C (en) Internally cooled gas turbine airfoil and method
US8535006B2 (en) Near-wall serpentine cooled turbine airfoil
JP4256704B2 (en) Method and apparatus for cooling a gas turbine engine nozzle assembly
KR20010092652A (en) A turbine stator vane segment having internal cooling circuits
EP3063376B1 (en) Gas turbine engine component comprising a trailing edge cooling using angled impingement on surface enhanced with cast chevron arrangements
EP1149983A2 (en) Film cooling for a closed loop cooled airfoil
US6468031B1 (en) Nozzle cavity impingement/area reduction insert
EP1156186A2 (en) Film cooling air pocket in a closed loop cooled airfoil
EP0911486A3 (en) Gas turbine stationary blade cooling
JP4176273B2 (en) Gas turbine steam cooling vane
CN101550843A (en) Gas turbine airfoil
KR20060043297A (en) Microcircuit cooling for a turbine airfoil
JP2000314301A (en) Internal intercooling circuit for gas turbine moving blade
JPH11294101A (en) Back flow multi-stage aerofoil cooling circuit
KR20130045903A (en) Gas turbine rotor blade, and gas turbine
WO2003042503A1 (en) Internal cooled gas turbine vane or blade
CA2513036C (en) Airfoil cooling passage trailing edge flow restriction
JP4175669B2 (en) Cooling channel structure for cooling the trailing edge of gas turbine blades

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080717

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080729

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080820

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110829

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110829

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120829

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130829

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees