JP4175921B2 - Heat recovery system in hydrogen production equipment - Google Patents

Heat recovery system in hydrogen production equipment Download PDF

Info

Publication number
JP4175921B2
JP4175921B2 JP2003067227A JP2003067227A JP4175921B2 JP 4175921 B2 JP4175921 B2 JP 4175921B2 JP 2003067227 A JP2003067227 A JP 2003067227A JP 2003067227 A JP2003067227 A JP 2003067227A JP 4175921 B2 JP4175921 B2 JP 4175921B2
Authority
JP
Japan
Prior art keywords
branch pipe
pure water
heat exchanger
heat
reforming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003067227A
Other languages
Japanese (ja)
Other versions
JP2004277186A (en
Inventor
博貴 古田
徹 高橋
亮平 日下
裕之 瓶子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kakoki Kaisha Ltd
Tokyo Gas Co Ltd
Original Assignee
Mitsubishi Kakoki Kaisha Ltd
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kakoki Kaisha Ltd, Tokyo Gas Co Ltd filed Critical Mitsubishi Kakoki Kaisha Ltd
Priority to JP2003067227A priority Critical patent/JP4175921B2/en
Publication of JP2004277186A publication Critical patent/JP2004277186A/en
Application granted granted Critical
Publication of JP4175921B2 publication Critical patent/JP4175921B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Description

【0001】
【発明の属する技術分野】
本発明は、順次炭化水素の水蒸気改質器及びCO変成器を備える水素製造装置における熱回収システムに関する。
【0002】
【従来の技術】
炭化水素の水蒸気改質器は、概略、バーナあるいは燃焼触媒を配置した燃焼部(加熱部)と改質触媒を配置した改質部とにより構成される。改質部では炭化水素が水蒸気と反応して水素リッチな改質ガスが生成される。改質部での改質反応には熱が必要であり、このため燃焼部において燃料の空気による燃焼により発生した燃焼熱が改質部に供給される。
【0003】
気体炭化水素である都市ガスやLPガスにはメルカプタン類、サルファイド類、あるいはチオフェンなどの付臭剤が添加されており、天然ガスにも産地如何にもよるが硫黄化合物が含まれている。これら硫黄化合物により改質触媒が被毒し性能劣化するので、それらの硫黄化合物を除去するために脱硫器へ導入される。次いで、脱硫済み炭化水素に水蒸気を添加、混合して水蒸気改質器の改質部へ導入される。
【0004】
炭化水素がメタンである場合の改質反応は「CH4+2H2O→CO2+4H2」で示される。生成改質ガス中には未反応のメタン、未反応の水蒸気、生成炭酸ガスのほか、一酸化炭素(CO)が副生して8〜15%(容量%、以下同じ)程度含まれている。このため改質ガスは、副生COを水素と二酸化炭素に変えて除去するためにCO変成器に供給される。CO変成器中での反応「CO+H2O→CO2+H2」で必要な水蒸気としては改質部において未反応の残留水蒸気が利用される。
【0005】
CO変成器を経て得られる変成ガスにも、目的成分である水素に加え、未反応のメタン、余剰水蒸気、二酸化炭素などが含まれ、また使用変成触媒や温度条件等の如何よって異なるが、未変成のCOが例えば1〜5%というように含まれている。このため変成ガスは更にPSA装置、CO選択酸化器などの精製器で精製される。図1は、従来における水素製造装置の例を示す図である。
【0006】
図1のとおり、順次、原料炭化水素導管、原料加熱器及び改質管を含む改質炉、改質ガスクーラ、CO変成器、変成ガスクーラ、精製器を連結して構成されている。原料炭化水素導管には純水導管からの純水が混合されて原料加熱器に供給される。なお、原料炭化水素が硫黄分を含む炭化水素の場合、図示は省略しているが、炭化水素導管には必要に応じて適宜脱硫器が配置される。
【0007】
原料加熱器では純水が蒸発し水蒸気を生成するとともに、炭化水素が加熱される。予熱器で350℃程度に予熱された炭化水素を、原料加熱器で500℃程度まで加熱し、改質器で650〜800℃程度で水蒸気改質反応を行い、500〜600℃程度の改質ガスが生成される。改質ガスは改質ガスクーラーにより300〜400℃程度まで冷却し、次いでCO変成器によりCO変成が行われる。CO変成器からの300〜400℃程度の変成ガスは変成ガスクーラーにより冷却した後、PSA装置等の精製器に送られ高純度の水素が製造される。
【0008】
ところで、水素製造装置システムにおける熱の利用関係についてみると、大型機では熱回収を行うのが一般的であるが、小型機については、通常の熱回収方法を行う場合、運転時にボイラーの有資格者が必要となり、例えば24時間交代勤務など運転人件費の増大を招くため図1のように熱回収を行わないのが一般的である。このため、水素製造効率が低く、原燃料使用量が多くなるため運転コストが高いという問題があった。
【0009】
【発明が解決しようとする課題】
本発明は、上記のような水素製造装置において、装置サイズ及び水素製造コストを抑制し、且つ制御性を担保した上で、改質ガス及び変成ガスからの熱回収を行い、水素製造効率を格段に向上させてなる水素製造装置における熱回収システムを提供することを目的とする。
【0010】
【課題を解決するための手段】
本発明は、順次、改質用純水による炭化水素の水蒸気改質器とCO変成器を備えた水素製造装置において、水蒸気改質器とCO変成器の間及びCO変成器からの変成ガス導出管にそれぞれ第1熱交換器及び第2熱交換器を配置するとともに、改質用純水の流路を第1分岐管、第2分岐管及び第3分岐管の三つの流路に分岐し、第1分岐管からの改質用純水を水蒸気改質器に供給する炭化水素に混合し、第2分岐管及び第3分岐管からの改質用純水をそれぞれ第1熱交換器及び第2熱交換器に供給して改質ガス及び変成ガスの熱を回収して蒸発させた後、水蒸気改質器に供給する炭化水素に混合するようにしてなることを特徴とする水素製造装置における熱回収システムである。
【0011】
ここで、水蒸気改質器とCO変成器の間及びCO変成器からの変成ガス導出管のうち、いずれか一方だけに熱交換器を配置し、改質用純水の流路を第1分岐管、第2分岐管の二つの流路に分岐し、第1分岐管からの改質用純水を水蒸気改質器に供給する炭化水素に混合し、第2分岐管からの改質用純水を上記熱交換器に供給して改質ガス及び変成ガスのうちいずれか一方の熱を回収して蒸発させた後、水蒸気改質器に供給する炭化水素に混合するようにすることもできる。
【0012】
また、本発明は、順次、改質用純水による炭化水素の水蒸気改質器とCO変成器とCO選択酸化器を備えた水素製造装置において、水蒸気改質器とCO変成器の間、CO変成器とCO選択酸化器の間及びCO選択酸化器からの導出管にそれぞれ第1熱交換器、第2熱交換器及び第3熱交換器を配置するとともに、改質用純水の流路を第1分岐管、第2分岐管、第3分岐管及び第4分岐管の四つの流路に分岐し、第1分岐管からの改質用純水を水蒸気改質器に供給する炭化水素に混合し、第2分岐管、第3分岐管及び第3分岐管からの改質用純水をそれぞれ第1熱交換器、第2熱交換器及び第3熱交換器に供給して改質ガス、変成ガス及び選択酸化ガスの熱を回収して蒸発させた後、水蒸気改質器に供給する炭化水素に混合するようにしてなることを特徴とする水素製造装置における熱回収システムである。
【0013】
さらに、上記水素製造装置における熱回収システムにおいては、水蒸気改質器に代えて、オートサーマル法を用いる場合も同様に適用することができる。
【0014】
【発明の実施の形態】
本発明は、順次、改質用純水による炭化水素の水蒸気改質器及びCO変成器を備えた水素製造装置を対象とし、水蒸気改質器とCO変成器の間及びCO変成器からの変成ガス導出管にそれぞれ第1熱交換器及び第2熱交換器を配置するとともに、改質用純水の流路を第1分岐管、第2分岐管及び第3分岐管の三つの流路に分岐する。そして、第1分岐管からの改質用純水を炭化水素に混合するとともに、第2分岐管及び第3分岐管からの改質用純水をそれぞれ第1熱交換器及び第2熱交換器に供給して改質ガス及び変成ガスの熱を回収して蒸発させた後、炭化水素に混合するようにしてなる。
【0015】
図2は本発明に係る水素製造装置における熱回収システムの態様を示す図である。図2のとおり、順次、炭化水素の改質炉(すなわち水蒸気改質器)、第1熱交換器、CO変成器、第2熱交換器、精製器が配置される。精製器は、本発明で必須ではないが、CO選択酸化器、PSA装置等の精製器が用いられる。炭化水素系燃料としては都市ガス、LPG、天然ガスなどの気体炭化水素のほか、ガソリン、ナフサなどの液体炭化水素が用いられる。
【0016】
改質用水、すなわち炭化水素を改質するための純水は、蒸留器やイオン交換器等の純水製造装置、あるいは純水タンク等からの導管を通して炭化水素導管、第1熱交換器及び第2熱交換器に導入される。Aは純水導管、Bは炭化水素導管である。図2のとおり、純水は、導管Aから第1分岐管1、第2分岐管2、第3分岐管3の三ラインに分岐され、各ラインにはそれぞれ、流量制御弁4〜6が配置される。第1分岐管1からの純水は、導管Bを流れる炭化水素に混合される。
【0017】
第2分岐管2からの純水は第1熱交換器へ供給され、第3分岐管3からの純水は第2熱交換器に供給され、それぞれ改質ガス、変成ガスを冷却し、自らは蒸発する。蒸発した水蒸気は導管7により炭化水素に混合される。第1分岐管1は、第1熱交換及び第2熱交換器で得られる水蒸気量では改質に必要な水蒸気量が不足するので、その不足分の純水を炭化水素に添加するためのものである。
【0018】
改質炉は、断熱容器にバーナ、原料加熱器及び改質管を備えることで構成されている。図3はその改質炉の一例を断面図として示す図である(特開平11−323355号公報)。断熱容器8に配置されたバーナ9における燃料の空気による燃焼ガスにより原料加熱器11及び改質管16が加熱される。燃焼ガスは導出管10及びバーナ蓄熱体9から排出される。原料加熱器11はコイル形式の調温管12、13で構成される。調温管12、13は隔壁14で仕切られている。炭化水素と水蒸気の混合ガスは調温管12、13中を流通しながら加熱され、導出管15を経て改質管16に供給される。
【0019】
改質管16は外管17及び内管18からなる2重管で構成され、外管17と内管18との間に改質触媒層19として改質触媒が充填されている。改質触媒としてはNi系改質触媒(例えばアルミナにNiを担持した触媒)やRu系改質触媒(例えばアルミナにRuを担持した触媒)等が用いられる。原料加熱器11からの導出管15を経た混合ガスは改質触媒層19を下向に流通しながら改質され、外管17内の下部で折り返して内管18を上向に流通し、導出管20から導出される。
【0020】
図2のとおり、改質ガスは導出管20から第1熱交換器に導入されて冷却され、導管21を通してCO変成器に導入される。変成触媒としては例えば白金系触媒や鉄ークロム系等のCO変成触媒が用いられる。改質ガス中のCOが変成反応(シフト反応:CO+H2O→H2+CO2)により水素と二酸化炭素に変えることで除去される。変成ガスはCO変成器から導管22を通して第2熱交換器に導入されて冷却され、導管23を通して精製器に導入される。変成ガス中には主成分である水素のほか、改質管で未改質の炭化水素、二酸化炭素に加え、微量ではあるがCO変成器で未変成のCOが含まれており、精製器においてはこれら成分が精製除去される。
【0021】
改質管16では650〜800℃程度で水蒸気改質反応が進行し、生成改質ガスは改質炉から500〜600℃程度で排出される。改質反応の温度は使用する改質触媒の特性等に応じて決まり設定される。本発明においては、第1熱交換器により、改質ガスを分岐管2のラインからの純水と熱交換させることにより300〜400℃程度まで冷却する。また、第1熱交換器では、CO変化器の温度が暴走しないように(すなわち急激に上昇しないように)CO変化器への改質ガスの入温が一定となるように純水流量を制御する。このため、冷却用の冷熱量は改質管16からの改質ガスの温度、流量により決まるので、それに応じて純水の流量は流量制御弁5により制御される。
【0022】
第1熱交換器で300〜400℃程度まで冷却された改質ガスはCO変成器に導入され、ここでCO変成が行われる。本発明においては、第2熱交換器により、変成ガスを分岐管3からの純水と熱交換させることにより冷却する。精製器がCO選択酸化器の場合には150〜200℃程度まで冷却し、PSA装置の場合には40℃程度まで冷却する。この場合には、改質用純水が完全に蒸発するように改質用純水流量を制御する。
【0023】
第2分岐管2からの純水は第1熱交換器へ供給され、第3分岐管3からの純水は第2熱交換器に供給される。純水は、各熱交換器でそれぞれ、改質ガス、変成ガスを冷却し、自らは蒸発する。蒸発した水蒸気は導管7により炭化水素に混合される。第1熱交換及び第2熱交換器で得られる水蒸気量では改質に必要な水蒸気量が不足する。第1分岐管1はその不足分を供給するためのもので、その不足分を第1分岐管1を通して炭化水素に添加混合する。
【0024】
ここで、純水を第2分岐管2と第3分岐管3とに分岐せずに、先ず第2熱交換に通した後、第1熱交換器に通す仕方も考えられる。しかし、この仕方では、純水が流通する全過程で気液混相流となり、水蒸気比を安定に保つには水蒸気流量に脈動が生じないように、常に下降流として環状流とする必要が生じてしまう。これに対して、純水を第2分岐管2と第3分岐管3に分岐し、それぞれ第1熱交換器及び第2熱交換器に供給することにより、第1熱交換器及び第2熱交換器において、純水が完全に気相すなわち水蒸気となり、気相単相となるので上昇管が使用できる。
【0025】
本発明によれば、改質用水との熱交換により改質ガス、変成ガスの熱回収を行うことにより、効率を格段に向上させることができる。例えば、炭化水素燃料としてLPGを用い、水素製造能力40m3N/hのシステムとした場合、図1の従来法での熱効率(HHV)では55.7%であったものが、本発明のシステムによれば66.0%まで向上させることができる。
【0026】
また、本発明によれば、第1熱交換器及び第2熱交換器により改質ガス、変成ガスの温度制御ができるのに加え、第1熱交換器及び第2熱交換器の設置位置、配管の引き廻しが自由にできることから、装置のコンパクト化を可能するなど有用な効果が得られる。この点、本発明において、第1熱交換器及び第2熱交換器のうちいずれか一方を配置する場合、または第1熱交換器及び第2熱交換器に加えて第3熱交換器を配置する場合にも、同様の効果が得られる。
【0027】
図4は、第2熱交換器に続けてCO選択酸化器及び第3熱交換器を備え、第1熱交換器及び第2熱交換器に加えて、第3熱交換器を配置する場合における熱回収システムの態様を示す図である。前述図2の熱回収システムにおける、第2熱交換器に続けて、CO選択酸化器及び第3熱交換器を配置する。CO変成器、第2熱交換器を経た変成ガスをさらに導管aを通してCO選択酸化器に導入する。一方、純水は、導管Aから、第1〜第3の分岐管に加えて、第4分岐管cの四ラインに分岐され、第4分岐管cから流量制御弁dを経て第3熱交換器に通される。
【0028】
純水は、CO選択酸化器からのガスと熱交換して蒸発し、導管7を経て原料炭化水素燃料と混合される。一方、CO選択酸化器に導入された変成ガスは、選択酸化反応により残余のCOが除去され、導管bを経てPSA装置等の精製器に導入され、ここでさらに不純物が除去され、高純度の水素として取り出される。
【0029】
【実施例】
以下、実施例に基づき本発明をさらに詳しく説明するが、本発明がこれら実施例に限定されないことはもちろんである。図2の熱回収システムを用いた。改質炉として図3の炉を用い、第1熱交換器、第2熱交換器として図5の熱交換器を用い、精製器としてPSA装置を用いた。
【0030】
図5のとおり、熱交換器はスパイラル状の2重管式熱交換器で、図5(a)のとおり縦方向に配置した。内管26と外管31の間に、第1熱交換器では改質ガスを、第2熱交換器では変成ガスを流通させた。30は改質ガスまたは変成ガスの導入管、32はその導出管である。純水は、導入管25から導入し、内管26を流通させて蒸発させた。生成水蒸気は、導出管27から気相単相として上昇管を経て原料炭化水素に混合した。24、28、29、33は各管の継手である。
【0031】
改質炉の改質管中にアルミナにNiを担持した触媒を充填し、CO変成器の容器に鉄ークロム系触媒(Fe/Cr系触媒)を充填した。熱回収システムには常法に従い各必要箇所に温度センサを配置した。図2〜3中、矢印を付している実線のライン(配管)は対応するガスが流れていることを示している。原料炭化水素として脱硫済みLPGを用い、バーナでの燃料ガスとしてLPGを用いた。
【0032】
表1は本実施例における操作条件及びその結果である。表1のとおり、PSA装置出口ガスは水素99.999%以上(≒100%、表1参照)であり、改質ガスは十二分に純化されていることが分かる。純水は第1熱交換器及び第2熱交換器でそれぞれ改質ガス及びCO変成ガスを冷却し、純水自体は両熱交換器で加熱されて蒸発し、改質用水蒸気として利用されている。
【0033】
【表1】

Figure 0004175921
【0034】
【発明の効果】
本発明によれば、改質器及びCO変成器を順次備えた水素製造装置において、装置サイズ及び水素製造コストを抑制し、且つ制御性を担保した上で、改質ガス及び変成ガスの熱回収を行い、システム全体としての熱効率を向上させ、水素製造効率を格段に向上させることができる。また、第1熱交換器及び第2熱交換器により改質ガス、変成ガスの温度制御ができるのに加え、第1熱交換器及び第2熱交換器の設置位置、配管の引き廻しが自由にできることから、装置のコンパクトを可能とすることができるなど各種有用な効果が得られる。
【図面の簡単な説明】
【図1】従来における小型水素製造装置の例を示す図
【図2】本発明に係る水素製造装置における熱回収システムの態様を示す図
【図3】本発明に係る水素製造装置における熱回収システムの他の態様を示す図
【図4】本発明で用いる改質炉の一例を示す図
【図5】実施例で用いた熱交換器を示す図
【符号の説明】
A 純水導管
B 炭化水素導管
1 第1分岐管
2 第2分岐管
3 第3分岐管
4〜6 流量制御弁4〜6
26 内管
31 外管[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a heat recovery system in a hydrogen production apparatus including a hydrocarbon steam reformer and a CO converter.
[0002]
[Prior art]
The hydrocarbon steam reformer is generally composed of a combustion section (heating section) in which a burner or a combustion catalyst is arranged and a reforming section in which a reforming catalyst is arranged. In the reforming section, the hydrocarbon reacts with the steam to generate a hydrogen-rich reformed gas. Heat is required for the reforming reaction in the reforming section. For this reason, the combustion heat generated by the combustion of fuel in the combustion section is supplied to the reforming section.
[0003]
Odorants such as mercaptans, sulfides, and thiophene are added to city gas and LP gas, which are gaseous hydrocarbons, and sulfur compounds are contained in natural gas depending on the origin. Since the reforming catalyst is poisoned by these sulfur compounds and performance deteriorates, they are introduced into a desulfurizer in order to remove those sulfur compounds. Next, steam is added to and mixed with the desulfurized hydrocarbon and introduced into the reforming section of the steam reformer.
[0004]
The reforming reaction when the hydrocarbon is methane is represented by “CH 4 + 2H 2 O → CO 2 + 4H 2 ”. The generated reformed gas contains unreacted methane, unreacted water vapor, generated carbon dioxide, and carbon monoxide (CO) as a by-product, containing about 8 to 15% (volume%, the same applies hereinafter). . For this reason, the reformed gas is supplied to a CO converter to remove by-product CO by converting it into hydrogen and carbon dioxide. As the steam necessary for the reaction “CO + H 2 O → CO 2 + H 2 ” in the CO converter, unreacted residual steam is used in the reforming section.
[0005]
The modified gas obtained through the CO converter also contains unreacted methane, surplus steam, carbon dioxide, etc. in addition to the target component hydrogen, and it varies depending on the conversion catalyst used, temperature conditions, etc. Denatured CO is contained, for example, 1 to 5%. For this reason, the modified gas is further purified by a purifier such as a PSA apparatus or a CO selective oxidizer. FIG. 1 is a diagram showing an example of a conventional hydrogen production apparatus.
[0006]
As shown in FIG. 1, a reforming furnace including a feed hydrocarbon conduit, a feed heater and a reforming tube, a reformed gas cooler, a CO shift converter, a shift gas cooler, and a purifier are sequentially connected. Pure water from the pure water conduit is mixed into the raw material hydrocarbon conduit and supplied to the raw material heater. In addition, although illustration is abbreviate | omitted when raw material hydrocarbon is a hydrocarbon containing a sulfur content, a desulfurizer is arrange | positioned suitably at a hydrocarbon conduit | pipe as needed.
[0007]
In the raw material heater, pure water evaporates to generate water vapor, and hydrocarbons are heated. A hydrocarbon preheated to about 350 ° C. by a preheater is heated to about 500 ° C. by a raw material heater, a steam reforming reaction is performed at about 650 to 800 ° C. by a reformer, and reforming to about 500 to 600 ° C. Gas is generated. The reformed gas is cooled to about 300 to 400 ° C. by a reformed gas cooler, and then CO conversion is performed by a CO converter. The modified gas at about 300 to 400 ° C. from the CO converter is cooled by a modified gas cooler and then sent to a purifier such as a PSA device to produce high purity hydrogen.
[0008]
By the way, when looking at the heat utilization relationship in the hydrogen production system, it is common for large machines to recover heat, but for small machines, if the normal heat recovery method is used, the boiler qualification is required during operation. In general, it does not perform heat recovery as shown in FIG. 1 because it increases the operating labor costs such as 24-hour shift work. For this reason, there existed a problem that operation cost was high because hydrogen production efficiency was low and raw fuel consumption was increased.
[0009]
[Problems to be solved by the invention]
In the hydrogen production apparatus as described above, the apparatus size and the hydrogen production cost are suppressed and controllability is ensured, and heat recovery from the reformed gas and the metamorphic gas is performed to greatly improve the hydrogen production efficiency. An object of the present invention is to provide a heat recovery system in a hydrogen production apparatus that is improved to the above.
[0010]
[Means for Solving the Problems]
The present invention is directed to a hydrogen production apparatus including a hydrocarbon steam reformer and a CO converter using pure water for reforming, and the conversion gas derived from the CO converter and between the steam reformer and the CO converter. A first heat exchanger and a second heat exchanger are arranged on the pipes respectively, and the reforming pure water flow path is branched into three flow paths: a first branch pipe, a second branch pipe, and a third branch pipe. , The reforming pure water from the first branch pipe is mixed with the hydrocarbons supplied to the steam reformer, and the reforming pure water from the second branch pipe and the third branch pipe is mixed with the first heat exchanger and A hydrogen production apparatus characterized in that the heat of the reformed gas and the modified gas is recovered by being supplied to the second heat exchanger and evaporated, and then mixed with the hydrocarbon supplied to the steam reformer Is a heat recovery system.
[0011]
Here, a heat exchanger is arranged only in one of the steam reforming gas outlet pipes between the steam reformer and the CO converter and from the CO converter, and the flow path of the pure water for reforming is the first branch. Branching into two flow paths, a pipe and a second branch pipe, the reforming pure water from the first branch pipe is mixed with the hydrocarbon supplied to the steam reformer, and the reforming pure water from the second branch pipe After supplying water to the heat exchanger and recovering and evaporating the heat of one of the reformed gas and the modified gas, it can be mixed with the hydrocarbon supplied to the steam reformer. .
[0012]
The present invention also provides a hydrogen production apparatus including a hydrocarbon steam reformer, a CO converter, and a CO selective oxidizer using pure water for reforming, and a CO converter between the steam reformer and the CO converter. A first heat exchanger, a second heat exchanger, and a third heat exchanger are arranged between the transformer and the CO selective oxidizer and in the outlet pipe from the CO selective oxidizer, respectively, and the flow path of the pure water for reforming Is branched into four flow paths of a first branch pipe, a second branch pipe, a third branch pipe, and a fourth branch pipe, and the hydrocarbon for supplying the pure water for reforming from the first branch pipe to the steam reformer And the reforming pure water from the second branch pipe, the third branch pipe and the third branch pipe is supplied to the first heat exchanger, the second heat exchanger and the third heat exchanger, respectively, and reformed. After recovering and evaporating the heat of the gas, metamorphic gas and selective oxidizing gas, it is mixed with the hydrocarbons supplied to the steam reformer A heat recovery system in a hydrogen production system according to claim and.
[0013]
Further, the heat recovery system in the hydrogen production apparatus can be similarly applied when an autothermal method is used instead of the steam reformer.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
The present invention is directed to a hydrogen production apparatus equipped with a hydrocarbon steam reformer and a CO converter using pure water for reforming in sequence, and the conversion between the steam reformer and the CO converter and from the CO converter. A first heat exchanger and a second heat exchanger are disposed in the gas outlet pipe, respectively, and the reforming pure water flow path is divided into three flow paths: a first branch pipe, a second branch pipe, and a third branch pipe. Branch. Then, the reforming pure water from the first branch pipe is mixed with the hydrocarbon, and the reforming pure water from the second branch pipe and the third branch pipe is mixed with the first heat exchanger and the second heat exchanger, respectively. The heat of the reformed gas and the modified gas is recovered and evaporated, and then mixed with the hydrocarbon.
[0015]
FIG. 2 is a view showing an embodiment of a heat recovery system in the hydrogen production apparatus according to the present invention. As shown in FIG. 2, a hydrocarbon reforming furnace (that is, a steam reformer), a first heat exchanger, a CO converter, a second heat exchanger, and a purifier are sequentially arranged. The purifier is not essential in the present invention, but a purifier such as a CO selective oxidizer or a PSA apparatus is used. As the hydrocarbon fuel, gas hydrocarbons such as city gas, LPG and natural gas, as well as liquid hydrocarbons such as gasoline and naphtha are used.
[0016]
Water for reforming, that is, pure water for reforming hydrocarbons, is supplied to a hydrocarbon pipe, a first heat exchanger, and a second water through a pure water production apparatus such as a distiller or an ion exchanger, or a pipe from a pure water tank or the like. 2 introduced into the heat exchanger. A is a pure water conduit and B is a hydrocarbon conduit. As shown in FIG. 2, the pure water is branched from the conduit A into three lines of the first branch pipe 1, the second branch pipe 2, and the third branch pipe 3, and flow control valves 4 to 6 are arranged in each line. Is done. Pure water from the first branch pipe 1 is mixed with hydrocarbons flowing through the conduit B.
[0017]
Pure water from the second branch pipe 2 is supplied to the first heat exchanger, and pure water from the third branch pipe 3 is supplied to the second heat exchanger to cool the reformed gas and the transformed gas, respectively, Evaporates. The evaporated water vapor is mixed with the hydrocarbons by the conduit 7. The first branch pipe 1 is used to add the deficient amount of pure water to the hydrocarbon because the amount of steam obtained by the first heat exchange and the second heat exchanger is insufficient for the reforming. It is.
[0018]
The reforming furnace is configured by providing a heat insulating container with a burner, a raw material heater, and a reforming pipe. FIG. 3 is a cross-sectional view showing an example of the reforming furnace (Japanese Patent Laid-Open No. 11-323355). The raw material heater 11 and the reforming pipe 16 are heated by the combustion gas of the fuel air in the burner 9 disposed in the heat insulating container 8. The combustion gas is discharged from the outlet pipe 10 and the burner heat storage body 9. The raw material heater 11 includes coil-type temperature control tubes 12 and 13. The temperature control tubes 12 and 13 are partitioned by a partition wall 14. The mixed gas of hydrocarbon and water vapor is heated while flowing through the temperature control pipes 12 and 13, and is supplied to the reforming pipe 16 through the outlet pipe 15.
[0019]
The reforming pipe 16 is a double pipe composed of an outer pipe 17 and an inner pipe 18, and a reforming catalyst is filled as a reforming catalyst layer 19 between the outer pipe 17 and the inner pipe 18. As the reforming catalyst, a Ni-based reforming catalyst (for example, a catalyst in which Ni is supported on alumina), a Ru-based reforming catalyst (for example, a catalyst in which Ru is supported on alumina), or the like is used. The mixed gas that has passed through the lead-out pipe 15 from the raw material heater 11 is reformed while flowing downward through the reforming catalyst layer 19, is folded at the lower part in the outer pipe 17, flows upward through the inner pipe 18, and is led out. Derived from the tube 20.
[0020]
As shown in FIG. 2, the reformed gas is introduced into the first heat exchanger from the outlet pipe 20, cooled, and introduced into the CO converter through the conduit 21. As the shift catalyst, for example, a platinum-based catalyst or an iron-chromium-based CO shift catalyst is used. CO in the reformed gas is removed by changing to hydrogen and carbon dioxide by a shift reaction (shift reaction: CO + H 2 O → H 2 + CO 2 ). The conversion gas is introduced from the CO converter through the conduit 22 into the second heat exchanger and cooled, and is introduced into the purifier through the conduit 23. In addition to hydrogen, which is the main component, in the metamorphic gas, in addition to unreformed hydrocarbons and carbon dioxide in the reforming tube, a small amount of untransformed CO is contained in the CO converter. These components are purified and removed.
[0021]
In the reforming pipe 16, the steam reforming reaction proceeds at about 650 to 800 ° C, and the generated reformed gas is discharged from the reforming furnace at about 500 to 600 ° C. The temperature of the reforming reaction is determined and set according to the characteristics of the reforming catalyst to be used. In the present invention, the first heat exchanger cools the reformed gas to about 300 to 400 ° C. by exchanging heat with the pure water from the branch pipe 2 line. In the first heat exchanger, the pure water flow rate is controlled so that the temperature of the reformed gas entering the CO changer is constant so that the temperature of the CO changer does not run away (that is, does not rise rapidly). To do. For this reason, the cooling heat quantity for cooling is determined by the temperature and flow rate of the reformed gas from the reforming pipe 16, and the flow rate of pure water is controlled by the flow rate control valve 5 accordingly.
[0022]
The reformed gas cooled to about 300 to 400 ° C. in the first heat exchanger is introduced into the CO converter, where CO conversion is performed. In the present invention, the modified gas is cooled by exchanging heat with the pure water from the branch pipe 3 by the second heat exchanger. When the purifier is a CO selective oxidizer, it is cooled to about 150 to 200 ° C., and when it is a PSA apparatus, it is cooled to about 40 ° C. In this case, the flow rate of the reforming pure water is controlled so that the reforming pure water is completely evaporated.
[0023]
Pure water from the second branch pipe 2 is supplied to the first heat exchanger, and pure water from the third branch pipe 3 is supplied to the second heat exchanger. Pure water cools the reformed gas and the modified gas in each heat exchanger, and evaporates itself. The evaporated water vapor is mixed with the hydrocarbons by the conduit 7. The amount of steam obtained by the first heat exchange and the second heat exchanger is insufficient for the amount of steam necessary for reforming. The first branch pipe 1 is for supplying the shortage, and the shortage is added to and mixed with the hydrocarbons through the first branch pipe 1.
[0024]
Here, it is also conceivable that pure water is not branched into the second branch pipe 2 and the third branch pipe 3 but first passed through the second heat exchange and then passed through the first heat exchanger. However, in this way, it becomes a gas-liquid mixed phase flow in the whole process in which pure water circulates, and in order to keep the water vapor ratio stable, it is necessary to always make an annular flow as a downward flow so that no pulsation occurs in the water vapor flow rate. End up. On the other hand, pure water is branched into the second branch pipe 2 and the third branch pipe 3 and supplied to the first heat exchanger and the second heat exchanger, respectively, so that the first heat exchanger and the second heat exchanger are supplied. In the exchanger, pure water is completely converted into a gas phase, that is, water vapor, and becomes a gas phase single phase, so that a riser can be used.
[0025]
According to the present invention, the efficiency can be remarkably improved by performing heat recovery of the reformed gas and the modified gas by heat exchange with the reforming water. For example, when LPG is used as the hydrocarbon fuel and the system has a hydrogen production capacity of 40 m 3 N / h, the thermal efficiency (HHV) in the conventional method of FIG. 1 is 55.7%. According to this, it can be improved to 66.0%.
[0026]
In addition, according to the present invention, the temperature of the reformed gas and the modified gas can be controlled by the first heat exchanger and the second heat exchanger, and the installation positions of the first heat exchanger and the second heat exchanger, since the pipe pulling turn can be free, useful effects such as to permit compact device is obtained. In this regard, in the present invention, when either one of the first heat exchanger and the second heat exchanger is disposed, or in addition to the first heat exchanger and the second heat exchanger, the third heat exchanger is disposed. In this case, the same effect can be obtained .
[0027]
FIG. 4 shows a case where a CO selective oxidizer and a third heat exchanger are provided after the second heat exchanger, and a third heat exchanger is arranged in addition to the first heat exchanger and the second heat exchanger. It is a figure which shows the aspect of a heat recovery system. In the heat recovery system of FIG. 2, the CO selective oxidizer and the third heat exchanger are arranged after the second heat exchanger. The converted gas that has passed through the CO converter and the second heat exchanger is further introduced into the CO selective oxidizer through the conduit a. On the other hand, the pure water is branched from the conduit A into four lines of the fourth branch pipe c in addition to the first to third branch pipes, and the third heat exchange is performed from the fourth branch pipe c through the flow rate control valve d. Passed through a bowl.
[0028]
The pure water evaporates by exchanging heat with the gas from the CO selective oxidizer, and is mixed with the raw hydrocarbon fuel via the conduit 7. On the other hand, in the modified gas introduced into the CO selective oxidizer, residual CO is removed by a selective oxidation reaction, and is introduced into a purifier such as a PSA apparatus via the conduit b, where impurities are further removed, and high purity is obtained. Extracted as hydrogen.
[0029]
【Example】
EXAMPLES Hereinafter, although this invention is demonstrated in more detail based on an Example, of course, this invention is not limited to these Examples. The heat recovery system of FIG. 2 was used. The furnace shown in FIG. 3 was used as the reforming furnace, the heat exchanger shown in FIG. 5 was used as the first heat exchanger and the second heat exchanger, and the PSA apparatus was used as the purifier.
[0030]
As shown in FIG. 5, the heat exchanger is a spiral double pipe heat exchanger and is arranged in the vertical direction as shown in FIG. Between the inner pipe 26 and the outer pipe 31, the reformed gas was circulated in the first heat exchanger and the modified gas was circulated in the second heat exchanger. Reference numeral 30 denotes an introduction pipe for reformed gas or modified gas, and 32 denotes an outlet pipe thereof. Pure water was introduced from the introduction pipe 25 and allowed to evaporate through the inner pipe 26. The generated water vapor was mixed with the raw material hydrocarbons from the outlet pipe 27 as a gas phase single phase through the riser pipe. Reference numerals 24, 28, 29, and 33 denote joints of respective pipes.
[0031]
The reforming tube of the reforming furnace was filled with a catalyst having Ni supported on alumina, and the container of the CO converter was filled with an iron-chromium catalyst (Fe / Cr catalyst). In the heat recovery system, a temperature sensor was arranged at each necessary location according to a conventional method. 2 to 3, a solid line (pipe) with an arrow indicates that the corresponding gas is flowing. Desulfurized LPG was used as the raw material hydrocarbon, and LPG was used as the fuel gas in the burner.
[0032]
Table 1 shows operating conditions and results in this example. As shown in Table 1, the PSA apparatus outlet gas is 99.999% or more of hydrogen (≈100%, see Table 1), and it can be seen that the reformed gas is sufficiently purified. The pure water cools the reformed gas and the CO modified gas in the first heat exchanger and the second heat exchanger, respectively, and the pure water itself is heated and evaporated in both heat exchangers and used as reforming steam. Yes.
[0033]
[Table 1]
Figure 0004175921
[0034]
【The invention's effect】
According to the present invention, in a hydrogen production apparatus sequentially equipped with a reformer and a CO converter, the apparatus size and the hydrogen production cost are suppressed, and controllability is ensured, and the heat recovery of the reformed gas and the modified gas is achieved. The thermal efficiency of the entire system can be improved, and the hydrogen production efficiency can be significantly improved. In addition to being able to control the temperature of the reformed gas and the modified gas by the first heat exchanger and the second heat exchanger, the installation positions of the first heat exchanger and the second heat exchanger, and the routing of the piping are free. Therefore, various useful effects such as enabling the apparatus to be compact can be obtained.
[Brief description of the drawings]
FIG. 1 is a diagram showing an example of a conventional small hydrogen production apparatus. FIG. 2 is a diagram showing an aspect of a heat recovery system in a hydrogen production apparatus according to the present invention. FIG. 3 is a heat recovery system in a hydrogen production apparatus according to the present invention. FIG. 4 is a view showing an example of a reforming furnace used in the present invention. FIG. 5 is a view showing a heat exchanger used in the embodiment.
A Pure water conduit B Hydrocarbon conduit 1 First branch pipe 2 Second branch pipe 3 Third branch pipe 4-6 Flow control valves 4-6
26 Inner pipe 31 Outer pipe

Claims (7)

順次、改質用純水による炭化水素の水蒸気改質器とCO変成器を備えた水素製造装置において、
(a)水蒸気改質器とCO変成器の間及びCO変成器からの変成ガス導出管にそれぞれ第1熱交換器及び第2熱交換器を配置するとともに、改質用純水の流路を第1分岐管、第2分岐管及び第3分岐管の三つの流路に分岐し、
(b)第2分岐管からの純水を、CO変成器の温度が暴走しないようにCO変成器への改質ガスの入温度が一定となるように純水流量を制御しながら第1熱交換器に供給して改質ガスの熱を回収し、完全に水蒸気である気相単相にして上昇管を介して水蒸気改質器に供給する炭化水素に混合し、
(c)第3分岐管からの純水を、第2熱交換器に供給して変成ガスの熱を回収して完全に水蒸気である気相単相にして上昇管を介して水蒸気改質器に供給する炭化水素に混合し、且つ、
(d)第1分岐管を通して、第1熱交換及び第2熱交換器で得られる水蒸気量では改質に必要な水蒸気量が不足する分の純水を水蒸気改質器に供給する炭化水素に混合するようにしてなること
を特徴とする水素製造装置における熱回収システム。
In order, in a hydrogen production apparatus equipped with a hydrocarbon steam reformer and CO converter with pure water for reforming,
(A) A first heat exchanger and a second heat exchanger are disposed between the steam reformer and the CO converter and in the converted gas outlet pipe from the CO converter, respectively , and a flow path for the pure water for reforming is provided. Branching into three flow paths, a first branch pipe, a second branch pipe and a third branch pipe,
(B) The first heat of the pure water from the second branch pipe is controlled while controlling the pure water flow rate so that the temperature of the reformed gas entering the CO converter is constant so that the temperature of the CO converter does not run away. Supply to the exchanger to recover the heat of the reformed gas, and completely mix with the hydrocarbon to be supplied to the steam reformer through the riser in a gas phase single phase that is steam,
(C) Pure water from the third branch pipe is supplied to the second heat exchanger to recover the heat of the metamorphic gas so that it becomes a vapor-phase single phase that is completely water vapor, and the steam reformer through the riser pipe Mixed with hydrocarbons to be supplied to, and
(D) The hydrocarbons supplied to the steam reformer through the first branch pipe are supplied with pure water for the amount of steam required for reforming by the amount of steam obtained by the first heat exchange and the second heat exchanger. Getting mixed ,
A heat recovery system in a hydrogen production apparatus characterized by
順次、改質用純水による炭化水素の水蒸気改質器とCO変成器を備えた水素製造装置において、
(a)水蒸気改質器とCO変成器の間及びCO変成器からの変成ガス導出管にそれぞれ第1熱交換器及び第2熱交換器を配置するとともに、第2熱交換器に続きPSA装置を配置し、改質用純水の流路を第1分岐管、第2分岐管及び第3分岐管の三つの流路に分岐し、
(b)第2分岐管からの純水を、CO変成器の温度が暴走しないようにCO変成器への改質ガスの入温度が一定となるように純水流量を制御しながら第1熱交換器に供給して改質ガスの熱を回収し、完全に水蒸気である気相単相にして上昇管を介して水蒸気改質器に供給する炭化水素に混合し、
(c)第3分岐管からの純水を、第2熱交換器に供給して変成ガスの熱を回収して完全に水蒸気である気相単相にして上昇管を介して水蒸気改質器に供給する炭化水素に混合し、且つ、
(d)第1分岐管を通して、第1熱交換及び第2熱交換器で得られる水蒸気量では改質に必要な水蒸気量が不足する分の純水を水蒸気改質器に供給する炭化水素に混合するようにしてなること
を特徴とする水素製造装置における熱回収システム。
In order, in a hydrogen production apparatus equipped with a hydrocarbon steam reformer and CO converter with pure water for reforming,
(A) A first heat exchanger and a second heat exchanger are arranged between the steam reformer and the CO converter and in the converted gas outlet pipe from the CO converter, respectively , and the PSA device follows the second heat exchanger. And branching the flow path of the pure water for reforming into the three flow paths of the first branch pipe, the second branch pipe and the third branch pipe,
(B) The first heat of the pure water from the second branch pipe is controlled while controlling the pure water flow rate so that the temperature of the reformed gas entering the CO converter is constant so that the temperature of the CO converter does not run away. Supply to the exchanger to recover the heat of the reformed gas, and completely mix with the hydrocarbon to be supplied to the steam reformer through the riser in a gas phase single phase that is steam,
(C) Pure water from the third branch pipe is supplied to the second heat exchanger to recover the heat of the metamorphic gas so that it becomes a vapor-phase single phase that is completely water vapor, and the steam reformer through the riser pipe Mixed with hydrocarbons to be supplied to, and
(D) The hydrocarbons supplied to the steam reformer through the first branch pipe are supplied with pure water for the amount of steam required for reforming by the amount of steam obtained by the first heat exchange and the second heat exchanger. Getting mixed ,
A heat recovery system in a hydrogen production apparatus characterized by
順次、改質用純水による炭化水素の水蒸気改質器とCO変成器を備えた水素製造装置において、
(a)水蒸気改質器とCO変成器の間及びCO変成器からの変成ガス導出管にそれぞれ第1熱交換器及び第2熱交換器を配置するとともに、第2熱交換器に続きCO選択酸化器を配置し、改質用純水の流路を第1分岐管、第2分岐管及び第3分岐管の三つの流路に分岐し、
(b)第2分岐管からの純水を、CO変成器の温度が暴走しないようにCO変成器への改質ガスの入温度が一定となるように純水流量を制御しながら第1熱交換器に供給して改質ガスの熱を回収して、完全に水蒸気である気相単相にして上昇管を介して水蒸気改質器に供給する炭化水素に混合し、
(c)第3分岐管からの純水を、第2熱交換器に供給して変成ガスの熱を回収して、完全に水蒸気である気相単相にして上昇管を介して水蒸気改質器に供給する炭化水素に混合し、且つ、
(d)第1分岐管を通して、第1熱交換及び第2熱交換器で得られる水蒸気量では改質に必要な水蒸気量が不足する分の純水を水蒸気改質器に供給する炭化水素に混合するようにしてなること
を特徴とする水素製造装置における熱回収システム。
In order, in a hydrogen production apparatus equipped with a hydrocarbon steam reformer and CO converter with pure water for reforming,
(A) The first heat exchanger and the second heat exchanger are arranged between the steam reformer and the CO converter and in the converted gas outlet pipe from the CO converter, respectively , and the CO is selected following the second heat exchanger. An oxidizer is disposed, and the flow path of the pure water for reforming is branched into three flow paths: a first branch pipe, a second branch pipe, and a third branch pipe;
(B) The first heat of the pure water from the second branch pipe is controlled while controlling the pure water flow rate so that the temperature of the reformed gas entering the CO converter is constant so that the temperature of the CO converter does not run away. Supply to the exchanger to recover the heat of the reformed gas, and completely mix with the hydrocarbons to be supplied to the steam reformer via the riser in a gas phase single phase that is steam,
(C) Pure water from the third branch pipe is supplied to the second heat exchanger to recover the heat of the metamorphic gas so that it becomes a vapor phase single phase that is completely water vapor, and steam reforming through the riser pipe Mixed with the hydrocarbons fed to the vessel, and
(D) The hydrocarbons supplied to the steam reformer through the first branch pipe are supplied with pure water for the amount of steam required for reforming by the amount of steam obtained by the first heat exchange and the second heat exchanger. Getting mixed ,
A heat recovery system in a hydrogen production apparatus characterized by
順次、改質用純水による炭化水素の水蒸気改質器とCO変成器を備えた水素製造装置において、
(a)CO変成器からの変成ガス導出管に熱交換器を配置するとともに、熱交換器に続きPSA装置を配置し、改質用純水の流路を第1分岐管及び第2分岐管の二つの流路に分岐し、
(b)第2分岐管からの純水を熱交換器に供給して変成ガスの熱を回収して、完全に水蒸気である気相単相にして上昇管を介して水蒸気改質器に供給する炭化水素に混合するとともに、
(c)第1分岐管を通して、熱交換器で得られる水蒸気量では改質に必要な水蒸気量が不足する分の純水を水蒸気改質器に供給する炭化水素に混合するようにしてなること
を特徴とする水素製造装置における熱回収システム。
In order, in a hydrogen production apparatus equipped with a hydrocarbon steam reformer and CO converter with pure water for reforming,
(A) A heat exchanger is arranged in the converted gas outlet pipe from the CO converter, a PSA device is arranged after the heat exchanger, and the flow path of the pure water for reforming is the first branch pipe and the second branch pipe. Branch into two flow paths,
(B) pure water from the second branch pipe, to recover the heat of the reformed gas is supplied to the heat exchanger, completely through the riser in the gas phase single phase is steam in the steam reformer Mixed with the hydrocarbons to be fed,
(C) Through the first branch pipe, pure water corresponding to the amount of water vapor required for reforming is insufficient with the amount of water vapor obtained in the heat exchanger is mixed with the hydrocarbon supplied to the steam reformer. ,
A heat recovery system in a hydrogen production apparatus characterized by
順次、改質用純水による炭化水素の水蒸気改質器とCO変成器を備えた水素製造装置において、
(a)CO変成器からの変成ガス導出管に熱交換器を配置するとともに、熱交換器に続きCO選択酸化器を配置し、改質用純水の流路を第1分岐管及び第2分岐管の二つの流路に分岐し、
(b)第2分岐管からの純水を、熱交換器に供給して変成ガスの熱を回収して、完全に水蒸気である気相単相にして上昇管を介して水蒸気改質器に供給する炭化水素に混合するとともに、
(c)第1分岐管を通して、熱交換器で得られる水蒸気量では改質に必要な水蒸気量が不足する分の純水を水蒸気改質器に供給する炭化水素に混合するようにしてなること
を特徴とする水素製造装置における熱回収システム。
In order, in a hydrogen production apparatus equipped with a hydrocarbon steam reformer and CO converter with pure water for reforming,
(A) A heat exchanger is arranged in the conversion gas outlet pipe from the CO converter, a CO selective oxidizer is arranged following the heat exchanger, and the flow path of the pure water for reforming is the first branch pipe and the second pipe. Branches into two channels of the branch pipe,
(B) Supplying pure water from the second branch pipe to the heat exchanger to recover the heat of the metamorphic gas to make a gas phase single phase, which is completely water vapor, to the steam reformer via the riser pipe with mixing to supply hydrocarbons,
(C) Through the first branch pipe, pure water corresponding to the amount of water vapor required for reforming is insufficient with the amount of water vapor obtained in the heat exchanger is mixed with the hydrocarbon supplied to the steam reformer. ,
A heat recovery system in a hydrogen production apparatus characterized by
順次、改質用純水による炭化水素の水蒸気改質器とCO変成器とCO選択酸化器を備えた水素製造装置において、
(a)水蒸気改質器とCO変成器の間、CO変成器とCO選択酸化器の間及びCO選択酸化器からの導出管にそれぞれ第1熱交換器、第2熱交換器及び第3熱交換器を配置するとともに、改質用純水の流路を第1分岐管、第2分岐管、第3分岐管及び第4分岐管の四つの流路に分岐し、
(b)第2分岐管からの純水を、CO変成器の温度が暴走しないようにCO変成器への改質ガスの入温度が一定となるように純水流量を制御しながら第1熱交換器に供給して改質ガスの熱を回収して、完全に水蒸気である気相単相にして上昇管を介して水蒸気改質器に供給する炭化水素に混合し、
(c)第3分岐管からの純水を、第2熱交換器に供給して変成ガスの熱を回収して完全に水蒸気である気相単相にして上昇管を介して水蒸気改質器に供給する炭化水素に混合し、
(d)第4分岐管からの純水を、第3熱交換器に供給して選択酸化ガスの熱を回収して完全に水蒸気である気相単相にして上昇管を介して水蒸気改質器に供給する炭化水素に混合し、且つ、
(e)第1分岐管を通して、第1熱交換、第2熱交換器及び第3熱交換器で得られる水蒸気量では改質に必要な水蒸気量が不足する分の純水を水蒸気改質器に供給する炭化水素に混合するようにしてなること
を特徴とする水素製造装置における熱回収システム。
Sequentially, in a hydrogen production apparatus equipped with a hydrocarbon steam reformer, CO converter, and CO selective oxidizer using pure water for reforming,
(A) The first heat exchanger, the second heat exchanger, and the third heat are respectively connected to the outlet pipe from the steam reformer and the CO converter, between the CO converter and the CO selective oxidizer, and from the CO selective oxidizer. While arranging the exchanger, the flow path of the pure water for reforming is branched into four flow paths: a first branch pipe, a second branch pipe, a third branch pipe, and a fourth branch pipe,
(B) The first heat of the pure water from the second branch pipe is controlled while controlling the pure water flow rate so that the temperature of the reformed gas entering the CO converter is constant so that the temperature of the CO converter does not run away. Supply to the exchanger to recover the heat of the reformed gas, and completely mix with the hydrocarbons to be supplied to the steam reformer via the riser in a gas phase single phase that is steam,
(C) Pure water from the third branch pipe is supplied to the second heat exchanger to recover the heat of the metamorphic gas so that it becomes a vapor-phase single phase, which is completely water vapor, through the riser pipe, Mixed with hydrocarbons to supply
(D) Pure water from the fourth branch pipe is supplied to the third heat exchanger to recover the heat of the selective oxidizing gas to completely make a vapor phase single phase which is steam, and steam reforming through the riser pipe Mixed with the hydrocarbons fed to the vessel, and
(E) Through the first branch pipe, the steam quantity obtained by the first heat exchange, the second heat exchanger, and the third heat exchanger is depleted in the quantity of steam required for reforming by the steam quantity obtained by the steam reformer. To be mixed with the hydrocarbons supplied to the
A heat recovery system in a hydrogen production apparatus characterized by
前記炭化水素が都市ガス、LPG、天然ガス、ガソリンまたはナフサである請求項1〜のいずれか1項に記載の水素製造装置における熱回収システム。Heat recovery system in the hydrocarbon town gas, LPG, natural gas, hydrogen generating device according to any one of claims 1 to 6, which is a gasoline or naphtha.
JP2003067227A 2003-03-12 2003-03-12 Heat recovery system in hydrogen production equipment Expired - Lifetime JP4175921B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003067227A JP4175921B2 (en) 2003-03-12 2003-03-12 Heat recovery system in hydrogen production equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003067227A JP4175921B2 (en) 2003-03-12 2003-03-12 Heat recovery system in hydrogen production equipment

Publications (2)

Publication Number Publication Date
JP2004277186A JP2004277186A (en) 2004-10-07
JP4175921B2 true JP4175921B2 (en) 2008-11-05

Family

ID=33284903

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003067227A Expired - Lifetime JP4175921B2 (en) 2003-03-12 2003-03-12 Heat recovery system in hydrogen production equipment

Country Status (1)

Country Link
JP (1) JP4175921B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102122173B1 (en) * 2018-12-21 2020-06-15 한국가스공사 Hydrogen production system and hydrogen production method for hydrogen station

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5165832B2 (en) * 2005-01-28 2013-03-21 エア・ウォーター株式会社 Hydrogen generating apparatus and method
FR2995601B1 (en) * 2012-09-20 2016-05-27 Ifp Energies Now PROCESS FOR THE PRODUCTION OF PURE HYDROGEN FROM A DENATURED HYDROCARBONATE LOAD INCLUDING A DESULFURIZATION STEP WITH IMPROVED TEMPERATURE CONTROL BEYOND PSA
JP5925105B2 (en) * 2012-10-26 2016-05-25 三菱重工業株式会社 Saturator and natural gas reforming system having the same

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04325401A (en) * 1991-04-24 1992-11-13 Toyo Eng Corp Method and equipment for producing gaseous hydrogen
JP3743118B2 (en) * 1997-06-03 2006-02-08 ダイキン工業株式会社 Fuel cell power generation system
JP2001115172A (en) * 1999-10-14 2001-04-24 Daikin Ind Ltd Co-reforming apparatus
JP4810749B2 (en) * 2000-06-08 2011-11-09 トヨタ自動車株式会社 Fuel reformer
JP2002187703A (en) * 2000-12-19 2002-07-05 Toyota Motor Corp Fuel reforming apparatus and fuel reforming method
JP2002274805A (en) * 2001-01-12 2002-09-25 Toyota Motor Corp Control of reformer having heat exchanger employing reform material as refrigerant
JP4968984B2 (en) * 2001-01-12 2012-07-04 三洋電機株式会社 Fuel cell reformer
JP2004210609A (en) * 2003-01-07 2004-07-29 Toyota Motor Corp Fuel reforming apparatus and fuel cell system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102122173B1 (en) * 2018-12-21 2020-06-15 한국가스공사 Hydrogen production system and hydrogen production method for hydrogen station

Also Published As

Publication number Publication date
JP2004277186A (en) 2004-10-07

Similar Documents

Publication Publication Date Title
US8926866B2 (en) Hydrogen generating apparatus using steam reforming reaction
KR102323734B1 (en) A production method and system of blue hydrogen
US7832364B2 (en) Heat transfer unit for steam generation and gas preheating
JP2004536006A (en) Single chamber compact fuel processor
JPH0585701A (en) Self-heating type steam reforming method
KR20210103677A (en) Hydrogen Reforming System
KR20230029615A (en) How to produce hydrogen
JP4427173B2 (en) Syngas production method
CN111217331A (en) Method for producing hydrogen by steam reforming and CO conversion
JP5272183B2 (en) Fuel cell reformer
JP4175921B2 (en) Heat recovery system in hydrogen production equipment
CN106966363B (en) For with the technique of the corrosion manufacture hydrogen of reduction
JP4135871B2 (en) Apparatus and method for reforming kerosene or light oil using exhaust heat as a heat source
MX2015005617A (en) Process for the conversion of a hydrocarbon feedstock into a synthesis gas.
EP3771688B1 (en) Segregated steam system and process in a hydrogen production facility
JP4278393B2 (en) Hydrogen production apparatus and fuel cell system
KR102323731B1 (en) Multi-fuels Reforming system for hydrogen production
BR112020011429A2 (en) system and process for synthesis gas production
JP2014062040A (en) Method for manufacturing high-purity hydrogen from modified hydrocarbon feeding raw ingredient including desulfurizing step accompanied by improved temperature control on upstream side of psa
JP4592937B2 (en) Hydrogen production equipment
CA3088018C (en) Segregated steam system and process in a hydrogen production facility
JP2006008453A (en) Hydrogen production system and hydrogen production method
WO2024056871A1 (en) Autothermal reforming process for production of hydrogen
CA3222294A1 (en) Process and plant for flexible production of syngas from hydrocarbons
JP2003321203A (en) Steam reforming system for hydrocarbon

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070925

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080812

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080819

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110829

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4175921

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110829

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120829

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120829

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130829

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term